mirror of
https://github.com/arduino/Arduino.git
synced 2025-01-19 08:52:15 +01:00
431 lines
19 KiB
C++
431 lines
19 KiB
C++
|
/* Copyright 2009-2011 Oleg Mazurov, Circuits At Home, http://www.circuitsathome.com */
|
||
|
/* USB functions */
|
||
|
|
||
|
#include "Usb.h"
|
||
|
|
||
|
static byte usb_error = 0;
|
||
|
static byte usb_task_state;
|
||
|
DEV_RECORD devtable[ USB_NUMDEVICES + 1 ];
|
||
|
EP_RECORD dev0ep; //Endpoint data structure used during enumeration for uninitialized device
|
||
|
|
||
|
|
||
|
/* constructor */
|
||
|
|
||
|
USB::USB () {
|
||
|
usb_task_state = USB_DETACHED_SUBSTATE_INITIALIZE; //set up state machine
|
||
|
init();
|
||
|
}
|
||
|
/* Initialize data structures */
|
||
|
void USB::init()
|
||
|
{
|
||
|
byte i;
|
||
|
for( i = 0; i < ( USB_NUMDEVICES + 1 ); i++ ) {
|
||
|
devtable[ i ].epinfo = NULL; //clear device table
|
||
|
devtable[ i ].devclass = 0;
|
||
|
}
|
||
|
devtable[ 0 ].epinfo = &dev0ep; //set single ep for uninitialized device
|
||
|
// not necessary dev0ep.MaxPktSize = 8; //minimum possible
|
||
|
dev0ep.sndToggle = bmSNDTOG0; //set DATA0/1 toggles to 0
|
||
|
dev0ep.rcvToggle = bmRCVTOG0;
|
||
|
}
|
||
|
byte USB::getUsbTaskState( void )
|
||
|
{
|
||
|
return( usb_task_state );
|
||
|
}
|
||
|
void USB::setUsbTaskState( byte state )
|
||
|
{
|
||
|
usb_task_state = state;
|
||
|
}
|
||
|
EP_RECORD* USB::getDevTableEntry( byte addr, byte ep )
|
||
|
{
|
||
|
EP_RECORD* ptr;
|
||
|
ptr = devtable[ addr ].epinfo;
|
||
|
ptr += ep;
|
||
|
return( ptr );
|
||
|
}
|
||
|
/* set device table entry */
|
||
|
/* each device is different and has different number of endpoints. This function plugs endpoint record structure, defined in application, to devtable */
|
||
|
void USB::setDevTableEntry( byte addr, EP_RECORD* eprecord_ptr )
|
||
|
{
|
||
|
devtable[ addr ].epinfo = eprecord_ptr;
|
||
|
//return();
|
||
|
}
|
||
|
/* Control transfer. Sets address, endpoint, fills control packet with necessary data, dispatches control packet, and initiates bulk IN transfer, */
|
||
|
/* depending on request. Actual requests are defined as inlines */
|
||
|
/* return codes: */
|
||
|
/* 00 = success */
|
||
|
/* 01-0f = non-zero HRSLT */
|
||
|
byte USB::ctrlReq( byte addr, byte ep, byte bmReqType, byte bRequest, byte wValLo, byte wValHi, unsigned int wInd, unsigned int nbytes, char* dataptr, unsigned int nak_limit )
|
||
|
{
|
||
|
boolean direction = false; //request direction, IN or OUT
|
||
|
byte rcode;
|
||
|
SETUP_PKT setup_pkt;
|
||
|
|
||
|
regWr( rPERADDR, addr ); //set peripheral address
|
||
|
if( bmReqType & 0x80 ) {
|
||
|
direction = true; //determine request direction
|
||
|
}
|
||
|
/* fill in setup packet */
|
||
|
setup_pkt.ReqType_u.bmRequestType = bmReqType;
|
||
|
setup_pkt.bRequest = bRequest;
|
||
|
setup_pkt.wVal_u.wValueLo = wValLo;
|
||
|
setup_pkt.wVal_u.wValueHi = wValHi;
|
||
|
setup_pkt.wIndex = wInd;
