1
0
mirror of https://github.com/arduino/Arduino.git synced 2024-12-10 21:24:12 +01:00
Arduino/libraries/TFT/utility/Adafruit_GFX.cpp

671 lines
16 KiB
C++
Raw Normal View History

2013-05-17 12:39:31 +02:00
/******************************************************************
This is the core graphics library for all our displays, providing
basic graphics primitives (points, lines, circles, etc.). It needs
to be paired with a hardware-specific library for each display
device we carry (handling the lower-level functions).
Adafruit invests time and resources providing this open
source code, please support Adafruit and open-source hardware
by purchasing products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
BSD license, check license.txt for more information.
All text above must be included in any redistribution.
******************************************************************/
#include "Adafruit_GFX.h"
#include "glcdfont.c"
#include <avr/pgmspace.h>
void Adafruit_GFX::constructor(int16_t w, int16_t h) {
_width = WIDTH = w;
_height = HEIGHT = h;
rotation = 0;
cursor_y = cursor_x = 0;
textsize = 1;
textcolor = textbgcolor = 0xFFFF;
wrap = true;
strokeColor = 0;
useStroke = true;
fillColor = 0;
useFill = false;
}
// draw a circle outline
void Adafruit_GFX::drawCircle(int16_t x0, int16_t y0, int16_t r,
uint16_t color) {
int16_t f = 1 - r;
int16_t ddF_x = 1;
int16_t ddF_y = -2 * r;
int16_t x = 0;
int16_t y = r;
drawPixel(x0, y0+r, color);
drawPixel(x0, y0-r, color);
drawPixel(x0+r, y0, color);
drawPixel(x0-r, y0, color);
while (x<y) {
if (f >= 0) {
y--;
ddF_y += 2;
f += ddF_y;
}
x++;
ddF_x += 2;
f += ddF_x;
drawPixel(x0 + x, y0 + y, color);
drawPixel(x0 - x, y0 + y, color);
drawPixel(x0 + x, y0 - y, color);
drawPixel(x0 - x, y0 - y, color);
drawPixel(x0 + y, y0 + x, color);
drawPixel(x0 - y, y0 + x, color);
drawPixel(x0 + y, y0 - x, color);
drawPixel(x0 - y, y0 - x, color);
}
}
void Adafruit_GFX::drawCircleHelper( int16_t x0, int16_t y0,
int16_t r, uint8_t cornername, uint16_t color) {
int16_t f = 1 - r;
int16_t ddF_x = 1;
int16_t ddF_y = -2 * r;
int16_t x = 0;
int16_t y = r;
while (x<y) {
if (f >= 0) {
y--;
ddF_y += 2;
f += ddF_y;
}
x++;
ddF_x += 2;
f += ddF_x;
if (cornername & 0x4) {
drawPixel(x0 + x, y0 + y, color);
drawPixel(x0 + y, y0 + x, color);
}
if (cornername & 0x2) {
drawPixel(x0 + x, y0 - y, color);
drawPixel(x0 + y, y0 - x, color);
}
if (cornername & 0x8) {
drawPixel(x0 - y, y0 + x, color);
drawPixel(x0 - x, y0 + y, color);
}
if (cornername & 0x1) {
drawPixel(x0 - y, y0 - x, color);
drawPixel(x0 - x, y0 - y, color);
}
}
}
void Adafruit_GFX::fillCircle(int16_t x0, int16_t y0, int16_t r,
uint16_t color) {
drawFastVLine(x0, y0-r, 2*r+1, color);
fillCircleHelper(x0, y0, r, 3, 0, color);
}
// used to do circles and roundrects!
