1
0
mirror of https://github.com/arduino/Arduino.git synced 2025-01-23 12:52:13 +01:00
Arduino/wifiHD/src/ard_spi.c

1424 lines
37 KiB
C
Raw Normal View History

2011-12-30 16:59:50 +01:00
/*
* ard_spi.c
*
* Created on: May 27, 2010
* Author: mlf by Metodo2 srl
*/
#include <avr32/io.h>
#include "board.h"
#include "gpio.h"
#include "usart.h"
#include "ard_spi.h"
#include "ard_tcp.h"
#include "wifi_spi.h"
#include "wl_cm.h"
#include "ard_utils.h"
#include "intc.h"
#include "spi.h"
#include "clocks.h"
#include "debug.h"
#include "delay.h"
#include "eic.h"
/*! \name USART Settings
*/
//! @{
#if BOARD == EVK1105
# define ARD_USART_SPI (&AVR32_USART1)
# define ARD_USART_SPI_SCK_PIN AVR32_USART1_CLK_0_PIN
# define ARD_USART_SPI_SCK_FUNCTION AVR32_USART1_CLK_0_FUNCTION
# define ARD_USART_SPI_MISO_PIN AVR32_USART1_TXD_0_0_PIN
# define ARD_USART_SPI_MISO_FUNCTION AVR32_USART1_TXD_0_0_FUNCTION
# define ARD_USART_SPI_MOSI_PIN AVR32_USART1_RXD_0_0_PIN
# define ARD_USART_SPI_MOSI_FUNCTION AVR32_USART1_RXD_0_0_FUNCTION
# define ARD_USART_SPI_NSS_PIN AVR32_USART1_CTS_0_0_PIN
# define ARD_USART_SPI_NSS_FUNCTION AVR32_USART1_CTS_0_0_FUNCTION
# define ARD_USART_SPI_IRQ AVR32_USART1_IRQ
#endif
#if BOARD == ARDUINO
# define ARD_SPI (&AVR32_SPI0)
#define EXT_INT_PIN_LINE1 AVR32_EIC_EXTINT_5_PIN
#define EXT_INT_FUNCTION_LINE1 AVR32_EIC_EXTINT_5_FUNCTION
#define EXT_INT_LINE1 EXT_INT5
#define EXT_INT_IRQ_LINE1 AVR32_EIC_IRQ_5
#define EXT_INT_NB_LINES 1
#endif
/* These defines should be adjusted to match the application */
/*! \brief CPU core speed in Hz */
#define CPUHZ 60000000
/*! \brief Number of bytes in the receive buffer when operating in slave mode */
#define BUFFERSIZE 64
/*! \brief A adjustable delay avoiding multiple requests on the switches */
//#define TIMEOUT 150000
#define TIMEOUT CPUHZ/200
/*! \brief Number of bits in each SPI package*/
#define SPI_BITS 8
/*! \brief SPI slave speed in Hz */
#define SPI_SLAVE_SPEED 1000000
#ifndef CMD_MAX_LEN
#define CMD_MAX_LEN 1024
#endif
#ifndef REPLY_MAX_LEN
#define REPLY_MAX_LEN 1024
#endif
uint8_t counter = 0;
static char buf[CMD_MAX_LEN];
static char reply[REPLY_MAX_LEN];
static uint16_t count = 0;
static uint16_t replyCount = 0;
static cmd_spi_state_t state = SPI_CMD_IDLE;
int receivedChars = 0;
#define _BUFFERSIZE 100
static uint8_t _receiveBuffer[_BUFFERSIZE];
bool startReply = false;
bool end_write = false; //TODO only for debug
// Signal indicating a new command is coming from SPI interface
static volatile Bool startRecvCmdSignal = FALSE;
#define MAX_CMD_NUM 25
typedef struct sCmd_spi_list{
cmd_spi_cb_t cb;
char cmd_id;
cmd_spi_rcb_t reply_cb;
void* ctx;
char flags;
}tCmd_spi_list;
static tCmd_spi_list cmd_spi_list[MAX_CMD_NUM] = { {0} };
2012-01-30 00:07:39 +01:00
#ifdef _SPI_STATS_
2011-12-30 16:59:50 +01:00
typedef struct sStatSpi
{
int timeoutIntErr;
int timeoutErr;
int txErr;
int rxErr;
int wrongFrame;
int lastCmd;
int lastError;
unsigned long status;
}tStatSpi;
tStatSpi statSpi = {0};
void initStatSpi()
{
statSpi.lastCmd = 0;
statSpi.lastError = 0;
statSpi.status= 0;
statSpi.txErr = 0;
statSpi.rxErr = 0;
statSpi.timeoutErr= 0;
statSpi.timeoutIntErr= 0;
statSpi.wrongFrame = 0;
}
void printStatSpi()
{
printk("lastCmd \t: 0x%x\n", statSpi.lastCmd);
printk("lastErr \t: 0x%x\n", statSpi.lastError);
printk("spiStatus\t: 0x%X\n", statSpi.status);
printk("spiTxErr \t: 0x%x\n", statSpi.txErr);
printk("spiRxErr \t: 0x%x\n", statSpi.rxErr);
printk("spiTmoErr\t: 0x%x\n", statSpi.timeoutErr);
printk("spiTmoIntErr\t: 0x%x\n", statSpi.timeoutIntErr);
printk("wrongFrame\t: 0x%x\n", statSpi.wrongFrame);
}
cmd_state_t
cmd_statSpi(int argc, char* argv[], void* ctx)
{
printStatSpi();
return CMD_DONE;
}
cmd_state_t
cmd_resetStatSpi(int argc, char* argv[], void* ctx)
{
initStatSpi();
return CMD_DONE;
}
2012-01-30 00:07:39 +01:00
#endif
2011-12-30 16:59:50 +01:00
#define ARRAY_SIZE(a) sizeof(a) / sizeof(a[0])
#define RETURN_ERR(e) return (e==WL_SUCCESS) ? WIFI_SPI_ACK : WIFI_SPI_ERR;
#define RESET_USART_CSR(usart) usart->cr = AVR32_USART_CR_RSTSTA_MASK;
tSpiMsg spiMsgBuf[MAX_CMD_PIPE_SIZE];
unsigned char indexCmdPipe = 0;
int result = WL_CONNECT_FAILED; //Store the result of the last operation
void* mapSockTCP[MAX_SOCK_NUM];
struct netif* ard_netif = NULL;
void* getTTCP(uint8_t sock)
{
if (sock < MAX_SOCK_NUM)
return mapSockTCP[sock];
return NULL;
}
inline spi_status_t myspi_read(volatile avr32_spi_t *spi, unsigned short *data)
{
if (spi->sr & AVR32_SPI_SR_RDRF_MASK)
*data = spi->rdr >> AVR32_SPI_RDR_RD_OFFSET;
return SPI_OK;
}
inline spi_status_t myspi_write(volatile avr32_spi_t *spi, unsigned short data)