|
||
|
setup_pkt.wLength = nbytes;
|
||
|
bytesWr( rSUDFIFO, 8, ( char *)&setup_pkt ); //transfer to setup packet FIFO
|
||
|
rcode = dispatchPkt( tokSETUP, ep, nak_limit ); //dispatch packet
|
||
|
//Serial.println("Setup packet"); //DEBUG
|
||
|
if( rcode ) { //return HRSLT if not zero
|
||
|
Serial.print("Setup packet error: ");
|
||
|
Serial.print( rcode, HEX );
|
||
|
return( rcode );
|
||
|
}
|
||
|
//Serial.println( direction, HEX );
|
||
|
if( dataptr != NULL ) { //data stage, if present
|
||
|
rcode = ctrlData( addr, ep, nbytes, dataptr, direction );
|
||
|
}
|
||
|
if( rcode ) { //return error
|
||
|
Serial.print("Data packet error: ");
|
||
|
Serial.print( rcode, HEX );
|
||
|
return( rcode );
|
||
|
}
|
||
|
rcode = ctrlStatus( ep, direction ); //status stage
|
||
|
return( rcode );
|
||
|
}
|
||
|
/* Control transfer with status stage and no data stage */
|
||
|
/* Assumed peripheral address is already set */
|
||
|
byte USB::ctrlStatus( byte ep, boolean direction, unsigned int nak_limit )
|
||
|
{
|
||
|
byte rcode;
|
||
|
if( direction ) { //GET
|
||
|
rcode = dispatchPkt( tokOUTHS, ep, nak_limit );
|
||
|
}
|
||
|
else {
|
||
|
rcode = dispatchPkt( tokINHS, ep, nak_limit );
|
||
|
}
|
||
|
return( rcode );
|
||
|
}
|
||
|
/* Control transfer with data stage. Stages 2 and 3 of control transfer. Assumes preipheral address is set and setup packet has been sent */
|
||
|
byte USB::ctrlData( byte addr, byte ep, unsigned int nbytes, char* dataptr, boolean direction, unsigned int nak_limit )
|
||
|
{
|
||
|
byte rcode;
|
||
|
if( direction ) { //IN transfer
|
||
|
devtable[ addr ].epinfo[ ep ].rcvToggle = bmRCVTOG1;
|
||
|
rcode = inTransfer( addr, ep, nbytes, dataptr, nak_limit );
|
||
|
return( rcode );
|
||
|
}
|
||
|
else { //OUT transfer
|
||
|
devtable[ addr ].epinfo[ ep ].sndToggle = bmSNDTOG1;
|
||
|
rcode = outTransfer( addr, ep, nbytes, dataptr, nak_limit );
|
||
|
return( rcode );
|
||
|
}
|
||
|
}
|
||
|
/* IN transfer to arbitrary endpoint. Assumes PERADDR is set. Handles multiple packets if necessary. Transfers 'nbytes' bytes. */
|
||
|
/* Keep sending INs and writes data to memory area pointed by 'data' */
|
||
|
/* rcode 0 if no errors. rcode 01-0f is relayed from dispatchPkt(). Rcode f0 means RCVDAVIRQ error,
|
||
|
fe USB xfer timeout */
|
||
|
byte USB::inTransfer( byte addr, byte ep, unsigned int nbytes, char* data, unsigned int nak_limit )
|
||
|
{
|
||
|
byte rcode;
|
||
|
byte pktsize;
|
||
|
byte maxpktsize = devtable[ addr ].epinfo[ ep ].MaxPktSize;
|
||
|
unsigned int xfrlen = 0;
|
||
|
regWr( rHCTL, devtable[ addr ].epinfo[ ep ].rcvToggle ); //set toggle value
|
||
|
while( 1 ) { // use a 'return' to exit this loop
|
||
|
rcode = dispatchPkt( tokIN, ep, nak_limit ); //IN packet to EP-'endpoint'. Function takes care of NAKS.
|
||
|
if( rcode ) {
|
||
|
return( rcode ); //should be 0, indicating ACK. Else return error code.
