1
0
mirror of https://github.com/arduino/Arduino.git synced 2025-01-06 21:46:09 +01:00
Arduino/hardware/sam/system/libsam/source/adc.c

850 lines
20 KiB
C
Raw Normal View History

2011-10-25 15:52:09 +02:00
/*! \file *********************************************************************
*
* \brief API for SAM3 Analog-to-Digital Converter (ADC/ADC12B) controller.
*
* ----------------------------------------------------------------------------
* SAM Software Package License
* ----------------------------------------------------------------------------
* Copyright (c) 2011, Atmel Corporation
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the disclaimer below.
*
* Atmel's name may not be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* - Compiler: IAR EWARM and CodeSourcery GCC for ARM
* - Supported devices: All SAM devices with a Analog-to-Digital Converter can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.com/
*
*******************************************************************************/
#include "adc.h"
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
extern "C" {
#endif
/**INDENT-ON**/
/// @endcond
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Initializes the given ADC with the specified ADC clock and startup time.
*
* \param p_adc Pointer to an ADC instance.
* \param dw_mck Main clock of the device (value in Hz).
* \param dw_adc_clock Analog-to-Digital conversion clock (value in Hz).
* \param uc_startup ADC start up time. Please refer to the product datasheet for details.
*
* \retval 0 The initialization operation succeeds.
* \retval others The initialization operation fails.
*/
uint32_t adc_init(Adc *p_adc, uint32_t ul_mck, uint32_t ul_adc_clock, uint8_t uc_startup)
{
uint32_t ul_prescal;
/* Reset the controller */
p_adc->ADC_CR = ADC_CR_SWRST;
/* Reset Mode Register */
p_adc->ADC_MR = 0;
/* Reset PDC transfer */
p_adc->ADC_PTCR = (ADC_PTCR_RXTDIS | ADC_PTCR_TXTDIS);
p_adc->ADC_RCR = 0;
p_adc->ADC_RNCR = 0;
p_adc->ADC_TCR = 0;
p_adc->ADC_TNCR = 0;
ul_prescal = ul_mck/(2 * ul_adc_clock) - 1;
p_adc->ADC_MR |= ADC_MR_PRESCAL( ul_prescal ) | ( (uc_startup<<ADC_MR_STARTUP_Pos) & ADC_MR_STARTUP_Msk);
return 0;
}
#endif
/**
* \brief Configures conversion resolution.
*
* \param p_adc Pointer to an ADC instance.
* \param resolution ADC resolution.
*
*/
#if SAM3S || SAM3N || SAM3XA
void adc_set_resolution(Adc *p_adc, adc_resolution_t resolution)
{
p_adc->ADC_MR |= (resolution<<4) & ADC_MR_LOWRES;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Configures conversion trigger and free run mode.
*
* \param p_adc Pointer to an ADC instance.
* \param trigger Conversion trigger.
* \param uc_freerun ADC_MR_FREERUN_ON enables freerun mode
* ADC_MR_FREERUN_OFF disables freerun mode
*
*/
void adc_configure_trigger(Adc *p_adc, adc_trigger_t trigger, uint8_t uc_freerun)
{
p_adc->ADC_MR |= trigger | ((uc_freerun<<7) & ADC_MR_FREERUN);
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Configures ADC power saving mode.
*
* \param p_adc Pointer to an ADC instance.
* \param uc_sleep ADC_MR_SLEEP_NORMAL keeps the ADC Core and reference voltage circuitry ON between conversions
* ADC_MR_SLEEP_SLEEP keeps the ADC Core and reference voltage circuitry OFF between conversions
* \param uc_fwup ADC_MR_FWUP_OFF configures sleep mode as uc_sleep setting
* ADC_MR_FWUP_ON keeps voltage reference ON and ADC Core OFF between conversions
*
*/
void adc_configure_power_save(Adc *p_adc, uint8_t uc_sleep, uint8_t uc_fwup)
{
p_adc->ADC_MR |= ( ((uc_sleep<<5) & ADC_MR_SLEEP) | ((uc_fwup<<6) & ADC_MR_FWUP) );
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Configures conversion sequence.
*
* \param p_adc Pointer to an ADC instance.
* \param ch_list Channel sequence list.
* \param number Number of channels in the list.