{
unsigned int timeout = SPI_TIMEOUT;
while (!(spi->sr & AVR32_SPI_SR_TDRE_MASK)) {
if (!timeout--) {
return SPI_ERROR_TIMEOUT;
}
}
spi->tdr = data << AVR32_SPI_TDR_TD_OFFSET;
return SPI_OK;
}
int write_stream(volatile avr32_spi_t *spi, const char *stream, uint16_t len)
{
uint16_t _len = 0;
unsigned short dummy=0;
bool streamExit = false;
do {
if (*stream == END_CMD)
streamExit = true;
//SIGN1_DN();
if (spi_write(spi, *stream) == SPI_ERROR_TIMEOUT)
{
2012-01-30 00:07:39 +01:00
#ifdef _SPI_STATS_
2011-12-30 16:59:50 +01:00
statSpi.timeoutErr++;
statSpi.txErr++;
statSpi.lastError = SPI_ERROR_TIMEOUT;
statSpi.status = spi_getStatus(spi);
2012-01-30 00:07:39 +01:00
#endif
2011-12-30 16:59:50 +01:00
return SPI_ERROR_TIMEOUT;
}
else
{
stream++;
unsigned long data = ARD_SPI->rdr;
data = data;
}
//SIGN1_UP();
// if (myspi_read(spi, &dummy) == SPI_ERROR_TIMEOUT)
// {
// statSpi.timeoutErr++;
// statSpi.rxErr++;
// statSpi.lastError = SPI_ERROR_TIMEOUT;
// statSpi.status = spi_getStatus(spi);
// return SPI_ERROR_TIMEOUT;
// }
}while ((!streamExit)&&(_len++ <= len));
end_write=true;
//while (spi_readRegisterFullCheck(spi));
spi_read(spi,&dummy);
if ((ARD_SPI->sr & AVR32_SPI_SR_RDRF_MASK) != 0)
{
int a = 0;
if ((ARD_SPI->sr & AVR32_SPI_SR_RDRF_MASK) != 0)
a = rand();
a=a+5;
}
if (!streamExit)
{
2012-01-30 00:07:39 +01:00
#ifdef _SPI_STATS_
2011-12-30 16:59:50 +01:00
statSpi.wrongFrame++;
statSpi.lastError = SPI_ERROR_ARGUMENT;
2012-01-30 00:07:39 +01:00
#endif
2011-12-30 16:59:50 +01:00
return SPI_ERROR_ARGUMENT;
}
if ((ARD_SPI->sr & AVR32_SPI_SR_RDRF_MASK) != 0)
{
//SIGN1_DN();
}
return SPI_OK;
}
void sendError()
{
AVAIL_FOR_SPI();
if (spi_write(&AVR32_SPI, ERR_CMD) != SPI_ERROR_TIMEOUT)
{
//Wait to empty the buffer
while(!spi_writeRegisterEmptyCheck(&AVR32_SPI));
}
}
#define ENABLE_SPI_INT() do { \
Bool global_interrupt_enabled = Is_global_interrupt_enabled(); \
if (global_interrupt_enabled) Disable_global_interrupt(); \
ARD_SPI->IER.rdrf = 1; \
ARD_SPI->IER.rxbuff = 1; ARD_SPI->IER.endrx = 1; \
if (global_interrupt_enabled) Enable_global_interrupt(); \
}while(0);
#define DISABLE_SPI_INT() do { \
Bool global_interrupt_enabled = Is_global_interrupt_enabled(); \
if (global_interrupt_enabled) Disable_global_interrupt(); \
ARD_SPI->IDR.rdrf = 1; ARD_SPI->IDR.rxbuff = 1; ARD_SPI->IDR.endrx = 1; \
if (global_interrupt_enabled) Enable_global_interrupt(); \
}while(0);
#define CLEAR_SPI_INT() do { \
eic_clear_interrupt_line(&AVR32_EIC, AVR32_SPI0_IRQ); \
}while(0);
void dump(char* _buf, uint16_t _count) {
#ifdef _APP_DEBUG_
int i;
for (i = 0; i < _count; ++i)
printk("0x%x ", _buf[i]);
printk("\n");
#endif
}
int spi_add_cmd(char _cmd_id, cmd_spi_cb_t cb, cmd_spi_rcb_t rcb, void* ctx,
char flag) {
U32 i;
for (i = 0; i < ARRAY_SIZE(cmd_spi_list); i++)
if (!cmd_spi_list[i].cb)
break;
if (i == ARRAY_SIZE(cmd_spi_list))
{
WARN("List Commands full!\n");
return -1;
}
cmd_spi_list[i].cmd_id = _cmd_id;
cmd_spi_list[i].cb = cb;
cmd_spi_list[i].reply_cb = rcb;
cmd_spi_list[i].ctx = ctx;
cmd_spi_list[i].flags = flag;
return 0;
}
int set_net_cmd_cb(int numParam, char* buf, void* ctx) {
struct wl_ssid_t ssid;
wl_err_t err = WL_FAILURE;
tParam* param = (tParam*) buf;
if (param->paramLen < WL_SSID_MAX_LENGTH) {
memcpy(ssid.ssid, &param->param, param->paramLen);
ssid.len = param->paramLen;
ssid.ssid[ssid.len] = 0;
2012-01-30 00:07:39 +01:00
INFO("SSID:%s\n", ssid.ssid);
2011-12-30 16:59:50 +01:00
//dump(ssid.ssid, ssid.len);
err = wl_cm_set_network(&ssid, NULL);
if (err != 1)
2012-01-30 00:07:39 +01:00
WARN("err=%d\n", err);
2011-12-30 16:59:50 +01:00
} else {
2012-01-30 00:07:39 +01:00
WARN("SSID len out of range");
2011-12-30 16:59:50 +01:00
}
return err;
}
extern uint8_t ascii_to_key(char *outp, const char *inp);
int set_key_cmd_cb(int numParam, char* buf, void* ctx) {
struct wl_ssid_t ssid;
struct wl_mac_addr_t bssid;
uint8_t idx=0, len=0;
char key[13], key_hex[27];
char keyIdx[2];
wl_err_t err = WL_SUCCESS;
tParam* params = (tParam*) buf;
2012-01-30 00:07:39 +01:00
INFO("%s params=%d\n", __FUNCTION__, numParam);
2011-12-30 16:59:50 +01:00
// SSID
memset(&ssid, 0, sizeof ssid);
if (params->paramLen < WL_SSID_MAX_LENGTH) {
memcpy(ssid.ssid, &params->param, params->paramLen);
ssid.len = params->paramLen;
2012-01-30 00:07:39 +01:00
INFO("%s\n", ssid.ssid);
2011-12-30 16:59:50 +01:00
} else {
2012-01-30 00:07:39 +01:00
//printk("SSID len out of range");
2011-12-30 16:59:50 +01:00
RETURN_ERR(WL_FAILURE)
}
params = (tParam*)((char*)buf+PARAM_LEN_SIZE+params->paramLen);
strncpy(keyIdx, (const char*)&params->param, params->paramLen);
