2011-10-27 11:45:13 -04:00
|
|
|
/*
|
|
|
|
SoftwareSerial.cpp (formerly NewSoftSerial.cpp) -
|
|
|
|
Multi-instance software serial library for Arduino/Wiring
|
|
|
|
-- Interrupt-driven receive and other improvements by ladyada
|
|
|
|
(http://ladyada.net)
|
|
|
|
-- Tuning, circular buffer, derivation from class Print/Stream,
|
|
|
|
multi-instance support, porting to 8MHz processors,
|
|
|
|
various optimizations, PROGMEM delay tables, inverse logic and
|
|
|
|
direct port writing by Mikal Hart (http://www.arduiniana.org)
|
|
|
|
-- Pin change interrupt macros by Paul Stoffregen (http://www.pjrc.com)
|
|
|
|
-- 20MHz processor support by Garrett Mace (http://www.macetech.com)
|
|
|
|
-- ATmega1280/2560 support by Brett Hagman (http://www.roguerobotics.com/)
|
|
|
|
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
|
|
modify it under the terms of the GNU Lesser General Public
|
|
|
|
License as published by the Free Software Foundation; either
|
|
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
Lesser General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
|
|
License along with this library; if not, write to the Free Software
|
|
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
|
|
|
|
The latest version of this library can always be found at
|
|
|
|
http://arduiniana.org.
|
|
|
|
*/
|
|
|
|
|
|
|
|
// When set, _DEBUG co-opts pins 11 and 13 for debugging with an
|
|
|
|
// oscilloscope or logic analyzer. Beware: it also slightly modifies
|
|
|
|
// the bit times, so don't rely on it too much at high baud rates
|
|
|
|
#define _DEBUG 0
|
|
|
|
#define _DEBUG_PIN1 11
|
|
|
|
#define _DEBUG_PIN2 13
|
|
|
|
//
|
|
|
|
// Includes
|
|
|
|
//
|
|
|
|
#include <avr/interrupt.h>
|
|
|
|
#include <avr/pgmspace.h>
|
2012-12-01 00:20:55 +01:00
|
|
|
#include <Arduino.h>
|
|
|
|
#include <SoftwareSerial.h>
|
Fix SoftwareSerial timings
Instead of using a lookup table with (wrong) timings, this calculates
the timings in SoftwareSerial::begin. This is probably a bit slower, but
since it typically happens once, this shouldn't be a problem.
Additionally, since the lookup tables can be removed, this is also a lot
smaller, as well as supporting arbitrary CPU speeds and baudrates,
instead of the limited set that was defined before.
Furthermore, this switches to use the _delay_loop_2 function from
avr-libc instead of a handcoded delay function. The avr-libc function
only takes two instructions, as opposed to four instructions for the old
one. The compiler also inlines the avr-libc function, which makes the
timings more reliable.
The calculated timings directly rely on the instructions generated by
the compiler, since a significant amount of time is spent processing
(compared to the delays, especially at higher speeds). This means that
if the code is changed, or a different compiler is used, the
calculations might need changing (though a few cycles more or less
shouldn't cause immediate breakage).
The timings in the code have been calculated from the assembly generated
by gcc 4.8.2 and gcc 4.3.2.
The RX baudrates supported by SoftwareSerial are still not unlimited. At
16Mhz, using gcc 4.8.2, everything up to 115200 works. At 8Mhz, it works
up to 57600. Using gcc 4.3.2, it also works up to 57600 at 16Mhz and up
to 38400 at 8Mhz. Note that at these highest speeds, communication
works, but is still quite sensitive to other interrupts (like the
millis() interrupts) when bytes are sent back-to-back, so there still
are corrupted bytes in RX.
TX works up to 115200 for all combinations of compiler and clock rates.
This fixes #2019
2014-04-23 19:23:58 +02:00
|
|
|
#include <util/delay_basic.h>
|
2011-10-27 11:45:13 -04:00
|
|
|
|
|
|
|
//
|
|
|
|
// Statics
|
|
|
|
//
|
|
|
|
SoftwareSerial *SoftwareSerial::active_object = 0;
|
|
|
|
char SoftwareSerial::_receive_buffer[_SS_MAX_RX_BUFF];
|
|
|
|
volatile uint8_t SoftwareSerial::_receive_buffer_tail = 0;
|
|
|
|
volatile uint8_t SoftwareSerial::_receive_buffer_head = 0;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Debugging
|
|
|
|
//
|
|
|
|
// This function generates a brief pulse
|
|
|
|
// for debugging or measuring on an oscilloscope.