void Adafruit_GFX::fillCircleHelper(int16_t x0, int16_t y0, int16_t r,
uint8_t cornername, int16_t delta, uint16_t color) {
int16_t f = 1 - r;
int16_t ddF_x = 1;
int16_t ddF_y = -2 * r;
int16_t x = 0;
int16_t y = r;
while (x<y) {
if (f >= 0) {
y--;
ddF_y += 2;
f += ddF_y;
}
x++;
ddF_x += 2;
f += ddF_x;
if (cornername & 0x1) {
drawFastVLine(x0+x, y0-y, 2*y+1+delta, color);
drawFastVLine(x0+y, y0-x, 2*x+1+delta, color);
}
if (cornername & 0x2) {
drawFastVLine(x0-x, y0-y, 2*y+1+delta, color);
drawFastVLine(x0-y, y0-x, 2*x+1+delta, color);
}
}
}
// bresenham's algorithm - thx wikpedia
void Adafruit_GFX::drawLine(int16_t x0, int16_t y0,
int16_t x1, int16_t y1,
uint16_t color) {
int16_t steep = abs(y1 - y0) > abs(x1 - x0);
if (steep) {
swap(x0, y0);
swap(x1, y1);
}
if (x0 > x1) {
swap(x0, x1);
swap(y0, y1);
}
int16_t dx, dy;
dx = x1 - x0;
dy = abs(y1 - y0);
int16_t err = dx / 2;
int16_t ystep;
if (y0 < y1) {
ystep = 1;
} else {
ystep = -1;
}
for (; x0<=x1; x0++) {
if (steep) {
drawPixel(y0, x0, color);
} else {
drawPixel(x0, y0, color);
}
err -= dy;
if (err < 0) {
y0 += ystep;
err += dx;
}
}
}
// draw a rectangle
void Adafruit_GFX::drawRect(int16_t x, int16_t y,
int16_t w, int16_t h,
uint16_t color) {
drawFastHLine(x, y, w, color);
drawFastHLine(x, y+h-1, w, color);
drawFastVLine(x, y, h, color);
drawFastVLine(x+w-1, y, h, color);
}
void Adafruit_GFX::drawFastVLine(int16_t x, int16_t y,
int16_t h, uint16_t color) {
// stupidest version - update in subclasses if desired!
drawLine(x, y, x, y+h-1, color);
}
void Adafruit_GFX::drawFastHLine(int16_t x, int16_t y,
int16_t w, uint16_t color) {
// stupidest version - update in subclasses if desired!
drawLine(x, y, x+w-1, y, color);
}
void Adafruit_GFX::fillRect(int16_t x, int16_t y, int16_t w, int16_t h,
uint16_t color) {
// stupidest version - update in subclasses if desired!
for (int16_t i=x; i<x+w; i++) {
drawFastVLine(i, y, h, color);
}
}
void Adafruit_GFX::fillScreen(uint16_t color) {
fillRect(0, 0, _width, _height, color);
}
// draw a rounded rectangle!
void Adafruit_GFX::drawRoundRect(int16_t x, int16_t y, int16_t w,
int16_t h, int16_t r, uint16_t color) {
// smarter version
drawFastHLine(x+r , y , w-2*r, color); // Top
drawFastHLine(x+r , y+h-1, w-2*r, color); // Bottom
drawFastVLine( x , y+r , h-2*r, color); // Left
drawFastVLine( x+w-1, y+r , h-2*r, color); // Right
// draw four corners
drawCircleHelper(x+r , y+r , r, 1, color);
drawCircleHelper(x+w-r-1, y+r , r, 2, color);
drawCircleHelper(x+w-r-1, y+h-r-1, r, 4, color);
drawCircleHelper(x+r , y+h-r-1, r, 8, color);
}
// fill a rounded rectangle!
void Adafruit_GFX::fillRoundRect(int16_t x, int16_t y, int16_t w,
int16_t h, int16_t r, uint16_t color) {
// smarter version
fillRect(x+r, y, w-2*r, h, color);
// draw four corners
fillCircleHelper(x+w-r-1, y+r, r, 1, h-2*r-1, color);
fillCircleHelper(x+r , y+r, r, 2, h-2*r-1, color);
}
// draw a triangle!
