1
0
mirror of https://github.com/arduino/Arduino.git synced 2024-12-01 12:24:14 +01:00
Arduino/hardware/arduino/sam/system/libsam/source/adc.c

926 lines
23 KiB
C
Raw Normal View History

/**
* \file
*
* \brief Analog-to-Digital Converter (ADC/ADC12B) driver for SAM.
*
* Copyright (c) 2011 - 2012 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
#include "../chip.h"
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
extern "C" {
#endif
/**INDENT-ON**/
/// @endcond
/**
* \defgroup sam_drivers_adc_group Analog-to-digital Converter (ADC)
*
* Driver for the Analog-to-digital Converter. This driver provides access to the main
* features of the ADC controller.
*
* @{
*/
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Initialize the given ADC with the specified ADC clock and startup time.
*
* \param p_adc Pointer to an ADC instance.
* \param ul_mck Main clock of the device (value in Hz).
* \param ul_adc_clock Analog-to-Digital conversion clock (value in Hz).
* \param uc_startup ADC start up time. Please refer to the product datasheet
* for details.
*
* \return 0 on success.
*/
uint32_t adc_init(Adc *p_adc, const uint32_t ul_mck,
const uint32_t ul_adc_clock, const uint8_t uc_startup)
{
uint32_t ul_prescal;
/* Reset the controller. */
p_adc->ADC_CR = ADC_CR_SWRST;
/* Reset Mode Register. */
p_adc->ADC_MR = 0;
/* Reset PDC transfer. */
p_adc->ADC_PTCR = (ADC_PTCR_RXTDIS | ADC_PTCR_TXTDIS);
p_adc->ADC_RCR = 0;
p_adc->ADC_RNCR = 0;
ul_prescal = ul_mck / (2 * ul_adc_clock) - 1;
p_adc->ADC_MR |= ADC_MR_PRESCAL(ul_prescal) |
((uc_startup << ADC_MR_STARTUP_Pos) &
ADC_MR_STARTUP_Msk);
return 0;
}
#elif SAM3U_SERIES
/**
* \brief Initialize the given ADC with the specified ADC clock and startup time.
*
* \param p_adc Pointer to an ADC instance.
* \param ul_mck Main clock of the device (value in Hz).
* \param ul_adc_clock Analog-to-Digital conversion clock (in Hz).
* \param ul_startuptime ADC startup time value (value in us).
* Please refer to the product datasheet for details.
* \param ul_offmode_startuptime ADC off mode startup time value (in us).
* Please refer to the product datasheet for details.
*
* \return 0 on success.
*/
uint32_t adc_init(Adc *p_adc, const uint32_t ul_mck, const uint32_t ul_adc_clock,
const uint32_t ul_startuptime)
{
uint32_t ul_prescal, ul_startup;
p_adc->ADC_CR = ADC_CR_SWRST;
/* Reset Mode Register. */
p_adc->ADC_MR = 0;
/* Reset PDC transfer. */
p_adc->ADC_PTCR = (ADC_PTCR_RXTDIS | ADC_PTCR_TXTDIS);
p_adc->ADC_RCR = 0;
p_adc->ADC_RNCR = 0;
ul_prescal = ul_mck / (2 * ul_adc_clock) - 1;
ul_startup = ((ul_adc_clock / 1000000) * ul_startuptime / 8) - 1;
p_adc->ADC_MR |= ADC_MR_PRESCAL(ul_prescal) |
((ul_startup << ADC_MR_STARTUP_Pos) &
ADC_MR_STARTUP_Msk);
return 0;
}
#endif
/**
* \brief Configure the conversion resolution.
*
* \param p_adc Pointer to an ADC instance.
* \param resolution ADC resolution.
*
*/
void adc_set_resolution(Adc *p_adc,const enum adc_resolution_t resolution)
{
p_adc->ADC_MR |= (resolution << 4) & ADC_MR_LOWRES;
}
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Configure conversion trigger and free run mode.
*
* \param p_adc Pointer to an ADC instance.
* \param trigger Conversion trigger.
* \param uc_freerun ADC_MR_FREERUN_ON enables freerun mode,
* ADC_MR_FREERUN_OFF disables freerun mode.
*
*/
void adc_configure_trigger(Adc *p_adc, const enum adc_trigger_t trigger,
uint8_t uc_freerun)
{
p_adc->ADC_MR |= trigger | ((uc_freerun << 7) & ADC_MR_FREERUN);
}
#elif SAM3U_SERIES
/**
* \brief Configure conversion trigger and free run mode.
