1
0
mirror of https://github.com/arduino/Arduino.git synced 2024-11-30 11:24:12 +01:00
Arduino/core/PMatrix.java

641 lines
19 KiB
Java
Raw Normal View History

/* -*- mode: jde; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
Part of the Processing project - http://Proce55ing.net
Copyright (c) 2005-06 Ben Fry and Casey Reas
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
*/
package processing.core;
/**
* 4x4 matrix implementation.
*/
public final class PMatrix implements PConstants {
public float m00, m01, m02, m03;
public float m10, m11, m12, m13;
public float m20, m21, m22, m23;
public float m30, m31, m32, m33;
final static int DEFAULT_STACK_DEPTH = 0;
int maxStackDepth;
int stackPointer = 0;
float stack[][];
// locally allocated version to avoid creating new memory
static protected PMatrix inverseCopy;
public PMatrix() {
set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
maxStackDepth = DEFAULT_STACK_DEPTH;
}
public PMatrix(int stackDepth) {
set(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
stack = new float[stackDepth][16];
maxStackDepth = stackDepth;
}
public PMatrix(float m00, float m01, float m02, float m03,
float m10, float m11, float m12, float m13,
float m20, float m21, float m22, float m23,
float m30, float m31, float m32, float m33) {
set(m00, m01, m02, m03,
m10, m11, m12, m13,
m20, m21, m22, m23,
m30, m31, m32, m33);
maxStackDepth = DEFAULT_STACK_DEPTH;
}
// Make a copy of a matrix. We copy the stack depth,
// but we don't make a copy of the stack or the stack pointer.
public PMatrix(PMatrix src) {
set(src);
maxStackDepth = src.maxStackDepth;
stack = new float[maxStackDepth][16];
}
public void reset() {
set(1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1);
}
public void clearStack() {
stackPointer = 0;
}
public boolean push() {
if (stackPointer == maxStackDepth) return false;
stack[stackPointer][0] = m00;
stack[stackPointer][1] = m01;
stack[stackPointer][2] = m02;
stack[stackPointer][3] = m03;
stack[stackPointer][4] = m10;
stack[stackPointer][5] = m11;
stack[stackPointer][6] = m12;
stack[stackPointer][7] = m13;
stack[stackPointer][8] = m20;
stack[stackPointer][9] = m21;
stack[stackPointer][10] = m22;
stack[stackPointer][11] = m23;
stack[stackPointer][12] = m30;
stack[stackPointer][13] = m31;
stack[stackPointer][14] = m32;
stack[stackPointer][15] = m33;
stackPointer++;
return true;
}
public boolean pop() {
if (stackPointer == 0) return false;
stackPointer--;
m00 = stack[stackPointer][0];
m01 = stack[stackPointer][1];
m02 = stack[stackPointer][2];
m03 = stack[stackPointer][3];
m10 = stack[stackPointer][4];
m11 = stack[stackPointer][5];
m12 = stack[stackPointer][6];
m13 = stack[stackPointer][7];
m20 = stack[stackPointer][8];
m21 = stack[stackPointer][9];
m22 = stack[stackPointer][10];
m23 = stack[stackPointer][11];
m30 = stack[stackPointer][12];
m31 = stack[stackPointer][13];
m32 = stack[stackPointer][14];
m33 = stack[stackPointer][15];
return true;
}
public void set(PMatrix src) {
set(src.m00, src.m01, src.m02, src.m03,
src.m10, src.m11, src.m12, src.m13,
src.m20, src.m21, src.m22, src.m23,
src.m30, src.m31, src.m32, src.m33);
}
public void set(float m00, float m01, float m02, float m03,
