1
0
mirror of https://github.com/arduino/Arduino.git synced 2025-01-18 07:52:14 +01:00

Merge branch 'merge-1.0.5' into ide-1.5.x-discovery

This commit is contained in:
Cristian Maglie 2013-06-01 23:16:02 +02:00
commit 22a84c69d3
168 changed files with 26202 additions and 20 deletions

View File

@ -4,7 +4,7 @@
Plays multiple tones on multiple pins in sequence
circuit:
* 3 8-ohm speaker on digital pins 6, 7, and 11
* 3 8-ohm speaker on digital pins 6, 7, and 8
created 8 March 2010
by Tom Igoe
@ -21,8 +21,8 @@ void setup() {
}
void loop() {
// turn off tone function for pin 11:
noTone(11);
// turn off tone function for pin 8:
noTone(8);
// play a note on pin 6 for 200 ms:
tone(6, 440, 200);
delay(200);
@ -35,8 +35,7 @@ void loop() {
// turn off tone function for pin 7:
noTone(7);
// play a note on pin 11 for 500 ms:
tone(11, 523, 300);
// play a note on pin 8 for 500 ms:
tone(8, 523, 300);
delay(300);
}

View File

@ -21,6 +21,9 @@ ARDUINO 1.5.3 BETA
[firmwares]
* Arduino Due: fixed USB2Serial garbage at startup (https://github.com/arduino/Arduino/pull/1267)
[other]
* Merged all improvements made in Arduino IDE 1.0.5
ARDUINO 1.5.2 BETA - 2013.02.06
[ide]
@ -56,7 +59,7 @@ ARDUINO 1.5.2 BETA - 2013.02.06
[other]
* Merged all improvements made in Arduino IDE 1.0.3
* Merged all improvements made in Arduino IDE 1.0.4 (not yet released)
* Merged all improvements made in Arduino IDE 1.0.4
ARDUINO 1.5.1r2 BETA - 2012.11.06
@ -112,6 +115,8 @@ ARDUINO 1.0.5 - 2013.05.15
* Upgrades to WiFi library
* Fixed a bunch of examples
* Added Arduino Robot libraries
* Added TFT display library
[firmwares]
@ -120,7 +125,6 @@ ARDUINO 1.0.5 - 2013.05.15
[ide]
* Backport from 1.5: install Library from .zip file or folder
* Added button "Copy error to clipboard" (Paul Stoffregen)
* Updated windows drivers
* Added Windows installer
@ -129,6 +133,7 @@ ARDUINO 1.0.4 - 2013.03.11
[core]
* Fixed malloc bug (Paul Stoffregen)
* Added INT6 support for Leonardo (Federico Vanzati)
[libraries]

Binary file not shown.

View File

@ -22,6 +22,10 @@ micro.sketch.name="Arduino Micro"
uno.name="Arduino Uno"
unoR3.name="Arduino Uno"
usbserial.name="Arduino USB Serial Light Adapter"
robotControl.bootloader.name="Arduino Robot Control bootloader"
robotControl.sketch.name="Arduino Robot"
robotMotor.bootloader.name="Arduino Robot Motor bootloader"
robotMotor.sketch.name="Arduino Robot"
[DefaultInstall]
CopyINF=arduino.inf
@ -61,6 +65,10 @@ DefaultDestDir=12
%uno.name%=DriverInstall, USB\VID_2341&PID_0001
%unoR3.name%=DriverInstall, USB\VID_2341&PID_0043
%usbserial.name%=DriverInstall, USB\VID_2341&PID_003B
%robotControl.bootloader.name%=DriverInstall, USB\VID_2341&PID_0038
%robotControl.sketch.name%=DriverInstall, USB\VID_2341&PID_8038&MI_00
%robotMotor.bootloader.name%=DriverInstall, USB\VID_2341&PID_0039
%robotMotor.sketch.name%=DriverInstall, USB\VID_2341&PID_8039&MI_00
[DeviceList.NTamd64]
%due.bossa.name%=DriverInstall, USB\VID_03EB&PID_6124
@ -81,6 +89,10 @@ DefaultDestDir=12
%uno.name%=DriverInstall, USB\VID_2341&PID_0001
%unoR3.name%=DriverInstall, USB\VID_2341&PID_0043
%usbserial.name%=DriverInstall, USB\VID_2341&PID_003B
%robotControl.bootloader.name%=DriverInstall, USB\VID_2341&PID_0038
%robotControl.sketch.name%=DriverInstall, USB\VID_2341&PID_8038&MI_00
%robotMotor.bootloader.name%=DriverInstall, USB\VID_2341&PID_0039
%robotMotor.sketch.name%=DriverInstall, USB\VID_2341&PID_8039&MI_00
[DeviceList.NTia64]
%esplora.bootloader.name%=DriverInstall, USB\VID_2341&PID_003C
@ -98,6 +110,10 @@ DefaultDestDir=12
%uno.name%=DriverInstall, USB\VID_2341&PID_0001
%unoR3.name%=DriverInstall, USB\VID_2341&PID_0043
%usbserial.name%=DriverInstall, USB\VID_2341&PID_003B
%robotControl.bootloader.name%=DriverInstall, USB\VID_2341&PID_0038
%robotControl.sketch.name%=DriverInstall, USB\VID_2341&PID_8038&MI_00
%robotMotor.bootloader.name%=DriverInstall, USB\VID_2341&PID_0039
%robotMotor.sketch.name%=DriverInstall, USB\VID_2341&PID_8039&MI_00
[DriverInstall]
include=mdmcpq.inf,usb.inf

View File

@ -635,3 +635,61 @@ atmegang.menu.cpu.atmega8.bootloader.file=atmega8/ATmegaBOOT-prod-firmware-2009-
atmegang.menu.cpu.atmega8.build.mcu=atmega8
##############################################################
robotControl.name=Arduino Robot Control
robotControl.upload.tool=avrdude
robotControl.upload.protocol=avr109
robotControl.upload.maximum_size=28672
robotControl.upload.data_size=2560
robotControl.upload.speed=57600
robotControl.upload.disable_flushing=true
robotControl.upload.use_1200bps_touch=true
robotControl.upload.wait_for_upload_port=true
robotControl.bootloader.tool=avrdude
robotControl.bootloader.low_fuses=0xff
robotControl.bootloader.high_fuses=0xd8
robotControl.bootloader.extended_fuses=0xcb
robotControl.bootloader.file=caterina-Arduino_Robot/Caterina-Robot-Control.hex
robotControl.bootloader.unlock_bits=0x3F
robotControl.bootloader.lock_bits=0x2F
robotControl.build.mcu=atmega32u4
robotControl.build.f_cpu=16000000L
robotControl.build.vid=0x2341
robotControl.build.pid=0x8038
robotControl.build.board=AVR_ROBOT_CONTROL
robotControl.build.core=robot
robotControl.build.variant=robot_control
robotControl.build.extra_flags=-DUSB_VID={build.vid} -DUSB_PID={build.pid}
##############################################################
robotMotor.name=Arduino Robot Motor
robotMotor.upload.tool=avrdude
robotMotor.upload.protocol=avr109
robotMotor.upload.maximum_size=28672
robotMotor.upload.data_size=2560
robotMotor.upload.speed=57600
robotMotor.upload.disable_flushing=true
robotMotor.upload.use_1200bps_touch=true
robotMotor.upload.wait_for_upload_port=true
robotMotor.bootloader.tool=avrdude
robotMotor.bootloader.low_fuses=0xff
robotMotor.bootloader.high_fuses=0xd8
robotMotor.bootloader.extended_fuses=0xcb
robotMotor.bootloader.file=caterina-Arduino_Robot/Caterina-Robot-Motor.hex
robotMotor.bootloader.unlock_bits=0x3F
robotMotor.bootloader.lock_bits=0x2F
robotMotor.build.mcu=atmega32u4
robotMotor.build.f_cpu=16000000L
robotMotor.build.vid=0x2341
robotMotor.build.pid=0x8039
robotMotor.build.board=AVR_ROBOT_MOTOR
robotMotor.build.core=robot
robotMotor.build.variant=robot_motor
robotMotor.build.extra_flags=-DUSB_VID={build.vid} -DUSB_PID={build.pid}