*
*/
void adc_configure_sequence(Adc *p_adc, adc_channel_num_t ch_list[], uint8_t uc_num)
{
uint8_t uc_counter;
if(uc_num < 8)
{
for(uc_counter=0;uc_counter < uc_num;uc_counter++)
{
p_adc->ADC_SEQR1 |= ch_list[uc_counter] << (4*uc_counter);
}
}
else
{
for(uc_counter=0;uc_counter < 8;uc_counter++)
{
p_adc->ADC_SEQR1 |= ch_list[uc_counter] << (4*uc_counter);
}
for(uc_counter=0;uc_counter < uc_num-8;uc_counter++)
{
p_adc->ADC_SEQR2 |= ch_list[uc_counter] << (4*uc_counter);
}
}
}
#endif
#if SAM3S || SAM3XA
/**
* \brief Configures ADC timing.
*
* \param p_adc Pointer to an ADC instance.
* \param uc_tracking ADC tracking time = uc_tracking / ADC clock.
* \param uc_settling Analog settling time = (uc_settling + 1) / ADC clock.
* \param uc_transfer Data transfer time = (uc_transfer * 2 + 3) / ADC clock.
*
*/
void adc_configure_timing(Adc *p_adc, uint8_t uc_tracking, adc_settling_time_t settling, uint8_t uc_transfer)
{
p_adc->ADC_MR |= ADC_MR_TRANSFER( uc_transfer )
| settling
| ADC_MR_TRACKTIM( uc_tracking ) ;
}
#elif SAM3N
/**
* \brief Configures ADC timing.
*
* \param p_adc Pointer to an ADC instance.
* \param uc_tracking ADC tracking time = uc_tracking / ADC clock.
*
*/
void adc_configure_timing(Adc *p_adc, uint8_t uc_tracking)
{
p_adc->ADC_MR |= ADC_MR_TRACKTIM( uc_tracking ) ;
}
#endif
#if SAM3S || SAM3XA
/**
* \brief enable analog change.
*
* note it allows different analog settings for each channel,
*
* \param pAdc Pointer to an Adc instance.
*/
void adc_enable_anch( Adc *pAdc )
{
pAdc->ADC_MR |= ADC_MR_ANACH;
}
#endif
#if SAM3S || SAM3XA
/**
* \brief disable analog change.
*
* note DIFF0, GAIN0 and OFF0 are used for all channels.
*
* \param pAdc Pointer to an Adc instance.
*/
void adc_disable_anch( Adc *pAdc )
{
pAdc->ADC_MR &= ~ADC_MR_ANACH;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Starts analog-to-digital conversion.
*
* \note If one of the hardware event is selected as ADC trigger, this function can NOT start analog to digital conversion.
*
* \param p_adc Pointer to an ADC instance.
*
*/
void adc_start(Adc *p_adc)
{
p_adc->ADC_CR = ADC_CR_START;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Stop analog-to-digital conversion.
* \param p_adc Pointer to an ADC instance.
*
*/
void adc_stop(Adc *p_adc)
{
p_adc->ADC_CR = ADC_CR_SWRST;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Enables the specified ADC channel.
*
* \param p_adc Pointer to an ADC instance.
* \param adc_ch ADC channel number.
*
*/
void adc_enable_channel(Adc *p_adc, adc_channel_num_t adc_ch)
{
p_adc->ADC_CHER = 1 << adc_ch;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Disables the specified ADC channel.
*
* \param p_adc Pointer to an ADC instance.
* \param adc_ch ADC channel number.
*
*/
void adc_disable_channel(Adc *p_adc, adc_channel_num_t adc_ch)
{
p_adc->ADC_CHDR = 1 << adc_ch;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Reads the ADC channel status.
*
* \param p_adc Pointer to an ADC instance.
* \param adc_ch ADC channel number.
*
* \retval 1 means the specified channel is enabled.
* 0 means the specified channel is disabled.
*/
uint32_t adc_get_status(Adc *p_adc, adc_channel_num_t adc_ch)
{
return p_adc->ADC_CHSR & (1 << adc_ch);
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Reads the ADC result data of the specified channel.
*
* \param p_adc Pointer to an ADC instance.
* \param adc_ch ADC channel number.
*
* \retval ADC data of the specified channel.
*/
uint32_t adc_get_value(Adc *p_adc, adc_channel_num_t adc_ch)
{
uint32_t dwData = 0;
if ( 15 >= adc_ch )
{
dwData=*(p_adc->ADC_CDR+adc_ch) ;
}
return dwData ;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Reads the last ADC result data.
*
* \param p_adc Pointer to an ADC instance.
*
* \retval ADC data.
*/
uint32_t adc_get_latest_value(Adc *p_adc)
{
return p_adc->ADC_LCDR;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Enables TAG option so that the number of the last converted channel can be indicated.
*
* \param p_adc Pointer to an ADC instance.
*
*/
void adc_enable_tag(Adc *p_adc)
{
p_adc->ADC_EMR |= ADC_EMR_TAG;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Disables TAG option.
