1
0
mirror of https://github.com/arduino/Arduino.git synced 2024-12-12 23:08:52 +01:00
Arduino/hardware/arduino/sam/system/libsam/source/emac.c.disabled

798 lines
24 KiB
Plaintext
Raw Normal View History

/**
* \file
*
* \brief EMAC (Ethernet MAC) driver for SAM.
*
* Copyright (c) 2011-2012 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
#include "../chip.h"
//#include <string.h>
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
extern "C" {
#endif
/**INDENT-ON**/
/// @endcond
#if SAM3XA_SERIES
/**
* \defgroup emac_group Ethernet Media Access Controller
*
* See \ref emac_quickstart.
*
* Driver for the EMAC (Ethernet Media Access Controller).
* This file contains basic functions for the EMAC, with support for all modes, settings
* and clock speeds.
*
* \section dependencies Dependencies
* This driver does not depend on other modules.
*
* @{
*/
/** TX descriptor lists */
#ifdef __ICCARM__ /* IAR */
#pragma data_alignment=8
#endif
static emac_tx_descriptor_t gs_tx_desc[EMAC_TX_BUFFERS];
/** TX callback lists */
static emac_dev_tx_cb_t gs_tx_callback[EMAC_TX_BUFFERS];
/** RX descriptors lists */
#ifdef __ICCARM__ /* IAR */
#pragma data_alignment=8
#endif
static emac_rx_descriptor_t gs_rx_desc[EMAC_RX_BUFFERS];
/** Send Buffer. Section 3.6 of AMBA 2.0 spec states that burst should not cross the
* 1K Boundaries. Receive buffer manager write operations are burst of 2 words => 3 lsb bits
* of the address shall be set to 0.
*/
#ifdef __ICCARM__ /* IAR */
#pragma data_alignment=8
#endif
static uint8_t gs_uc_tx_buffer[EMAC_TX_BUFFERS * EMAC_TX_UNITSIZE]
__attribute__ ((aligned(8)));
#ifdef __ICCARM__ /* IAR */
#pragma data_alignment=8
#endif
/** Receive Buffer */
static uint8_t gs_uc_rx_buffer[EMAC_RX_BUFFERS * EMAC_RX_UNITSIZE]
__attribute__ ((aligned(8)));
/**
* EMAC device memory management struct.
*/
typedef struct emac_dev_mem {
/* Pointer to allocated buffer for RX. The address should be 8-byte aligned
and the size should be EMAC_RX_UNITSIZE * wRxSize. */
uint8_t *p_rx_buffer;
/* Pointer to allocated RX descriptor list. */
emac_rx_descriptor_t *p_rx_dscr;
/* RX size, in number of registered units (RX descriptors). */
uint16_t us_rx_size;
/* Pointer to allocated buffer for TX. The address should be 8-byte aligned
and the size should be EMAC_TX_UNITSIZE * wTxSize. */
uint8_t *p_tx_buffer;
/* Pointer to allocated TX descriptor list. */
emac_tx_descriptor_t *p_tx_dscr;
/* TX size, in number of registered units (TX descriptors). */
uint16_t us_tx_size;
} emac_dev_mem_t;
/** Return count in buffer */
#define CIRC_CNT(head,tail,size) (((head) - (tail)) % (size))
/*
* Return space available, from 0 to size-1.
* Always leave one free char as a completely full buffer that has (head == tail),
* which is the same as empty.
*/
#define CIRC_SPACE(head,tail,size) CIRC_CNT((tail),((head)+1),(size))
/** Circular buffer is empty ? */
#define CIRC_EMPTY(head, tail) (head == tail)
/** Clear circular buffer */
#define CIRC_CLEAR(head, tail) (head = tail = 0)
/** Increment head or tail */
static void circ_inc(uint16_t *headortail, uint32_t size)
{
(*headortail)++;
if((*headortail) >= size) {
(*headortail) = 0;
}
}
/**
* \brief Wait PHY operation to be completed.
*
* \param p_emac HW controller address.
* \param ul_retry The retry times, 0 to wait forever until completeness.
*
* Return EMAC_OK if the operation is completed successfully.