keyIdx[(uint8_t)params->paramLen]='\0';
idx = (uint8_t)atoi(keyIdx);
// KEY IDX
if ((params->paramLen != 1)||(idx < 0)||(idx > 3)){
2012-01-30 00:07:39 +01:00
//printk("KEY IDX out of range %d\n", idx);
2011-12-30 16:59:50 +01:00
RETURN_ERR(WL_FAILURE)
}
params = (tParam*)((char*)params+PARAM_LEN_SIZE+params->paramLen);
strncpy(key_hex, (const char*)&params->param, params->paramLen);
key_hex[(uint8_t)params->paramLen]='\0';
len = ascii_to_key(key, key_hex);
// KEY
if (( len != 5)&&(len != 13))
{
2012-01-30 00:07:39 +01:00
//printk("KEY len out of range %d", len);
2011-12-30 16:59:50 +01:00
RETURN_ERR(WL_FAILURE)
}
#ifdef _APP_DEBUG_
printk("KEY IDX = %d\n", idx);
dump(key, len);
printk("KEY len %d\n", len);
#endif
memset(&bssid.octet, 0xff, sizeof bssid.octet);
wl_add_wep_key(idx, len, key, &bssid);
wl_set_auth_mode(AUTH_MODE_SHARED_KEY);
wl_set_default_wep_key(idx);
//Connect
err = wl_cm_set_network(&ssid, NULL);
if (err != 1)
printk("err=%d\n", err);
RETURN_ERR(err)
}
int set_passphrase_cmd_cb(int numParam, char* buf, void* ctx) {
struct wl_network_t net;
char pass[64];
wl_err_t err = WL_SUCCESS;
tParam* params = (tParam*) buf;
2012-01-30 00:07:39 +01:00
INFO("%s params=%d\n", __FUNCTION__, numParam);
2011-12-30 16:59:50 +01:00
memset(&net, 0, sizeof net);
memset(net.bssid.octet, 0xFF, sizeof net.bssid.octet);
net.enc_type = ENC_TYPE_AUTO;
// SSID
if (params->paramLen < WL_SSID_MAX_LENGTH) {
memcpy(net.ssid.ssid, &params->param, params->paramLen);
net.ssid.len = params->paramLen;
2012-01-30 00:07:39 +01:00
INFO("%s %d\n", net.ssid.ssid, net.ssid.len);
2011-12-30 16:59:50 +01:00
} else {
2012-01-30 00:07:39 +01:00
//printk("SSID len out of range");
2011-12-30 16:59:50 +01:00
RETURN_ERR(WL_FAILURE)
}
params = (tParam*)((char*)buf+PARAM_LEN_SIZE+params->paramLen);
// PASSPHRASE
strncpy(pass, (const char*)&params->param, params->paramLen);
pass[(uint8_t)params->paramLen]='\0';
2012-01-30 00:07:39 +01:00
INFO("Pass: %s %d\n", pass, params->paramLen);
2011-12-30 16:59:50 +01:00
if (wl_set_passphrase(&net,
pass,
params->paramLen,
ENC_TYPE_AUTO,
AUTH_MODE_AUTO)
!= WL_SUCCESS) {
2012-01-30 00:07:39 +01:00
WARN("%s : Failed to add passphrase\n", __func__);
2011-12-30 16:59:50 +01:00
RETURN_ERR(WL_FAILURE)
}
2012-01-30 00:07:39 +01:00
printk("Connect to network...");
2011-12-30 16:59:50 +01:00
//Connect
err = wl_cm_set_network(&net.ssid, NULL);
if (err != 1)
printk("err=%d\n", err);
2012-01-30 00:07:39 +01:00
else
printk("OK\n");
2011-12-30 16:59:50 +01:00
RETURN_ERR(err)
}
void set_result(wl_status_t _status)
{
result = _status;
}
void set_result_cmd(int err)
{
wl_err_t _err = (wl_err_t)err;
switch (_err)
{
case WL_SUCCESS:
set_result(WL_CONNECTED);
2012-01-30 00:07:39 +01:00
ERROR_LED_OFF();
2011-12-30 16:59:50 +01:00
break;
default:
case WL_OOM:
case WL_INVALID_LENGTH:
case WL_NOT_SUPPORTED:
case WL_ABSORBED:
case WL_RESOURCES:
case WL_BUSY:
case WL_RETRY:
case WL_FAILURE:
set_result(WL_CONNECT_FAILED);
2012-01-30 00:07:39 +01:00
ERROR_LED_ON();
2011-12-30 16:59:50 +01:00
break;
}
printk("%s %d\n", __FUNCTION__, result);
}
extern int ttcp_start(struct ip_addr addr, uint16_t port, void *opaque,
void *done_cb, int mode, uint16_t nbuf, uint16_t buflen, int udp, int verbose);
int start_server_tcp_cmd_cb(int numParam, char* buf, void* ctx) {
wl_err_t err = WL_FAILURE;
tParam* params = (tParam*) buf;
if (numParam == 2)
{
GET_PARAM_NEXT(INT, params, port);
GET_PARAM_NEXT(BYTE, params, sock);
struct ip_addr addr = { 0 };
uint16_t buflen = 1024;
uint16_t nbuf = 1024;
#ifdef _APP_DEBUG_
int verbose = 1;
#else
int verbose = 0;
#endif
int udp = 0;
int mode = 1; //RECEIVE
void* _ttcp = NULL;
if (sock >= MAX_SOCK_NUM)
return WIFI_SPI_ERR;
2012-01-30 00:07:39 +01:00
INFO("Start Server [%d, %d]\n", port, sock);
2011-12-30 16:59:50 +01:00
if (ard_tcp_start(addr, port, NULL, NULL, mode, nbuf, buflen, udp, verbose, sock, &_ttcp) == 0)
{
if (sock < MAX_SOCK_NUM)
mapSockTCP[sock]=_ttcp;
2012-01-30 00:07:39 +01:00
INFO("Map [%d, %p]\n", sock, _ttcp);
2011-12-30 16:59:50 +01:00
err = WL_SUCCESS;
}
}
return (err==WL_SUCCESS) ? WIFI_SPI_ACK : WIFI_SPI_ERR;
}
int start_client_tcp_cmd_cb(int numParam, char* buf, void* ctx) {
wl_err_t err = WL_FAILURE;
tParam* params = (tParam*) buf;
if (numParam == 3)
{
GET_PARAM_NEXT(LONG, params, _addr);
GET_PARAM_NEXT(INT, params, port);
GET_PARAM_NEXT(BYTE, params, sock);
INFO("Addr:0x%x, port:%d, sock:%d\n", _addr, port, sock);
uint16_t buflen = 1024;
uint16_t nbuf = 1024;
struct ip_addr addr = { .addr = _addr};
#ifdef _APP_DEBUG_
int verbose = 1;
#else
int verbose = 0;
#endif
int udp = 0;