*
* \param p_adc Pointer to an ADC instance.
* \param trigger Conversion trigger.
*/
void adc_configure_trigger(Adc *p_adc, const enum adc_trigger_t trigger)
{
p_adc->ADC_MR |= trigger;
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Configures ADC power saving mode.
*
* \param p_adc Pointer to an ADC instance.
* \param uc_sleep ADC_MR_SLEEP_NORMAL keeps the ADC Core and reference voltage
* circuitry ON between conversions.
* ADC_MR_SLEEP_SLEEP keeps the ADC Core and reference voltage circuitry OFF
* between conversions.
* \param uc_fwup ADC_MR_FWUP_OFF configures sleep mode as uc_sleep setting,
* ADC_MR_FWUP_ON keeps voltage reference ON and ADC Core OFF between conversions.
*/
void adc_configure_power_save(Adc *p_adc, const uint8_t uc_sleep, const uint8_t uc_fwup)
{
p_adc->ADC_MR |= (((uc_sleep << 5) & ADC_MR_SLEEP) |
((uc_fwup << 6) & ADC_MR_FWUP));
}
#elif SAM3U_SERIES
/**
* \brief Configure ADC power saving mode.
*
* \param p_adc Pointer to an ADC instance.
* \param uc_sleep ADC_MR_SLEEP_NORMAL keeps the ADC Core and reference
* voltage circuitry ON between conversions.
* ADC_MR_SLEEP_SLEEP keeps the ADC Core and reference voltage circuitry
* OFF between conversions.
* \param uc_offmode 0 for Standby Mode (if Sleep Bit = 1), 1 for Off Mode.
*/
void adc_configure_power_save(Adc *p_adc, const uint8_t uc_sleep)
{
p_adc->ADC_MR |= ((uc_sleep << 5) & ADC_MR_SLEEP);
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Configure conversion sequence.
*
* \param p_adc Pointer to an ADC instance.
* \param ch_list Channel sequence list.
* \param number Number of channels in the list.
*/
void adc_configure_sequence(Adc *p_adc, const enum adc_channel_num_t ch_list[],
uint8_t uc_num)
{
uint8_t uc_counter;
if (uc_num < 8) {
for (uc_counter = 0; uc_counter < uc_num; uc_counter++) {
p_adc->ADC_SEQR1 |=
ch_list[uc_counter] << (4 * uc_counter);
}
} else {
for (uc_counter = 0; uc_counter < 8; uc_counter++) {
p_adc->ADC_SEQR1 |=
ch_list[uc_counter] << (4 * uc_counter);
}
for (uc_counter = 0; uc_counter < uc_num - 8; uc_counter++) {
p_adc->ADC_SEQR2 |=
ch_list[uc_counter] << (4 * uc_counter);
}
}
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES
/**
* \brief Configure ADC timing.
*
* \param p_adc Pointer to an ADC instance.
* \param uc_tracking ADC tracking time = uc_tracking / ADC clock.
* \param uc_settling Analog settling time = (uc_settling + 1) / ADC clock.
* \param uc_transfer Data transfer time = (uc_transfer * 2 + 3) / ADC clock.
*/
void adc_configure_timing(Adc *p_adc, const uint8_t uc_tracking,
const enum adc_settling_time_t settling,const uint8_t uc_transfer)
{
p_adc->ADC_MR |= ADC_MR_TRANSFER(uc_transfer)
| settling | ADC_MR_TRACKTIM(uc_tracking);
}
#elif SAM3N_SERIES
/**
* \brief Configure ADC timing.
*
* \param p_adc Pointer to an ADC instance.
* \param uc_tracking ADC tracking time = uc_tracking / ADC clock.
*/
void adc_configure_timing(Adc *p_adc, const uint8_t uc_tracking)
{
p_adc->ADC_MR |= ADC_MR_TRACKTIM(uc_tracking);
}
#elif SAM3U_SERIES
/**
* \brief Configure ADC timing.
*
* \param p_adc Pointer to an ADC instance.
* \param ul_sh ADC sample and hold time = uc_sh / ADC clock.
*/
void adc_configure_timing(Adc *p_adc, const uint32_t ul_sh)
{
p_adc->ADC_MR |= ADC_MR_SHTIM(ul_sh);
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES
/**
* \brief Enable analog change.