View File

@ -0,0 +1,258 @@
:1070000055C000006EC000006CC000006AC00000E7
:1070100068C0000066C0000064C0000062C00000DC
:1070200060C000005EC00000FCC400005AC0000048
:1070300058C0000056C0000054C0000052C00000FC
:1070400050C000005DC000004CC000004AC00000FD
:1070500048C0000046C0000044C0000042C000001C
:1070600040C000003EC000003CC000003AC000002C
:1070700038C0000036C0000034C0000032C000003C
:1070800030C000002EC000002CC000002AC000004C
:1070900028C0000026C0000024C0000022C000005C
:1070A00020C000001EC000001CC0000011241FBE34
:1070B000CFEFDAE0DEBFCDBF11E0A0E0B1E0E6E463
:1070C000FFE702C005900D92AC3AB107D9F711E085
:1070D000ACEAB1E001C01D92A53CB107E1F74FD386
:1070E00030C78ECFF89410926F001092810081E02B
:1070F00085BF15BE47985D9A289A0C9400000895A4
:107100001F920F920FB60F9211242F938F939F937C
:10711000EF93FF9310928500109284008091AC0150
:107120009091AD01009741F001979093AD0180934C
:10713000AC01892B09F45D9A8091AE019091AF0169
:10714000009741F001979093AF018093AE01892B96
:1071500009F4289A8091B2019091B301019690931D
:10716000B3018093B201E0E0F0E0859194918F5FEC
:107170009F4F49F08091B0019091B1010196909399
:10718000B1018093B001FF91EF919F918F912F9169
:107190000F900FBE0F901F90189584E08093E90028
:1071A0000DC08091E8008B778093E80003C08EB318
:1071B000882351F08091E80082FFF9CF8091E800A8
:1071C00085FFEFCF8091F1000895982F83E08093A1
:1071D000E9008091E80085FD0DC08091E8008E7780
:1071E0008093E80003C08EB3882369F08091E800A3
:1071F00080FFF9CF9093F1005D9884E690E0909342
:10720000AD018093AC0108954F925F926F927F928F
:107210008F929F92AF92BF92CF92DF92EF92FF92A6
:107220000F931F93CF93DF9384E08093E9008091C5
:10723000E80082FF57C2289884E690E09093AF015F
:107240008093AE01AADF182F853481F48CE49DE190
:107250009093B1018093B00107B600FCFDCFF9997E
:10726000FECF81E180935700E89503C0843519F47F
:1072700094DF8DE00DC28C34E1F38035D1F3843797
:1072800021F484E4A2DF80E003C2813611F489E5B1
:10729000FFC18134B1F481DF182F7FDF90E0880FC8
:1072A000991FAA2797FDA095BA2F312F330F20E001
:1072B000442737FD4095542F822B932BA42BB52BBD
:1072C000B8C1803711F483E5E3C1833549F4C0E0E8
:1072D000D1E089917ADF21E0C730D207D1F7D9C157
:1072E000863521F481E371DF80E3D2C1833731F445
:1072F00087E86BDF85E969DF8EE1CAC18536B9F4BD
:10730000E0E0F0E093E085E090935700E89507B661
:1073100000FCFDCF80935700E89507B600FCFDCF39
:10732000E058FF4FA0E7E030FA0771F7A2CF8237AD
:1073300039F4E1E0F0E089E0809357008491A8C13E
:10734000863439F4E0E0F0E089E0809357008491DE
:107350009FC18E3439F4E3E0F0E089E08093570078
:10736000849196C1813539F4E2E0F0E089E08093C0
:10737000570084918DC1823631F489E526DF80E0A3
:1073800024DF80E885C1823419F0873609F0E5C032
:107390001092B1011092B00100DF082FFEDEF82E2E
:1073A000FCDE682E8554823008F071C1902F80E099
:1073B000CF2DD0E0C82BD92B10926F00173609F0D3
:1073C0004BC081E180935700E895DD24CC24C39421
:1073D0003FC0E090B501F090B6010091B701109167
:1073E000B801B6E46B16D9F4ED2DF0E0EE29FF29D3
:1073F000E4918E2FEADEDD2081F082E090E0A0E0D3
:10740000B0E0E80EF91E0A1F1B1FE092B501F092D2
:10741000B6010093B7011093B801DC2418C0D8015D
:10742000C701B695A7959795879575D5CEDE82E06D
:1074300090E0A0E0B0E0E80EF91E0A1F1B1FE092EA
:10744000B501F092B6010093B7011093B8012197EE
:10745000209709F0BECF7DC08090B5019090B60115
:10746000A090B701B090B80196E4691609F05DC02C
:1074700083E0F40180935700E89507B600FCFDCF48
:1074800054C0F6E46F1661F5772031F1E090B50154
:10749000F090B6010091B7011091B8017EDED82EB0
:1074A000CC24852D90E08C299D29F7010C01409278
:1074B0005700E895112482E090E0A0E0B0E0E80EEB
:1074C000F91E0A1F1B1FE092B501F092B60100934E
:1074D000B7011093B80102C060DE582E742423C097
:1074E000E090B501F090B6010091B7011091B8019C
:1074F00016950795F794E79450DE682FC70113D5CA
:107500008091B5019091B601A091B701B091B801F9
:107510000296A11DB11D8093B5019093B601A09371
:10752000B701B093B801219704C0552477244424AF
:107530004394209709F0A5CF96E4691641F485E0BD
:10754000F40180935700E89507B600FCFDCF8DE06D
:107550003CDE82E080936F009CC0833471F4009124
:10756000B5011091B60119DE90E021E0F8010C019F
:1075700020935700E89511247CCE833619F5E090CE
:10758000B501F090B6010091B7011091B80105DE88
:10759000F701E16090E021E00C0120935700E895AD
:1075A000112482E090E0A0E0B0E0E80EF91E0A1F8E
:1075B0001B1FE092B501F092B6010093B701109342
:1075C000B80157CE8D3661F4E091B501F091B60166
:1075D00085E080935700E89507B600FCFDCF49CEC3
:1075E000823551F4E091B501F091B6010591149105
:1075F000812FEBDD802F4CC0843421F5E090B50164
:10760000F090B6010091B7011091B8011695079559
:10761000F794E794C2DD682FC70185D48091B50146
:107620009091B601A091B701B091B8010296A11D49
:10763000B11D8093B5019093B601A093B701B093AB
:10764000B80117CE843609F5E090B501F090B60187
:107650000091B7011091B801D801C701B695A7955F
:107660009795879558D4B1DD82E090E0A0E0B0E036
:10767000E80EF91E0A1F1B1FE092B501F092B60139
:107680000093B7011093B80104C08B3111F08FE360
:107690009CDD83E08093E9009091E8008091E80010
:1076A0008E778093E80095FF04C010C08EB38823C6
:1076B000C9F08091E80080FFF9CF8091E8008E77D3
:1076C0008093E80003C08EB3882361F08091E800C6
:1076D00080FFF9CF84E08093E9008091E8008B7708
:1076E0008093E800DF91CF911F910F91FF90EF9071
:1076F000DF90CF90BF90AF909F908F907F906F90D2
:107700005F904F9008959091BD01892F8F778132BE
:1077100049F58091BE018032A1F0813219F5913A8C
:1077200009F58091E800877F8093E8008CE091E084
:1077300067E070E027D28091E8008B778093E800C3
:107740000895913279F48091E800877F8093E80072
:107750008CE091E067E070E079D28091E8008E776C
:107760008093E800089582E061EC42E0D1D083E0AC
:1077700061E842E1CDD084E060E842E1C9C01F93F6
:10778000209100081092000844B714BE88E10FB69B
:10779000F89480936000109260000FBE80E8E0E0F3
:1077A000F0E00FB6F89480936100E09361000FBEA3
:1077B00031E035BF92E095BF3F9A209A559A809369
:1077C00061001092610047985D9A289A1092890092
:1077D0008AEF8093880090936F0083E0809381000C
:1077E000859194918F5F9F4F11F03093B401942F46
:1077F00041FF19C0809109012817A9F08093000862
:10780000789480911301882339F08091B20190918E
:10781000B3018F5E9240C8F310920008F89481E0A3
:10782000809313010CC090FF04C08091B4018823A1
:1078300051F493FF09C080910901281729F0809124
:10784000B401882309F04EDCD4D078941092B101B1
:107850001092B0011EEF20C0D7DC4BD38091B00155
:107860009091B10181549F4110F0109213018091C9
:10787000B9019091BA0101969093BA018093B90130
:10788000292F97FF03C0512F591B252F220F28178F
:1078900010F4479801C0479A809113018823E1F6BC
:1078A0008091E00081608093E0001CDC80E090E04B
:1078B0001F910895FA01923049F0933061F09130B0
:1078C000F9F484E191E022E130E01EC086E291E02B
:1078D0002EE330E019C0882329F484E691E024E007
:1078E00030E012C0813029F488E691E028E230E0EF
:1078F0000BC0823029F482E991E028E130E004C035
:1079000080E090E020E030E091838083C901089519
:107910008093E9008091EB0081608093EB001092EE
:10792000ED006093EC004093ED008091EE00881F25
:107930008827881F08958091BD0188238CF403C097
:107940008EB38823B1F08091E80082FFF9CF809157
:10795000E8008B778093E80008958EB3882349F080
:107960008091E80080FFF9CF8091E8008E778093C6
:10797000E8000895EF92FF920F931F9345D04CD0EB
:1079800008ED10E0F80180818F7780838081806826
:10799000808380818F7D808319BC1EBA1092BB01C9
:1079A00080EEE82EF12CF70180818B7F8083F80137
:1079B00080818160808380E060E042E0A9DFE1EEC9
:1079C000F0E080818E7F8083E2EEF0E08081816054
:1079D0008083808188608083F70180818E7F8083AF
:1079E000F8018081806180831F910F91FF90EF905B
:1079F0000895E7EDF0E08081816080838AE482BFB2
:107A000081E08093BC01B6CFE8EDF0E080818E7F0D
:107A100080831092E20008951092DA001092E10043
:107A200008951F920F920FB60F9211242F933F9338
:107A30004F935F936F937F938F939F93AF93BF9376
:107A4000EF93FF938091DA0080FF1BC08091D800F4
:107A500080FF17C08091DA008E7F8093DA008091DA
:107A6000D90080FF0BC080E189BD82E189BD09B4E6
:107A700000FEFDCF81E08EBB3BD203C019BC1EBA15
:107A800037D28091E10080FF17C08091E20080FF33
:107A900013C08091E2008E7F8093E2008091E2002B
:107AA00080618093E2008091D80080628093D8004A
:107AB00019BC85E08EBB1CD28091E10084FF2CC0F4
:107AC0008091E20084FF28C080E189BD82E189BD08
:107AD00009B400FEFDCF8091D8008F7D8093D8003F
:107AE0008091E1008F7E8093E1008091E2008F7EA3
:107AF0008093E2008091E20081608093E2008091B7
:107B0000BB01882331F48091E30087FD02C081E04E
:107B100001C084E08EBBECD18091E10083FF21C0E5
:107B20008091E20083FF1DC08091E100877F8093F8
:107B3000E10082E08EBB1092BB018091E1008E7F5C
:107B40008093E1008091E2008E7F8093E20080913B
:107B5000E20080618093E20080E060E042E0D8DEF5
:107B6000C7D1FF91EF91BF91AF919F918F917F917D
:107B70006F915F914F913F912F910F900FBE0F909A
:107B80001F9018959C014091C3015091C401461764
:107B9000570718F4F90190E044C06115710511F020
:107BA000AB01F8CF8091E8008E778093E80040E049
:107BB00050E0F0CF8EB3882309F444C0853009F437
:107BC00043C08091E80083FF02C081E00895809166
:107BD000E80082FD31C08091E80080FF22C08091E2
:107BE000F3009091F200782F60E0292F30E0262BEF
:107BF000372B07C081918093F100415050402F5F97
:107C00003F4F4115510519F02830310598F390E0A8
:107C10002830310509F491E08091E8008E77809357
:107C2000E8004115510531F6992321F605C08EB3C0
:107C3000882341F0853041F08091E80082FFF7CF42
:107C400080E0089582E0089583E008959C01611525
:107C5000710529F48091E8008B778093E800F901A1
:107C600026C08EB3882391F1853091F18091E80090
:107C700083FF02C081E008958091E80082FFF1CF88
:107C800006C08091F10081936150704059F02091BD
:107C9000F3008091F200322F20E090E0822B932BB2
:107CA000892B79F78091E8008B778093E800611544
:107CB0007105B9F605C08EB3882341F0853041F0D7
:107CC0008091E80080FFF7CF80E0089582E008957A
:107CD00083E008950F931F93DF93CF9300D0CDB728
:107CE000DEB7EDEBF1E08091F100819381E0E53CBE
:107CF000F807C9F708DD8091E80083FFE4C08091B0
:107D0000BD019091BE01953009F46DC0963040F4EC
:107D1000913081F1913070F0933009F0D4C02AC0D5
:107D2000983009F4A3C0993009F4B2C0963009F034
:107D3000CAC07CC0803809F4C6C0823809F0C3C00C
:107D40008091C10187708093E9008091EB001092CF
:107D5000E9002091E800277F2093E80090E025E0EB
:107D6000969587952A95E1F781708093F10010929E
:107D7000F10087C0882319F0823009F0A4C08F7108
:107D8000823009F0A0C08091BF01882331F5209195
:107D9000C101277009F497C02093E9008091EB009E
:107DA00080FF1BC0933021F48091EB00806213C0F0
:107DB0008091EB0080618093EB0081E090E002C055
:107DC000880F991F2A95E2F78093EA001092EA0043
:107DD0008091EB0088608093EB001092E900809125
:107DE000E800877F51C0882309F06DC01091BF0162
:107DF0001F770FB7F8948091E800877F8093E800A1
:107E00009ADD8091E80080FFFCCF8091E3008078CC
:107E1000812B8093E30080688093E300112311F4A9
:107E200082E001C083E08EBB0FBF4DC0805882301E
:107E300008F049C08091BF019091C0016091C101DB
:107E4000AE014F5F5F4F36DDBC01009709F43BC0C8
:107E50008091E800877F8093E80089819A8192DE93
:107E60008091E8008B778093E8002DC0803859F529
:107E70008091E800877F8093E8008091BB01809328
:107E8000F1008091E8008E778093E80054DD1BC0FC
:107E90008823C9F49091BF019230A8F48091E80042
:107EA000877F8093E8009093BB0145DD8091BB0103
:107EB000882331F48091E30087FD02C081E001C096
:107EC00084E08EBB50DC8091E80083FF0AC0809183
:107ED000EB0080628093EB008091E800877F8093C5
:107EE000E8000F900F90CF91DF911F910F910895AF
:107EF00008951F938EB3882361F01091E9001092CA
:107F0000E9008091E80083FF01C0E4DE1770109360
:107F1000E9001F910895F999FECF92BD81BDF89AAD
:107F2000992780B50895262FF999FECF1FBA92BDE3
:107F300081BD20BD0FB6F894FA9AF99A0FBE01964A
:067F40000895F894FFCF44
:107F46004341544552494E41007700080000000065
:107F56000000080112011001020000084123390047
:107F660001000201000109023E00020100803209FF
:107F7600040000010202010005240010010424028D
:107F8600040524060001070582030800FF09040111
:107F960000020A000000070504021000010705831D
:107FA6000210000104030904280352006F00620056
:107FB6006F00740020004D006F0074006F007200A7
:107FC600200042006F006100720064002000200063
:107FD60000001803410072006400750069006E001D
:0C7FE6006F0020004C004C004300000025
:040000030000700089
:00000001FF