int mode = 0; //TRANSMIT
void* _ttcp = NULL;
if (sock >= MAX_SOCK_NUM)
return WIFI_SPI_ERR;
2012-01-30 00:07:39 +01:00
INFO("Start Client [0x%x, %d, %d]\n", addr, port, sock);
2011-12-30 16:59:50 +01:00
if (ard_tcp_start((struct ip_addr)addr, port, NULL, NULL, mode, nbuf, buflen, udp, verbose, sock, &_ttcp) == 0)
{
if (sock < MAX_SOCK_NUM)
mapSockTCP[sock]=_ttcp;
2012-01-30 00:07:39 +01:00
INFO("Map [%d, %p]\n", sock, _ttcp);
2011-12-30 16:59:50 +01:00
err = WL_SUCCESS;
}
}
return (err==WL_SUCCESS) ? WIFI_SPI_ACK : WIFI_SPI_ERR;
}
2012-01-30 00:07:39 +01:00
int stop_client_tcp_cmd_cb(int numParam, char* buf, void* ctx) {
wl_err_t err = WL_FAILURE;
tParam* params = (tParam*) buf;
void* _ttcp = NULL;
if (numParam == 1)
{
GET_PARAM_NEXT(BYTE, params, sock);
INFO("Stop client sock:%d\n", sock);
if (sock < MAX_SOCK_NUM)
{
_ttcp = mapSockTCP[sock];
ard_tcp_stop(_ttcp);
mapSockTCP[sock]=0;
err = WL_SUCCESS;
}
}
return (err==WL_SUCCESS) ? WIFI_SPI_ACK : WIFI_SPI_ERR;
}
2011-12-30 16:59:50 +01:00
int send_data_tcp_cmd_cb(int numParam, char* buf, void* ctx) {
wl_err_t err = WL_FAILURE;
2012-01-30 00:07:39 +01:00
DATA_LED_ON();
2011-12-30 16:59:50 +01:00
tDataParam* msg = (tDataParam*) buf;
if ((numParam == 2)&&(msg->dataLen == 1))
{
GET_DATA_BYTE(sock, buf+2);
GET_DATA_INT(len, buf+3);
err = sendTcpData(getTTCP(sock), (uint8_t*)(buf+5), len);
}
2012-01-30 00:07:39 +01:00
DATA_LED_OFF();
2011-12-30 16:59:50 +01:00
return (err==WL_SUCCESS) ? WIFI_SPI_ACK : WIFI_SPI_ERR;
}
int ack_cmd_cb(int numParam, char* buf, void* ctx) {
return WIFI_SPI_ACK;
}
int get_result_cmd_cb(int numParam, char* buf, void* ctx) {
*buf=result;
return WIFI_SPI_ACK;
}
int disconnect_cmd_cb(int numParam, char* buf, void* ctx)
{
return ((wl_disconnect()==WL_SUCCESS)? WIFI_SPI_ACK : WIFI_SPI_ERR);
}
cmd_spi_state_t get_reply_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CREATE_HEADER_REPLY(reply, recv, 1);
reply[3] = 1; // paramLen
if (ctx != NULL) {
reply[4] = (*(uint8_t*)ctx); //param
} else {
reply[4] = result; //param
}
END_HEADER_REPLY(reply, 5, *count);
//INFO("result:%d\n", result);
return SPI_CMD_DONE;
}
cmd_spi_state_t ack_reply_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CREATE_HEADER_REPLY(reply, recv, 1);
reply[3] = 1; // paramLen
if (ctx != NULL) {
reply[4] = (*(uint8_t*) ctx != 1) ? WIFI_SPI_ERR : WIFI_SPI_ACK; //param
} else {
reply[4] = WIFI_SPI_ACK; //param
}
END_HEADER_REPLY(reply, 5, *count);
return SPI_CMD_DONE;
}
cmd_spi_state_t get_reply_ipaddr_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, 3);
PUT_LONG_IN_BYTE_NO(ard_netif->ip_addr.addr, reply, 3);
PUT_LONG_IN_BYTE_NO(ard_netif->netmask.addr, reply, 8);
PUT_LONG_IN_BYTE_NO(ard_netif->gw.addr, reply, 13);
END_HEADER_REPLY(reply, 18, *count);
return SPI_CMD_DONE;
}
cmd_spi_state_t get_reply_mac_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, 1);
reply[3] = WL_MAC_ADDR_LENGTH;
uint8_t mac[WL_MAC_ADDR_LENGTH];
if (wl_get_mac_addr(mac) != WL_SUCCESS) {
RETURN_ERR_REPLY(recv, reply, count);
}
//rotate the byte order
reply[4]=mac[5];
reply[5]=mac[4];
reply[6]=mac[3];
reply[7]=mac[2];
reply[8]=mac[1];
reply[9]=mac[0];
END_HEADER_REPLY(reply, 10, *count);
return SPI_CMD_DONE;
}
cmd_spi_state_t get_reply_curr_net_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
uint32_t type = (uint32_t)ctx;
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, 1);
struct wl_network_t* net = wl_get_current_network();
uint8_t len = 0;
if (net != NULL)
{
switch (type)
{
default:
case GET_CURR_SSID_CMD:
{
len = net->ssid.len;
PUT_BUFDATA_BYTE(net->ssid.ssid, len, reply, 3);
break;
}
case GET_CURR_BSSID_CMD:
{
len = WL_MAC_ADDR_LENGTH; ;
PUT_BUFDATA_BYTE_REV(net->bssid.octet, len, reply, 3);
break;
}
case GET_CURR_RSSI_CMD:
{
len=sizeof(net->rssi);
PUT_LONG_IN_BYTE_HO(net->rssi, reply, 3);
//printk("RSSI:%d", net->rssi);
break;
}
case GET_CURR_ENCT_CMD:
{
len = sizeof(net->enc_type);
PUT_DATA_BYTE(net->enc_type, reply, 3);
//printk("ENCT:%d", net->enc_type);
break;
}
}
}else{
PUT_DATA_BYTE(0, reply, 3);
}
END_HEADER_REPLY(reply, 3+len+1, *count);
//dump(reply, *count);
return SPI_CMD_DONE;
}
cmd_spi_state_t get_reply_scan_networks_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
struct wl_network_t network_list[WL_NETWORKS_LIST_MAXNUM];
INFO("netif:0x%x\n", ard_netif);
CHECK_ARD_NETIF(recv, reply, count);
int network_cnt = 0;
struct wl_network_t* wl_network_list;
uint8_t wl_network_cnt;
wl_get_network_list(&wl_network_list, &wl_network_cnt);
if (wl_network_cnt == 0)
{
CREATE_HEADER_REPLY(reply, recv, 0);
END_HEADER_REPLY(reply, 3, *count);
return SPI_CMD_DONE;