*
* \param p_adc Pointer to an ADC instance.
*
*/
void adc_disable_tag(Adc *p_adc)
{
p_adc->ADC_EMR &= ~ADC_EMR_TAG;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Indicates the last converted channel.
*
* \note If TAG option is NOT enabled before, an incorrect channel number is returned.
*
* \param p_adc Pointer to an ADC instance.
*
* \retval The last converted channel number.
*/
adc_channel_num_t adc_get_tag(Adc *p_adc)
{
return (p_adc->ADC_LCDR & ADC_LCDR_CHNB_Msk) >> ADC_LCDR_CHNB_Pos;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Enables conversion sequencer.
*
* \param p_adc Pointer to an ADC instance.
*
*/
void adc_start_sequencer(Adc *p_adc)
{
p_adc->ADC_MR |= ADC_MR_USEQ;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Disables conversion sequencer.
*
* \param p_adc Pointer to an ADC instance.
*
*/
void adc_stop_sequencer(Adc *p_adc)
{
p_adc->ADC_MR &= ~ADC_MR_USEQ;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Configures comparsion mode.
*
* \param p_adc Pointer to an ADC instance.
* \param mode ADC comparsion mode.
*
*/
void adc_set_comparison_mode(Adc *p_adc, uint8_t uc_mode)
{
p_adc->ADC_EMR &= (uint32_t)~(ADC_EMR_CMPMODE_Msk);
p_adc->ADC_EMR |= (uc_mode & ADC_EMR_CMPMODE_Msk);
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief get comparsion mode.
*
* \param p_adc Pointer to an ADC instance.
* \param mode ADC comparsion mode.
*
* \retval compare mode value.
*/
uint32_t adc_get_comparison_mode(Adc *p_adc)
{
return p_adc->ADC_EMR & ADC_EMR_CMPMODE_Msk;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Configures ADC compare window.
*
* \param p_adc Pointer to an ADC instance.
* \param w_low_threshold Low threshold of compare window.
* \param w_high_threshold High threshold of compare window.
*
*/
void adc_set_comparsion_window(Adc *p_adc, uint16_t us_low_threshold, uint16_t us_high_threshold)
{
p_adc->ADC_CWR = ADC_CWR_LOWTHRES(us_low_threshold) | ADC_CWR_HIGHTHRES(us_high_threshold);
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Configures comparison selected channel.
*
* \param p_adc Pointer to an ADC instance.
* \param channel Comparison selected channel.
*
*/
void adc_set_comparison_channel(Adc *p_adc, adc_channel_num_t channel)
{
if ( channel < 16 )
{
p_adc->ADC_EMR &= (uint32_t)~(ADC_EMR_CMPALL);
p_adc->ADC_EMR &= (uint32_t)~(ADC_EMR_CMPSEL_Msk);
p_adc->ADC_EMR |= (channel << ADC_EMR_CMPSEL_Pos);
}
else
{
p_adc->ADC_EMR |= ADC_EMR_CMPALL;
}
}
#endif
#if SAM3S || SAM3XA
/**
* \brief Enables differential input for the specified channel.
*
* \param p_adc Pointer to an ADC instance.
* \param channel Channel number.
*
*/
void adc_enable_differential_input(Adc *p_adc, adc_channel_num_t channel)
{
p_adc->ADC_COR |= 0x01u << (16+ channel);
}
#endif
#if SAM3S || SAM3XA
/**
* \brief Disables differential input for the specified channel.
*
* \param p_adc Pointer to an ADC instance.
* \param channel Channel number.
*
*/
void adc_disable_differential_input(Adc *p_adc, adc_channel_num_t channel)
{
uint32_t ul_temp;
ul_temp = p_adc->ADC_COR;
p_adc->ADC_COR &= 0xfffeffffu << channel;
p_adc->ADC_COR |= ul_temp;
}
#endif
#if SAM3S || SAM3XA
/**
* \brief Enables analog signal offset for the specified channel.
*
* \param p_adc Pointer to an ADC instance.
* \param channel Channel number.
*
*/
void adc_enable_input_offset(Adc *p_adc, adc_channel_num_t channel)
{
p_adc->ADC_COR |= 0x01u << channel;
}
#endif
#if SAM3S || SAM3XA
/**
* \brief Disables analog signal offset for the specified channel.
*
* \param p_adc Pointer to an ADC instance.
* \param channel Channel number.
*
*/
void adc_disable_input_offset(Adc *p_adc, adc_channel_num_t channel)
{
uint32_t ul_temp;
ul_temp = p_adc->ADC_COR;
p_adc->ADC_COR &= (0xfffffffeu << channel);
p_adc->ADC_COR |= ul_temp;
}
#endif
#if SAM3S || SAM3XA
/**
* \brief Configures input gain for the specified channel.
