1
0
mirror of https://github.com/arduino/Arduino.git synced 2024-11-30 11:24:12 +01:00
Arduino/bootloader/ATmegaBOOT.c

556 lines
16 KiB
C
Raw Normal View History

/**********************************************************/
/* Serial Bootloader for Atmel megaAVR Controllers */
/* */
/* ATmegaBOOT.c */
/* */
/* build: 050123 */
/* */
/* Hacked by DojoCorp - ZGZ - MMX - IVR */
/* */
/* For the latest version see: */
/* http://www.0j0.org and */
/* http://www.potemkin.org */
/* */
/* ------------------------------------------------------ */
/* */
/* Copyleft (c) 2005, DojoDave */
/* Creative Commons . */
/* see avr1.org for original file and information */
/* */
/* This program is free software; you can redistribute it */
/* and/or modify it under the terms of the GNU General */
/* Public License as published by the Free Software */
/* Foundation; either version 2 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will */
/* be useful, but WITHOUT ANY WARRANTY; without even the */
/* implied warranty of MERCHANTABILITY or FITNESS FOR A */
/* PARTICULAR PURPOSE. See the GNU General Public */
/* License for more details. */
/* */
/* You should have received a copy of the GNU General */
/* Public License along with this program; if not, write */
/* to the Free Software Foundation, Inc., */
/* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* */
/* Licence can be viewed at */
/* http://www.fsf.org/licenses/gpl.txt */
/* */
/* Target = Atmel AVR m128,m64,m32,m16,m8,m162,m163,m169, */
/* m8515,m8535. ATmega161 has a very small boot block so */
/* isn't supported. */
/* */
/* Tested with m8 - */
/* */
/**********************************************************/
#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#define F_CPU 16000000
/* We, Malmoitians, like slow interaction
* therefore the slow baud rate ;-)
*/
#define BAUD_RATE 19200
/* 6.000.000 is more or less 8 seconds at the
* speed configured here
*/
#define MAX_TIME_COUNT 6000000
#define MAX_TIME_COUNT_MORATORY 1600000
#define DECRYPT 0
#define ENCRYPT 1
/* #define DES_ENCRYPTION */
/* SW_MAJOR and MINOR needs to be updated from time to time to avoid warning message from AVR Studio */
#define HW_VER 0x02
#define SW_MAJOR 0x01
#define SW_MINOR 0x12
// AVR-GCC compiler compatibility
// avr-gcc compiler v3.1.x and older doesn't support outb() and inb()
// if necessary, convert outb and inb to outp and inp
#ifndef outb
#define outb(sfr,val) (_SFR_BYTE(sfr) = (val))
#endif
#ifndef inb
#define inb(sfr) _SFR_BYTE(sfr)
#endif
/* defines for future compatibility */
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
/* Adjust to suit whatever pin your hardware uses to enter the bootloader */
#define eeprom_rb(addr) eeprom_read_byte ((uint8_t *)(addr))
#define eeprom_rw(addr) eeprom_read_word ((uint16_t *)(addr))
#define eeprom_wb(addr, val) eeprom_write_byte ((uint8_t *)(addr), (uint8_t)(val))
/* other ATmegas have only one UART, so only one pin is defined to enter bootloader */
#define BL_DDR DDRD
#define BL_PORT PORTD
#define BL_PIN PIND
#define BL PIND6
/* define pin for onboard LED */
/* depends on product */
/* Onboard LED is connected to pin PB5 */
#define LED_DDR DDRB
#define LED_PORT PORTB
#define LED_PIN PINB
#define LED PINB5
#define SIG1 0x1E // Yep, Atmel is the only manufacturer of AVR micros. Single source :(
#define SIG2 0x93
#define SIG3 0x07
#define PAGE_SIZE 0x20U //32 words
void putch(char);
char getch(void);
void getNch(uint8_t);
void byte_response(uint8_t);
void nothing_response(void);
char gethex(void);
void puthex(char);
union address_union {
uint16_t word;
uint8_t byte[2];
} address;
union length_union {
uint16_t word;
uint8_t byte[2];
} length;
struct flags_struct {
unsigned eeprom : 1;
unsigned rampz : 1;
} flags;
uint8_t buff[256];
uint8_t address_high;
uint8_t pagesz=0x80;
uint8_t i;
uint8_t bootuart0=0,bootuart1=0;
void (*app_start)(void) = 0x0000;
int main(void)
{
uint8_t ch,ch2;
uint16_t w;
cbi(BL_DDR,BL);
sbi(BL_PORT,BL);
asm volatile("nop\n\t");
/* check if flash is programmed already, if not start bootloader anyway */
if(pgm_read_byte_near(0x0000) != 0xFF) {
/* check if bootloader pin is set low */
//if(bit_is_set(BL_PIN,BL)) app_start();
}
/* initialize UART(s) depending on CPU defined */