|
|
|
|
inline void DebugPulse(uint8_t pin, uint8_t count)
|
|
|
|
{
|
|
|
|
#if _DEBUG
|
|
|
|
volatile uint8_t *pport = portOutputRegister(digitalPinToPort(pin));
|
|
|
|
|
|
|
|
uint8_t val = *pport;
|
|
|
|
while (count--)
|
|
|
|
{
|
|
|
|
*pport = val | digitalPinToBitMask(pin);
|
|
|
|
*pport = val;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Private methods
|
|
|
|
//
|
|
|
|
|
|
|
|
/* static */
|
|
|
|
inline void SoftwareSerial::tunedDelay(uint16_t delay) {
|
Fix SoftwareSerial timings
Instead of using a lookup table with (wrong) timings, this calculates
the timings in SoftwareSerial::begin. This is probably a bit slower, but
since it typically happens once, this shouldn't be a problem.
Additionally, since the lookup tables can be removed, this is also a lot
smaller, as well as supporting arbitrary CPU speeds and baudrates,
instead of the limited set that was defined before.
Furthermore, this switches to use the _delay_loop_2 function from
avr-libc instead of a handcoded delay function. The avr-libc function
only takes two instructions, as opposed to four instructions for the old
one. The compiler also inlines the avr-libc function, which makes the
timings more reliable.
The calculated timings directly rely on the instructions generated by
the compiler, since a significant amount of time is spent processing
(compared to the delays, especially at higher speeds). This means that
if the code is changed, or a different compiler is used, the
calculations might need changing (though a few cycles more or less
shouldn't cause immediate breakage).
The timings in the code have been calculated from the assembly generated
by gcc 4.8.2 and gcc 4.3.2.
The RX baudrates supported by SoftwareSerial are still not unlimited. At
16Mhz, using gcc 4.8.2, everything up to 115200 works. At 8Mhz, it works
up to 57600. Using gcc 4.3.2, it also works up to 57600 at 16Mhz and up
to 38400 at 8Mhz. Note that at these highest speeds, communication
works, but is still quite sensitive to other interrupts (like the
millis() interrupts) when bytes are sent back-to-back, so there still
are corrupted bytes in RX.
TX works up to 115200 for all combinations of compiler and clock rates.
This fixes #2019
2014-04-23 19:23:58 +02:00
|
|
|
_delay_loop_2(delay);
|
2011-10-27 11:45:13 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
// This function sets the current object as the "listening"
|
|
|
|
// one and returns true if it replaces another
|
|
|
|
bool SoftwareSerial::listen()
|
|
|
|
{
|
2013-06-04 10:58:56 +02:00
|
|
|
if (!_rx_delay_stopbit)
|
|
|
|
return false;
|
|
|
|
|
2011-10-27 11:45:13 -04:00
|
|
|
if (active_object != this)
|
|
|
|
{
|
2013-06-04 11:30:26 +02:00
|
|
|
if (active_object)
|
|
|
|
active_object->stopListening();
|
|
|
|
|
2011-10-27 11:45:13 -04:00
|
|
|
_buffer_overflow = false;
|
|
|
|
_receive_buffer_head = _receive_buffer_tail = 0;
|
|
|
|
active_object = this;
|
2013-06-04 11:30:26 +02:00
|
|
|
|
|
|
|
setRxIntMsk(true);
|
2011-10-27 11:45:13 -04:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2013-06-04 11:28:30 +02:00
|
|
|
// Stop listening. Returns true if we were actually listening.