View File

@ -0,0 +1,258 @@
:1070000055C000006EC000006CC000006AC00000E7
:1070100068C0000066C0000064C0000062C00000DC
:1070200060C000005EC00000FCC400005AC0000048
:1070300058C0000056C0000054C0000052C00000FC
:1070400050C000005DC000004CC000004AC00000FD
:1070500048C0000046C0000044C0000042C000001C
:1070600040C000003EC000003CC000003AC000002C
:1070700038C0000036C0000034C0000032C000003C
:1070800030C000002EC000002CC000002AC000004C
:1070900028C0000026C0000024C0000022C000005C
:1070A00020C000001EC000001CC0000011241FBE34
:1070B000CFEFDAE0DEBFCDBF11E0A0E0B1E0E6E463
:1070C000FFE702C005900D92AC3AB107D9F711E085
:1070D000ACEAB1E001C01D92A53CB107E1F74FD386
:1070E00030C78ECFF89410926F001092810081E02B
:1070F00085BF15BE47985D9A289A0C9400000895A4
:107100001F920F920FB60F9211242F938F939F937C
:10711000EF93FF9310928500109284008091AC0150
:107120009091AD01009741F001979093AD0180934C
:10713000AC01892B09F45D9A8091AE019091AF0169
:10714000009741F001979093AF018093AE01892B96
:1071500009F4289A8091B2019091B301019690931D
:10716000B3018093B201E0E0F0E0859194918F5FEC
:107170009F4F49F08091B0019091B1010196909399
:10718000B1018093B001FF91EF919F918F912F9169
:107190000F900FBE0F901F90189584E08093E90028
:1071A0000DC08091E8008B778093E80003C08EB318
:1071B000882351F08091E80082FFF9CF8091E800A8
:1071C00085FFEFCF8091F1000895982F83E08093A1
:1071D000E9008091E80085FD0DC08091E8008E7780
:1071E0008093E80003C08EB3882369F08091E800A3
:1071F00080FFF9CF9093F1005D9884E690E0909342
:10720000AD018093AC0108954F925F926F927F928F
:107210008F929F92AF92BF92CF92DF92EF92FF92A6
:107220000F931F93CF93DF9384E08093E9008091C5
:10723000E80082FF57C2289884E690E09093AF015F
:107240008093AE01AADF182F853481F48CE49DE190
:107250009093B1018093B00107B600FCFDCFF9997E
:10726000FECF81E180935700E89503C0843519F47F
:1072700094DF8DE00DC28C34E1F38035D1F3843797
:1072800021F484E4A2DF80E003C2813611F489E5B1
:10729000FFC18134B1F481DF182F7FDF90E0880FC8
:1072A000991FAA2797FDA095BA2F312F330F20E001
:1072B000442737FD4095542F822B932BA42BB52BBD
:1072C000B8C1803711F483E5E3C1833549F4C0E0E8
:1072D000D1E089917ADF21E0C730D207D1F7D9C157
:1072E000863521F481E371DF80E3D2C1833731F445
:1072F00087E86BDF85E969DF8EE1CAC18536B9F4BD
:10730000E0E0F0E093E085E090935700E89507B661
:1073100000FCFDCF80935700E89507B600FCFDCF39
:10732000E058FF4FA0E7E030FA0771F7A2CF8237AD
:1073300039F4E1E0F0E089E0809357008491A8C13E
:10734000863439F4E0E0F0E089E0809357008491DE
:107350009FC18E3439F4E3E0F0E089E08093570078
:10736000849196C1813539F4E2E0F0E089E08093C0
:10737000570084918DC1823631F489E526DF80E0A3
:1073800024DF80E885C1823419F0873609F0E5C032
:107390001092B1011092B00100DF082FFEDEF82E2E
:1073A000FCDE682E8554823008F071C1902F80E099
:1073B000CF2DD0E0C82BD92B10926F00173609F0D3
:1073C0004BC081E180935700E895DD24CC24C39421
:1073D0003FC0E090B501F090B6010091B701109167
:1073E000B801B6E46B16D9F4ED2DF0E0EE29FF29D3
:1073F000E4918E2FEADEDD2081F082E090E0A0E0D3
:10740000B0E0E80EF91E0A1F1B1FE092B501F092D2
:10741000B6010093B7011093B801DC2418C0D8015D
:10742000C701B695A7959795879575D5CEDE82E06D
:1074300090E0A0E0B0E0E80EF91E0A1F1B1FE092EA
:10744000B501F092B6010093B7011093B8012197EE
:10745000209709F0BECF7DC08090B5019090B60115
:10746000A090B701B090B80196E4691609F05DC02C
:1074700083E0F40180935700E89507B600FCFDCF48
:1074800054C0F6E46F1661F5772031F1E090B50154
:10749000F090B6010091B7011091B8017EDED82EB0
:1074A000CC24852D90E08C299D29F7010C01409278
:1074B0005700E895112482E090E0A0E0B0E0E80EEB
:1074C000F91E0A1F1B1FE092B501F092B60100934E
:1074D000B7011093B80102C060DE582E742423C097
:1074E000E090B501F090B6010091B7011091B8019C
:1074F00016950795F794E79450DE682FC70113D5CA
:107500008091B5019091B601A091B701B091B801F9
:107510000296A11DB11D8093B5019093B601A09371
:10752000B701B093B801219704C0552477244424AF
:107530004394209709F0A5CF96E4691641F485E0BD
:10754000F40180935700E89507B600FCFDCF8DE06D
:107550003CDE82E080936F009CC0833471F4009124
:10756000B5011091B60119DE90E021E0F8010C019F
:1075700020935700E89511247CCE833619F5E090CE
:10758000B501F090B6010091B7011091B80105DE88
:10759000F701E16090E021E00C0120935700E895AD
:1075A000112482E090E0A0E0B0E0E80EF91E0A1F8E
:1075B0001B1FE092B501F092B6010093B701109342
:1075C000B80157CE8D3661F4E091B501F091B60166
:1075D00085E080935700E89507B600FCFDCF49CEC3
:1075E000823551F4E091B501F091B6010591149105
:1075F000812FEBDD802F4CC0843421F5E090B50164
:10760000F090B6010091B7011091B8011695079559
:10761000F794E794C2DD682FC70185D48091B50146
:107620009091B601A091B701B091B8010296A11D49
:10763000B11D8093B5019093B601A093B701B093AB
:10764000B80117CE843609F5E090B501F090B60187
:107650000091B7011091B801D801C701B695A7955F
:107660009795879558D4B1DD82E090E0A0E0B0E036
:10767000E80EF91E0A1F1B1FE092B501F092B60139
:107680000093B7011093B80104C08B3111F08FE360
:107690009CDD83E08093E9009091E8008091E80010
:1076A0008E778093E80095FF04C010C08EB38823C6
:1076B000C9F08091E80080FFF9CF8091E8008E77D3
:1076C0008093E80003C08EB3882361F08091E800C6
:1076D00080FFF9CF84E08093E9008091E8008B7708
:1076E0008093E800DF91CF911F910F91FF90EF9071
:1076F000DF90CF90BF90AF909F908F907F906F90D2
:107700005F904F9008959091BD01892F8F778132BE
:1077100049F58091BE018032A1F0813219F5913A8C
:1077200009F58091E800877F8093E8008CE091E084
:1077300067E070E027D28091E8008B778093E800C3
:107740000895913279F48091E800877F8093E80072
:107750008CE091E067E070E079D28091E8008E776C
:107760008093E800089582E061EC42E0D1D083E0AC
:1077700061E842E1CDD084E060E842E1C9C01F93F6
:10778000209100081092000844B714BE88E10FB69B
:10779000F89480936000109260000FBE80E8E0E0F3
:1077A000F0E00FB6F89480936100E09361000FBEA3
:1077B00031E035BF92E095BF3F9A209A559A809369
:1077C00061001092610047985D9A289A1092890092
:1077D0008AEF8093880090936F0083E0809381000C
:1077E000859194918F5F9F4F11F03093B401942F46
:1077F00041FF19C0809109012817A9F08093000862