float m10, float m11, float m12, float m13,
float m20, float m21, float m22, float m23,
float m30, float m31, float m32, float m33) {
this.m00 = m00; this.m01 = m01; this.m02 = m02; this.m03 = m03;
this.m10 = m10; this.m11 = m11; this.m12 = m12; this.m13 = m13;
this.m20 = m20; this.m21 = m21; this.m22 = m22; this.m23 = m23;
this.m30 = m30; this.m31 = m31; this.m32 = m32; this.m33 = m33;
}
public void translate(float tx, float ty) {
translate(tx, ty, 0);
}
public void invTranslate(float tx, float ty) {
invTranslate(tx, ty, 0);
}
public void translate(float tx, float ty, float tz) {
m03 += tx*m00 + ty*m01 + tz*m02;
m13 += tx*m10 + ty*m11 + tz*m12;
m23 += tx*m20 + ty*m21 + tz*m22;
m33 += tx*m30 + ty*m31 + tz*m32;
}
public void invTranslate(float tx, float ty, float tz) {
preApply(1, 0, 0, -tx,
0, 1, 0, -ty,
0, 0, 1, -tz,
0, 0, 0, 1);
}
// OPT could save several multiplies for the 0s and 1s by just
// putting the multMatrix code here and removing uneccessary terms
public void rotateX(float angle) {
float c = cos(angle);
float s = sin(angle);
apply(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1);
}
public void invRotateX(float angle) {
float c = cos(-angle);
float s = sin(-angle);
preApply(1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1);
}
public void rotateY(float angle) {
float c = cos(angle);
float s = sin(angle);
apply(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1);
}
public void invRotateY(float angle) {
float c = cos(-angle);
float s = sin(-angle);
preApply(c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1);
}
/**
* Just calls rotateZ because two dimensional rotation
* is the same as rotating along the z-axis.
*/
public void rotate(float angle) {
rotateZ(angle);
}
public void invRotate(float angle) {
invRotateZ(angle);
}
public void rotateZ(float angle) {
float c = cos(angle);
float s = sin(angle);
apply(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
}
public void invRotateZ(float angle) {
float c = cos(-angle);
float s = sin(-angle);
preApply(c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
}
public void rotate(float angle, float v0, float v1, float v2) {
// should be in radians (i think), instead of degrees (gl uses degrees)
// based on 15-463 code, but similar to opengl ref p.443
// TODO should make sure this vector is normalized
float c = cos(angle);
float s = sin(angle);
float t = 1.0f - c;
apply((t*v0*v0) + c, (t*v0*v1) - (s*v2), (t*v0*v2) + (s*v1), 0,
(t*v0*v1) + (s*v2), (t*v1*v1) + c, (t*v1*v2) - (s*v0), 0,
(t*v0*v2) - (s*v1), (t*v1*v2) + (s*v0), (t*v2*v2) + c, 0,
0, 0, 0, 1);
}
public void invRotate(float angle, float v0, float v1, float v2) {
// TODO should make sure this vector is normalized
float c = cos(-angle);
float s = sin(-angle);
float t = 1.0f - c;
preApply((t*v0*v0) + c, (t*v0*v1) - (s*v2), (t*v0*v2) + (s*v1), 0,
(t*v0*v1) + (s*v2), (t*v1*v1) + c, (t*v1*v2) - (s*v0), 0,
(t*v0*v2) - (s*v1), (t*v1*v2) + (s*v0), (t*v2*v2) + c, 0,
0, 0, 0, 1);
}
public void scale(float s) {
apply(s, 0, 0, 0, 0, s, 0, 0, 0, 0, s, 0, 0, 0, 0, 1);
}
public void invScale(float s) {
preApply(1/s, 0, 0, 0, 0, 1/s, 0, 0, 0, 0, 1/s, 0, 0, 0, 0, 1);
}
public void scale(float sx, float sy) {