*
* \note It allows different analog settings for each channel.
*
* \param p_Adc Pointer to an ADC instance.
*/
void adc_enable_anch(Adc *p_adc)
{
p_adc->ADC_MR |= ADC_MR_ANACH;
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES
/**
* \brief Disable analog change.
*
* \note DIFF0, GAIN0 and OFF0 are used for all channels.
*
* \param p_Adc Pointer to an ADC instance.
*/
void adc_disable_anch(Adc *p_adc)
{
p_adc->ADC_MR &= ~ADC_MR_ANACH;
}
#endif
/**
* \brief Start analog-to-digital conversion.
*
* \note If one of the hardware event is selected as ADC trigger,
* this function can NOT start analog to digital conversion.
*
* \param p_adc Pointer to an ADC instance.
*/
void adc_start(Adc *p_adc)
{
p_adc->ADC_CR = ADC_CR_START;
}
/**
* \brief Stop analog-to-digital conversion.
*
* \param p_adc Pointer to an ADC instance.
*/
void adc_stop(Adc *p_adc)
{
p_adc->ADC_CR = ADC_CR_SWRST;
}
/**
* \brief Enable the specified ADC channel.
*
* \param p_adc Pointer to an ADC instance.
* \param adc_ch ADC channel number.
*/
void adc_enable_channel(Adc *p_adc, const enum adc_channel_num_t adc_ch)
{
p_adc->ADC_CHER = 1 << adc_ch;
}
/**
* \brief Enable all ADC channels.
*
* \param p_adc Pointer to an ADC instance.
*/
void adc_enable_all_channel(Adc *p_adc)
{
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
p_adc->ADC_CHER = 0xFFFF;
#elif SAM3U_SERIES
p_adc->ADC_CHER = 0xFF;
#endif
}
/**
* \brief Disable the specified ADC channel.
*
* \param p_adc Pointer to an ADC instance.
* \param adc_ch ADC channel number.
*/
void adc_disable_channel(Adc *p_adc, const enum adc_channel_num_t adc_ch)
{
p_adc->ADC_CHDR = 1 << adc_ch;
}
/**
* \brief Disable all ADC channel.
*
* \param p_adc Pointer to an ADC instance.
*/
void adc_disable_all_channel(Adc *p_adc)
{
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
p_adc->ADC_CHDR = 0xFFFF;
#elif SAM3U_SERIES
p_adc->ADC_CHDR = 0xFF;
#endif
}
/**
* \brief Read the ADC channel status.
*
* \param p_adc Pointer to an ADC instance.
* \param adc_ch ADC channel number.
*
* \retval 1 if channel is enabled.
* \retval 0 if channel is disabled.
*/
uint32_t adc_get_channel_status(const Adc *p_adc, const enum adc_channel_num_t adc_ch)
{
return p_adc->ADC_CHSR & (1 << adc_ch);
}
/**
* \brief Read the ADC result data of the specified channel.
*
* \param p_adc Pointer to an ADC instance.
* \param adc_ch ADC channel number.
*
* \return ADC value of the specified channel.
*/
uint32_t adc_get_channel_value(const Adc *p_adc, const enum adc_channel_num_t adc_ch)
{
uint32_t ul_data = 0;
if (15 >= adc_ch) {
ul_data = *(p_adc->ADC_CDR + adc_ch);
}
return ul_data;
}
/**
* \brief Read the last ADC result data.
*
* \param p_adc Pointer to an ADC instance.
*
* \return ADC latest value.
*/
uint32_t adc_get_latest_value(const Adc *p_adc)
{
return p_adc->ADC_LCDR;
}
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Enable TAG option so that the number of the last converted channel
* can be indicated.
*
* \param p_adc Pointer to an ADC instance.
*/
void adc_enable_tag(Adc *p_adc)
{
p_adc->ADC_EMR |= ADC_EMR_TAG;
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Disable TAG option.
*
* \param p_adc Pointer to an ADC instance.
*/
void adc_disable_tag(Adc *p_adc)
{
p_adc->ADC_EMR &= ~ADC_EMR_TAG;
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Indicate the last converted channel.
*
* \note If TAG option is NOT enabled before, an incorrect channel
* number is returned.
*
* \param p_adc Pointer to an ADC instance.
*
* \return The last converted channel number.