|
||
|
}
|
||
|
/* check for RCVDAVIRQ and generate error if not present */
|
||
|
/* the only case when absense of RCVDAVIRQ makes sense is when toggle error occured. Need to add handling for that */
|
||
|
if(( regRd( rHIRQ ) & bmRCVDAVIRQ ) == 0 ) {
|
||
|
return ( 0xf0 ); //receive error
|
||
|
}
|
||
|
pktsize = regRd( rRCVBC ); //number of received bytes
|
||
|
data = bytesRd( rRCVFIFO, pktsize, data );
|
||
|
regWr( rHIRQ, bmRCVDAVIRQ ); // Clear the IRQ & free the buffer
|
||
|
xfrlen += pktsize; // add this packet's byte count to total transfer length
|
||
|
/* The transfer is complete under two conditions: */
|
||
|
/* 1. The device sent a short packet (L.T. maxPacketSize) */
|
||
|
/* 2. 'nbytes' have been transferred. */
|
||
|
if (( pktsize < maxpktsize ) || (xfrlen >= nbytes )) { // have we transferred 'nbytes' bytes?
|
||
|
if( regRd( rHRSL ) & bmRCVTOGRD ) { //save toggle value
|
||
|
devtable[ addr ].epinfo[ ep ].rcvToggle = bmRCVTOG1;
|
||
|
}
|
||
|
else {
|
||
|
devtable[ addr ].epinfo[ ep ].rcvToggle = bmRCVTOG0;
|
||
|
}
|
||
|
return( 0 );
|
||
|
}
|
||
|
}//while( 1 )
|
||
|
}
|
||
|
|
||
|
/* Google variant of inTransfer. Pasted verbatim from ADK. Returns length instead of error code. Provided for compatibility with Google Open Accessory code */
|
||
|
int USB::newInTransfer( byte addr, byte ep, unsigned int nbytes, char* data, unsigned int nak_limit )
|
||
|
{
|
||
|
byte rcode;
|
||
|
byte pktsize;
|
||
|
byte maxpktsize = devtable[ addr ].epinfo[ ep ].MaxPktSize;
|
||
|
unsigned int xfrlen = 0;
|
||
|
regWr( rHCTL, devtable[ addr ].epinfo[ ep ].rcvToggle ); //set toggle value
|
||
|
while( 1 ) { // use a 'return' to exit this loop
|
||
|
rcode = dispatchPkt( tokIN, ep, nak_limit ); //IN packet to EP-'endpoint'. Function takes care of NAKS.
|
||
|
if( rcode ) {
|
||
|
return -1; //should be 0, indicating ACK. Else return error code.
|
||
|
}
|
||
|
/* check for RCVDAVIRQ and generate error if not present */
|
||
|
/* the only case when absense of RCVDAVIRQ makes sense is when toggle error occured. Need to add handling for that */
|
||
|
if(( regRd( rHIRQ ) & bmRCVDAVIRQ ) == 0 ) {
|
||
|
return -1; //receive error
|
||
|
}
|
||
|
pktsize = regRd( rRCVBC ); //number of received bytes
|
||
|
if (xfrlen+pktsize <= nbytes) {
|
||
|
// Only copy the data to the buffer if the buffer's large enough.
|
||
|
data = bytesRd( rRCVFIFO, pktsize, data );
|
||
|
}
|
||
|
regWr( rHIRQ, bmRCVDAVIRQ ); // Clear the IRQ & free the buffer
|
||
|
xfrlen += pktsize; // add this packet's byte count to total transfer length
|
||
|
/* The transfer is complete under two conditions: */
|
||
|
/* 1. The device sent a short packet (L.T. maxPacketSize) */
|
||
|
/* 2. 'nbytes' have been transferred. */
|
||
|
if (( pktsize < maxpktsize ) || (xfrlen >= nbytes )) { // have we transferred 'nbytes' bytes?
|
||
|
if( regRd( rHRSL ) & bmRCVTOGRD ) { //save toggle value
|
||
|
devtable[ addr ].epinfo[ ep ].rcvToggle = bmRCVTOG1;
|
||
|
}
|
||
|
else {
|
||
|
devtable[ addr ].epinfo[ ep ].rcvToggle = bmRCVTOG0;
|
||
|
}
|
||
|
if (xfrlen <= nbytes) {
|
||
|
return xfrlen;
|
||
|
} else {
|
||
|
// Buffer overflow avoided so treat it as an error rather
|
||
|
// than return partial data.