}
if (wl_network_cnt > WL_NETWORKS_LIST_MAXNUM)
{
network_cnt = WL_NETWORKS_LIST_MAXNUM ;
}
else{
network_cnt = wl_network_cnt ;
}
memcpy(network_list, wl_network_list,
sizeof(struct wl_network_t) * network_cnt);
CREATE_HEADER_REPLY(reply, recv, network_cnt);
uint8_t start = 3;
int ii = 0;
for (; ii < network_cnt; ii++)
{
uint8_t len = network_list[ii].ssid.len;
PUT_BUFDATA_BYTE(network_list[ii].ssid.ssid, len, reply, start);
start += len+1;
}
END_HEADER_REPLY(reply, start, *count);
//DUMP(reply, *count);
return SPI_CMD_DONE;
}
cmd_spi_state_t get_state_tcp_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_1);
uint8_t _state = CLOSED;
if ((recv[3]==1)&&(recv[4]>=0)&&(recv[4]<MAX_SOCK_NUM))
{
2012-01-30 00:07:39 +01:00
_state = getStateTcp(mapSockTCP[(uint8_t)recv[4]], 0);
2011-12-30 16:59:50 +01:00
}
PUT_DATA_BYTE(_state, reply, 3);
END_HEADER_REPLY(reply, 5, *count);
return SPI_CMD_DONE;
}
2012-01-30 00:07:39 +01:00
cmd_spi_state_t get_client_state_tcp_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_1);
uint8_t _state = CLOSED;
if ((recv[3]==1)&&(recv[4]>=0)&&(recv[4]<MAX_SOCK_NUM))
{
_state = getStateTcp(mapSockTCP[(uint8_t)recv[4]], 1);
}
PUT_DATA_BYTE(_state, reply, 3);
END_HEADER_REPLY(reply, 5, *count);
return SPI_CMD_DONE;
}
2011-12-30 16:59:50 +01:00
cmd_spi_state_t avail_data_tcp_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_1);
uint8_t dataAvail = 0;
if ((recv[3]==1)&&(recv[4]>=0)&&(recv[4]<MAX_SOCK_NUM))
{
dataAvail = isAvailTcpDataByte((uint8_t)recv[4]) ? 1 : 0;
}
PUT_DATA_BYTE(dataAvail, reply, 3);
END_HEADER_REPLY(reply, 5, *count);
return SPI_CMD_DONE;
}
cmd_spi_state_t test_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
static int counter = 0;
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_1);
PUT_DATA_BYTE(++counter, reply, 3);
END_HEADER_REPLY(reply, 5, *count);
return SPI_CMD_DONE;
}
/*
cmd_spi_state_t ack_data_sent_reply_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CHECK_ARD_NETIF(recv, reply, count);
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_1);
uint8_t dataSent = 0;
if ((recv[3]==1)&&(recv[4]>=0)&&(recv[4]<MAX_SOCK_NUM))
{
int timeout = 0;
do {
dataSent = isDataSent(mapSockTCP[(uint8_t)recv[4]]);
}while ((dataSent == 0)&&(timeout++ < TIMEOUT_SENT_REPLY));
}
PUT_DATA_BYTE(dataSent, reply, 3);
END_HEADER_REPLY(reply, 5, *count);
return SPI_CMD_DONE;
}
*/
cmd_spi_state_t data_sent_tcp_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
CHECK_ARD_NETIF(recv, reply, count);
SIGN2_DN();
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_1);
uint8_t dataSent = 0;
if ((recv[3]==1)&&(recv[4]>=0)&&(recv[4]<MAX_SOCK_NUM))
{
dataSent = isDataSent(mapSockTCP[(uint8_t)recv[4]]);
}
PUT_DATA_BYTE(dataSent, reply, 3);
END_HEADER_REPLY(reply, 5, *count);
SIGN2_UP();
return SPI_CMD_DONE;
}
cmd_spi_state_t get_data_tcp_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
uint8_t data;
CHECK_ARD_NETIF(recv, reply, count);
if ((recv[3]==1)&&(recv[4]>=0)&&(recv[4]<MAX_SOCK_NUM))
{
SIGN2_DN();
if (getTcpDataByte((uint8_t)recv[4], &data))
{
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_1);
PUT_DATA_BYTE(data, reply, 3);
END_HEADER_REPLY(reply, 5, *count);
}else{
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_0);
END_HEADER_REPLY(reply, 3, *count);
}
SIGN2_UP();
}
return SPI_CMD_DONE;
}
cmd_spi_state_t get_databuf_tcp_cmd_cb(char* recv, char* reply, void* ctx, uint16_t* count) {
uint8_t* data;
uint16_t len;
CHECK_ARD_NETIF(recv, reply, count);
if ((recv[3]==1)&&(recv[4]>=0)&&(recv[4]<MAX_SOCK_NUM))
{
if (getTcpData((uint8_t)recv[4], (void**)&data, &len))
{
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_1);
PUT_BUFDATA_INT(data, len, reply, 3);
END_HEADER_REPLY(reply, 3+len+2+1, *count);
freeTcpData((uint8_t)recv[4]);
}else{
CREATE_HEADER_REPLY(reply, recv, PARAM_NUMS_0);
END_HEADER_REPLY(reply, 3, *count);
}
}
return SPI_CMD_DONE;
}
int sendReply(int cmdIdx, char* recv, char* reply, void* resultCmd)
{
uint16_t _count = 0;
int _result = SPI_OK;
cmd_spi_list[cmdIdx].reply_cb(recv, reply, resultCmd, &_count);
state = SPI_CMD_REPLING;
AVAIL_FOR_SPI();
_result = write_stream(ARD_SPI, &reply[0], _count);
2012-01-30 00:07:39 +01:00
#ifdef _SPI_STATS_
2011-12-30 16:59:50 +01:00
if ( result != SPI_OK)
{
statSpi.lastCmd = cmd_spi_list[cmdIdx].cmd_id;
}
2012-01-30 00:07:39 +01:00
#endif
2011-12-30 16:59:50 +01:00
BUSY_FOR_SPI();
//unsigned char status = spi_getStatus(ARD_SPI);
//INFO("Status after write: 0x%x\n",status);
replyCount = _count;
return _result;
}
unsigned char* getStartCmdSeq(unsigned char* _recv, int len, int *offset)
{