*
* \param p_adc Pointer to an ADC instance.
* \param channel Channel number.
* \param gain Gain value for the input.
*
*/
void adc_set_input_gain(Adc *p_adc, adc_channel_num_t channel, adc_gainvalue_t gain)
{
p_adc->ADC_CGR |= (0x03u << (2*channel)) & (gain << (2*channel));
}
#endif
#if SAM3S8 || SAM3SD8
/**
* \brief set adc auto calibration mode.
*
* \param p_adc Pointer to an ADC instance.
*
*/
void adc_set_calibmode(Adc *p_adc)
{
p_adc->ADC_CR |= ADC_CR_AUTOCAL;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Returns the actual ADC clock.
*
* \param p_adc Pointer to an ADC instance.
* \param ul_mck Main clock of the device (value in Hz).
*
* \retval 0 The actual ADC clock (value in Hz).
*/
uint32_t adc_get_actual_adc_clock(Adc *p_adc, uint32_t ul_mck)
{
uint32_t ul_adcfreq;
uint32_t ul_prescal;
/* ADCClock = MCK / ( (PRESCAL+1) * 2 ) */
ul_prescal = (( p_adc->ADC_MR & ADC_MR_PRESCAL_Msk) >> ADC_MR_PRESCAL_Pos);
ul_adcfreq = ul_mck / ((ul_prescal+1)*2);
return ul_adcfreq;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Enables ADC interrupt(s).
*
* \param p_adc Pointer to an ADC instance.
* \param dw_source Interrupt(s) to be enabled.
*
*/
void adc_enable_interrupt(Adc *p_adc, uint32_t ul_source)
{
p_adc->ADC_IER = ul_source;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Disables ADC interrupt(s).
*
* \param p_adc Pointer to an ADC instance.
* \param dw_source Interrupt(s) to be disabled.
*
*/
void adc_disable_interrupt(Adc *p_adc, uint32_t ul_source)
{
p_adc->ADC_IDR = ul_source;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Reads ADC interrupt status.
*
* \param p_adc Pointer to an ADC instance.
*
* \retval ADC interrupt status.
*/
uint32_t adc_get_interrupt_status(Adc *p_adc)
{
return p_adc->ADC_ISR ;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/** \brief Read ADC interrupt mask.
*
* \param p_uart pointer to a UART instance.
*
* \return The interrupt mask value.
*/
uint32_t adc_get_interrupt_mask(Adc *p_adc)
{
return p_adc->ADC_IMR;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Reads overrun status.
*
* \param p_adc Pointer to an ADC instance.
*
* \retval ADC overrun status.
*/
uint32_t adc_check_ovr(Adc *p_adc,adc_channel_num_t adc_ch)
{
return p_adc->ADC_OVER & (0x01u << adc_ch);
}
#endif
#if SAM3S || SAM3XA
/**
* \brief Adapts performance versus power consumption.
*
* \note Please refer to ADC Characteristics in the product datasheet for the details.
*
* \param p_adc Pointer to an ADC instance.
* \param ibctl ADC Bias current control.
*
*/
void adc_set_bias_current(Adc *p_adc, uint8_t uc_ibctl)
{
p_adc->ADC_ACR |= ADC_ACR_IBCTL(uc_ibctl);
}
#endif
#if SAM3S || SAM3XA
/**
* \brief turn on temperature sensor.
*
* \param p_adc Pointer to an ADC instance.
*
*/
void adc_enable_ts(Adc *p_adc)
{
p_adc->ADC_ACR |= ADC_ACR_TSON;
}
#endif
#if SAM3S || SAM3XA
/**
* \brief turn off temperature sensor.
*
* \param p_adc Pointer to an ADC instance.
*
*/
void adc_disable_ts(Adc *p_adc)
{
p_adc->ADC_ACR &= ~ADC_ACR_TSON;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Enables or disables write protection of ADC registers.
*
* \param p_adc Pointer to an ADC instance.
* \param dw_eanble 1 to eanble, 0 to disable.
*/
void adc_set_writeprotect(Adc *p_adc, uint32_t ul_enable)
{
p_adc->ADC_WPMR |= ADC_WPMR_WPKEY(ul_enable);
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief Indicates write protect status.
*
* \param p_adc Pointer to an ADC instance.
*
* \return 0 if the peripheral is not protected, or 16-bit Write Protect Violation Status.