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
}//while( 1 )
|
||
|
}
|
||
|
|
||
|
/* OUT transfer to arbitrary endpoint. Assumes PERADDR is set. Handles multiple packets if necessary. Transfers 'nbytes' bytes. */
|
||
|
/* Handles NAK bug per Maxim Application Note 4000 for single buffer transfer */
|
||
|
/* rcode 0 if no errors. rcode 01-0f is relayed from HRSL */
|
||
|
/* major part of this function borrowed from code shared by Richard Ibbotson */
|
||
|
byte USB::outTransfer( byte addr, byte ep, unsigned int nbytes, char* data, unsigned int nak_limit )
|
||
|
{
|
||
|
byte rcode, retry_count;
|
||
|
char* data_p = data; //local copy of the data pointer
|
||
|
unsigned int bytes_tosend, nak_count;
|
||
|
unsigned int bytes_left = nbytes;
|
||
|
byte maxpktsize = devtable[ addr ].epinfo[ ep ].MaxPktSize;
|
||
|
unsigned long timeout = millis() + USB_XFER_TIMEOUT;
|
||
|
|
||
|
if (!maxpktsize) { //todo: move this check close to epinfo init. Make it 1< pktsize <64
|
||
|
return 0xFE;
|
||
|
}
|
||
|
|
||
|
regWr( rHCTL, devtable[ addr ].epinfo[ ep ].sndToggle ); //set toggle value
|
||
|
while( bytes_left ) {
|
||
|
retry_count = 0;
|
||
|
nak_count = 0;
|
||
|
bytes_tosend = ( bytes_left >= maxpktsize ) ? maxpktsize : bytes_left;
|
||
|
bytesWr( rSNDFIFO, bytes_tosend, data_p ); //filling output FIFO
|
||
|
regWr( rSNDBC, bytes_tosend ); //set number of bytes
|
||
|
regWr( rHXFR, ( tokOUT | ep )); //dispatch packet
|
||
|
while(!(regRd( rHIRQ ) & bmHXFRDNIRQ )); //wait for the completion IRQ
|
||
|
regWr( rHIRQ, bmHXFRDNIRQ ); //clear IRQ
|
||
|
rcode = ( regRd( rHRSL ) & 0x0f );
|
||
|
while( rcode && ( timeout > millis())) {
|
||
|
switch( rcode ) {
|
||
|
case hrNAK:
|
||
|
nak_count++;
|
||
|
if( nak_limit && ( nak_count == USB_NAK_LIMIT )) {
|
||
|
return( rcode); //return NAK
|
||
|
}
|
||
|
break;
|
||
|
case hrTIMEOUT:
|
||
|
retry_count++;
|
||
|
if( retry_count == USB_RETRY_LIMIT ) {
|
||
|
return( rcode ); //return TIMEOUT
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
return( rcode );
|
||
|
}//switch( rcode...
|
||
|
/* process NAK according to Host out NAK bug */
|
||
|
regWr( rSNDBC, 0 );
|
||
|
regWr( rSNDFIFO, *data_p );
|
||
|
regWr( rSNDBC, bytes_tosend );
|
||
|
regWr( rHXFR, ( tokOUT | ep )); //dispatch packet
|
||
|
while(!(regRd( rHIRQ ) & bmHXFRDNIRQ )); //wait for the completion IRQ
|
||
|
regWr( rHIRQ, bmHXFRDNIRQ ); //clear IRQ
|
||
|
rcode = ( regRd( rHRSL ) & 0x0f );
|
||
|
}//while( rcode && ....
|
||
|
bytes_left -= bytes_tosend;
|
||
|
data_p += bytes_tosend;
|
||
|
}//while( bytes_left...