*/
static uint8_t emac_wait_phy(Emac* p_emac, const uint32_t ul_retry)
{
volatile uint32_t ul_retry_count = 0;
while (!emac_is_phy_idle(p_emac)) {
if (ul_retry == 0) {
continue;
}
ul_retry_count++;
if (ul_retry_count >= ul_retry) {
return EMAC_TIMEOUT;
}
}
return EMAC_OK;
}
/**
* \brief Disable transfer, reset registers and descriptor lists.
*
* \param p_dev Pointer to EMAC driver instance.
*
*/
static void emac_reset_tx_mem(emac_device_t* p_dev)
{
Emac *p_hw = p_dev->p_hw;
uint8_t *p_tx_buff = p_dev->p_tx_buffer;
emac_tx_descriptor_t *p_td = p_dev->p_tx_dscr;
uint32_t ul_index;
uint32_t ul_address;
/* Disable TX */
emac_enable_transmit(p_hw, 0);
/* Set up the TX descriptors */
CIRC_CLEAR(p_dev->us_tx_head, p_dev->us_tx_tail);
for (ul_index = 0; ul_index < p_dev->us_tx_list_size; ul_index++) {
ul_address = (uint32_t) (&(p_tx_buff[ul_index * EMAC_TX_UNITSIZE]));
p_td[ul_index].addr = ul_address;
p_td[ul_index].status.val = EMAC_TXD_USED;
}
p_td[p_dev->us_tx_list_size - 1].status.val =
EMAC_TXD_USED | EMAC_TXD_WRAP;
/* Set transmit buffer queue */
emac_set_tx_queue(p_hw, (uint32_t) p_td);
}
/**
* \brief Disable receiver, reset registers and descriptor list.
*
* \param p_drv Pointer to EMAC Driver instance.
*/
static void emac_reset_rx_mem(emac_device_t* p_dev)
{
Emac *p_hw = p_dev->p_hw;
uint8_t *p_rx_buff = p_dev->p_rx_buffer;
emac_rx_descriptor_t *pRd = p_dev->p_rx_dscr;
uint32_t ul_index;
uint32_t ul_address;
/* Disable RX */
emac_enable_receive(p_hw, 0);
/* Set up the RX descriptors */
p_dev->us_rx_idx = 0;
for (ul_index = 0; ul_index < p_dev->us_rx_list_size; ul_index++) {
ul_address = (uint32_t) (&(p_rx_buff[ul_index * EMAC_RX_UNITSIZE]));
pRd[ul_index].addr.val = ul_address & EMAC_RXD_ADDR_MASK;
pRd[ul_index].status.val = 0;
}
pRd[p_dev->us_rx_list_size - 1].addr.val |= EMAC_RXD_WRAP;
/* Set receive buffer queue */
emac_set_rx_queue(p_hw, (uint32_t) pRd);
}
/**
* \brief Initialize the allocated buffer lists for EMAC driver to transfer data.
* Must be invoked after emac_dev_init() but before RX/TX starts.
*
* \note If input address is not 8-byte aligned, the address is automatically
* adjusted and the list size is reduced by one.
*
* \param p_emac Pointer to EMAC instance.
* \param p_emac_dev Pointer to EMAC device instance.
* \param p_dev_mm Pointer to the EMAC memory management control block.
* \param p_tx_cb Pointer to allocated TX callback list.
*
* \return EMAC_OK or EMAC_PARAM.