:10780000789480911301882339F08091B20190918E
:10781000B3018F5E9240C8F310920008F89481E0A3
:10782000809313010CC090FF04C08091B4018823A1
:1078300051F493FF09C080910901281729F0809124
:10784000B401882309F04EDCD4D078941092B101B1
:107850001092B0011EEF20C0D7DC4BD38091B00155
:107860009091B10181549F4110F0109213018091C9
:10787000B9019091BA0101969093BA018093B90130
:10788000292F97FF03C0512F591B252F220F28178F
:1078900010F4479801C0479A809113018823E1F6BC
:1078A0008091E00081608093E0001CDC80E090E04B
:1078B0001F910895FA01923049F0933061F09130B0
:1078C000F9F484E191E022E130E01EC086E291E02B
:1078D0002EE330E019C0882329F484E691E024E007
:1078E00030E012C0813029F488E691E028E230E0EF
:1078F0000BC0823029F482E991E028E130E004C035
:1079000080E090E020E030E091838083C901089519
:107910008093E9008091EB0081608093EB001092EE
:10792000ED006093EC004093ED008091EE00881F25
:107930008827881F08958091BD0188238CF403C097
:107940008EB38823B1F08091E80082FFF9CF809157
:10795000E8008B778093E80008958EB3882349F080
:107960008091E80080FFF9CF8091E8008E778093C6
:10797000E8000895EF92FF920F931F9345D04CD0EB
:1079800008ED10E0F80180818F7780838081806826
:10799000808380818F7D808319BC1EBA1092BB01C9
:1079A00080EEE82EF12CF70180818B7F8083F80137
:1079B00080818160808380E060E042E0A9DFE1EEC9
:1079C000F0E080818E7F8083E2EEF0E08081816054
:1079D0008083808188608083F70180818E7F8083AF
:1079E000F8018081806180831F910F91FF90EF905B
:1079F0000895E7EDF0E08081816080838AE482BFB2
:107A000081E08093BC01B6CFE8EDF0E080818E7F0D
:107A100080831092E20008951092DA001092E10043
:107A200008951F920F920FB60F9211242F933F9338
:107A30004F935F936F937F938F939F93AF93BF9376
:107A4000EF93FF938091DA0080FF1BC08091D800F4
:107A500080FF17C08091DA008E7F8093DA008091DA
:107A6000D90080FF0BC080E189BD82E189BD09B4E6
:107A700000FEFDCF81E08EBB3BD203C019BC1EBA15
:107A800037D28091E10080FF17C08091E20080FF33
:107A900013C08091E2008E7F8093E2008091E2002B
:107AA00080618093E2008091D80080628093D8004A
:107AB00019BC85E08EBB1CD28091E10084FF2CC0F4
:107AC0008091E20084FF28C080E189BD82E189BD08
:107AD00009B400FEFDCF8091D8008F7D8093D8003F
:107AE0008091E1008F7E8093E1008091E2008F7EA3
:107AF0008093E2008091E20081608093E2008091B7
:107B0000BB01882331F48091E30087FD02C081E04E
:107B100001C084E08EBBECD18091E10083FF21C0E5
:107B20008091E20083FF1DC08091E100877F8093F8
:107B3000E10082E08EBB1092BB018091E1008E7F5C
:107B40008093E1008091E2008E7F8093E20080913B
:107B5000E20080618093E20080E060E042E0D8DEF5
:107B6000C7D1FF91EF91BF91AF919F918F917F917D
:107B70006F915F914F913F912F910F900FBE0F909A
:107B80001F9018959C014091C3015091C401461764
:107B9000570718F4F90190E044C06115710511F020
:107BA000AB01F8CF8091E8008E778093E80040E049
:107BB00050E0F0CF8EB3882309F444C0853009F437
:107BC00043C08091E80083FF02C081E00895809166
:107BD000E80082FD31C08091E80080FF22C08091E2
:107BE000F3009091F200782F60E0292F30E0262BEF
:107BF000372B07C081918093F100415050402F5F97
:107C00003F4F4115510519F02830310598F390E0A8
:107C10002830310509F491E08091E8008E77809357
:107C2000E8004115510531F6992321F605C08EB3C0
:107C3000882341F0853041F08091E80082FFF7CF42
:107C400080E0089582E0089583E008959C01611525
:107C5000710529F48091E8008B778093E800F901A1
:107C600026C08EB3882391F1853091F18091E80090
:107C700083FF02C081E008958091E80082FFF1CF88
:107C800006C08091F10081936150704059F02091BD
:107C9000F3008091F200322F20E090E0822B932BB2
:107CA000892B79F78091E8008B778093E800611544
:107CB0007105B9F605C08EB3882341F0853041F0D7
:107CC0008091E80080FFF7CF80E0089582E008957A
:107CD00083E008950F931F93DF93CF9300D0CDB728
:107CE000DEB7EDEBF1E08091F100819381E0E53CBE
:107CF000F807C9F708DD8091E80083FFE4C08091B0
:107D0000BD019091BE01953009F46DC0963040F4EC
:107D1000913081F1913070F0933009F0D4C02AC0D5
:107D2000983009F4A3C0993009F4B2C0963009F034
:107D3000CAC07CC0803809F4C6C0823809F0C3C00C
:107D40008091C10187708093E9008091EB001092CF
:107D5000E9002091E800277F2093E80090E025E0EB
:107D6000969587952A95E1F781708093F10010929E
:107D7000F10087C0882319F0823009F0A4C08F7108
:107D8000823009F0A0C08091BF01882331F5209195
:107D9000C101277009F497C02093E9008091EB009E
:107DA00080FF1BC0933021F48091EB00806213C0F0
:107DB0008091EB0080618093EB0081E090E002C055
:107DC000880F991F2A95E2F78093EA001092EA0043
:107DD0008091EB0088608093EB001092E900809125
:107DE000E800877F51C0882309F06DC01091BF0162
:107DF0001F770FB7F8948091E800877F8093E800A1
:107E00009ADD8091E80080FFFCCF8091E3008078CC
:107E1000812B8093E30080688093E300112311F4A9
:107E200082E001C083E08EBB0FBF4DC0805882301E
:107E300008F049C08091BF019091C0016091C101DB
:107E4000AE014F5F5F4F36DDBC01009709F43BC0C8
:107E50008091E800877F8093E80089819A8192DE93
:107E60008091E8008B778093E8002DC0803859F529
:107E70008091E800877F8093E8008091BB01809328
:107E8000F1008091E8008E778093E80054DD1BC0FC
:107E90008823C9F49091BF019230A8F48091E80042
:107EA000877F8093E8009093BB0145DD8091BB0103
:107EB000882331F48091E30087FD02C081E001C096
:107EC00084E08EBB50DC8091E80083FF0AC0809183
:107ED000EB0080628093EB008091E800877F8093C5
:107EE000E8000F900F90CF91DF911F910F910895AF
:107EF00008951F938EB3882361F01091E9001092CA
:107F0000E9008091E80083FF01C0E4DE1770109360
:107F1000E9001F910895F999FECF92BD81BDF89AAD
:107F2000992780B50895262FF999FECF1FBA92BDE3
:107F300081BD20BD0FB6F894FA9AF99A0FBE01964A
:067F40000895F894FFCF44
:107F46004341544552494E41007700080000000065
:107F56000000080112011001020000084123380048
:107F660001000201000109023E00020100803209FF
:107F7600040000010202010005240010010424028D
:107F8600040524060001070582030800FF09040111
:107F960000020A000000070504021000010705831D
:107FA6000210000104030904280352006F00620056
:107FB6006F007400200043006F006E0074007200B2
:107FC6006F006C00200042006F00610072006400C8
:107FD60000001803410072006400750069006E001D
:0C7FE6006F0020004C004C004300000025
:040000030000700089
:00000001FF