*/
uint32_t adc_get_writeprotect_status(Adc *p_adc)
{
return p_adc->ADC_WPSR & ADC_WPSR_WPVS;
}
#endif
#if SAM3S || SAM3N || SAM3XA
/**
* \brief calcul_startup
*/
static uint32_t calcul_startup( uint32_t ul_startup )
{
uint32_t ul_startup_value=0;
if( ul_startup == 0 )
ul_startup_value = 0;
else if( ul_startup == 1 )
ul_startup_value = 8;
else if( ul_startup == 2 )
ul_startup_value = 16;
else if( ul_startup == 3 )
ul_startup_value = 24;
else if( ul_startup == 4 )
ul_startup_value = 64;
else if( ul_startup == 5 )
ul_startup_value = 80;
else if( ul_startup == 6 )
ul_startup_value = 96;
else if( ul_startup == 7 )
ul_startup_value = 112;
else if( ul_startup == 8 )
ul_startup_value = 512;
else if( ul_startup == 9 )
ul_startup_value = 576;
else if( ul_startup == 10 )
ul_startup_value = 640;
else if( ul_startup == 11 )
ul_startup_value = 704;
else if( ul_startup == 12 )
ul_startup_value = 768;
else if( ul_startup == 13 )
ul_startup_value = 832;
else if( ul_startup == 14 )
ul_startup_value = 896;
else if( ul_startup == 15 )
ul_startup_value = 960;
return ul_startup_value;
}
/**
* \brief Checks ADC configurations.
*
* \param p_adc Pointer to an ADC instance.
* \param dw_mck Main clock of the device (value in Hz).
*/
void adc_check(Adc* p_adc, uint32_t ul_mck)
{
uint32_t ul_adcfreq;
uint32_t ul_prescal;
uint32_t ul_startup;
/* ADCClock = MCK / ( (PRESCAL+1) * 2 ) */
ul_prescal = (( p_adc->ADC_MR & ADC_MR_PRESCAL_Msk) >> ADC_MR_PRESCAL_Pos);
ul_adcfreq = ul_mck / ((ul_prescal+1)*2);
printf("ADC clock frequency = %d Hz\r\n", (int)ul_adcfreq );
if( ul_adcfreq < ADC_FREQ_MIN )
{
printf("adc frequency too low (out of specification: %d Hz)\r\n", (int)ADC_FREQ_MIN);
}
if( ul_adcfreq > ADC_FREQ_MAX )
{
printf("adc frequency too high (out of specification: %d Hz)\r\n", (int)ADC_FREQ_MAX);
}
ul_startup = (( p_adc->ADC_MR & ADC_MR_STARTUP_Msk) >> ADC_MR_STARTUP_Pos);
if( !(p_adc->ADC_MR & ADC_MR_SLEEP_SLEEP) )
{
/* 40<34>s */
if( ADC_STARTUP_NORM * ul_adcfreq / 1000000 > calcul_startup(ul_startup) )
{
printf("Startup time too small: %d, programmed: %d\r\n", (int)(ADC_STARTUP_NORM * ul_adcfreq / 1000000), (int)calcul_startup(ul_startup));
}
}
else
{
if(p_adc->ADC_MR & ADC_MR_FREERUN_ON)
{
printf("FreeRun forbidden in sleep mode\n\r");
}
if( !(p_adc->ADC_MR & ADC_MR_FWUP_ON) )
{
/* Sleep 40<34>s */
if( ADC_STARTUP_NORM * ul_adcfreq / 1000000 > calcul_startup(ul_startup) )
{
printf("Startup time too small: %d, programmed: %d\r\n", (int)(ADC_STARTUP_NORM * ul_adcfreq / 1000000), (int)(calcul_startup(ul_startup)));
}
}
else
{
if( p_adc->ADC_MR & ADC_MR_FWUP_ON )
{
/* Fast Wake Up Sleep Mode: 12<31>s */
if( ADC_STARTUP_FAST * ul_adcfreq / 1000000 > calcul_startup(ul_startup) )
{
printf("Startup time too small: %d, programmed: %d\r\n", (int)(ADC_STARTUP_NORM * ul_adcfreq / 1000000), (int)(calcul_startup(ul_startup)));
}
}
}
}
}
#endif
/**
* \brief Gets PDC registers base address.
*
* \param p_adc Pointer to an ADC instance.
*
* \retval PDC registers base for PDC driver to access.
*/
#if SAM3S || SAM3N || SAM3XA
Pdc *adc_get_pdc_base(Adc *p_adc)
{
return PDC_ADC;
}
#endif
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
}
#endif
/**INDENT-ON**/
/// @endcond
//#endif /* #ifndef _SAM_ADC_ */