*/
static uint8_t emac_init_mem(Emac* p_emac, emac_device_t* p_emac_dev,
emac_dev_mem_t* p_dev_mm,
emac_dev_tx_cb_t* p_tx_cb)
{
if (p_dev_mm->us_rx_size <= 1 || p_dev_mm->us_tx_size <= 1 || p_tx_cb == NULL) {
return EMAC_PARAM;
}
/* Assign RX buffers */
if (((uint32_t) p_dev_mm->p_rx_buffer & 0x7)
|| ((uint32_t) p_dev_mm->p_rx_dscr & 0x7)) {
p_dev_mm->us_rx_size--;
}
p_emac_dev->p_rx_buffer =
(uint8_t *) ((uint32_t) p_dev_mm->p_rx_buffer & 0xFFFFFFF8);
p_emac_dev->p_rx_dscr =
(emac_rx_descriptor_t *) ((uint32_t) p_dev_mm->p_rx_dscr
& 0xFFFFFFF8);
p_emac_dev->us_rx_list_size = p_dev_mm->us_rx_size;
/* Assign TX buffers */
if (((uint32_t) p_dev_mm->p_tx_buffer & 0x7)
|| ((uint32_t) p_dev_mm->p_tx_dscr & 0x7)) {
p_dev_mm->us_tx_size--;
}
p_emac_dev->p_tx_buffer =
(uint8_t *) ((uint32_t) p_dev_mm->p_tx_buffer & 0xFFFFFFF8);
p_emac_dev->p_tx_dscr =
(emac_tx_descriptor_t *) ((uint32_t) p_dev_mm->p_tx_dscr
& 0xFFFFFFF8);
p_emac_dev->us_tx_list_size = p_dev_mm->us_tx_size;
p_emac_dev->func_tx_cb_list = p_tx_cb;
/* Reset TX & RX */
emac_reset_rx_mem(p_emac_dev);
emac_reset_tx_mem(p_emac_dev);
/* Enable Rx and Tx, plus the statistics register */
emac_enable_transmit(p_emac, true);
emac_enable_receive(p_emac, true);
emac_enable_statistics_write(p_emac, true);
/* Set up the interrupts for transmission and errors */
emac_enable_interrupt(p_emac,
EMAC_IER_RXUBR | /* Enable receive used bit read interrupt. */
EMAC_IER_TUND | /* Enable transmit underrun interrupt. */
EMAC_IER_RLE | /* Enable retry limit exceeded interrupt. */
EMAC_IER_TXERR | /* Enable transmit buffers exhausted in mid-frame interrupt. */
EMAC_IER_TCOMP | /* Enable transmit complete interrupt. */
EMAC_IER_ROVR | /* Enable receive overrun interrupt. */
EMAC_IER_HRESP | /* Enable Hresp not OK interrupt. */
EMAC_IER_PFR | /* Enable pause frame received interrupt. */
EMAC_IER_PTZ); /* Enable pause time zero interrupt. */
return EMAC_OK;
}
/**
* \brief Read the PHY register.
*
* \param p_emac Pointer to the EMAC instance.
* \param uc_phy_address PHY address.
* \param uc_address Register address.
* \param p_value Pointer to a 32-bit location to store read data.
*
* \Return EMAC_OK if successfully, EMAC_TIMEOUT if timeout.
*/
uint8_t emac_phy_read(Emac* p_emac, uint8_t uc_phy_address, uint8_t uc_address,
uint32_t* p_value)
{
emac_maintain_phy(p_emac, uc_phy_address, uc_address, 1, 0);
if (emac_wait_phy(p_emac, MAC_PHY_RETRY_MAX) == EMAC_TIMEOUT) {
return EMAC_TIMEOUT;
}
*p_value = emac_get_phy_data(p_emac);
return EMAC_OK;
}
/**
* \brief Write the PHY register.
*
* \param p_emac Pointer to the EMAC instance.
* \param uc_phy_address PHY Address.
* \param uc_address Register Address.
* \param ul_value Data to write, actually 16-bit data.
*
* \Return EMAC_OK if successfully, EMAC_TIMEOUT if timeout.
*/
uint8_t emac_phy_write(Emac* p_emac, uint8_t uc_phy_address,
uint8_t uc_address, uint32_t ul_value)
{
emac_maintain_phy(p_emac, uc_phy_address, uc_address, 0, ul_value);
if (emac_wait_phy(p_emac, MAC_PHY_RETRY_MAX) == EMAC_TIMEOUT) {
return EMAC_TIMEOUT;
}
return EMAC_OK;
}
/**
* \brief Initialize the EMAC driver.
*
* \param p_emac Pointer to the EMAC instance.
* \param p_emac_dev Pointer to the EMAC device instance.
* \param p_opt EMAC configure options.