/* m8 */
UBRRH = (((F_CPU/BAUD_RATE)/16)-1)>>8; // set baud rate
UBRRL = (((F_CPU/BAUD_RATE)/16)-1);
UCSRB =(1<<RXEN)|(1<<TXEN); // enable Rx & Tx
UCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0); // config USART; 8N1
//UBRRL = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
//UBRRH = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
//UCSRA = 0x00;
//UCSRC = 0x86;
//UCSRB = _BV(TXEN)|_BV(RXEN);
putch('\0');
uint32_t l;
uint32_t time_count;
time_count=0;
/* set LED pin as output */
sbi(LED_DDR,LED);
/* flash onboard LED three times to signal entering of bootloader */
for(i=0; i<3; ++i) {
for(l=0; l<40000000; ++l);
sbi(LED_PORT,LED);
for(l=0; l<40000000; ++l);
cbi(LED_PORT,LED);
}
putch('\0'); // this line is needed for the synchronization of the programmer
/* forever */
for (;;) {
if((inb(UCSRA) & _BV(RXC))){
/* get character from UART */
ch = getch();
/* A bunch of if...else if... gives smaller code than switch...case ! */
/* Hello is anyone home ? */
if(ch=='0') {
nothing_response();
}
if(ch=='l') {
if (getch() == 'o') {
if (getch() == 'l') {
if (getch() == 'a') {
app_start();
}
}
}
}
/* Request programmer ID */
/* Not using PROGMEM string due to boot block in m128 being beyond 64kB boundry */
/* Would need to selectively manipulate RAMPZ, and it's only 9 characters anyway so who cares. */
else if(ch=='1') {
if (getch() == ' ') {
putch(0x14);
putch('A');
putch('V');
putch('R');
putch(' ');
putch('I');
putch('S');
putch('P');
putch(0x10);
}
}
/* AVR ISP/STK500 board commands DON'T CARE so default nothing_response */
else if(ch=='@') {
ch2 = getch();
if (ch2>0x85) getch();
nothing_response();
}
/* AVR ISP/STK500 board requests */
else if(ch=='A') {
ch2 = getch();
if(ch2==0x80) byte_response(HW_VER); // Hardware version
else if(ch2==0x81) byte_response(SW_MAJOR); // Software major version
else if(ch2==0x82) byte_response(SW_MINOR); // Software minor version
else if(ch2==0x98) byte_response(0x03); // Unknown but seems to be required by avr studio 3.56
else byte_response(0x00); // Covers various unnecessary responses we don't care about
}
/* Device Parameters DON'T CARE, DEVICE IS FIXED */
else if(ch=='B') {
getNch(20);
nothing_response();
}
/* Parallel programming stuff DON'T CARE */
else if(ch=='E') {
getNch(5);
nothing_response();
}
/* Enter programming mode */
else if(ch=='P') {
nothing_response();
// FIXME: modified only here by DojoCorp, Mumbai, India, 20050626
time_count=0; // exted the delay once entered prog.mode
}
/* Leave programming mode */
else if(ch=='Q') {
nothing_response();
time_count=MAX_TIME_COUNT_MORATORY; // once the programming is done,
// we should start the application
// but uisp has problems with this,
// therefore we just change the times
// and give the programmer 1 sec to react
}
/* Erase device, don't care as we will erase one page at a time anyway. */
else if(ch=='R') {
nothing_response();
}
/* Set address, little endian. EEPROM in bytes, FLASH in words */
/* Perhaps extra address bytes may be added in future to support > 128kB FLASH. */
/* This might explain why little endian was used here, big endian used everywhere else. */
else if(ch=='U') {
address.byte[0] = getch();
address.byte[1] = getch();
nothing_response();
}
/* Universal SPI programming command, disabled. Would be used for fuses and lock bits. */
else if(ch=='V') {
getNch(4);
byte_response(0x00);
}
/* Write memory, length is big endian and is in bytes */
else if(ch=='d') {
length.byte[1] = getch();
length.byte[0] = getch();
flags.eeprom = 0;
if (getch() == 'E') flags.eeprom = 1;
for (w=0;w<length.word;w++) {
buff[w] = getch(); // Store data in buffer, can't keep up with serial data stream whilst programming pages
}
if (getch() == ' ') {
if (flags.eeprom) { //Write to EEPROM one byte at a time
for(w=0;w<length.word;w++) {
eeprom_wb(address.word,buff[w]);
address.word++;
}
}
else { //Write to FLASH one page at a time
if (address.byte[1]>127) address_high = 0x01; //Only possible with m128, m256 will need 3rd address byte. FIXME
else address_high = 0x00;
address.word = address.word << 1; //address * 2 -> byte location
/* if ((length.byte[0] & 0x01) == 0x01) length.word++; //Even up an odd number of bytes */
if ((length.byte[0] & 0x01)) length.word++; //Even up an odd number of bytes