apply(sx, 0, 0, 0, 0, sy, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
}
public void invScale(float sx, float sy) {
preApply(1/sx, 0, 0, 0, 0, 1/sy, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
}
// OPTIMIZE: same as above
public void scale(float x, float y, float z) {
apply(x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1);
}
public void invScale(float x, float y, float z) {
preApply(1/x, 0, 0, 0, 0, 1/y, 0, 0, 0, 0, 1/z, 0, 0, 0, 0, 1);
}
/*
public void transform(float n00, float n01, float n02, float n03,
float n10, float n11, float n12, float n13,
float n20, float n21, float n22, float n23,
float n30, float n31, float n32, float n33) {
apply(n00, n01, n02, n03,
n10, n11, n12, n13,
n20, n21, n22, n23,
n30, n31, n32, n33);
}
*/
public void preApply(PMatrix lhs) {
preApply(lhs.m00, lhs.m01, lhs.m02, lhs.m03,
lhs.m10, lhs.m11, lhs.m12, lhs.m13,
lhs.m20, lhs.m21, lhs.m22, lhs.m23,
lhs.m30, lhs.m31, lhs.m32, lhs.m33);
}
// for inverse operations, like multiplying the matrix on the left
public void preApply(float n00, float n01, float n02, float n03,
float n10, float n11, float n12, float n13,
float n20, float n21, float n22, float n23,
float n30, float n31, float n32, float n33) {
float r00 = n00*m00 + n01*m10 + n02*m20 + n03*m30;
float r01 = n00*m01 + n01*m11 + n02*m21 + n03*m31;
float r02 = n00*m02 + n01*m12 + n02*m22 + n03*m32;
float r03 = n00*m03 + n01*m13 + n02*m23 + n03*m33;
float r10 = n10*m00 + n11*m10 + n12*m20 + n13*m30;
float r11 = n10*m01 + n11*m11 + n12*m21 + n13*m31;
float r12 = n10*m02 + n11*m12 + n12*m22 + n13*m32;
float r13 = n10*m03 + n11*m13 + n12*m23 + n13*m33;
float r20 = n20*m00 + n21*m10 + n22*m20 + n23*m30;
float r21 = n20*m01 + n21*m11 + n22*m21 + n23*m31;
float r22 = n20*m02 + n21*m12 + n22*m22 + n23*m32;
float r23 = n20*m03 + n21*m13 + n22*m23 + n23*m33;
float r30 = n30*m00 + n31*m10 + n32*m20 + n33*m30;
float r31 = n30*m01 + n31*m11 + n32*m21 + n33*m31;
float r32 = n30*m02 + n31*m12 + n32*m22 + n33*m32;
float r33 = n30*m03 + n31*m13 + n32*m23 + n33*m33;
m00 = r00; m01 = r01; m02 = r02; m03 = r03;
m10 = r10; m11 = r11; m12 = r12; m13 = r13;
m20 = r20; m21 = r21; m22 = r22; m23 = r23;
m30 = r30; m31 = r31; m32 = r32; m33 = r33;
}
public boolean invApply(PMatrix rhs) {
PMatrix copy = new PMatrix(rhs);
PMatrix inverse = copy.invert();
if (inverse == null) return false;
preApply(inverse);
return true;
}
public boolean invApply(float n00, float n01, float n02, float n03,
float n10, float n11, float n12, float n13,
float n20, float n21, float n22, float n23,
float n30, float n31, float n32, float n33) {
if (inverseCopy == null) {
inverseCopy = new PMatrix();
}
inverseCopy.set(n00, n01, n02, n03,
n10, n11, n12, n13,
n20, n21, n22, n23,
n30, n31, n32, n33);
PMatrix inverse = inverseCopy.invert();
if (inverse == null) return false;
preApply(inverse);
return true;
}
public void apply(PMatrix rhs) {
apply(rhs.m00, rhs.m01, rhs.m02, rhs.m03,
rhs.m10, rhs.m11, rhs.m12, rhs.m13,
rhs.m20, rhs.m21, rhs.m22, rhs.m23,
rhs.m30, rhs.m31, rhs.m32, rhs.m33);
}
public void apply(float n00, float n01, float n02, float n03,
float n10, float n11, float n12, float n13,
float n20, float n21, float n22, float n23,