*/
void emac_dev_init(Emac* p_emac, emac_device_t* p_emac_dev,
emac_options_t* p_opt)
{
emac_dev_mem_t emac_dev_mm;
/* Disable TX & RX and more */
emac_network_control(p_emac, 0);
emac_disable_interrupt(p_emac, ~0u);
emac_clear_statistics(p_emac);
/* Clear all status bits in the receive status register. */
emac_clear_rx_status(p_emac, EMAC_RSR_OVR | EMAC_RSR_REC | EMAC_RSR_BNA);
/* Clear all status bits in the transmit status register */
emac_clear_tx_status(p_emac, EMAC_TSR_UBR | EMAC_TSR_COL | EMAC_TSR_RLES
| EMAC_TSR_BEX | EMAC_TSR_COMP | EMAC_TSR_UND);
/* Clear interrupts */
emac_get_interrupt_status(p_emac);
/* Enable the copy of data into the buffers
ignore broadcasts, and not copy FCS. */
emac_set_configure(p_emac,
emac_get_configure(p_emac) | EMAC_NCFGR_DRFCS | EMAC_NCFGR_PAE);
emac_enable_copy_all(p_emac, p_opt->uc_copy_all_frame);
emac_disable_broadcast(p_emac, p_opt->uc_no_boardcast);
/* Fill in EMAC device memory management */
emac_dev_mm.p_rx_buffer = gs_uc_rx_buffer;
emac_dev_mm.p_rx_dscr = gs_rx_desc;
emac_dev_mm.us_rx_size = EMAC_RX_BUFFERS;
emac_dev_mm.p_tx_buffer = gs_uc_tx_buffer;
emac_dev_mm.p_tx_dscr = gs_tx_desc;
emac_dev_mm.us_tx_size = EMAC_TX_BUFFERS;
emac_init_mem(p_emac, p_emac_dev, &emac_dev_mm, gs_tx_callback);
emac_set_address(p_emac, 0, p_opt->uc_mac_addr);
}
/**
* \brief Frames can be read from the EMAC in multiple sections.
* Read ul_frame_size bytes from the EMAC receive buffers to pcTo.
* p_rcv_size is the size of the entire frame. Generally emac_read
* will be repeatedly called until the sum of all the ul_frame_size equals
* the value of p_rcv_size.
*
* \param p_emac_dev Pointer to the EMAC device instance.
* \param p_frame Address of the frame buffer.
* \param ul_frame_size Length of the frame.
* \param p_rcv_size Received frame size.
*
* \return EMAC_OK if receiving frame successfully, otherwise failed.
*/
uint32_t emac_dev_read(emac_device_t* p_emac_dev, uint8_t* p_frame,
uint32_t ul_frame_size, uint32_t* p_rcv_size)
{
uint16_t us_buffer_length;
uint32_t tmp_ul_frame_size = 0;
uint8_t *p_tmp_frame = 0;
uint16_t us_tmp_idx = p_emac_dev->us_rx_idx;
emac_rx_descriptor_t *p_rx_td =
&p_emac_dev->p_rx_dscr[p_emac_dev->us_rx_idx];
int8_t c_is_frame = 0;
if (p_frame == NULL)
return EMAC_PARAM;
/* Set the default return value */
*p_rcv_size = 0;
/* Process received RX descriptor */
while ((p_rx_td->addr.val & EMAC_RXD_OWNERSHIP) == EMAC_RXD_OWNERSHIP) {
/* A start of frame has been received, discard previous fragments */
if ((p_rx_td->status.val & EMAC_RXD_SOF) == EMAC_RXD_SOF) {
/* Skip previous fragment */
while (us_tmp_idx != p_emac_dev->us_rx_idx) {
p_rx_td = &p_emac_dev->p_rx_dscr[p_emac_dev->us_rx_idx];
p_rx_td->addr.val &= ~(EMAC_RXD_OWNERSHIP);
circ_inc(&p_emac_dev->us_rx_idx, p_emac_dev->us_rx_list_size);
}
/* Reset the temporary frame pointer */
p_tmp_frame = p_frame;
tmp_ul_frame_size = 0;
/* Start to gather buffers in a frame */
c_is_frame = 1;
}
/* Increment the pointer */
circ_inc(&us_tmp_idx, p_emac_dev->us_rx_list_size);
/* Copy data in the frame buffer */
if (c_is_frame) {
if (us_tmp_idx == p_emac_dev->us_rx_idx) {
do {
p_rx_td = &p_emac_dev->p_rx_dscr[p_emac_dev->us_rx_idx];
p_rx_td->addr.val &= ~(EMAC_RXD_OWNERSHIP);
circ_inc(&p_emac_dev->us_rx_idx, p_emac_dev->us_rx_list_size);
} while (us_tmp_idx != p_emac_dev->us_rx_idx);