cli(); //Disable interrupts, just to be sure
while(bit_is_set(EECR,EEWE)); //Wait for previous EEPROM writes to complete
asm volatile("clr r17 \n\t" //page_word_count
"lds r30,address \n\t" //Address of FLASH location (in bytes)
"lds r31,address+1 \n\t"
"ldi r28,lo8(buff) \n\t" //Start of buffer array in RAM
"ldi r29,hi8(buff) \n\t"
"lds r24,length \n\t" //Length of data to be written (in bytes)
"lds r25,length+1 \n\t"
"length_loop: \n\t" //Main loop, repeat for number of words in block
"cpi r17,0x00 \n\t" //If page_word_count=0 then erase page
"brne no_page_erase \n\t"
"wait_spm1: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm1 \n\t"
"ldi r16,0x03 \n\t" //Erase page pointed to by Z
"sts %0,r16 \n\t"
"spm \n\t"
"wait_spm2: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm2 \n\t"
"ldi r16,0x11 \n\t" //Re-enable RWW section
"sts %0,r16 \n\t"
"spm \n\t"
"no_page_erase: \n\t"
"ld r0,Y+ \n\t" //Write 2 bytes into page buffer
"ld r1,Y+ \n\t"
"wait_spm3: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm3 \n\t"
"ldi r16,0x01 \n\t" //Load r0,r1 into FLASH page buffer
"sts %0,r16 \n\t"
"spm \n\t"
"inc r17 \n\t" //page_word_count++
"cpi r17,%1 \n\t"
"brlo same_page \n\t" //Still same page in FLASH
"write_page: \n\t"
"clr r17 \n\t" //New page, write current one first
"wait_spm4: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm4 \n\t"
"ldi r16,0x05 \n\t" //Write page pointed to by Z
"sts %0,r16 \n\t"
"spm \n\t"
"wait_spm5: \n\t"
"lds r16,%0 \n\t" //Wait for previous spm to complete
"andi r16,1 \n\t"
"cpi r16,1 \n\t"
"breq wait_spm5 \n\t"
"ldi r16,0x11 \n\t" //Re-enable RWW section
"sts %0,r16 \n\t"
"spm \n\t"
"same_page: \n\t"
"adiw r30,2 \n\t" //Next word in FLASH
"sbiw r24,2 \n\t" //length-2
"breq final_write \n\t" //Finished
"rjmp length_loop \n\t"
"final_write: \n\t"
"cpi r17,0 \n\t"
"breq block_done \n\t"
"adiw r24,2 \n\t" //length+2, fool above check on length after short page write
"rjmp write_page \n\t"
"block_done: \n\t"
"clr __zero_reg__ \n\t" //restore zero register
: "=m" (SPMCR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31");
/* Should really add a wait for RWW section to be enabled, don't actually need it since we never */
/* exit the bootloader without a power cycle anyhow */
}
putch(0x14);
putch(0x10);
}
}
/* Read memory block mode, length is big endian. */
else if(ch=='t') {
length.byte[1] = getch();
length.byte[0] = getch();
if (getch() == 'E') flags.eeprom = 1;
else {
flags.eeprom = 0;
address.word = address.word << 1; // address * 2 -> byte location
}
if (getch() == ' ') { // Command terminator
putch(0x14);
for (w=0;w < length.word;w++) { // Can handle odd and even lengths okay
if (flags.eeprom) { // Byte access EEPROM read
putch(eeprom_rb(address.word));
address.word++;
}
else {
if (!flags.rampz) putch(pgm_read_byte_near(address.word));
address.word++;
}
}
putch(0x10);
}
}
/* Get device signature bytes */
else if(ch=='u') {
if (getch() == ' ') {
putch(0x14);
putch(SIG1);
putch(SIG2);
putch(SIG3);
putch(0x10);
}
}
/* Read oscillator calibration byte */
else if(ch=='v') {
byte_response(0x00);
}
}
else {
time_count++;
if (time_count>=MAX_TIME_COUNT) {
app_start();
}
}
}
/* end of forever loop */
}
char gethex(void) {
char ah,al;
ah = getch(); putch(ah);
al = getch(); putch(al);
if(ah >= 'a') {
ah = ah - 'a' + 0x0a;
} else if(ah >= '0') {
ah -= '0';
}
if(al >= 'a') {
al = al - 'a' + 0x0a;
} else if(al >= '0') {
al -= '0';
}
return (ah << 4) + al;
}
void puthex(char ch) {
char ah,al;
ah = (ch & 0xf0) >> 4;
if(ah >= 0x0a) {
ah = ah - 0x0a + 'a';
} else {
ah += '0';
}
al = (ch & 0x0f);
if(al >= 0x0a) {
al = al - 0x0a + 'a';
} else {
al += '0';
}
putch(ah);
putch(al);
}
void putch(char ch)
{
/* m8 */
while (!(inb(UCSRA) & _BV(UDRE)));
outb(UDR,ch);
}
char getch(void)
{
/* m8 */
while(!(inb(UCSRA) & _BV(RXC))) {
/* HACKME:: here is a good place to count times*/
}
return (inb(UDR));
}
void getNch(uint8_t count)
{
uint8_t i;
for(i=0;i<count;i++) {
/* m8 */
while(!(inb(UCSRA) & _BV(RXC)));
inb(UDR);
}
}
void byte_response(uint8_t val)
{
if (getch() == ' ') {
putch(0x14);
putch(val);
putch(0x10);
}
}
void nothing_response(void)
{
if (getch() == ' ') {
putch(0x14);
putch(0x10);
}
}
/* end of file ATmegaBOOT.c */