|
|
|
|
bool SoftwareSerial::stopListening()
|
|
|
|
{
|
|
|
|
if (active_object == this)
|
|
|
|
{
|
2013-06-04 11:30:26 +02:00
|
|
|
setRxIntMsk(false);
|
2013-06-04 11:28:30 +02:00
|
|
|
active_object = NULL;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2011-10-27 11:45:13 -04:00
|
|
|
//
|
|
|
|
// The receive routine called by the interrupt handler
|
|
|
|
//
|
|
|
|
void SoftwareSerial::recv()
|
|
|
|
{
|
|
|
|
|
|
|
|
#if GCC_VERSION < 40302
|
|
|
|
// Work-around for avr-gcc 4.3.0 OSX version bug
|
|
|
|
// Preserve the registers that the compiler misses
|
|
|
|
// (courtesy of Arduino forum user *etracer*)
|
|
|
|
asm volatile(
|
|
|
|
"push r18 \n\t"
|
|
|
|
"push r19 \n\t"
|
|
|
|
"push r20 \n\t"
|
|
|
|
"push r21 \n\t"
|
|
|
|
"push r22 \n\t"
|
|
|
|
"push r23 \n\t"
|
|
|
|
"push r26 \n\t"
|
|
|
|
"push r27 \n\t"
|
|
|
|
::);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
uint8_t d = 0;
|
|
|
|
|
|
|
|
// If RX line is high, then we don't see any start bit
|
|
|
|
// so interrupt is probably not for us
|
|
|
|
if (_inverse_logic ? rx_pin_read() : !rx_pin_read())
|
|
|
|
{
|
Disable the RX PCINT inside SoftwareSerial::recv
Before, the interrupt would remain enabled during reception, which would
re-set the PCINT flag because of the level changes inside the received
byte. Because interrupts are globally disabled, this would not
immediately trigger an interrupt, but the flag would be remembered to
trigger another PCINT interrupt immediately after the first one is
processed.
Typically this was not a problem, because the second interrupt would see
the stop bit, or an idle line, and decide that the interrupt triggered
for someone else. However, at high baud rates, this could cause the
next interrupt for the real start bit to be delayed so much that the
byte got corrupted.
By clearing the interrupt mask bit for just the RX pin (as opposed to
the PCINT mask bit for the entire port), any PCINT events on other bits
can still set the PCINT flag and be processed as normal. In this case,
it's likely that there will be corruption, but that's inevitable when
(other) interrupts happen during SoftwareSerial reception.
2014-04-23 19:16:21 +02:00
|
|
|
// Disable further interrupts during reception, this prevents
|
|
|
|
// triggering another interrupt directly after we return, which can
|
|
|
|
// cause problems at higher baudrates.
|
|
|
|
setRxIntMsk(false);
|
|
|
|
|
2011-10-27 11:45:13 -04:00
|
|
|
// Wait approximately 1/2 of a bit width to "center" the sample
|
|
|
|
tunedDelay(_rx_delay_centering);
|
|
|
|
DebugPulse(_DEBUG_PIN2, 1);
|
|
|
|
|
|
|
|
// Read each of the 8 bits
|
2014-04-22 22:24:43 +02:00
|
|
|
for (uint8_t i=8; i > 0; --i)
|
2011-10-27 11:45:13 -04:00
|
|
|
{
|
|
|
|
tunedDelay(_rx_delay_intrabit);
|
2014-04-22 22:24:43 +02:00
|
|
|
d >>= 1;
|
2011-10-27 11:45:13 -04:00
|
|
|
DebugPulse(_DEBUG_PIN2, 1);
|
|
|
|
if (rx_pin_read())
|
2014-04-22 22:24:43 +02:00
|
|
|
d |= 0x80;
|
2011-10-27 11:45:13 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
if (_inverse_logic)
|
|
|
|
d = ~d;
|
|
|
|
|
|
|
|
// if buffer full, set the overflow flag and return
|
2014-04-23 17:45:10 +02:00
|
|
|
uint8_t next = (_receive_buffer_tail + 1) % _SS_MAX_RX_BUFF;
|
|
|
|
if (next != _receive_buffer_head)
|
2011-10-27 11:45:13 -04:00
|
|
|
{
|
|
|
|
// save new data in buffer: tail points to where byte goes
|
|
|
|
_receive_buffer[_receive_buffer_tail] = d; // save new byte
|
2014-04-23 17:45:10 +02:00
|
|
|
_receive_buffer_tail = next;
|
2011-10-27 11:45:13 -04:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
DebugPulse(_DEBUG_PIN1, 1);
|
|
|
|
_buffer_overflow = true;
|
|
|
|
}
|
Fix SoftwareSerial timings
Instead of using a lookup table with (wrong) timings, this calculates
the timings in SoftwareSerial::begin. This is probably a bit slower, but
since it typically happens once, this shouldn't be a problem.
Additionally, since the lookup tables can be removed, this is also a lot
smaller, as well as supporting arbitrary CPU speeds and baudrates,
instead of the limited set that was defined before.
Furthermore, this switches to use the _delay_loop_2 function from
avr-libc instead of a handcoded delay function. The avr-libc function
only takes two instructions, as opposed to four instructions for the old
one. The compiler also inlines the avr-libc function, which makes the
timings more reliable.