View File

@ -0,0 +1,11 @@
Builds against LUFA version 111009
make version 3.81
avrdude version 5.11
All AVR tools except avrdude were installed by CrossPack 20100115:
avr-gcc version 4.3.3 (GCC)
Thread model: single
Configured with: ../configure —prefix=/usr/local/CrossPack-AVR-20100115 —disable-dependency-tracking —disable-nls —disable-werror —target=avr —enable-languages=c,c++ —disable-nls —disable-libssp —with-dwarf2
avr-libc version 1.6.7
binutils version 2.19

View File

@ -0,0 +1,780 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2011.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
*/
#define INCLUDE_FROM_CATERINA_C
#include "Caterina.h"
/** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
* operating systems will not open the port unless the settings can be set successfully.
*/
static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
.CharFormat = CDC_LINEENCODING_OneStopBit,
.ParityType = CDC_PARITY_None,
.DataBits = 8 };
/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
* and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
* command.)
*/
static uint32_t CurrAddress;
/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
* via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
* loop until the AVR restarts and the application runs.
*/
static bool RunBootloader = true;
/* Pulse generation counters to keep track of the time remaining for each pulse type */
#define TX_RX_LED_PULSE_PERIOD 100
uint16_t TxLEDPulse = 0; // time remaining for Tx LED pulse
uint16_t RxLEDPulse = 0; // time remaining for Rx LED pulse
/* Bootloader timeout timer */
// MAH 8/15/12- change so timeouts work properly when the chip is running at 8MHz instead of 16.
#define TIMEOUT_PERIOD 8000
#define EXT_RESET_TIMEOUT_PERIOD 750
/*********************************************************************************************************
LilyPadUSB bootloader code
The LilyPadUSB bootloader has been changed to remove the 8-second delay after external reset which is in
the Leonardo. To enter the bootloader, the user should execute TWO external resets within 750 ms; that is,
press the reset button twice, quickly.\
Some other changes were made to allow this code to compile tightly enough to fit in the alloted 4k of
bootloader space.
*/
// MAH 8/15/12- added this flag to replace the bulky program memory reads to check for the presence of a sketch
// at the top of the memory space.
static bool sketchPresent = false;
// MAH 8/15/12- make this volatile, since we modify it in one place and read it in another, we want to make
// sure we're always working on the copy in memory and not an erroneous value stored in a cache somewhere.
// This variable stores the length of time we've been in the bootloader when waiting for the 8 second delay.
volatile uint16_t Timeout = 0;
// MAH 8/15/12- added this for delay during startup. Did not use existing Timeout value b/c it only increments
// when there's a sketch at the top of the memory.
volatile uint16_t resetTimeout = 0;
// MAH 8/15/12- let's make this an 8-bit value instead of 16- that saves on memory because 16-bit addition and
// comparison compiles to bulkier code. Note that this does *not* require a change to the Arduino core- we're
// just sort of ignoring the extra byte that the Arduino core puts at the next location.
uint8_t bootKey = 0x77;
volatile uint8_t *const bootKeyPtr = (volatile uint8_t *)0x0800;
// StartSketch() is called to clean up our mess before passing execution to the sketch.
void StartSketch(void)
{
cli();
/* Undo TIMER1 setup and clear the count before running the sketch */
TIMSK1 = 0;
TCCR1B = 0;
/* Relocate the interrupt vector table to the application section */
MCUCR = (1 << IVCE);
MCUCR = 0;
L_LED_OFF();
TX_LED_OFF();
RX_LED_OFF();
/* jump to beginning of application space */
__asm__ volatile("jmp 0x0000");
}
uint16_t LLEDPulse;
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
* runs the bootloader processing routine until it times out or is instructed to exit.
*/
int main(void)
{
/* Save the value of the boot key memory before it is overwritten */
uint8_t bootKeyPtrVal = *bootKeyPtr;
*bootKeyPtr = 0;
/* Check the reason for the reset so we can act accordingly */
uint8_t mcusr_state = MCUSR; // store the initial state of the Status register
MCUSR = 0; // clear all reset flags
/* Watchdog may be configured with a 15 ms period so must disable it before going any further */
// MAH 8/15/12- I removed this because wdt_disable() is the first thing SetupHardware() does- why
// do it twice right in a row?
//wdt_disable();
/* Setup hardware required for the bootloader */
// MAH 8/15/12- Moved this up to before the bootloader go/no-go decision tree so I could use the
// timer in that decision tree. Removed the USBInit() call from it; if I'm not going to stay in
// the bootloader, there's no point spending the time initializing the USB.
// SetupHardware();
wdt_disable();
// Disable clock division
clock_prescale_set(clock_div_1);
// Relocate the interrupt vector table to the bootloader section
MCUCR = (1 << IVCE);
MCUCR = (1 << IVSEL);
LED_SETUP();
CPU_PRESCALE(0);
L_LED_OFF();
TX_LED_OFF();
RX_LED_OFF();
// Initialize TIMER1 to handle bootloader timeout and LED tasks.
// With 16 MHz clock and 1/64 prescaler, timer 1 is clocked at 250 kHz
// Our chosen compare match generates an interrupt every 1 ms.
// This interrupt is disabled selectively when doing memory reading, erasing,
// or writing since SPM has tight timing requirements.
OCR1AH = 0;
OCR1AL = 250;
TIMSK1 = (1 << OCIE1A); // enable timer 1 output compare A match interrupt
TCCR1B = ((1 << CS11) | (1 << CS10)); // 1/64 prescaler on timer 1 input
// MAH 8/15/12- this replaces bulky pgm_read_word(0) calls later on, to save memory.
if (pgm_read_word(0) != 0xFFFF) sketchPresent = true;
// MAH 26 Oct 2012- The "bootload or not?" section has been modified since the code released
// with Arduino 1.0.1. The simplest modification is the replacement of equivalence checks on
// the reset bits with masked checks, so if more than one reset occurs before the register is
// checked, the check doesn't fail and fall through to the bootloader unnecessarily.
// The second, more in depth modification addresses behavior after an external reset (i.e.,
// user pushes the reset button). The Leonardo treats all external resets as requests to
// re-enter the bootloader and wait for code to be loaded. It remains in bootloader mode for
// 8 seconds before continuing on to the sketch (if one is present). By defining RESET_DELAY
// equal to 1, this behavior will persist.
// However, if RESET_DELAY is defined to 0, the reset timeout before loading the sketch drops
// to 750ms. If, during that 750ms, another external reset occurs, THEN an 8-second delay
// in the bootloader will occur.
// This is the "no-8-second-delay" code. If this is the first time through the loop, we
// don't expect to see the bootKey in memory.
if ( (mcusr_state & (1<<EXTRF)) && (bootKeyPtrVal != bootKey) ) {
*bootKeyPtr = bootKey; // Put the bootKey in memory so if we get back to this
// point again, we know to jump into the bootloader
sei(); // Enable interrupts, so we can use timer1 to track our time in the bootloader
while (RunBootloader)
{
if (resetTimeout > EXT_RESET_TIMEOUT_PERIOD) // resetTimeout is getting incremeted
RunBootloader = false; // in the timer1 ISR.
}
// If we make it past that while loop, it's sketch loading time!
*bootKeyPtr = 0; // clear out the bootKey; from now on, we want to treat a reset like
// a normal reset.
cli(); // Disable interrupts, in case no sketch is present.
RunBootloader = true; // We want to hang out in the bootloader if no sketch is present.
if (sketchPresent) StartSketch(); // If a sketch is present, go! Otherwise, wait around
// in the bootloader until one is uploaded.
}
// On a power-on reset, we ALWAYS want to go to the sketch. If there is one.
// This is a place where the old code had an equivalence and now there is a mask.
else if ( (mcusr_state & (1<<PORF)) && sketchPresent) {
StartSketch();
}
// On a watchdog reset, if the bootKey isn't set, and there's a sketch, we should just
// go straight to the sketch.
// This is a place where the old code had an equivalence and now there is a mask.
else if ( (mcusr_state & (1<<WDRF) ) && (bootKeyPtrVal != bootKey) && sketchPresent) {
// If it looks like an "accidental" watchdog reset then start the sketch.
StartSketch();
}
/* Initialize USB Subsystem */
USB_Init();
/* Enable global interrupts so that the USB stack can function */
sei();
Timeout = 0;
while (RunBootloader)
{
CDC_Task();
USB_USBTask();
/* Time out and start the sketch if one is present */
if (Timeout > TIMEOUT_PERIOD)
RunBootloader = false;
// MAH 8/15/12- This used to be a function call- inlining it saves a few bytes.
LLEDPulse++;
uint8_t p = LLEDPulse >> 8;
if (p > 127)
p = 254-p;
p += p;
if (((uint8_t)LLEDPulse) > p)
L_LED_OFF();
else
L_LED_ON();
}
/* Disconnect from the host - USB interface will be reset later along with the AVR */
USB_Detach();
/* Jump to beginning of application space to run the sketch - do not reset */
StartSketch();
}
// Timer1 is set up to provide periodic interrupts. This is used to flicker the LEDs during
// programming as well as to generate the clock counts which determine how long the board should
// remain in bootloading mode.
ISR(TIMER1_COMPA_vect, ISR_BLOCK)
{
/* Reset counter */
TCNT1H = 0;
TCNT1L = 0;
/* Check whether the TX or RX LED one-shot period has elapsed. if so, turn off the LED */
if (TxLEDPulse && !(--TxLEDPulse))
TX_LED_OFF();
if (RxLEDPulse && !(--RxLEDPulse))
RX_LED_OFF();
resetTimeout++; // Needed for the "short reset delay" mode- governs the time the board waits
// for a second reset before loading the sketch.
if (pgm_read_word(0) != 0xFFFF)
Timeout++;
}
// MAH 29 Oct 2012 Nothing below this point has to change for the LilyPadUSB support
/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
* to relay data to and from the attached USB host.
*/
void EVENT_USB_Device_ConfigurationChanged(void)
{
/* Setup CDC Notification, Rx and Tx Endpoints */
Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,
ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,
ENDPOINT_BANK_SINGLE);
Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,
ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,
ENDPOINT_BANK_SINGLE);
Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,
ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,
ENDPOINT_BANK_SINGLE);
}
/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
* the device from the USB host before passing along unhandled control requests to the library for processing
* internally.
*/