*/
enum adc_channel_num_t adc_get_tag(const Adc *p_adc)
{
return (p_adc->ADC_LCDR & ADC_LCDR_CHNB_Msk) >> ADC_LCDR_CHNB_Pos;
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Enable conversion sequencer.
*
* \param p_adc Pointer to an ADC instance.
*/
void adc_start_sequencer(Adc *p_adc)
{
p_adc->ADC_MR |= ADC_MR_USEQ;
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Disable conversion sequencer.
*
* \param p_adc Pointer to an ADC instance.
*/
void adc_stop_sequencer(Adc *p_adc)
{
p_adc->ADC_MR &= ~ADC_MR_USEQ;
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Configure comparison mode.
*
* \param p_adc Pointer to an ADC instance.
* \param uc_mode ADC comparison mode.
*/
void adc_set_comparison_mode(Adc *p_adc, const uint8_t uc_mode)
{
p_adc->ADC_EMR &= (uint32_t) ~ (ADC_EMR_CMPMODE_Msk);
p_adc->ADC_EMR |= (uc_mode & ADC_EMR_CMPMODE_Msk);
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Get comparison mode.
*
* \param p_adc Pointer to an ADC instance.
*
* \retval Compare mode value.
*/
uint32_t adc_get_comparison_mode(const Adc *p_adc)
{
return p_adc->ADC_EMR & ADC_EMR_CMPMODE_Msk;
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Configure ADC compare window.
*
* \param p_adc Pointer to an ADC instance.
* \param w_low_threshold Low threshold of compare window.
* \param w_high_threshold High threshold of compare window.
*/
void adc_set_comparison_window(Adc *p_adc, const uint16_t us_low_threshold,
const uint16_t us_high_threshold)
{
p_adc->ADC_CWR = ADC_CWR_LOWTHRES(us_low_threshold) |
ADC_CWR_HIGHTHRES(us_high_threshold);
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Configure comparison selected channel.
*
* \param p_adc Pointer to an ADC instance.
* \param channel ADC channel number.
*/
void adc_set_comparison_channel(Adc *p_adc, const enum adc_channel_num_t channel)
{
if (channel < 16) {
p_adc->ADC_EMR &= (uint32_t) ~ (ADC_EMR_CMPALL);
p_adc->ADC_EMR &= (uint32_t) ~ (ADC_EMR_CMPSEL_Msk);
p_adc->ADC_EMR |= (channel << ADC_EMR_CMPSEL_Pos);
} else {
p_adc->ADC_EMR |= ADC_EMR_CMPALL;
}
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES
/**
* \brief Enable differential input for the specified channel.
*
* \param p_adc Pointer to an ADC instance.
* \param channel ADC channel number.
*/
void adc_enable_channel_differential_input(Adc *p_adc, const enum adc_channel_num_t channel)
{
p_adc->ADC_COR |= 0x01u << (16 + channel);
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES
/**
* \brief Disable differential input for the specified channel.
*
* \param p_adc Pointer to an ADC instance.
* \param channel ADC channel number.
*/
void adc_disable_channel_differential_input(Adc *p_adc, const enum adc_channel_num_t channel)
{
uint32_t ul_temp;
ul_temp = p_adc->ADC_COR;
p_adc->ADC_COR &= 0xfffeffffu << channel;
p_adc->ADC_COR |= ul_temp;
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES
/**
* \brief Enable analog signal offset for the specified channel.
*
* \param p_adc Pointer to an ADC instance.
* \param channel ADC channel number.
*/
void adc_enable_channel_input_offset(Adc *p_adc, const enum adc_channel_num_t channel)
{
p_adc->ADC_COR |= 0x01u << channel;
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES
/**
* \brief Disable analog signal offset for the specified channel.
*
* \param p_adc Pointer to an ADC instance.
* \param channel ADC channel number.
*/
void adc_disable_channel_input_offset(Adc *p_adc, const enum adc_channel_num_t channel)
{
uint32_t ul_temp;
ul_temp = p_adc->ADC_COR;
p_adc->ADC_COR &= (0xfffffffeu << channel);
p_adc->ADC_COR |= ul_temp;
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES
/**
* \brief Configure input gain for the specified channel.
*
* \param p_adc Pointer to an ADC instance.
* \param channel ADC channel number.
* \param gain Gain value for the input.
*/
void adc_set_channel_input_gain(Adc *p_adc, const enum adc_channel_num_t channel,
const enum adc_gainvalue_t gain)
{
p_adc->ADC_CGR |= (0x03u << (2 * channel)) & (gain << (2 * channel));
}
#endif
#if SAM3SD8_SERIES || SAM4S_SERIES
/**
* \brief Set ADC auto calibration mode.