float n30, float n31, float n32, float n33) {
float r00 = m00*n00 + m01*n10 + m02*n20 + m03*n30;
float r01 = m00*n01 + m01*n11 + m02*n21 + m03*n31;
float r02 = m00*n02 + m01*n12 + m02*n22 + m03*n32;
float r03 = m00*n03 + m01*n13 + m02*n23 + m03*n33;
float r10 = m10*n00 + m11*n10 + m12*n20 + m13*n30;
float r11 = m10*n01 + m11*n11 + m12*n21 + m13*n31;
float r12 = m10*n02 + m11*n12 + m12*n22 + m13*n32;
float r13 = m10*n03 + m11*n13 + m12*n23 + m13*n33;
float r20 = m20*n00 + m21*n10 + m22*n20 + m23*n30;
float r21 = m20*n01 + m21*n11 + m22*n21 + m23*n31;
float r22 = m20*n02 + m21*n12 + m22*n22 + m23*n32;
float r23 = m20*n03 + m21*n13 + m22*n23 + m23*n33;
float r30 = m30*n00 + m31*n10 + m32*n20 + m33*n30;
float r31 = m30*n01 + m31*n11 + m32*n21 + m33*n31;
float r32 = m30*n02 + m31*n12 + m32*n22 + m33*n32;
float r33 = m30*n03 + m31*n13 + m32*n23 + m33*n33;
m00 = r00; m01 = r01; m02 = r02; m03 = r03;
m10 = r10; m11 = r11; m12 = r12; m13 = r13;
m20 = r20; m21 = r21; m22 = r22; m23 = r23;
m30 = r30; m31 = r31; m32 = r32; m33 = r33;
}
public void mult3(float vec[], float out[]) {
// must use these temp vars because vec may be the same as out
float tmpx = m00*vec[0] + m01*vec[1] + m02*vec[2] + m03;
float tmpy = m10*vec[0] + m11*vec[1] + m12*vec[2] + m13;
float tmpz = m20*vec[0] + m21*vec[1] + m22*vec[2] + m23;
out[0] = tmpx;
out[1] = tmpy;
out[2] = tmpz;
}
public void mult(float vec[], float out[]) {
// must use these temp vars because vec may be the same as out
float tmpx = m00*vec[0] + m01*vec[1] + m02*vec[2] + m03*vec[3];
float tmpy = m10*vec[0] + m11*vec[1] + m12*vec[2] + m13*vec[3];
float tmpz = m20*vec[0] + m21*vec[1] + m22*vec[2] + m23*vec[3];
float tmpw = m30*vec[0] + m31*vec[1] + m32*vec[2] + m33*vec[3];
out[0] = tmpx;
out[1] = tmpy;
out[2] = tmpz;
out[3] = tmpw;
}
/**
* @return the determinant of the matrix
*/
public float determinant() {
float f =
m00
* ((m11 * m22 * m33 + m12 * m23 * m31 + m13 * m21 * m32)
- m13 * m22 * m31
- m11 * m23 * m32
- m12 * m21 * m33);
f -= m01
* ((m10 * m22 * m33 + m12 * m23 * m30 + m13 * m20 * m32)
- m13 * m22 * m30
- m10 * m23 * m32
- m12 * m20 * m33);
f += m02
* ((m10 * m21 * m33 + m11 * m23 * m30 + m13 * m20 * m31)
- m13 * m21 * m30
- m10 * m23 * m31
- m11 * m20 * m33);
f -= m03
* ((m10 * m21 * m32 + m11 * m22 * m30 + m12 * m20 * m31)
- m12 * m21 * m30
- m10 * m22 * m31
- m11 * m20 * m32);
return f;
}
/**
* Calculate the determinant of a 3x3 matrix
* @return result
*/
private float determinant3x3(float t00, float t01, float t02,
float t10, float t11, float t12,
float t20, float t21, float t22) {
return (t00 * (t11 * t22 - t12 * t21) +
t01 * (t12 * t20 - t10 * t22) +
t02 * (t10 * t21 - t11 * t20));
}
public PMatrix transpose() {
float temp;
temp = m01; m01 = m10; m10 = temp;
temp = m02; m02 = m20; m20 = temp;
temp = m03; m03 = m30; m30 = temp;
temp = m12; m12 = m21; m21 = temp;
temp = m13; m13 = m31; m31 = temp;
temp = m23; m23 = m32; m32 = temp;
return this;
}
/**
* Invert this matrix
* @return this if successful, null otherwise
*/
public PMatrix invert() {
float determinant = determinant();
if (determinant != 0) {
// m00 m01 m02 m03
// m10 m11 m12 m13
// m20 m21 m22 m23
// m30 m31 m32 m33