|
||
|
devtable[ addr ].epinfo[ ep ].sndToggle = ( regRd( rHRSL ) & bmSNDTOGRD ) ? bmSNDTOG1 : bmSNDTOG0; //update toggle
|
||
|
return( rcode ); //should be 0 in all cases
|
||
|
}
|
||
|
/* dispatch usb packet. Assumes peripheral address is set and relevant buffer is loaded/empty */
|
||
|
/* If NAK, tries to re-send up to nak_limit times */
|
||
|
/* If nak_limit == 0, do not count NAKs, exit after timeout */
|
||
|
/* If bus timeout, re-sends up to USB_RETRY_LIMIT times */
|
||
|
/* return codes 0x00-0x0f are HRSLT( 0x00 being success ), 0xff means timeout */
|
||
|
byte USB::dispatchPkt( byte token, byte ep, unsigned int nak_limit )
|
||
|
{
|
||
|
unsigned long timeout = millis() + USB_XFER_TIMEOUT;
|
||
|
byte tmpdata;
|
||
|
byte rcode;
|
||
|
unsigned int nak_count = 0;
|
||
|
char retry_count = 0;
|
||
|
|
||
|
while( timeout > millis() ) {
|
||
|
regWr( rHXFR, ( token|ep )); //launch the transfer
|
||
|
rcode = 0xff;
|
||
|
while( millis() < timeout ) { //wait for transfer completion
|
||
|
tmpdata = regRd( rHIRQ );
|
||
|
if( tmpdata & bmHXFRDNIRQ ) {
|
||
|
regWr( rHIRQ, bmHXFRDNIRQ ); //clear the interrupt
|
||
|
rcode = 0x00;
|
||
|
break;
|
||
|
}//if( tmpdata & bmHXFRDNIRQ
|
||
|
}//while ( millis() < timeout
|
||
|
if( rcode != 0x00 ) { //exit if timeout
|
||
|
return( rcode );
|
||
|
}
|
||
|
rcode = ( regRd( rHRSL ) & 0x0f ); //analyze transfer result
|
||
|
switch( rcode ) {
|
||
|
case hrNAK:
|
||
|
nak_count ++;
|
||
|
if( nak_limit && ( nak_count == nak_limit )) {
|
||
|
return( rcode );
|
||
|
}
|
||
|
break;
|
||
|
case hrTIMEOUT:
|
||
|
retry_count ++;
|
||
|
if( retry_count == USB_RETRY_LIMIT ) {
|
||
|
return( rcode );
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
return( rcode );
|
||
|
}//switch( rcode
|
||
|
}//while( timeout > millis()
|
||
|
return( rcode );
|
||
|
}
|
||
|
/* USB main task. Performs enumeration/cleanup */
|
||
|
void USB::Task( void ) //USB state machine
|
||
|
{
|
||
|
byte i;
|
||
|
byte rcode;
|
||
|
static byte tmpaddr;
|
||
|
byte tmpdata;
|
||
|
static unsigned long delay = 0;
|
||
|
USB_DEVICE_DESCRIPTOR buf;
|
||
|
/**/
|
||
|
tmpdata = getVbusState();
|
||
|
// Serial.print("vbusState: ");
|
||
|
// Serial.print(tmpdata, HEX);
|
||
|
//
|
||
|
// Serial.print("\n");
|
||
|
/**/
|
||
|
/* modify USB task state if Vbus changed */
|
||
|
|
||
|
switch( tmpdata ) {
|
||
|
case SE1: //illegal state
|
||
|
usb_task_state = USB_DETACHED_SUBSTATE_ILLEGAL;
|
||
|
break;
|
||
|
case SE0: //disconnected
|
||
|
if(( usb_task_state & USB_STATE_MASK ) != USB_STATE_DETACHED ) {
|
||
|
usb_task_state = USB_DETACHED_SUBSTATE_INITIALIZE;
|
||
|
}
|
||
|
break;
|
||
|
case FSHOST: //attached
|
||
|
case LSHOST:
|
||
|
if(( usb_task_state & USB_STATE_MASK ) == USB_STATE_DETACHED ) {
|
||
|
delay = millis() + USB_SETTLE_DELAY;
|
||
|
usb_task_state = USB_ATTACHED_SUBSTATE_SETTLE;
|
||
|
}
|
||
|
break;
|
||
|
}// switch( tmpdata
|
||
|
//Serial.print("USB task state: ");
|
||
|
//Serial.println( usb_task_state, HEX );
|
||
|