The calculated timings directly rely on the instructions generated by
the compiler, since a significant amount of time is spent processing
(compared to the delays, especially at higher speeds). This means that
if the code is changed, or a different compiler is used, the
calculations might need changing (though a few cycles more or less
shouldn't cause immediate breakage).
The timings in the code have been calculated from the assembly generated
by gcc 4.8.2 and gcc 4.3.2.
The RX baudrates supported by SoftwareSerial are still not unlimited. At
16Mhz, using gcc 4.8.2, everything up to 115200 works. At 8Mhz, it works
up to 57600. Using gcc 4.3.2, it also works up to 57600 at 16Mhz and up
to 38400 at 8Mhz. Note that at these highest speeds, communication
works, but is still quite sensitive to other interrupts (like the
millis() interrupts) when bytes are sent back-to-back, so there still
are corrupted bytes in RX.
TX works up to 115200 for all combinations of compiler and clock rates.
This fixes #2019
2014-04-23 19:23:58 +02:00
|
|
|
|
|
|
|
// skip the stop bit
|
|
|
|
tunedDelay(_rx_delay_stopbit);
|
|
|
|
DebugPulse(_DEBUG_PIN1, 1);
|
|
|
|
|
|
|
|
// Re-enable interrupts when we're sure to be inside the stop bit
|
|
|
|
setRxIntMsk(true);
|
|
|
|
|
2011-10-27 11:45:13 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
#if GCC_VERSION < 40302
|
|
|
|
// Work-around for avr-gcc 4.3.0 OSX version bug
|
|
|
|
// Restore the registers that the compiler misses
|
|
|
|
asm volatile(
|
|
|
|
"pop r27 \n\t"
|
|
|
|
"pop r26 \n\t"
|
|
|
|
"pop r23 \n\t"
|
|
|
|
"pop r22 \n\t"
|
|
|
|
"pop r21 \n\t"
|
|
|
|
"pop r20 \n\t"
|
|
|
|
"pop r19 \n\t"
|
|
|
|
"pop r18 \n\t"
|
|
|
|
::);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t SoftwareSerial::rx_pin_read()
|
|
|
|
{
|
|
|
|
return *_receivePortRegister & _receiveBitMask;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Interrupt handling
|
|
|
|
//
|
|
|
|
|
|
|
|
/* static */
|
|
|
|
inline void SoftwareSerial::handle_interrupt()
|
|
|
|
{
|
|
|
|
if (active_object)
|
|
|
|
{
|
|
|
|
active_object->recv();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(PCINT0_vect)
|
|
|
|
ISR(PCINT0_vect)
|
|
|
|
{
|
|
|
|
SoftwareSerial::handle_interrupt();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(PCINT1_vect)
|
In SoftwareSerial, use ISR_ALIASOF to prevent duplication
Previously, up to four separate but identical ISR routines were defined,
for PCINT0, PCINT1, PCINT2 and PCINT3. Each of these would generate
their own function, with a lot of push-popping because another function
was called.
Now, the ISR_ALIASOF macro from avr-libc is used to declare just the
PCINT0 version and make all other ISRs point to that one, saving a lot
of program space, as well as some speed because of improved inlining.
On an Arduino Uno with gcc 4.3, this saves 168 bytes. With gcc 4.8, this
saves 150 bytes.
2014-04-23 14:41:12 +02:00
|
|
|
ISR(PCINT1_vect, ISR_ALIASOF(PCINT0_vect));
|
2011-10-27 11:45:13 -04:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(PCINT2_vect)
|
In SoftwareSerial, use ISR_ALIASOF to prevent duplication
Previously, up to four separate but identical ISR routines were defined,
for PCINT0, PCINT1, PCINT2 and PCINT3. Each of these would generate
their own function, with a lot of push-popping because another function
was called.
Now, the ISR_ALIASOF macro from avr-libc is used to declare just the
PCINT0 version and make all other ISRs point to that one, saving a lot
of program space, as well as some speed because of improved inlining.
On an Arduino Uno with gcc 4.3, this saves 168 bytes. With gcc 4.8, this
saves 150 bytes.
2014-04-23 14:41:12 +02:00
|
|
|
ISR(PCINT2_vect, ISR_ALIASOF(PCINT0_vect));
|
2011-10-27 11:45:13 -04:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(PCINT3_vect)
|
In SoftwareSerial, use ISR_ALIASOF to prevent duplication
Previously, up to four separate but identical ISR routines were defined,
for PCINT0, PCINT1, PCINT2 and PCINT3. Each of these would generate
their own function, with a lot of push-popping because another function
was called.