void Adafruit_GFX::drawTriangle(int16_t x0, int16_t y0,
int16_t x1, int16_t y1,
int16_t x2, int16_t y2, uint16_t color) {
drawLine(x0, y0, x1, y1, color);
drawLine(x1, y1, x2, y2, color);
drawLine(x2, y2, x0, y0, color);
}
// fill a triangle!
void Adafruit_GFX::fillTriangle ( int16_t x0, int16_t y0,
int16_t x1, int16_t y1,
int16_t x2, int16_t y2, uint16_t color) {
int16_t a, b, y, last;
// Sort coordinates by Y order (y2 >= y1 >= y0)
if (y0 > y1) {
swap(y0, y1); swap(x0, x1);
}
if (y1 > y2) {
swap(y2, y1); swap(x2, x1);
}
if (y0 > y1) {
swap(y0, y1); swap(x0, x1);
}
if(y0 == y2) { // Handle awkward all-on-same-line case as its own thing
a = b = x0;
if(x1 < a) a = x1;
else if(x1 > b) b = x1;
if(x2 < a) a = x2;
else if(x2 > b) b = x2;
drawFastHLine(a, y0, b-a+1, color);
return;
}
int16_t
dx01 = x1 - x0,
dy01 = y1 - y0,
dx02 = x2 - x0,
dy02 = y2 - y0,
dx12 = x2 - x1,
dy12 = y2 - y1,
sa = 0,
sb = 0;
// For upper part of triangle, find scanline crossings for segments
// 0-1 and 0-2. If y1=y2 (flat-bottomed triangle), the scanline y1
// is included here (and second loop will be skipped, avoiding a /0
// error there), otherwise scanline y1 is skipped here and handled
// in the second loop...which also avoids a /0 error here if y0=y1
// (flat-topped triangle).
if(y1 == y2) last = y1; // Include y1 scanline
else last = y1-1; // Skip it
for(y=y0; y<=last; y++) {
a = x0 + sa / dy01;
b = x0 + sb / dy02;
sa += dx01;
sb += dx02;
/* longhand:
a = x0 + (x1 - x0) * (y - y0) / (y1 - y0);
b = x0 + (x2 - x0) * (y - y0) / (y2 - y0);
*/
if(a > b) swap(a,b);
drawFastHLine(a, y, b-a+1, color);
}
// For lower part of triangle, find scanline crossings for segments
// 0-2 and 1-2. This loop is skipped if y1=y2.
sa = dx12 * (y - y1);
sb = dx02 * (y - y0);
for(; y<=y2; y++) {
a = x1 + sa / dy12;
b = x0 + sb / dy02;
sa += dx12;
sb += dx02;
/* longhand:
a = x1 + (x2 - x1) * (y - y1) / (y2 - y1);
b = x0 + (x2 - x0) * (y - y0) / (y2 - y0);
*/
if(a > b) swap(a,b);
drawFastHLine(a, y, b-a+1, color);
}
}
void Adafruit_GFX::drawBitmap(int16_t x, int16_t y,
const uint8_t *bitmap, int16_t w, int16_t h,
uint16_t color) {
int16_t i, j, byteWidth = (w + 7) / 8;
for(j=0; j<h; j++) {
for(i=0; i<w; i++ ) {
if(pgm_read_byte(bitmap + j * byteWidth + i / 8) & (128 >> (i & 7))) {
drawPixel(x+i, y+j, color);
}
}
}
}
#if ARDUINO >= 100
size_t Adafruit_GFX::write(uint8_t c) {
#else
void Adafruit_GFX::write(uint8_t c) {
#endif
if (c == '\n') {
cursor_y += textsize*8;
cursor_x = 0;
} else if (c == '\r') {
// skip em
} else {
drawChar(cursor_x, cursor_y, c, textcolor, textbgcolor, textsize);
cursor_x += textsize*6;
if (wrap && (cursor_x > (_width - textsize*6))) {
cursor_y += textsize*8;
cursor_x = 0;
}
}
#if ARDUINO >= 100
return 1;
#endif
}
// draw a character
void Adafruit_GFX::drawChar(int16_t x, int16_t y, unsigned char c,
uint16_t color, uint16_t bg, uint8_t size) {
if((x >= _width) || // Clip right
(y >= _height) || // Clip bottom