void EVENT_USB_Device_ControlRequest(void)
{
/* Ignore any requests that aren't directed to the CDC interface */
if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
(REQTYPE_CLASS | REQREC_INTERFACE))
{
return;
}
/* Process CDC specific control requests */
switch (USB_ControlRequest.bRequest)
{
case CDC_REQ_GetLineEncoding:
if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
{
Endpoint_ClearSETUP();
/* Write the line coding data to the control endpoint */
Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
Endpoint_ClearOUT();
}
break;
case CDC_REQ_SetLineEncoding:
if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
{
Endpoint_ClearSETUP();
/* Read the line coding data in from the host into the global struct */
Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
Endpoint_ClearIN();
}
break;
}
}
#if !defined(NO_BLOCK_SUPPORT)
/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
* on the AVR910 protocol command issued.
*
* \param[in] Command Single character AVR910 protocol command indicating what memory operation to perform
*/
static void ReadWriteMemoryBlock(const uint8_t Command)
{
uint16_t BlockSize;
char MemoryType;
bool HighByte = false;
uint8_t LowByte = 0;
BlockSize = (FetchNextCommandByte() << 8);
BlockSize |= FetchNextCommandByte();
MemoryType = FetchNextCommandByte();
if ((MemoryType != 'E') && (MemoryType != 'F'))
{
/* Send error byte back to the host */
WriteNextResponseByte('?');
return;
}
/* Disable timer 1 interrupt - can't afford to process nonessential interrupts
* while doing SPM tasks */
TIMSK1 = 0;
/* Check if command is to read memory */
if (Command == 'g')
{
/* Re-enable RWW section */
boot_rww_enable();
while (BlockSize--)
{
if (MemoryType == 'F')
{
/* Read the next FLASH byte from the current FLASH page */
#if (FLASHEND > 0xFFFF)
WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
#else
WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
#endif
/* If both bytes in current word have been read, increment the address counter */
if (HighByte)
CurrAddress += 2;
HighByte = !HighByte;
}
else
{
/* Read the next EEPROM byte into the endpoint */
WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
/* Increment the address counter after use */
CurrAddress += 2;
}
}
}
else
{
uint32_t PageStartAddress = CurrAddress;
if (MemoryType == 'F')
{
boot_page_erase(PageStartAddress);
boot_spm_busy_wait();
}
while (BlockSize--)
{
if (MemoryType == 'F')
{
/* If both bytes in current word have been written, increment the address counter */
if (HighByte)
{
/* Write the next FLASH word to the current FLASH page */
boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
/* Increment the address counter after use */
CurrAddress += 2;
}
else
{
LowByte = FetchNextCommandByte();
}
HighByte = !HighByte;
}
else
{
/* Write the next EEPROM byte from the endpoint */
eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
/* Increment the address counter after use */
CurrAddress += 2;
}
}
/* If in FLASH programming mode, commit the page after writing */
if (MemoryType == 'F')
{
/* Commit the flash page to memory */
boot_page_write(PageStartAddress);
/* Wait until write operation has completed */
boot_spm_busy_wait();
}
/* Send response byte back to the host */
WriteNextResponseByte('\r');
}
/* Re-enable timer 1 interrupt disabled earlier in this routine */
TIMSK1 = (1 << OCIE1A);
}
#endif
/** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
* to allow reception of the next data packet from the host.
*
* \return Next received byte from the host in the CDC data OUT endpoint
*/
static uint8_t FetchNextCommandByte(void)
{
/* Select the OUT endpoint so that the next data byte can be read */
Endpoint_SelectEndpoint(CDC_RX_EPNUM);
/* If OUT endpoint empty, clear it and wait for the next packet from the host */
while (!(Endpoint_IsReadWriteAllowed()))
{
Endpoint_ClearOUT();
while (!(Endpoint_IsOUTReceived()))
{
if (USB_DeviceState == DEVICE_STATE_Unattached)
return 0;
}
}
/* Fetch the next byte from the OUT endpoint */
return Endpoint_Read_8();
}
/** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
* bank when full ready for the next byte in the packet to the host.
*
* \param[in] Response Next response byte to send to the host
*/
static void WriteNextResponseByte(const uint8_t Response)
{
/* Select the IN endpoint so that the next data byte can be written */
Endpoint_SelectEndpoint(CDC_TX_EPNUM);
/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
if (!(Endpoint_IsReadWriteAllowed()))
{
Endpoint_ClearIN();
while (!(Endpoint_IsINReady()))
{
if (USB_DeviceState == DEVICE_STATE_Unattached)
return;
}
}
/* Write the next byte to the IN endpoint */
Endpoint_Write_8(Response);
TX_LED_ON();
TxLEDPulse = TX_RX_LED_PULSE_PERIOD;
}
#define STK_OK 0x10
#define STK_INSYNC 0x14 // ' '
#define CRC_EOP 0x20 // 'SPACE'
#define STK_GET_SYNC 0x30 // '0'
#define STK_GET_PARAMETER 0x41 // 'A'
#define STK_SET_DEVICE 0x42 // 'B'
#define STK_SET_DEVICE_EXT 0x45 // 'E'
#define STK_LOAD_ADDRESS 0x55 // 'U'
#define STK_UNIVERSAL 0x56 // 'V'
#define STK_PROG_PAGE 0x64 // 'd'
#define STK_READ_PAGE 0x74 // 't'
#define STK_READ_SIGN 0x75 // 'u'
/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
* and send the appropriate response back to the host.
*/
void CDC_Task(void)
{
/* Select the OUT endpoint */
Endpoint_SelectEndpoint(CDC_RX_EPNUM);
/* Check if endpoint has a command in it sent from the host */
if (!(Endpoint_IsOUTReceived()))
return;
RX_LED_ON();
RxLEDPulse = TX_RX_LED_PULSE_PERIOD;
/* Read in the bootloader command (first byte sent from host) */
uint8_t Command = FetchNextCommandByte();
if (Command == 'E')
{
/* We nearly run out the bootloader timeout clock,
* leaving just a few hundred milliseconds so the
* bootloder has time to respond and service any
* subsequent requests */
Timeout = TIMEOUT_PERIOD - 500;
/* Re-enable RWW section - must be done here in case
* user has disabled verification on upload. */
boot_rww_enable_safe();
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if (Command == 'T')
{
FetchNextCommandByte();
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if ((Command == 'L') || (Command == 'P'))
{
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if (Command == 't')
{
// Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader
WriteNextResponseByte(0x44);
WriteNextResponseByte(0x00);
}
else if (Command == 'a')
{
// Indicate auto-address increment is supported
WriteNextResponseByte('Y');
}
else if (Command == 'A')
{
// Set the current address to that given by the host
CurrAddress = (FetchNextCommandByte() << 9);
CurrAddress |= (FetchNextCommandByte() << 1);
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if (Command == 'p')
{
// Indicate serial programmer back to the host
WriteNextResponseByte('S');
}
else if (Command == 'S')
{
// Write the 7-byte software identifier to the endpoint
for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
}
else if (Command == 'V')
{
WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
}
else if (Command == 's')
{
WriteNextResponseByte(AVR_SIGNATURE_3);
WriteNextResponseByte(AVR_SIGNATURE_2);
WriteNextResponseByte(AVR_SIGNATURE_1);
}
else if (Command == 'e')
{
// Clear the application section of flash
for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
{
boot_page_erase(CurrFlashAddress);
boot_spm_busy_wait();
boot_page_write(CurrFlashAddress);
boot_spm_busy_wait();
}
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
#if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
else if (Command == 'l')
{
// Set the lock bits to those given by the host
boot_lock_bits_set(FetchNextCommandByte());
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
#endif
else if (Command == 'r')
{
WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
}
else if (Command == 'F')
{
WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
}
else if (Command == 'N')
{
WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
}
else if (Command == 'Q')
{
WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
}
#if !defined(NO_BLOCK_SUPPORT)
else if (Command == 'b')
{
WriteNextResponseByte('Y');
// Send block size to the host
WriteNextResponseByte(SPM_PAGESIZE >> 8);
WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
}
else if ((Command == 'B') || (Command == 'g'))
{
// Keep resetting the timeout counter if we're receiving self-programming instructions
Timeout = 0;
// Delegate the block write/read to a separate function for clarity
ReadWriteMemoryBlock(Command);
}
#endif
#if !defined(NO_FLASH_BYTE_SUPPORT)
else if (Command == 'C')
{
// Write the high byte to the current flash page
boot_page_fill(CurrAddress, FetchNextCommandByte());
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if (Command == 'c')
{
// Write the low byte to the current flash page
boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
// Increment the address
CurrAddress += 2;
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if (Command == 'm')
{
// Commit the flash page to memory
boot_page_write(CurrAddress);
// Wait until write operation has completed
boot_spm_busy_wait();
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if (Command == 'R')
{
#if (FLASHEND > 0xFFFF)
uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
#else
uint16_t ProgramWord = pgm_read_word(CurrAddress);
#endif
WriteNextResponseByte(ProgramWord >> 8);
WriteNextResponseByte(ProgramWord & 0xFF);
}
#endif
#if !defined(NO_EEPROM_BYTE_SUPPORT)
else if (Command == 'D')
{
// Read the byte from the endpoint and write it to the EEPROM
eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
// Increment the address after use
CurrAddress += 2;
// Send confirmation byte back to the host
WriteNextResponseByte('\r');
}
else if (Command == 'd')
{
// Read the EEPROM byte and write it to the endpoint
WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
// Increment the address after use
CurrAddress += 2;
}
#endif
else if (Command != 27)
{
// Unknown (non-sync) command, return fail code
WriteNextResponseByte('?');
}
/* Select the IN endpoint */
Endpoint_SelectEndpoint(CDC_TX_EPNUM);
/* Remember if the endpoint is completely full before clearing it */
bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
/* Send the endpoint data to the host */
Endpoint_ClearIN();
/* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
if (IsEndpointFull)
{
while (!(Endpoint_IsINReady()))
{
if (USB_DeviceState == DEVICE_STATE_Unattached)
return;
}
Endpoint_ClearIN();
}
/* Wait until the data has been sent to the host */
while (!(Endpoint_IsINReady()))
{
if (USB_DeviceState == DEVICE_STATE_Unattached)
return;
}
/* Select the OUT endpoint */
Endpoint_SelectEndpoint(CDC_RX_EPNUM);
/* Acknowledge the command from the host */
Endpoint_ClearOUT();
}