int i = 0;
*offset = 0;
for (; i<len; ++i)
{
if (_recv[i]==START_CMD)
{
if (i!=0)
{
//WARN("Disall. %d/%d cmd:%d\n", i, len,_recv[i+1]);
//SIGN2_DN();
}
*offset = i;
return &_recv[i];
}
}
WARN("Disall. %d\n", i);
return NULL;
}
inline bool spiMsg8(uint8_t cmd)
{
return ((cmd & DATA_FLAG)==0);
}
int call_reply_cb(char* recv, char* reply) {
// // check the start of message
// //TODO CHECK if also the ,en must be resize
// //char* recv = (char*)getStartCmdSeq((unsigned char*)_recv, &count);
// char* recv = (char*)getStartCmdSeq((unsigned char*)_recv, count);
// if (recv == NULL)
// return REPLY_ERR_MSG;
unsigned char cmdId = (unsigned char) recv[1];
uint8_t _result = REPLY_NO_ERR;
U32 i;
for (i = 0; i < ARRAY_SIZE(cmd_spi_list); i++) {
if (cmd_spi_list[i].cmd_id == cmdId) {
if (cmd_spi_list[i].flags == CMD_SET_FLAG) {
//Send Reply for SET commands
if (sendReply(i, recv, reply, cmd_spi_list[i].ctx) != SPI_OK)
return REPLY_ERR_SET;
if (spiMsg8(cmdId))
{
tSpiMsg* spiMsg = (tSpiMsg*) recv;
_result = cmd_spi_list[i].cb(spiMsg->nParam,
(char*) &(spiMsg->params[0]), NULL);
}else
{
tSpiMsgData* spiMsg = (tSpiMsgData*) recv;
_result = cmd_spi_list[i].cb(spiMsg->nParam,
(char*) &(spiMsg->params[0]), NULL);
}
if (_result != WIFI_SPI_ACK)
return REPLY_ERR_CMD;
else
return REPLY_NO_ERR;
}else{
if (spiMsg8(cmdId))
{
tSpiMsg* spiMsg = (tSpiMsg*) recv;
_result = cmd_spi_list[i].cb(spiMsg->nParam,
(char*) &(spiMsg->params[0]), NULL);
}else{
tSpiMsgData* spiMsg = (tSpiMsgData*) recv;
_result = cmd_spi_list[i].cb(spiMsg->nParam,
(char*) &(spiMsg->params[0]), NULL);
}
//Send Reply for GET commands or Immediate SET apply
if (cmd_spi_list[i].flags == CMD_GET_FLAG) {
if (sendReply(i, recv, reply, cmd_spi_list[i].ctx) != SPI_OK)
return REPLY_ERR_GET;
else
return REPLY_NO_ERR;
}else if (cmd_spi_list[i].flags == CMD_IMM_SET_FLAG)
{
if (sendReply(i, recv, reply, &_result) != SPI_OK)
return REPLY_ERR_GET;
else
return REPLY_NO_ERR;
}
}
}
}
// Command not found
if (i==ARRAY_SIZE(cmd_spi_list))
{
printk("Unknown cmd 0x%x\n", cmdId);
dump(recv, count);
return REPLY_ERR_CMD;
}
return REPLY_NO_ERR;
}
void init_spi_cmds() {
spi_add_cmd(SET_NET_CMD, set_net_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
spi_add_cmd(SET_PASSPHRASE_CMD, set_passphrase_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
spi_add_cmd(SET_KEY_CMD, set_key_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
spi_add_cmd(GET_CONN_STATUS_CMD, get_result_cmd_cb, get_reply_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(GET_IPADDR_CMD, ack_cmd_cb, get_reply_ipaddr_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(GET_MACADDR_CMD, ack_cmd_cb, get_reply_mac_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(GET_CURR_SSID_CMD, ack_cmd_cb, get_reply_curr_net_cb, (void*)GET_CURR_SSID_CMD, CMD_GET_FLAG);
spi_add_cmd(GET_CURR_BSSID_CMD, ack_cmd_cb, get_reply_curr_net_cb, (void*)GET_CURR_BSSID_CMD, CMD_GET_FLAG);
spi_add_cmd(GET_CURR_RSSI_CMD, ack_cmd_cb, get_reply_curr_net_cb, (void*)GET_CURR_RSSI_CMD, CMD_GET_FLAG);
spi_add_cmd(GET_CURR_ENCT_CMD, ack_cmd_cb, get_reply_curr_net_cb, (void*)GET_CURR_ENCT_CMD, CMD_GET_FLAG);
spi_add_cmd(SCAN_NETWORKS, ack_cmd_cb, get_reply_scan_networks_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(DISCONNECT_CMD, disconnect_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
spi_add_cmd(START_SERVER_TCP_CMD, start_server_tcp_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
spi_add_cmd(START_CLIENT_TCP_CMD, start_client_tcp_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
2012-01-30 00:07:39 +01:00
spi_add_cmd(STOP_CLIENT_TCP_CMD, stop_client_tcp_cmd_cb, ack_reply_cb, NULL, CMD_SET_FLAG);
2011-12-30 16:59:50 +01:00
spi_add_cmd(GET_STATE_TCP_CMD, ack_cmd_cb, get_state_tcp_cmd_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(GET_DATA_TCP_CMD, ack_cmd_cb, get_data_tcp_cmd_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(AVAIL_DATA_TCP_CMD, ack_cmd_cb, avail_data_tcp_cmd_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(SEND_DATA_TCP_CMD, send_data_tcp_cmd_cb, ack_reply_cb, NULL, CMD_IMM_SET_FLAG);
spi_add_cmd(DATA_SENT_TCP_CMD, ack_cmd_cb, data_sent_tcp_cmd_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(GET_DATABUF_TCP_CMD, ack_cmd_cb, get_databuf_tcp_cmd_cb, NULL, CMD_GET_FLAG);
spi_add_cmd(TEST_CMD, ack_cmd_cb, test_cmd_cb, NULL, CMD_GET_FLAG);
2012-01-30 00:07:39 +01:00
spi_add_cmd(GET_CLIENT_STATE_TCP_CMD, ack_cmd_cb, get_client_state_tcp_cmd_cb, NULL, CMD_GET_FLAG);
2011-12-30 16:59:50 +01:00
}
int checkMsgParam8(unsigned char* buf)
{
int paramLenTot=0;
tSpiMsg* spiMsg = (tSpiMsg*)buf;