((x + 5 * size - 1) < 0) || // Clip left
((y + 8 * size - 1) < 0)) // Clip top
return;
for (int8_t i=0; i<6; i++ ) {
uint8_t line;
if (i == 5)
line = 0x0;
else
line = pgm_read_byte(font+(c*5)+i);
for (int8_t j = 0; j<8; j++) {
if (line & 0x1) {
if (size == 1) // default size
drawPixel(x+i, y+j, color);
else { // big size
fillRect(x+(i*size), y+(j*size), size, size, color);
}
} else if (bg != color) {
if (size == 1) // default size
drawPixel(x+i, y+j, bg);
else { // big size
fillRect(x+i*size, y+j*size, size, size, bg);
}
}
line >>= 1;
}
}
}
void Adafruit_GFX::setCursor(int16_t x, int16_t y) {
cursor_x = x;
cursor_y = y;
}
void Adafruit_GFX::setTextSize(uint8_t s) {
textsize = (s > 0) ? s : 1;
}
void Adafruit_GFX::setTextColor(uint16_t c) {
textcolor = c;
textbgcolor = c;
// for 'transparent' background, we'll set the bg
// to the same as fg instead of using a flag
}
void Adafruit_GFX::setTextColor(uint16_t c, uint16_t b) {
textcolor = c;
textbgcolor = b;
}
void Adafruit_GFX::setTextWrap(boolean w) {
wrap = w;
}
uint8_t Adafruit_GFX::getRotation(void) {
rotation %= 4;
return rotation;
}
void Adafruit_GFX::setRotation(uint8_t x) {
x %= 4; // cant be higher than 3
rotation = x;
switch (x) {
case 0:
case 2:
_width = WIDTH;
_height = HEIGHT;
break;
case 1:
case 3:
_width = HEIGHT;
_height = WIDTH;
break;
}
}
void Adafruit_GFX::invertDisplay(boolean i) {
// do nothing, can be subclassed
}
// return the size of the display which depends on the rotation!
int16_t Adafruit_GFX::width(void) {
return _width;
}
int16_t Adafruit_GFX::height(void) {
return _height;
}
uint16_t Adafruit_GFX::newColor(uint8_t r, uint8_t g, uint8_t b) {
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
}
void Adafruit_GFX::background(uint8_t red, uint8_t green, uint8_t blue) {
background(newColor(red, green, blue));
}
void Adafruit_GFX::background(color c) {
fillScreen(c);
}
void Adafruit_GFX::stroke(uint8_t red, uint8_t green, uint8_t blue) {
stroke(newColor(red, green, blue));
}
void Adafruit_GFX::stroke(color c) {
useStroke = true;
strokeColor = c;
setTextColor(c);
}
void Adafruit_GFX::noStroke() {
useStroke = false;
}
void Adafruit_GFX::noFill() {
useFill = false;
}
void Adafruit_GFX::fill(uint8_t red, uint8_t green, uint8_t blue) {
fill(newColor(red, green, blue));
}
void Adafruit_GFX::fill(color c) {
useFill = true;
fillColor = c;
}
void Adafruit_GFX::text(const char * text, int16_t x, int16_t y) {
if (!useStroke)
return;
setTextWrap(false);
setTextColor(strokeColor);
setCursor(x, y);
print(text);
}
void Adafruit_GFX::textWrap(const char * text, int16_t x, int16_t y) {
if (!useStroke)
return;
setTextWrap(true);
setTextColor(strokeColor);
setCursor(x, y);
print(text);
}
void Adafruit_GFX::textSize(uint8_t size) {
setTextSize(size);
}
void Adafruit_GFX::point(int16_t x, int16_t y) {
if (!useStroke)
return;
drawPixel(x, y, strokeColor);
}
void Adafruit_GFX::line(int16_t x1, int16_t y1, int16_t x2, int16_t y2) {
if (!useStroke)
return;
if (x1 == x2) {