View File

@ -0,0 +1,106 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2011.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for BootloaderCDC.c.
*/
#ifndef _CDC_H_
#define _CDC_H_
/* Includes: */
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/boot.h>
#include <avr/eeprom.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include <stdbool.h>
#include "Descriptors.h"
#include <LUFA/Drivers/USB/USB.h>
/* Macros: */
/** Version major of the CDC bootloader. */
#define BOOTLOADER_VERSION_MAJOR 0x01
/** Version minor of the CDC bootloader. */
#define BOOTLOADER_VERSION_MINOR 0x00
/** Hardware version major of the CDC bootloader. */
#define BOOTLOADER_HWVERSION_MAJOR 0x01
/** Hardware version minor of the CDC bootloader. */
#define BOOTLOADER_HWVERSION_MINOR 0x00
/** Eight character bootloader firmware identifier reported to the host when requested */
#define SOFTWARE_IDENTIFIER "CATERINA"
#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))
#define LED_SETUP() DDRC |= (1<<7); DDRB |= (1<<0); DDRD |= (1<<5);
#define L_LED_OFF() PORTC &= ~(1<<7)
#define L_LED_ON() PORTC |= (1<<7)
#define L_LED_TOGGLE() PORTC ^= (1<<7)
#if DEVICE_PID == 0x0037 // polarity of the RX and TX LEDs is reversed on the Micro
#define TX_LED_OFF() PORTD &= ~(1<<5)
#define TX_LED_ON() PORTD |= (1<<5)
#define RX_LED_OFF() PORTB &= ~(1<<0)
#define RX_LED_ON() PORTB |= (1<<0)
#else
#define TX_LED_OFF() PORTD |= (1<<5)
#define TX_LED_ON() PORTD &= ~(1<<5)
#define RX_LED_OFF() PORTB |= (1<<0)
#define RX_LED_ON() PORTB &= ~(1<<0)
#endif
/* Type Defines: */
/** Type define for a non-returning pointer to the start of the loaded application in flash memory. */
typedef void (*AppPtr_t)(void) ATTR_NO_RETURN;
/* Function Prototypes: */
void StartSketch(void);
void LEDPulse(void);
void CDC_Task(void);
void SetupHardware(void);
void EVENT_USB_Device_ConfigurationChanged(void);
#if defined(INCLUDE_FROM_CATERINA_C) || defined(__DOXYGEN__)
#if !defined(NO_BLOCK_SUPPORT)
static void ReadWriteMemoryBlock(const uint8_t Command);
#endif
static uint8_t FetchNextCommandByte(void);
static void WriteNextResponseByte(const uint8_t Response);
#endif
#endif

View File

@ -0,0 +1,270 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2011.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* USB Device Descriptors, for library use when in USB device mode. Descriptors are special
* computer-readable structures which the host requests upon device enumeration, to determine
* the device's capabilities and functions.
*/
#include "Descriptors.h"
/** Device descriptor structure. This descriptor, located in SRAM memory, describes the overall
* device characteristics, including the supported USB version, control endpoint size and the
* number of device configurations. The descriptor is read out by the USB host when the enumeration
* process begins.
*/
const USB_Descriptor_Device_t DeviceDescriptor =
{
.Header = {.Size = sizeof(USB_Descriptor_Device_t), .Type = DTYPE_Device},
.USBSpecification = VERSION_BCD(01.10),
.Class = CDC_CSCP_CDCClass,
.SubClass = CDC_CSCP_NoSpecificSubclass,
.Protocol = CDC_CSCP_NoSpecificProtocol,
.Endpoint0Size = FIXED_CONTROL_ENDPOINT_SIZE,
.VendorID = DEVICE_VID,
.ProductID = DEVICE_PID,
.ReleaseNumber = VERSION_BCD(00.01),
.ManufacturerStrIndex = 0x02,
.ProductStrIndex = 0x01,
.SerialNumStrIndex = NO_DESCRIPTOR,
.NumberOfConfigurations = FIXED_NUM_CONFIGURATIONS
};
/** Configuration descriptor structure. This descriptor, located in SRAM memory, describes the usage
* of the device in one of its supported configurations, including information about any device interfaces
* and endpoints. The descriptor is read out by the USB host during the enumeration process when selecting
* a configuration so that the host may correctly communicate with the USB device.
*/
const USB_Descriptor_Configuration_t ConfigurationDescriptor =
{
.Config =
{
.Header = {.Size = sizeof(USB_Descriptor_Configuration_Header_t), .Type = DTYPE_Configuration},
.TotalConfigurationSize = sizeof(USB_Descriptor_Configuration_t),
.TotalInterfaces = 2,
.ConfigurationNumber = 1,
.ConfigurationStrIndex = NO_DESCRIPTOR,
.ConfigAttributes = USB_CONFIG_ATTR_BUSPOWERED,
.MaxPowerConsumption = USB_CONFIG_POWER_MA(100)
},
.CDC_CCI_Interface =
{
.Header = {.Size = sizeof(USB_Descriptor_Interface_t), .Type = DTYPE_Interface},
.InterfaceNumber = 0,
.AlternateSetting = 0,
.TotalEndpoints = 1,
.Class = CDC_CSCP_CDCClass,
.SubClass = CDC_CSCP_ACMSubclass,
.Protocol = CDC_CSCP_ATCommandProtocol,
.InterfaceStrIndex = NO_DESCRIPTOR
},
.CDC_Functional_Header =
{
.Header = {.Size = sizeof(USB_CDC_Descriptor_FunctionalHeader_t), .Type = DTYPE_CSInterface},
.Subtype = 0x00,
.CDCSpecification = VERSION_BCD(01.10),
},
.CDC_Functional_ACM =
{
.Header = {.Size = sizeof(USB_CDC_Descriptor_FunctionalACM_t), .Type = DTYPE_CSInterface},
.Subtype = 0x02,
.Capabilities = 0x04,
},
.CDC_Functional_Union =
{
.Header = {.Size = sizeof(USB_CDC_Descriptor_FunctionalUnion_t), .Type = DTYPE_CSInterface},
.Subtype = 0x06,
.MasterInterfaceNumber = 0,
.SlaveInterfaceNumber = 1,
},
.CDC_NotificationEndpoint =
{
.Header = {.Size = sizeof(USB_Descriptor_Endpoint_t), .Type = DTYPE_Endpoint},
.EndpointAddress = (ENDPOINT_DIR_IN | CDC_NOTIFICATION_EPNUM),
.Attributes = (EP_TYPE_INTERRUPT | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA),
.EndpointSize = CDC_NOTIFICATION_EPSIZE,
.PollingIntervalMS = 0xFF
},
.CDC_DCI_Interface =
{
.Header = {.Size = sizeof(USB_Descriptor_Interface_t), .Type = DTYPE_Interface},
.InterfaceNumber = 1,
.AlternateSetting = 0,
.TotalEndpoints = 2,
.Class = CDC_CSCP_CDCDataClass,
.SubClass = CDC_CSCP_NoDataSubclass,
.Protocol = CDC_CSCP_NoDataProtocol,
.InterfaceStrIndex = NO_DESCRIPTOR
},
.CDC_DataOutEndpoint =
{
.Header = {.Size = sizeof(USB_Descriptor_Endpoint_t), .Type = DTYPE_Endpoint},
.EndpointAddress = (ENDPOINT_DIR_OUT | CDC_RX_EPNUM),
.Attributes = (EP_TYPE_BULK | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA),
.EndpointSize = CDC_TXRX_EPSIZE,
.PollingIntervalMS = 0x01
},
.CDC_DataInEndpoint =
{
.Header = {.Size = sizeof(USB_Descriptor_Endpoint_t), .Type = DTYPE_Endpoint},
.EndpointAddress = (ENDPOINT_DIR_IN | CDC_TX_EPNUM),
.Attributes = (EP_TYPE_BULK | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA),
.EndpointSize = CDC_TXRX_EPSIZE,
.PollingIntervalMS = 0x01
}
};
/** Language descriptor structure. This descriptor, located in SRAM memory, is returned when the host requests
* the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate
* via the language ID table available at USB.org what languages the device supports for its string descriptors.
*/
const USB_Descriptor_String_t LanguageString =
{
.Header = {.Size = USB_STRING_LEN(1), .Type = DTYPE_String},
.UnicodeString = {LANGUAGE_ID_ENG}
};
/** Product descriptor string. This is a Unicode string containing the product's details in human readable form,
* and is read out upon request by the host when the appropriate string ID is requested, listed in the Device
* Descriptor.
*/
const USB_Descriptor_String_t ProductString =
{
.Header = {.Size = USB_STRING_LEN(19), .Type = DTYPE_String},
#if DEVICE_PID == 0x0036
.UnicodeString = L"Arduino Leonardo"
#elif DEVICE_PID == 0x0037
.UnicodeString = L"Arduino Micro "
#elif DEVICE_PID == 0x0038
.UnicodeString = L"Robot Control Board"
#elif DEVICE_PID == 0x0039
.UnicodeString = L"Robot Motor Board "
#elif DEVICE_PID == 0x003C
.UnicodeString = L"Arduino Esplora "
#else
.UnicodeString = L"USB IO board "
#endif
};
const USB_Descriptor_String_t ManufacturerString =
{
.Header = {.Size = USB_STRING_LEN(11), .Type = DTYPE_String},
#if DEVICE_VID == 0x2341
.UnicodeString = L"Arduino LLC"
#else
.UnicodeString = L"Unknown "
#endif
};
/** This function is called by the library when in device mode, and must be overridden (see LUFA library "USB Descriptors"
* documentation) by the application code so that the address and size of a requested descriptor can be given
* to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function
* is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the
* USB host.
*/
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
const uint8_t wIndex,
const void** const DescriptorAddress)
{
const uint8_t DescriptorType = (wValue >> 8);
const uint8_t DescriptorNumber = (wValue & 0xFF);
const void* Address = NULL;
uint16_t Size = NO_DESCRIPTOR;
switch (DescriptorType)
{
case DTYPE_Device:
Address = &DeviceDescriptor;
Size = sizeof(USB_Descriptor_Device_t);
break;
case DTYPE_Configuration:
Address = &ConfigurationDescriptor;
Size = sizeof(USB_Descriptor_Configuration_t);
break;
case DTYPE_String:
if (!(DescriptorNumber))
{
Address = &LanguageString;
Size = LanguageString.Header.Size;
}
else if (DescriptorNumber == DeviceDescriptor.ProductStrIndex)
{
Address = &ProductString;
Size = ProductString.Header.Size;
} else if (DescriptorNumber == DeviceDescriptor.ManufacturerStrIndex)
{
Address = &ManufacturerString;
Size = ManufacturerString.Header.Size;
}
break;
}
*DescriptorAddress = Address;
return Size;
}