Now, the ISR_ALIASOF macro from avr-libc is used to declare just the
PCINT0 version and make all other ISRs point to that one, saving a lot
of program space, as well as some speed because of improved inlining.
On an Arduino Uno with gcc 4.3, this saves 168 bytes. With gcc 4.8, this
saves 150 bytes.
2014-04-23 14:41:12 +02:00
|
|
|
ISR(PCINT3_vect, ISR_ALIASOF(PCINT0_vect));
|
2011-10-27 11:45:13 -04:00
|
|
|
#endif
|
|
|
|
|
|
|
|
//
|
|
|
|
// Constructor
|
|
|
|
//
|
|
|
|
SoftwareSerial::SoftwareSerial(uint8_t receivePin, uint8_t transmitPin, bool inverse_logic /* = false */) :
|
|
|
|
_rx_delay_centering(0),
|
|
|
|
_rx_delay_intrabit(0),
|
|
|
|
_rx_delay_stopbit(0),
|
|
|
|
_tx_delay(0),
|
|
|
|
_buffer_overflow(false),
|
|
|
|
_inverse_logic(inverse_logic)
|
|
|
|
{
|
|
|
|
setTX(transmitPin);
|
|
|
|
setRX(receivePin);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Destructor
|
|
|
|
//
|
|
|
|
SoftwareSerial::~SoftwareSerial()
|
|
|
|
{
|
|
|
|
end();
|
|
|
|
}
|
|
|
|
|
|
|
|
void SoftwareSerial::setTX(uint8_t tx)
|
|
|
|
{
|
2015-01-26 17:04:26 +01:00
|
|
|
// First write, then set output. If we do this the other way around,
|
|
|
|
// the pin would be output low for a short while before switching to
|
|
|
|
// output hihg. Now, it is input with pullup for a short while, which
|
|
|
|
// is fine. With inverse logic, either order is fine.
|
2014-05-23 11:29:30 +02:00
|
|
|
digitalWrite(tx, _inverse_logic ? LOW : HIGH);
|
2015-01-26 17:04:26 +01:00
|
|
|
pinMode(tx, OUTPUT);
|
2011-10-27 11:45:13 -04:00
|
|
|
_transmitBitMask = digitalPinToBitMask(tx);
|
|
|
|
uint8_t port = digitalPinToPort(tx);
|
|
|
|
_transmitPortRegister = portOutputRegister(port);
|
|
|
|
}
|
|
|
|
|
|
|
|
void SoftwareSerial::setRX(uint8_t rx)
|
|
|
|
{
|
|
|
|
pinMode(rx, INPUT);
|
|
|
|
if (!_inverse_logic)
|
|
|
|
digitalWrite(rx, HIGH); // pullup for normal logic!
|
|
|
|
_receivePin = rx;
|
|
|
|
_receiveBitMask = digitalPinToBitMask(rx);
|
|
|
|
uint8_t port = digitalPinToPort(rx);
|
|
|
|
_receivePortRegister = portInputRegister(port);
|
|
|
|
}
|
|
|
|
|
Fix SoftwareSerial timings
Instead of using a lookup table with (wrong) timings, this calculates
the timings in SoftwareSerial::begin. This is probably a bit slower, but
since it typically happens once, this shouldn't be a problem.
Additionally, since the lookup tables can be removed, this is also a lot
smaller, as well as supporting arbitrary CPU speeds and baudrates,
instead of the limited set that was defined before.
Furthermore, this switches to use the _delay_loop_2 function from
avr-libc instead of a handcoded delay function. The avr-libc function
only takes two instructions, as opposed to four instructions for the old
one. The compiler also inlines the avr-libc function, which makes the
timings more reliable.
The calculated timings directly rely on the instructions generated by
the compiler, since a significant amount of time is spent processing
(compared to the delays, especially at higher speeds). This means that
if the code is changed, or a different compiler is used, the
calculations might need changing (though a few cycles more or less
shouldn't cause immediate breakage).
The timings in the code have been calculated from the assembly generated
by gcc 4.8.2 and gcc 4.3.2.