*
* \param p_adc Pointer to an ADC instance.
*/
void adc_set_calibmode(Adc * p_adc)
{
p_adc->ADC_CR |= ADC_CR_AUTOCAL;
}
#endif
/**
* \brief Return the actual ADC clock.
*
* \param p_adc Pointer to an ADC instance.
* \param ul_mck Main clock of the device (in Hz).
*
* \return The actual ADC clock (in Hz).
*/
uint32_t adc_get_actual_adc_clock(const Adc *p_adc, const uint32_t ul_mck)
{
uint32_t ul_adcfreq;
uint32_t ul_prescal;
/* ADCClock = MCK / ( (PRESCAL+1) * 2 ) */
ul_prescal = ((p_adc->ADC_MR & ADC_MR_PRESCAL_Msk) >> ADC_MR_PRESCAL_Pos);
ul_adcfreq = ul_mck / ((ul_prescal + 1) * 2);
return ul_adcfreq;
}
/**
* \brief Enable ADC interrupts.
*
* \param p_adc Pointer to an ADC instance.
* \param ul_source Interrupts to be enabled.
*/
void adc_enable_interrupt(Adc *p_adc, const uint32_t ul_source)
{
p_adc->ADC_IER = ul_source;
}
/**
* \brief Disable ADC interrupts.
*
* \param p_adc Pointer to an ADC instance.
* \param ul_source Interrupts to be disabled.
*/
void adc_disable_interrupt(Adc *p_adc, const uint32_t ul_source)
{
p_adc->ADC_IDR = ul_source;
}
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Get ADC interrupt and overrun error status.
*
* \param p_adc Pointer to an ADC instance.
*
* \return ADC status structure.
*/
uint32_t adc_get_status(const Adc *p_adc)
{
return p_adc->ADC_ISR;
}
/**
* \brief Get ADC interrupt and overrun error status.
*
* \param p_adc Pointer to an ADC instance.
*
* \return ADC status structure.
*/
uint32_t adc_get_overrun_status(const Adc *p_adc)
{
return p_adc->ADC_OVER;
}
#elif SAM3U_SERIES
/**
* \brief Read ADC interrupt and overrun error status.
*
* \param p_adc Pointer to an ADC instance.
*
* \retval ADC status structure.
*/
uint32_t adc_get_status(const Adc *p_adc)
{
return p_adc->ADC_SR;
}
#endif
/**
* \brief Read ADC interrupt mask.
*
* \param p_adc Pointer to an ADC instance.
*
* \return The interrupt mask value.
*/
uint32_t adc_get_interrupt_mask(const Adc *p_adc)
{
return p_adc->ADC_IMR;
}
#if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES
/**
* \brief Adapt performance versus power consumption.
*
* \note Please refer to ADC Characteristics in the product datasheet
* for more details.
*
* \param p_adc Pointer to an ADC instance.
* \param ibctl ADC Bias current control.
*/
void adc_set_bias_current(Adc *p_adc, const uint8_t uc_ibctl)
{
p_adc->ADC_ACR |= ADC_ACR_IBCTL(uc_ibctl);
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES
/**
* \brief Turn on temperature sensor.
*
* \param p_adc Pointer to an ADC instance.
*/
void adc_enable_ts(Adc *p_adc)
{
p_adc->ADC_ACR |= ADC_ACR_TSON;
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES
/**
* \brief Turn off temperature sensor.
*
* \param p_adc Pointer to an ADC instance.
*/
void adc_disable_ts(Adc *p_adc)
{
p_adc->ADC_ACR &= ~ADC_ACR_TSON;
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Enable or disable write protection of ADC registers.
*
* \param p_adc Pointer to an ADC instance.
* \param ul_enable 1 to enable, 0 to disable.
*/
void adc_set_writeprotect(Adc *p_adc, const uint32_t ul_enable)
{
p_adc->ADC_WPMR |= ADC_WPMR_WPKEY(ul_enable);
}
#endif
#if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES
/**
* \brief Indicate write protect status.
*
* \param p_adc Pointer to an ADC instance.
*
* \return 0 if the peripheral is not protected, or 16-bit write protect
* violation Status.
