00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 15. July 2011 00005 * $Revision: V1.0.10 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_mat_scale_f32.c 00009 * 00010 * Description: Multiplies a floating-point matrix by a scalar. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Version 1.0.10 2011/7/15 00015 * Big Endian support added and Merged M0 and M3/M4 Source code. 00016 * 00017 * Version 1.0.3 2010/11/29 00018 * Re-organized the CMSIS folders and updated documentation. 00019 * 00020 * Version 1.0.2 2010/11/11 00021 * Documentation updated. 00022 * 00023 * Version 1.0.1 2010/10/05 00024 * Production release and review comments incorporated. 00025 * 00026 * Version 1.0.0 2010/09/20 00027 * Production release and review comments incorporated. 00028 * 00029 * Version 0.0.5 2010/04/26 00030 * incorporated review comments and updated with latest CMSIS layer 00031 * 00032 * Version 0.0.3 2010/03/10 00033 * Initial version 00034 * -------------------------------------------------------------------- */ 00035 00036 #include "arm_math.h" 00037 00075 arm_status arm_mat_scale_f32( 00076 const arm_matrix_instance_f32 * pSrc, 00077 float32_t scale, 00078 arm_matrix_instance_f32 * pDst) 00079 { 00080 float32_t *pIn = pSrc->pData; /* input data matrix pointer */ 00081 float32_t *pOut = pDst->pData; /* output data matrix pointer */ 00082 uint32_t numSamples; /* total number of elements in the matrix */ 00083 uint32_t blkCnt; /* loop counters */ 00084 arm_status status; /* status of matrix scaling */ 00085 00086 #ifdef ARM_MATH_MATRIX_CHECK 00087 00088 00089 /* Check for matrix mismatch condition */ 00090 if((pSrc->numRows != pDst->numRows) || (pSrc->numCols != pDst->numCols)) 00091 { 00092 /* Set status as ARM_MATH_SIZE_MISMATCH */ 00093 status = ARM_MATH_SIZE_MISMATCH; 00094 } 00095 else 00096 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ 00097 00098 { 00099 /* Total number of samples in the input matrix */ 00100 numSamples = (uint32_t) pSrc->numRows * pSrc->numCols; 00101 00102 #ifndef ARM_MATH_CM0 00103 00104 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00105 00106 /* Loop Unrolling */ 00107 blkCnt = numSamples >> 2; 00108 00109 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00110 ** a second loop below computes the remaining 1 to 3 samples. */ 00111 while(blkCnt > 0u) 00112 { 00113 /* C(m,n) = A(m,n) * scale */ 00114 /* Scaling and results are stored in the destination buffer. */ 00115 *pOut++ = (*pIn++) * scale; 00116 *pOut++ = (*pIn++) * scale; 00117 *pOut++ = (*pIn++) * scale; 00118 *pOut++ = (*pIn++) * scale; 00119 00120 /* Decrement the numSamples loop counter */ 00121 blkCnt--; 00122 } 00123 00124 /* If the numSamples is not a multiple of 4, compute any remaining output samples here. 00125 ** No loop unrolling is used. */ 00126 blkCnt = numSamples % 0x4u; 00127 00128 #else 00129 00130 /* Run the below code for Cortex-M0 */ 00131 00132 /* Initialize blkCnt with number of samples */ 00133 blkCnt = numSamples; 00134 00135 #endif /* #ifndef ARM_MATH_CM0 */ 00136 00137 while(blkCnt > 0u) 00138 { 00139 /* C(m,n) = A(m,n) * scale */ 00140 /* The results are stored in the destination buffer. */ 00141 *pOut++ = (*pIn++) * scale; 00142 00143 /* Decrement the loop counter */ 00144 blkCnt--; 00145 } 00146 /* Set status as ARM_MATH_SUCCESS */ 00147 status = ARM_MATH_SUCCESS; 00148 } 00149 00150 /* Return to application */ 00151 return (status); 00152 } 00153