if (y1 < y2)
drawFastVLine(x1, y1, y2 - y1, strokeColor);
else
drawFastVLine(x1, y2, y1 - y2, strokeColor);
}
else if (y1 == y2) {
if (x1 < x2)
drawFastHLine(x1, y1, x2 - x1, strokeColor);
else
drawFastHLine(x2, y1, x1 - x2, strokeColor);
}
else {
drawLine(x1, y1, x2, y2, strokeColor);
}
}
void Adafruit_GFX::rect(int16_t x, int16_t y, int16_t width, int16_t height) {
if (useFill) {
fillRect(x, y, width, height, fillColor);
}
if (useStroke) {
drawRect(x, y, width, height, strokeColor);
}
}
void Adafruit_GFX::rect(int16_t x, int16_t y, int16_t width, int16_t height, int16_t radius) {
if (radius == 0) {
rect(x, y, width, height);
}
if (useFill) {
fillRoundRect(x, y, width, height, radius, fillColor);
}
if (useStroke) {
drawRoundRect(x, y, width, height, radius, strokeColor);
}
}
void Adafruit_GFX::circle(int16_t x, int16_t y, int16_t r) {
if (r == 0)
return;
if (useFill) {
fillCircle(x, y, r, fillColor);
}
if (useStroke) {
drawCircle(x, y, r, strokeColor);
}
}
void Adafruit_GFX::triangle(int16_t x1, int16_t y1, int16_t x2, int16_t y2, int16_t x3, int16_t y3) {
if (useFill) {
fillTriangle(x1, y1, x2, y2, x3, y3, fillColor);
}
if (useStroke) {
drawTriangle(x1, y1, x2, y2, x3, y3, strokeColor);
}
}
#if defined(__SD_H__) // Arduino SD library
#define BUFFPIXEL 20
void Adafruit_GFX::image(PImage & img, uint16_t x, uint16_t y) {
int w, h, row, col;
uint8_t r, g, b;
uint32_t pos = 0;
uint8_t sdbuffer[3*BUFFPIXEL]; // pixel buffer (R+G+B per pixel)
uint8_t buffidx = sizeof(sdbuffer); // Current position in sdbuffer
// Crop area to be loaded
w = img._bmpWidth;
h = img._bmpHeight;
if((x+w-1) >= width()) w = width() - x;
if((y+h-1) >= height()) h = height() - y;
/*
// Set TFT address window to clipped image bounds
setAddrWindow(x, y, x+w-1, y+h-1);
*/
for (row=0; row<h; row++) { // For each scanline...
// Seek to start of scan line. It might seem labor-
// intensive to be doing this on every line, but this
// method covers a lot of gritty details like cropping
// and scanline padding. Also, the seek only takes
// place if the file position actually needs to change
// (avoids a lot of cluster math in SD library).
if(img._flip) // Bitmap is stored bottom-to-top order (normal BMP)
pos = img._bmpImageoffset + (img._bmpHeight - 1 - row) * img._rowSize;
else // Bitmap is stored top-to-bottom
pos = img._bmpImageoffset + row * img._rowSize;
if(img._bmpFile.position() != pos) { // Need seek?
img._bmpFile.seek(pos);
buffidx = sizeof(sdbuffer); // Force buffer reload
}
for (col=0; col<w; col++) { // For each pixel...
// Time to read more pixel data?
if (buffidx >= sizeof(sdbuffer)) { // Indeed
img._bmpFile.read(sdbuffer, sizeof(sdbuffer));
buffidx = 0; // Set index to beginning
}
// Convert pixel from BMP to TFT format, push to display
b = sdbuffer[buffidx++];
g = sdbuffer[buffidx++];
r = sdbuffer[buffidx++];
//pushColor(tft.Color565(r,g,b));
drawPixel(x + col, y + row, newColor(r, g, b));
} // end pixel
} // end scanline
}
#endif