return EMAC_RX_NULL;
}
/* Copy the buffer into the application frame */
us_buffer_length = EMAC_RX_UNITSIZE;
if ((tmp_ul_frame_size + us_buffer_length) > ul_frame_size) {
us_buffer_length = ul_frame_size - tmp_ul_frame_size;
}
memcpy(p_tmp_frame,
(void *)(p_rx_td->addr.val & EMAC_RXD_ADDR_MASK),
us_buffer_length);
p_tmp_frame += us_buffer_length;
tmp_ul_frame_size += us_buffer_length;
/* An end of frame has been received, return the data */
if ((p_rx_td->status.val & EMAC_RXD_EOF) == EMAC_RXD_EOF) {
/* Frame size from the EMAC */
*p_rcv_size = (p_rx_td->status.val & EMAC_RXD_LEN_MASK);
/* All data have been copied in the application frame buffer => release TD */
while (p_emac_dev->us_rx_idx != us_tmp_idx) {
p_rx_td = &p_emac_dev->p_rx_dscr[p_emac_dev->us_rx_idx];
p_rx_td->addr.val &= ~(EMAC_RXD_OWNERSHIP);
circ_inc(&p_emac_dev->us_rx_idx, p_emac_dev->us_rx_list_size);
}
/* Application frame buffer is too small so that all data have not been copied */
if (tmp_ul_frame_size < *p_rcv_size) {
return EMAC_SIZE_TOO_SMALL;
}
return EMAC_OK;
}
}
/* SOF has not been detected, skip the fragment */
else {
p_rx_td->addr.val &= ~(EMAC_RXD_OWNERSHIP);
p_emac_dev->us_rx_idx = us_tmp_idx;
}
/* Process the next buffer */
p_rx_td = &p_emac_dev->p_rx_dscr[us_tmp_idx];
}
return EMAC_RX_NULL;
}
/**
* \brief Send ulLength bytes from pcFrom. This copies the buffer to one of the
* EMAC Tx buffers, and then indicates to the EMAC that the buffer is ready.
* If lEndOfFrame is true then the data being copied is the end of the frame
* and the frame can be transmitted.
*
* \param p_emac_dev Pointer to the EMAC device instance.
* \param p_buffer Pointer to the data buffer.
* \param ul_size Length of the frame.
* \param func_tx_cb Transmit callback function.
*
* \return Length sent.
*/
uint32_t emac_dev_write(emac_device_t* p_emac_dev, void *p_buffer,
uint32_t ul_size, emac_dev_tx_cb_t func_tx_cb)
{
volatile emac_tx_descriptor_t *p_tx_td;
volatile emac_dev_tx_cb_t *p_func_tx_cb;
Emac *p_hw = p_emac_dev->p_hw;
/* Check parameter */
if (ul_size > EMAC_TX_UNITSIZE) {
return EMAC_PARAM;
}
/* Pointers to the current transmit descriptor */
p_tx_td = &p_emac_dev->p_tx_dscr[p_emac_dev->us_tx_head];
/* If no free TxTd, buffer can't be sent, schedule the wakeup callback */
if (CIRC_SPACE(p_emac_dev->us_tx_head, p_emac_dev->us_tx_tail,
p_emac_dev->us_tx_list_size) == 0) {
return EMAC_TX_BUSY;
}
/* Pointers to the current Tx callback */
p_func_tx_cb = &p_emac_dev->func_tx_cb_list[p_emac_dev->us_tx_head];
/* Set up/copy data to transmission buffer */
if (p_buffer && ul_size) {
/* Driver manages the ring buffer */
memcpy((void *)p_tx_td->addr, p_buffer, ul_size);
}
/* Tx callback */
*p_func_tx_cb = func_tx_cb;
/* Update transmit descriptor status */
/* The buffer size defined is the length of ethernet frame,
so it's always the last buffer of the frame. */
if (p_emac_dev->us_tx_head == p_emac_dev->us_tx_list_size - 1) {
p_tx_td->status.val =
(ul_size & EMAC_TXD_LEN_MASK) | EMAC_TXD_LAST
| EMAC_TXD_WRAP;
} else {
p_tx_td->status.val =
(ul_size & EMAC_TXD_LEN_MASK) | EMAC_TXD_LAST;
}
circ_inc(&p_emac_dev->us_tx_head, p_emac_dev->us_tx_list_size);
/* Now start to transmit if it is still not done */
emac_start_transmission(p_hw);
return EMAC_OK;
}
/**
* \brief Get current load of transmit.