tParam *param = spiMsg->params;
int i=0;
for (; i<spiMsg->nParam; ++i)
{
uint8_t _len = param->paramLen;
paramLenTot+= _len+1;
//printk("%d) len:0x%x\n", i, _len);
param = (tParam*)((char*)(param)+_len+1);
}
return paramLenTot;
}
int checkMsgParam16(unsigned char* buf)
{
int paramLenTot=0;
tSpiMsgData* spiMsg = (tSpiMsgData*)buf;
tDataParam* param = (tDataParam*)spiMsg->params;
int i=0;
for (; i<spiMsg->nParam; ++i)
{
uint16_t _len = param->dataLen;
paramLenTot+= _len+sizeof(param->dataLen);
//printk("%d) len:0x%x\n", i, _len);
param = (tDataParam*)((char*)(param)+_len+sizeof(param->dataLen));
}
return paramLenTot;
}
bool checkMsgFormat(uint8_t* _recv, int len, int* offset)
{
unsigned char* recv = getStartCmdSeq(_recv, len, offset);
if ((recv == NULL)||(recv!=_recv))
{
//LED_On(LED2);
if (len < 20) //TODO stamp only short messages wrong
dump((char*)_recv, len);
//LED_Off(LED2);
if (recv == NULL)
return false;
}
tSpiMsg* spiMsg = (tSpiMsg*) recv;
if ((spiMsg->cmd == START_CMD)&&((spiMsg->tcmd & REPLY_FLAG) == 0))
{
int paramLenTot = 0;
if (spiMsg8(spiMsg->tcmd))
paramLenTot = checkMsgParam8(recv);
else
{
//DUMP(_recv, len);
paramLenTot = checkMsgParam16(recv);
}
//INFO("cmd:0x%x TotLen:%d\n", spiMsg->tcmd, paramLenTot);
char* p = (char*)recv + paramLenTot + sizeof(tSpiHdr);
if (*p == END_CMD)
{
return true;
}else{
WARN("Not found end cmd: 0x%x\n", *p);
}
}
return false;
}
//#define AVR32_USART_CSR_ITERATION_MASK (UNDERRUN) 0x00000400
//#define AVR32_USART_CSR_OVRE_MASK 0x00000020
//#define AVR32_USART_CSR_RXRDY_MASK 0x00000001
void spi_poll(struct netif* netif) {
ard_netif = netif;
if (startReply)
{
startReply = false;
int offset = 0;
if (checkMsgFormat(_receiveBuffer, receivedChars, &offset))
{
state = SPI_CMD_INPROGRESS;
count = receivedChars-offset;
memcpy(buf, &_receiveBuffer[offset], count);
DISABLE_SPI_INT();
int err = call_reply_cb(buf, &reply[0]);
if (err != REPLY_NO_ERR)
{
//LED_On(LED1);
INFO("[E(0x%x):%d spiStatus:%d]\n", statSpi.lastCmd, err, statSpi.status);
PRINT_STATS_SPI();
DUMP(buf, count);
DUMP(reply, replyCount);
//LED_Off(LED1);
}
receivedChars = 0;
count = 0;
state = SPI_CMD_IDLE;
if ((ARD_SPI->sr & AVR32_SPI_SR_RDRF_MASK) != 0)
{
unsigned long data = ARD_SPI->rdr;
data = data;
if ((ARD_SPI->sr & AVR32_SPI_SR_RDRF_MASK) != 0)
{
//SIGN1_DN();
}
}
}
else
{
sendError();
WARN("Check format msg failed!\n");
//dump((char*)_receiveBuffer, receivedChars);
state = SPI_CMD_IDLE;
count=0;
}
CLEAR_SPI_INT();
//Enable Spi int to receive a new command
ENABLE_SPI_INT();
//Available for receiving a new spi data
AVAIL_FOR_SPI();
}
}
inline int spi_slaveReceiveInt(volatile avr32_spi_t *spi, bool startRecvd)
{
receivedChars=0;
int index = 0;
int err = SPI_OK;
state = SPI_CMD_INPUT;
unsigned int timeout = SPI_TIMEOUT;
if (startRecvd)
{
TOGGLE_SIG0();
_receiveBuffer[index]=START_CMD;
++receivedChars;
++index;
}
do {
err = SPI_OK;
//SIGN1_DN();
//spi->tdr = DUMMY_DATA << AVR32_SPI_TDR_TD_OFFSET;
while ((spi->sr & (AVR32_SPI_SR_RDRF_MASK | AVR32_SPI_SR_TXEMPTY_MASK)) !=
(AVR32_SPI_SR_RDRF_MASK | AVR32_SPI_SR_TXEMPTY_MASK)) {
if (!timeout--) {
err=SPI_ERROR_TIMEOUT;
break;
}
}
_receiveBuffer[index] = (spi->rdr >> AVR32_SPI_RDR_RD_OFFSET) & 0x00ff;
2012-01-30 00:07:39 +01:00
if (_receiveBuffer[index] == START_CMD){
2011-12-30 16:59:50 +01:00
TOGGLE_SIG0();
//SIGN1_UP();
2012-01-30 00:07:39 +01:00
}
2011-12-30 16:59:50 +01:00
if (err == SPI_OK) {
++index;
++receivedChars;
}else{
2012-01-30 00:07:39 +01:00
#ifdef _SPI_STATS_
2011-12-30 16:59:50 +01:00
STATSPI_TIMEOUT_ERROR();
2012-01-30 00:07:39 +01:00
#endif
2011-12-30 16:59:50 +01:00
break;
}
/* break on buffer overflow */
if (receivedChars > _BUFFERSIZE) {
err = SPI_ERROR_OVERRUN_AND_MODE_FAULT;
break;
}
} while (_receiveBuffer[index - 1] != END_CMD);
return err;
}
uint32_t data = 0;
uint32_t status_register = 0;
#if defined (__GNUC__)
__attribute__((__interrupt__))
#elif defined (__ICCAVR32__)
__interrupt
#endif
static void spi_int_handler(void)
{
//SIGN2_DN();
//eic_clear_interrupt_line(&AVR32_EIC, AVR32_SPI0_IRQ);
AVAIL_FOR_SPI();
DISABLE_SPI_INT();
//TODO verify why after the reply write the RDRF is set
unsigned short dummy = 0;
if ((end_write)&&((ARD_SPI->sr & AVR32_SPI_SR_RDRF_MASK) != 0)) {
end_write=false;
//SIGN1_UP();
spi_read(ARD_SPI, &dummy);
}
if (((ARD_SPI->sr & AVR32_SPI_SR_RDRF_MASK) != 0)||(dummy==START_CMD))
{
int err = spi_slaveReceiveInt(ARD_SPI, dummy==START_CMD);
if (err != SPI_OK)
{
2012-01-30 00:07:39 +01:00
#ifdef _SPI_STATS_
2011-12-30 16:59:50 +01:00
//TODO verify why at the end of cmd cycle RDF bit is high without any data recv.