The RX baudrates supported by SoftwareSerial are still not unlimited. At
16Mhz, using gcc 4.8.2, everything up to 115200 works. At 8Mhz, it works
up to 57600. Using gcc 4.3.2, it also works up to 57600 at 16Mhz and up
to 38400 at 8Mhz. Note that at these highest speeds, communication
works, but is still quite sensitive to other interrupts (like the
millis() interrupts) when bytes are sent back-to-back, so there still
are corrupted bytes in RX.
TX works up to 115200 for all combinations of compiler and clock rates.
This fixes #2019
2014-04-23 19:23:58 +02:00
|
|
|
uint16_t SoftwareSerial::subtract_cap(uint16_t num, uint16_t sub) {
|
|
|
|
if (num > sub)
|
|
|
|
return num - sub;
|
|
|
|
else
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
2011-10-27 11:45:13 -04:00
|
|
|
//
|
|
|
|
// Public methods
|
|
|
|
//
|
|
|
|
|
2012-12-02 17:22:59 +01:00
|
|
|
void SoftwareSerial::begin(long speed)
|
2011-10-27 11:45:13 -04:00
|
|
|
{
|
|
|
|
_rx_delay_centering = _rx_delay_intrabit = _rx_delay_stopbit = _tx_delay = 0;
|
|
|
|
|
Fix SoftwareSerial timings
Instead of using a lookup table with (wrong) timings, this calculates
the timings in SoftwareSerial::begin. This is probably a bit slower, but
since it typically happens once, this shouldn't be a problem.
Additionally, since the lookup tables can be removed, this is also a lot
smaller, as well as supporting arbitrary CPU speeds and baudrates,
instead of the limited set that was defined before.
Furthermore, this switches to use the _delay_loop_2 function from
avr-libc instead of a handcoded delay function. The avr-libc function
only takes two instructions, as opposed to four instructions for the old
one. The compiler also inlines the avr-libc function, which makes the
timings more reliable.
The calculated timings directly rely on the instructions generated by
the compiler, since a significant amount of time is spent processing
(compared to the delays, especially at higher speeds). This means that
if the code is changed, or a different compiler is used, the
calculations might need changing (though a few cycles more or less
shouldn't cause immediate breakage).
The timings in the code have been calculated from the assembly generated
by gcc 4.8.2 and gcc 4.3.2.
The RX baudrates supported by SoftwareSerial are still not unlimited. At
16Mhz, using gcc 4.8.2, everything up to 115200 works. At 8Mhz, it works
up to 57600. Using gcc 4.3.2, it also works up to 57600 at 16Mhz and up
to 38400 at 8Mhz. Note that at these highest speeds, communication
works, but is still quite sensitive to other interrupts (like the
millis() interrupts) when bytes are sent back-to-back, so there still
are corrupted bytes in RX.
TX works up to 115200 for all combinations of compiler and clock rates.
This fixes #2019
2014-04-23 19:23:58 +02:00
|
|
|
// Precalculate the various delays, in number of 4-cycle delays
|
|
|
|
uint16_t bit_delay = (F_CPU / speed) / 4;
|
|
|
|
|
|
|
|
// 12 (gcc 4.8.2) or 13 (gcc 4.3.2) cycles from start bit to first bit,
|
|
|
|
// 15 (gcc 4.8.2) or 16 (gcc 4.3.2) cycles between bits,
|
|
|
|
// 12 (gcc 4.8.2) or 14 (gcc 4.3.2) cycles from last bit to stop bit
|
|
|
|
// These are all close enough to just use 15 cycles, since the inter-bit
|
|
|
|
// timings are the most critical (deviations stack 8 times)
|
|
|
|
_tx_delay = subtract_cap(bit_delay, 15 / 4);
|
|
|
|
|
|
|
|
// Only setup rx when we have a valid PCINT for this pin
|
|
|
|
if (digitalPinToPCICR(_receivePin)) {
|
|
|
|
#if GCC_VERSION > 40800
|
|
|
|
// Timings counted from gcc 4.8.2 output. This works up to 115200 on
|
|
|
|
// 16Mhz and 57600 on 8Mhz.
|
|
|
|
//
|
|
|
|
// When the start bit occurs, there are 3 or 4 cycles before the
|
|
|
|
// interrupt flag is set, 4 cycles before the PC is set to the right
|
|
|
|
// interrupt vector address and the old PC is pushed on the stack,
|
|
|
|
// and then 75 cycles of instructions (including the RJMP in the
|
|
|
|
// ISR vector table) until the first delay. After the delay, there
|
|
|
|
// are 17 more cycles until the pin value is read (excluding the
|
|
|
|
// delay in the loop).