*
* \param p_emac_dev Pointer to the EMAC device instance.
*
* \return Current load of transmit.
*/
uint32_t emac_dev_get_tx_load(emac_device_t* p_emac_dev)
{
uint16_t us_head = p_emac_dev->us_tx_head;
uint16_t us_tail = p_emac_dev->us_tx_tail;
return CIRC_CNT(us_head, us_tail, p_emac_dev->us_tx_list_size);
}
/**
* \brief Register/Clear RX callback. Callback will be invoked after the next received
* frame.
*
* When emac_dev_read() returns EMAC_RX_NULL, the application task calls
* emac_dev_set_rx_callback() to register func_rx_cb() callback and enters suspend state.
* The callback is in charge to resume the task once a new frame has been
* received. The next time emac_dev_read() is called, it will be successful.
*
* This function is usually invoked from the RX callback itself with NULL
* callback, to unregister. Once the callback has resumed the application task,
* there is no need to invoke the callback again.
*
* \param p_emac_dev Pointer to the EMAC device instance.
* \param func_tx_cb Receive callback function.
*/
void emac_dev_set_rx_callback(emac_device_t* p_emac_dev,
emac_dev_tx_cb_t func_rx_cb)
{
Emac *p_hw = p_emac_dev->p_hw;
if (func_rx_cb == NULL) {
emac_disable_interrupt(p_hw, EMAC_IDR_RCOMP);
p_emac_dev->func_rx_cb = NULL;
} else {
p_emac_dev->func_rx_cb = func_rx_cb;
emac_enable_interrupt(p_hw, EMAC_IER_RCOMP);
}
}
/**
* \brief Register/Clear TX wakeup callback.
*
* When emac_dev_write() returns EMAC_TX_BUSY (all transmit descriptor busy), the application
* task calls emac_dev_set_tx_wakeup_callback() to register func_wakeup() callback and
* enters suspend state. The callback is in charge to resume the task once
* several transmit descriptors have been released. The next time emac_dev_write() will be called,
* it shall be successful.
*
* This function is usually invoked with NULL callback from the TX wakeup
* callback itself, to unregister. Once the callback has resumed the
* application task, there is no need to invoke the callback again.
*
* \param p_emac_dev Pointer to EMAC device instance.
* \param func_wakeup Pointer to wakeup callback function.
* \param uc_threshold Number of free transmit descriptor before wakeup callback invoked.
*
* \return EMAC_OK, EMAC_PARAM on parameter error.
*/
uint8_t emac_dev_set_tx_wakeup_callback(emac_device_t* p_emac_dev,
emac_dev_wakeup_cb_t func_wakeup_cb, uint8_t uc_threshold)
{
if (func_wakeup_cb == NULL) {
p_emac_dev->func_wakeup_cb = NULL;
} else {
if (uc_threshold <= p_emac_dev->us_tx_list_size) {
p_emac_dev->func_wakeup_cb = func_wakeup_cb;
p_emac_dev->uc_wakeup_threshold = uc_threshold;
} else {
return EMAC_PARAM;
}
}
return EMAC_OK;
}
/**
* \brief Reset TX & RX queue & statistics.
*
* \param p_emac_dev Pointer to EMAC device instance.
*/
void emac_dev_reset(emac_device_t* p_emac_dev)
{
Emac *p_hw = p_emac_dev->p_hw;
emac_reset_rx_mem(p_emac_dev);
emac_reset_tx_mem(p_emac_dev);
emac_network_control(p_hw, EMAC_NCR_TE | EMAC_NCR_RE
| EMAC_NCR_WESTAT | EMAC_NCR_CLRSTAT);
}
/**
* \brief EMAC Interrupt handler.
*
* \param p_emac_dev Pointer to EMAC device instance.