if (statSpi.lastError != SPI_ERROR_TIMEOUT)
INFO("[E(0x%x):%d spiStatus:%d]\n", statSpi.lastError, err, statSpi.status);
2012-01-30 00:07:39 +01:00
#endif
2011-12-30 16:59:50 +01:00
}else{
BUSY_FOR_SPI();
startReply=true;
//maintain disable interrupt to send the reply command
//SIGN2_UP();
return;
}
}
ENABLE_SPI_INT();
//SIGN2_UP();
}
inline spi_status_t spi_read8(volatile avr32_spi_t *spi, unsigned char *data)
{
unsigned int timeout = SPI_TIMEOUT;
while ((spi->sr & (AVR32_SPI_SR_RDRF_MASK | AVR32_SPI_SR_TXEMPTY_MASK)) !=
(AVR32_SPI_SR_RDRF_MASK | AVR32_SPI_SR_TXEMPTY_MASK)) {
if (!timeout--) {
return SPI_ERROR_TIMEOUT;
}
}
*data = (spi->rdr >> AVR32_SPI_RDR_RD_OFFSET) & 0x00ff;
return SPI_OK;
}
/*!
* \brief Interrupt handler of the External interrupt line "1".
*/
#if __GNUC__
__attribute__((__interrupt__))
#elif __ICCAVR32__
__interrupt
#endif
static void eic_int_handler1(void)
{
eic_clear_interrupt_line(&AVR32_EIC, EXT_INT_LINE1);
startRecvCmdSignal = TRUE;
}
//! Structure holding the configuration parameters of the EIC module.
eic_options_t eic_options[EXT_INT_NB_LINES];
void initExtInt()
{
// Enable edge-triggered interrupt.
eic_options[0].eic_mode = EIC_MODE_EDGE_TRIGGERED;
// Interrupt will trigger on falling edge.
eic_options[0].eic_edge = EIC_EDGE_FALLING_EDGE;
// Initialize in synchronous mode : interrupt is synchronized to the clock
eic_options[0].eic_async = EIC_SYNCH_MODE;
// Set the interrupt line number.
eic_options[0].eic_line = EXT_INT_LINE1;
// Disable all interrupts.
Disable_global_interrupt();
INTC_register_interrupt(&eic_int_handler1, EXT_INT_IRQ_LINE1, AVR32_INTC_INT0);
// Map the interrupt lines to the GPIO pins with the right peripheral functions.
gpio_enable_module_pin(EXT_INT_PIN_LINE1,EXT_INT_FUNCTION_LINE1);
// Init the EIC controller with the options
eic_init(&AVR32_EIC, eic_options, EXT_INT_NB_LINES);
// Enable the chosen lines and their corresponding interrupt feature.
eic_enable_line(&AVR32_EIC, eic_options[0].eic_line);
eic_enable_interrupt_line(&AVR32_EIC, eic_options[0].eic_line);
// Enable all interrupts.
Enable_global_interrupt();
}
int initSpi()
{
volatile avr32_spi_t *spi = &AVR32_SPI0;
gpio_map_t spi_piomap = { \
{AVR32_SPI0_SCK_0_0_PIN, AVR32_SPI0_SCK_0_0_FUNCTION}, \
{AVR32_SPI0_MISO_0_0_PIN, AVR32_SPI0_MISO_0_0_FUNCTION}, \
{AVR32_SPI0_MOSI_0_0_PIN, AVR32_SPI0_MOSI_0_0_FUNCTION}, \
{AVR32_SPI0_NPCS_0_0_PIN, AVR32_SPI0_NPCS_0_0_FUNCTION}, \
};
/* Init PIO */
gpio_enable_module(spi_piomap, ARRAY_SIZE(spi_piomap));
spi_options_t spiOptions;
spiOptions.reg = 0;
spiOptions.baudrate = SPI_SLAVE_SPEED;
spiOptions.bits = SPI_BITS;
spiOptions.spck_delay = 0;
spiOptions.trans_delay = 4;
spiOptions.stay_act = 0;
spiOptions.spi_mode = 0;
spiOptions.modfdis = 0;
/* Initialize as slave; bits, spi_mode */
if (spi_initSlave(spi, spiOptions.bits, spiOptions.spi_mode) != SPI_OK)
{
INFO("SPI initialization failed!");
return 1;
}
spi_status_t status = spi_setupChipReg(spi, &spiOptions, FPBA_HZ);
if (status == SPI_ERROR_ARGUMENT)
WARN("Error configuring SPI\n");
// Disable all interrupts.
Disable_global_interrupt();
// Register the SPI interrupt handler to the interrupt controller.
INTC_register_interrupt((__int_handler)(&spi_int_handler), AVR32_SPI0_IRQ, AVR32_INTC_INT0);
// Enable all interrupts.
Enable_global_interrupt();
ENABLE_SPI_INT();
spi_enable(spi);
2012-01-30 00:07:39 +01:00
#ifdef _SPI_STATS_
2011-12-30 16:59:50 +01:00
initStatSpi();
2012-01-30 00:07:39 +01:00
#endif
2011-12-30 16:59:50 +01:00
init_spi_cmds();
return 0;
}