float determinant_inv = 1f / determinant;
// first row
float t00 = determinant3x3(m11, m12, m13, m21, m22, m23, m31, m32, m33);
float t01 = -determinant3x3(m10, m12, m13, m20, m22, m23, m30, m32, m33);
float t02 = determinant3x3(m10, m11, m13, m20, m21, m23, m30, m31, m33);
float t03 = -determinant3x3(m10, m11, m12, m20, m21, m22, m30, m31, m32);
// second row
float t10 = -determinant3x3(m01, m02, m03, m21, m22, m23, m31, m32, m33);
float t11 = determinant3x3(m00, m02, m03, m20, m22, m23, m30, m32, m33);
float t12 = -determinant3x3(m00, m01, m03, m20, m21, m23, m30, m31, m33);
float t13 = determinant3x3(m00, m01, m02, m20, m21, m22, m30, m31, m32);
// third row
float t20 = determinant3x3(m01, m02, m03, m11, m12, m13, m31, m32, m33);
float t21 = -determinant3x3(m00, m02, m03, m10, m12, m13, m30, m32, m33);
float t22 = determinant3x3(m00, m01, m03, m10, m11, m13, m30, m31, m33);
float t23 = -determinant3x3(m00, m01, m02, m10, m11, m12, m30, m31, m32);
// fourth row
float t30 = -determinant3x3(m01, m02, m03, m11, m12, m13, m21, m22, m23);
float t31 = determinant3x3(m00, m02, m03, m10, m12, m13, m20, m22, m23);
float t32 = -determinant3x3(m00, m01, m03, m10, m11, m13, m20, m21, m23);
float t33 = determinant3x3(m00, m01, m02, m10, m11, m12, m20, m21, m22);
// transpose and divide by the determinant
m00 = t00*determinant_inv;
m11 = t11*determinant_inv;
m22 = t22*determinant_inv;
m33 = t33*determinant_inv;
m01 = t10*determinant_inv;
m10 = t01*determinant_inv;
m20 = t02*determinant_inv;
m02 = t20*determinant_inv;
m12 = t21*determinant_inv;
m21 = t12*determinant_inv;
m03 = t30*determinant_inv;
m30 = t03*determinant_inv;
m13 = t31*determinant_inv;
m31 = t13*determinant_inv;
m32 = t23*determinant_inv;
m23 = t32*determinant_inv;
return this;
}
return null;
}
//////////////////////////////////////////////////////////////
public void print() {
int big = (int) Math.abs(max(max(max(max(abs(m00), abs(m01)),
max(abs(m02), abs(m03))),
max(max(abs(m10), abs(m11)),
max(abs(m12), abs(m13)))),
max(max(max(abs(m20), abs(m21)),
max(abs(m22), abs(m23))),
max(max(abs(m30), abs(m31)),
max(abs(m32), abs(m33))))));
// avoid infinite loop
if (Float.isNaN(big) || Float.isInfinite(big)) {
big = 1000000; // set to something arbitrary
}
int d = 1;
while ((big /= 10) != 0) d++; // cheap log()
System.out.println(PApplet.nfs(m00, d, 4) + " " +
PApplet.nfs(m01, d, 4) + " " +
PApplet.nfs(m02, d, 4) + " " +
PApplet.nfs(m03, d, 4));
System.out.println(PApplet.nfs(m10, d, 4) + " " +
PApplet.nfs(m11, d, 4) + " " +
PApplet.nfs(m12, d, 4) + " " +
PApplet.nfs(m13, d, 4));
System.out.println(PApplet.nfs(m20, d, 4) + " " +
PApplet.nfs(m21, d, 4) + " " +
PApplet.nfs(m22, d, 4) + " " +
PApplet.nfs(m23, d, 4));
System.out.println(PApplet.nfs(m30, d, 4) + " " +
PApplet.nfs(m31, d, 4) + " " +
PApplet.nfs(m32, d, 4) + " " +
PApplet.nfs(m33, d, 4));
System.out.println();
}
//////////////////////////////////////////////////////////////
private final float max(float a, float b) {
return (a > b) ? a : b;
}
private final float abs(float a) {
return (a < 0) ? -a : a;
}
private final float sin(float angle) {
return (float)Math.sin(angle);
}
private final float cos(float angle) {
return (float)Math.cos(angle);
}
}