*/
void emac_handler(emac_device_t* p_emac_dev)
{
Emac *p_hw = p_emac_dev->p_hw;
emac_tx_descriptor_t *p_tx_td;
emac_dev_tx_cb_t *p_tx_cb;
volatile uint32_t ul_isr;
volatile uint32_t ul_rsr;
volatile uint32_t ul_tsr;
uint32_t ul_rx_status_flag;
uint32_t ul_tx_status_flag;
ul_isr = emac_get_interrupt_status(p_hw);
ul_rsr = emac_get_rx_status(p_hw);
ul_tsr = emac_get_tx_status(p_hw);
ul_isr &= ~(emac_get_interrupt_mask(p_hw) | 0xFFC300);
/* RX packet */
if ((ul_isr & EMAC_ISR_RCOMP) || (ul_rsr & EMAC_RSR_REC)) {
ul_rx_status_flag = EMAC_RSR_REC;
/* Check OVR */
if (ul_rsr & EMAC_RSR_OVR) {
ul_rx_status_flag |= EMAC_RSR_OVR;
}
/* Check BNA */
if (ul_rsr & EMAC_RSR_BNA) {
ul_rx_status_flag |= EMAC_RSR_BNA;
}
/* Clear status */
emac_clear_rx_status(p_hw, ul_rx_status_flag);
/* Invoke callbacks */
if (p_emac_dev->func_rx_cb) {
p_emac_dev->func_rx_cb(ul_rx_status_flag);
}
}
/* TX packet */
if ((ul_isr & EMAC_ISR_TCOMP) || (ul_tsr & EMAC_TSR_COMP)) {
ul_tx_status_flag = EMAC_TSR_COMP;
/* A frame transmitted */
/* Check RLE */
if (ul_tsr & EMAC_TSR_RLES) {
/* Status RLE & Number of discarded buffers */
ul_tx_status_flag = EMAC_TSR_RLES | CIRC_CNT(p_emac_dev->us_tx_head,
p_emac_dev->us_tx_tail, p_emac_dev->us_tx_list_size);
p_tx_cb = &p_emac_dev->func_tx_cb_list[p_emac_dev->us_tx_tail];
emac_reset_tx_mem(p_emac_dev);
emac_enable_transmit(p_hw, 1);
}
/* Check COL */
if (ul_tsr & EMAC_TSR_COL) {
ul_tx_status_flag |= EMAC_TSR_COL;
}
/* Check BEX */
if (ul_tsr & EMAC_TSR_BEX) {
ul_tx_status_flag |= EMAC_TSR_BEX;
}
/* Check UND */
if (ul_tsr & EMAC_TSR_UND) {
ul_tx_status_flag |= EMAC_TSR_UND;
}
/* Clear status */
emac_clear_tx_status(p_hw, ul_tx_status_flag);
if (!CIRC_EMPTY(p_emac_dev->us_tx_head, p_emac_dev->us_tx_tail)) {
/* Check the buffers */
do {
p_tx_td = &p_emac_dev->p_tx_dscr[p_emac_dev->us_tx_tail];
p_tx_cb = &p_emac_dev->func_tx_cb_list[p_emac_dev->us_tx_tail];
/* Any error? Exit if buffer has not been sent yet */
if ((p_tx_td->status.val & EMAC_TXD_USED) == 0) {
break;
}
/* Notify upper layer that a packet has been sent */
if (*p_tx_cb) {
(*p_tx_cb) (ul_tx_status_flag);
}
circ_inc(&p_emac_dev->us_tx_tail, p_emac_dev->us_tx_list_size);
} while (CIRC_CNT(p_emac_dev->us_tx_head, p_emac_dev->us_tx_tail,
p_emac_dev->us_tx_list_size));
}
if (ul_tsr & EMAC_TSR_RLES) {
/* Notify upper layer RLE */
if (*p_tx_cb) {
(*p_tx_cb) (ul_tx_status_flag);
}
}
/* If a wakeup has been scheduled, notify upper layer that it can
send other packets, and the sending will be successful. */
if ((CIRC_SPACE(p_emac_dev->us_tx_head, p_emac_dev->us_tx_tail,
p_emac_dev->us_tx_list_size) >= p_emac_dev->uc_wakeup_threshold)
&& p_emac_dev->func_wakeup_cb) {
p_emac_dev->func_wakeup_cb();
}
}
}
//@}
#endif // SAM3XA_SERIES
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
}
#endif
/**INDENT-ON**/
/// @endcond