|
|
|
|
// We want to have a total delay of 1.5 bit time. Inside the loop,
|
|
|
|
// we already wait for 1 bit time - 23 cycles, so here we wait for
|
|
|
|
// 0.5 bit time - (71 + 18 - 22) cycles.
|
|
|
|
_rx_delay_centering = subtract_cap(bit_delay / 2, (4 + 4 + 75 + 17 - 23) / 4);
|
|
|
|
|
|
|
|
// There are 23 cycles in each loop iteration (excluding the delay)
|
|
|
|
_rx_delay_intrabit = subtract_cap(bit_delay, 23 / 4);
|
|
|
|
|
|
|
|
// There are 37 cycles from the last bit read to the start of
|
|
|
|
// stopbit delay and 11 cycles from the delay until the interrupt
|
|
|
|
// mask is enabled again (which _must_ happen during the stopbit).
|
|
|
|
// This delay aims at 3/4 of a bit time, meaning the end of the
|
|
|
|
// delay will be at 1/4th of the stopbit. This allows some extra
|
|
|
|
// time for ISR cleanup, which makes 115200 baud at 16Mhz work more
|
|
|
|
// reliably
|
|
|
|
_rx_delay_stopbit = subtract_cap(bit_delay * 3 / 4, (37 + 11) / 4);
|
|
|
|
#else // Timings counted from gcc 4.3.2 output
|
|
|
|
// Note that this code is a _lot_ slower, mostly due to bad register
|
|
|
|
// allocation choices of gcc. This works up to 57600 on 16Mhz and
|
|
|
|
// 38400 on 8Mhz.
|
|
|
|
_rx_delay_centering = subtract_cap(bit_delay / 2, (4 + 4 + 97 + 29 - 11) / 4);
|
|
|
|
_rx_delay_intrabit = subtract_cap(bit_delay, 11 / 4);
|
|
|
|
_rx_delay_stopbit = subtract_cap(bit_delay * 3 / 4, (44 + 17) / 4);
|
|
|
|
#endif
|
|
|
|
|
2011-10-27 11:45:13 -04:00
|
|
|
|
2013-06-04 11:22:19 +02:00
|
|
|
// Enable the PCINT for the entire port here, but never disable it
|
|
|
|
// (others might also need it, so we disable the interrupt by using
|
|
|
|
// the per-pin PCMSK register).
|
2013-06-04 11:04:30 +02:00
|
|
|
*digitalPinToPCICR(_receivePin) |= _BV(digitalPinToPCICRbit(_receivePin));
|
2014-04-23 19:13:58 +02:00
|
|
|
// Precalculate the pcint mask register and value, so setRxIntMask
|
|
|
|
// can be used inside the ISR without costing too much time.
|
|
|
|
_pcint_maskreg = digitalPinToPCMSK(_receivePin);
|
|
|
|
_pcint_maskvalue = _BV(digitalPinToPCMSKbit(_receivePin));
|
|
|
|
|
2011-10-27 11:45:13 -04:00
|
|
|
tunedDelay(_tx_delay); // if we were low this establishes the end
|
|
|
|
}
|
|
|
|
|
|
|
|
#if _DEBUG
|
|
|
|
pinMode(_DEBUG_PIN1, OUTPUT);
|
|
|
|
pinMode(_DEBUG_PIN2, OUTPUT);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
listen();
|
|
|
|
}
|
|
|
|
|
2013-06-04 11:22:19 +02:00
|
|
|
void SoftwareSerial::setRxIntMsk(bool enable)
|
|
|
|
{
|
|
|
|
if (enable)
|
2014-04-23 19:13:58 +02:00
|
|
|
*_pcint_maskreg |= _pcint_maskvalue;
|
2013-06-04 11:22:19 +02:00
|
|
|
else
|
2014-04-23 19:13:58 +02:00
|
|
|
*_pcint_maskreg &= ~_pcint_maskvalue;
|
2013-06-04 11:22:19 +02:00
|
|
|
}
|
|
|
|
|
2011-10-27 11:45:13 -04:00
|
|
|
void SoftwareSerial::end()
|
|
|
|
{
|
2013-06-13 10:26:15 +02:00
|
|
|
stopListening();
|
2011-10-27 11:45:13 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Read data from buffer
|
|
|
|
int SoftwareSerial::read()
|
|
|
|
{
|
|
|
|
if (!isListening())
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
// Empty buffer?