*/
uint32_t adc_get_writeprotect_status(const Adc *p_adc)
{
return p_adc->ADC_WPSR & ADC_WPSR_WPVS;
}
#endif
#if 0
/**
* \brief calcul_startup
*/
static uint32_t calcul_startup(const uint32_t ul_startup)
{
uint32_t ul_startup_value = 0;
if (ul_startup == 0)
ul_startup_value = 0;
else if (ul_startup == 1)
ul_startup_value = 8;
else if (ul_startup == 2)
ul_startup_value = 16;
else if (ul_startup == 3)
ul_startup_value = 24;
else if (ul_startup == 4)
ul_startup_value = 64;
else if (ul_startup == 5)
ul_startup_value = 80;
else if (ul_startup == 6)
ul_startup_value = 96;
else if (ul_startup == 7)
ul_startup_value = 112;
else if (ul_startup == 8)
ul_startup_value = 512;
else if (ul_startup == 9)
ul_startup_value = 576;
else if (ul_startup == 10)
ul_startup_value = 640;
else if (ul_startup == 11)
ul_startup_value = 704;
else if (ul_startup == 12)
ul_startup_value = 768;
else if (ul_startup == 13)
ul_startup_value = 832;
else if (ul_startup == 14)
ul_startup_value = 896;
else if (ul_startup == 15)
ul_startup_value = 960;
return ul_startup_value;
}
/**
* \brief Check ADC configurations.
*
* \param p_adc Pointer to an ADC instance.
* \param ul_mck Main clock of the device (in Hz).
*/
void adc_check(Adc *p_adc, const uint32_t ul_mck)
{
uint32_t ul_adcfreq;
uint32_t ul_prescal;
uint32_t ul_startup;
/* ADCClock = MCK / ( (PRESCAL+1) * 2 ) */
ul_prescal = ((p_adc->ADC_MR & ADC_MR_PRESCAL_Msk) >>
ADC_MR_PRESCAL_Pos);
ul_adcfreq = ul_mck / ((ul_prescal + 1) * 2);
printf("ADC clock frequency = %d Hz\r\n", (int)ul_adcfreq);
if (ul_adcfreq < ADC_FREQ_MIN) {
printf("adc frequency too low (out of specification: %d Hz)\r\n",
(int)ADC_FREQ_MIN);
}
if (ul_adcfreq > ADC_FREQ_MAX) {
printf("adc frequency too high (out of specification: %d Hz)\r\n",
(int)ADC_FREQ_MAX);
}
ul_startup = ((p_adc->ADC_MR & ADC_MR_STARTUP_Msk) >>
ADC_MR_STARTUP_Pos);
if (!(p_adc->ADC_MR & ADC_MR_SLEEP_SLEEP)) {
/* 40ms */
if (ADC_STARTUP_NORM * ul_adcfreq / 1000000 >
calcul_startup(ul_startup)) {
printf("Startup time too small: %d, programmed: %d\r\n",
(int)(ADC_STARTUP_NORM * ul_adcfreq /
1000000),
(int)calcul_startup(ul_startup));
}
} else {
if (p_adc->ADC_MR & ADC_MR_FREERUN_ON) {
puts("FreeRun forbidden in sleep mode\r");
}
if (!(p_adc->ADC_MR & ADC_MR_FWUP_ON)) {
/* Sleep 40ms */
if (ADC_STARTUP_NORM * ul_adcfreq / 1000000 >
calcul_startup(ul_startup)) {
printf("Startup time too small: %d, programmed: %d\r\n",
(int)(ADC_STARTUP_NORM * ul_adcfreq / 1000000),
(int)(calcul_startup(ul_startup)));
}
} else {
if (p_adc->ADC_MR & ADC_MR_FWUP_ON) {
/* Fast Wake Up Sleep Mode: 12ms */
if (ADC_STARTUP_FAST * ul_adcfreq / 1000000 >
calcul_startup(ul_startup)) {
printf("Startup time too small: %d, programmed: %d\r\n",
(int)(ADC_STARTUP_NORM * ul_adcfreq / 1000000),
(int)(calcul_startup(ul_startup)));
}
}
}
}
}
#endif
/**
* \brief Get PDC registers base address.
*
* \param p_adc Pointer to an ADC instance.
*
* \return ADC PDC register base address.
*/
Pdc *adc_get_pdc_base(const Adc *p_adc)
{
return PDC_ADC;
}
//@}
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
}
#endif
/**INDENT-ON**/
/// @endcond