switch( usb_task_state ) {
|
||
|
case USB_DETACHED_SUBSTATE_INITIALIZE:
|
||
|
init();
|
||
|
usb_task_state = USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE;
|
||
|
break;
|
||
|
case USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE: //just sit here
|
||
|
break;
|
||
|
case USB_DETACHED_SUBSTATE_ILLEGAL: //just sit here
|
||
|
break;
|
||
|
case USB_ATTACHED_SUBSTATE_SETTLE: //setlle time for just attached device
|
||
|
if( delay < millis() ) {
|
||
|
usb_task_state = USB_ATTACHED_SUBSTATE_RESET_DEVICE;
|
||
|
}
|
||
|
break;
|
||
|
case USB_ATTACHED_SUBSTATE_RESET_DEVICE:
|
||
|
regWr( rHCTL, bmBUSRST ); //issue bus reset
|
||
|
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE;
|
||
|
break;
|
||
|
case USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE:
|
||
|
if(( regRd( rHCTL ) & bmBUSRST ) == 0 ) {
|
||
|
tmpdata = regRd( rMODE ) | bmSOFKAENAB; //start SOF generation
|
||
|
regWr( rMODE, tmpdata );
|
||
|
// regWr( rMODE, bmSOFKAENAB );
|
||
|
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_SOF;
|
||
|
delay = millis() + 20; //20ms wait after reset per USB spec
|
||
|
}
|
||
|
break;
|
||
|
case USB_ATTACHED_SUBSTATE_WAIT_SOF: //todo: change check order
|
||
|
if( regRd( rHIRQ ) & bmFRAMEIRQ ) { //when first SOF received we can continue
|
||
|
if( delay < millis() ) { //20ms passed
|
||
|
usb_task_state = USB_ATTACHED_SUBSTATE_GET_DEVICE_DESCRIPTOR_SIZE;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case USB_ATTACHED_SUBSTATE_GET_DEVICE_DESCRIPTOR_SIZE:
|
||
|
// toggle( BPNT_0 );
|
||
|
devtable[ 0 ].epinfo->MaxPktSize = 8; //set max.packet size to min.allowed
|
||
|
rcode = getDevDescr( 0, 0, 8, ( char* )&buf );
|
||
|
if( rcode == 0 ) {
|
||
|
devtable[ 0 ].epinfo->MaxPktSize = buf.bMaxPacketSize0;
|
||
|
usb_task_state = USB_STATE_ADDRESSING;
|
||
|
}
|
||
|
else {
|
||
|
usb_error = USB_ATTACHED_SUBSTATE_GET_DEVICE_DESCRIPTOR_SIZE;
|
||
|
usb_task_state = USB_STATE_ERROR;
|
||
|
}
|
||
|
break;
|
||
|
case USB_STATE_ADDRESSING:
|
||
|
for( i = 1; i < USB_NUMDEVICES; i++ ) {
|
||
|
if( devtable[ i ].epinfo == NULL ) {
|
||
|
devtable[ i ].epinfo = devtable[ 0 ].epinfo; //set correct MaxPktSize
|
||
|
//temporary record
|
||
|
//until plugged with real device endpoint structure
|
||
|
rcode = setAddr( 0, 0, i );
|
||
|
if( rcode == 0 ) {
|
||
|
tmpaddr = i;
|
||
|
usb_task_state = USB_STATE_CONFIGURING;
|
||
|
}
|
||
|
else {
|
||
|
usb_error = USB_STATE_ADDRESSING; //set address error
|
||
|
usb_task_state = USB_STATE_ERROR;
|
||
|
}
|
||
|
break; //break if address assigned or error occured during address assignment attempt
|
||
|
}
|
||
|
}//for( i = 1; i < USB_NUMDEVICES; i++
|
||
|
if( usb_task_state == USB_STATE_ADDRESSING ) { //no vacant place in devtable
|
||
|
usb_error = 0xfe;
|
||
|
usb_task_state = USB_STATE_ERROR;
|
||
|
}
|
||
|
break;
|
||
|
case USB_STATE_CONFIGURING:
|
||
|
break;
|
||
|
case USB_STATE_RUNNING:
|
||
|
break;
|
||
|
case USB_STATE_ERROR:
|
||
|
break;
|
||
|
}// switch( usb_task_state
|
||
|
}
|
||
|
|