|
|
|
|
if (_receive_buffer_head == _receive_buffer_tail)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
// Read from "head"
|
|
|
|
uint8_t d = _receive_buffer[_receive_buffer_head]; // grab next byte
|
|
|
|
_receive_buffer_head = (_receive_buffer_head + 1) % _SS_MAX_RX_BUFF;
|
|
|
|
return d;
|
|
|
|
}
|
|
|
|
|
|
|
|
int SoftwareSerial::available()
|
|
|
|
{
|
|
|
|
if (!isListening())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return (_receive_buffer_tail + _SS_MAX_RX_BUFF - _receive_buffer_head) % _SS_MAX_RX_BUFF;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t SoftwareSerial::write(uint8_t b)
|
|
|
|
{
|
|
|
|
if (_tx_delay == 0) {
|
|
|
|
setWriteError();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-04-22 20:52:09 +02:00
|
|
|
// By declaring these as local variables, the compiler will put them
|
|
|
|
// in registers _before_ disabling interrupts and entering the
|
|
|
|
// critical timing sections below, which makes it a lot easier to
|
|
|
|
// verify the cycle timings
|
|
|
|
volatile uint8_t *reg = _transmitPortRegister;
|
|
|
|
uint8_t reg_mask = _transmitBitMask;
|
|
|
|
uint8_t inv_mask = ~_transmitBitMask;
|
2011-10-27 11:45:13 -04:00
|
|
|
uint8_t oldSREG = SREG;
|
2014-04-22 20:52:09 +02:00
|
|
|
bool inv = _inverse_logic;
|
|
|
|
uint16_t delay = _tx_delay;
|
|
|
|
|
|
|
|
if (inv)
|
|
|
|
b = ~b;
|
|
|
|
|
2011-10-27 11:45:13 -04:00
|
|
|
cli(); // turn off interrupts for a clean txmit
|
|
|
|
|
|
|
|
// Write the start bit
|
2014-04-22 20:52:09 +02:00
|
|
|
if (inv)
|
|
|
|
*reg |= reg_mask;
|
|
|
|
else
|
|
|
|
*reg &= inv_mask;
|
2011-10-27 11:45:13 -04:00
|
|
|
|
2014-04-22 20:52:09 +02:00
|
|
|
tunedDelay(delay);
|
2011-10-27 11:45:13 -04:00
|
|
|
|
2014-04-22 20:52:09 +02:00
|
|
|
// Write each of the 8 bits
|
|
|
|
for (uint8_t i = 8; i > 0; --i)
|
2011-10-27 11:45:13 -04:00
|
|
|
{
|
2014-04-22 20:52:09 +02:00
|
|
|
if (b & 1) // choose bit
|
|
|
|
*reg |= reg_mask; // send 1
|
2014-04-22 16:30:13 +02:00
|
|
|
else
|
2014-04-22 20:52:09 +02:00
|
|
|
*reg &= inv_mask; // send 0
|
2011-10-27 11:45:13 -04:00
|
|
|
|
2014-04-22 20:52:09 +02:00
|
|
|
tunedDelay(delay);
|
|
|
|
b >>= 1;
|
2011-10-27 11:45:13 -04:00
|
|
|
}
|
|
|
|
|
2014-04-22 16:30:13 +02:00
|
|
|
// restore pin to natural state
|
2014-04-22 20:52:09 +02:00
|
|
|
if (inv)
|
|
|
|
*reg &= inv_mask;
|
|
|
|
else
|
|
|
|
*reg |= reg_mask;
|
2014-04-22 16:30:13 +02:00
|
|
|
|
2011-10-27 11:45:13 -04:00
|
|
|
SREG = oldSREG; // turn interrupts back on
|
|
|
|
tunedDelay(_tx_delay);
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void SoftwareSerial::flush()
|
|
|
|
{
|
|
|
|
if (!isListening())
|
|
|
|
return;
|
|
|
|
|
|
|
|
uint8_t oldSREG = SREG;
|
|
|
|
cli();
|
|
|
|
_receive_buffer_head = _receive_buffer_tail = 0;
|
|
|
|
SREG = oldSREG;
|
|
|
|
}
|
|
|
|
|
|
|
|
int SoftwareSerial::peek()
|
|
|
|
{
|
|
|
|
if (!isListening())
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
// Empty buffer?
|
|
|
|
if (_receive_buffer_head == _receive_buffer_tail)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
// Read from "head"
|
|
|
|
return _receive_buffer[_receive_buffer_head];
|
|
|
|
}
|