View File

@ -0,0 +1,139 @@
/*
LUFA Library
Copyright (C) Dean Camera, 2011.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in
all copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of the author not be used in
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether
in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of
this software.
*/
/** \file
*
* Header file for Descriptors.c.
*/
#ifndef _DESCRIPTORS_H_
#define _DESCRIPTORS_H_
/* Includes: */
#include <LUFA/Drivers/USB/USB.h>
/* Macros: */
#if defined(__AVR_AT90USB1287__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x97
#define AVR_SIGNATURE_3 0x82
#elif defined(__AVR_AT90USB647__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x96
#define AVR_SIGNATURE_3 0x82
#elif defined(__AVR_AT90USB1286__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x97
#define AVR_SIGNATURE_3 0x82
#elif defined(__AVR_AT90USB646__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x96
#define AVR_SIGNATURE_3 0x82
#elif defined(__AVR_ATmega32U6__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x95
#define AVR_SIGNATURE_3 0x88
#elif defined(__AVR_ATmega32U4__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x95
#define AVR_SIGNATURE_3 0x87
#elif defined(__AVR_ATmega16U4__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x94
#define AVR_SIGNATURE_3 0x88
#elif defined(__AVR_ATmega32U2__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x95
#define AVR_SIGNATURE_3 0x8A
#elif defined(__AVR_ATmega16U2__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x94
#define AVR_SIGNATURE_3 0x89
#elif defined(__AVR_AT90USB162__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x94
#define AVR_SIGNATURE_3 0x82
#elif defined(__AVR_ATmega8U2__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x93
#define AVR_SIGNATURE_3 0x89
#elif defined(__AVR_AT90USB82__)
#define AVR_SIGNATURE_1 0x1E
#define AVR_SIGNATURE_2 0x94
#define AVR_SIGNATURE_3 0x82
#else
#error The selected AVR part is not currently supported by this bootloader.
#endif
/** Endpoint number for the CDC control interface event notification endpoint. */
#define CDC_NOTIFICATION_EPNUM 2
/** Endpoint number for the CDC data interface TX (data IN) endpoint. */
#define CDC_TX_EPNUM 3
/** Endpoint number for the CDC data interface RX (data OUT) endpoint. */
#define CDC_RX_EPNUM 4
/** Size of the CDC data interface TX and RX data endpoint banks, in bytes. */
#define CDC_TXRX_EPSIZE 16
/** Size of the CDC control interface notification endpoint bank, in bytes. */
#define CDC_NOTIFICATION_EPSIZE 8
/* Type Defines: */
/** Type define for the device configuration descriptor structure. This must be defined in the
* application code, as the configuration descriptor contains several sub-descriptors which
* vary between devices, and which describe the device's usage to the host.
*/
typedef struct
{
USB_Descriptor_Configuration_Header_t Config;
// CDC Control Interface
USB_Descriptor_Interface_t CDC_CCI_Interface;
USB_CDC_Descriptor_FunctionalHeader_t CDC_Functional_Header;
USB_CDC_Descriptor_FunctionalACM_t CDC_Functional_ACM;
USB_CDC_Descriptor_FunctionalUnion_t CDC_Functional_Union;
USB_Descriptor_Endpoint_t CDC_NotificationEndpoint;
// CDC Data Interface
USB_Descriptor_Interface_t CDC_DCI_Interface;
USB_Descriptor_Endpoint_t CDC_DataOutEndpoint;
USB_Descriptor_Endpoint_t CDC_DataInEndpoint;
} USB_Descriptor_Configuration_t;
/* Function Prototypes: */
uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue,
const uint8_t wIndex,
const void** const DescriptorAddress)
ATTR_WARN_UNUSED_RESULT ATTR_NON_NULL_PTR_ARG(3);
#endif

View File

@ -0,0 +1,738 @@
# Hey Emacs, this is a -*- makefile -*-
#----------------------------------------------------------------------------
# WinAVR Makefile Template written by Eric B. Weddington, Jörg Wunsch, et al.
# >> Modified for use with the LUFA project. <<
#
# Released to the Public Domain
#
# Additional material for this makefile was written by:
# Peter Fleury
# Tim Henigan
# Colin O'Flynn
# Reiner Patommel
# Markus Pfaff
# Sander Pool
# Frederik Rouleau
# Carlos Lamas
# Dean Camera
# Opendous Inc.
# Denver Gingerich
#
#----------------------------------------------------------------------------
# On command line:
#
# make all = Make software.
#
# make clean = Clean out built project files.
#
# make coff = Convert ELF to AVR COFF.
#
# make extcoff = Convert ELF to AVR Extended COFF.
#
# make program = Download the hex file to the device, using avrdude.
# Please customize the avrdude settings below first!
#
# make doxygen = Generate DoxyGen documentation for the project (must have
# DoxyGen installed)
#
# make debug = Start either simulavr or avarice as specified for debugging,
# with avr-gdb or avr-insight as the front end for debugging.
#
# make filename.s = Just compile filename.c into the assembler code only.
#
# make filename.i = Create a preprocessed source file for use in submitting
# bug reports to the GCC project.
#
# To rebuild project do "make clean" then "make all".
#----------------------------------------------------------------------------
# USB vendor ID (VID)
# reuse of this VID by others is forbidden by USB-IF
# official Arduino LLC VID
VID = 0x2341
# USB product ID (PID)
# official Leonardo PID
# PID = 0x0036
# official Micro PID
# PID = 0x0037
# official Arduino Robot Control Board PID
PID = 0x0038
# official Arduino Robot Motor Board PID
# PID = 0x0039
# official Esplora PID
# PID = 0x003C
# MCU name
MCU = atmega32u4
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Target board (see library "Board Types" documentation, NONE for projects not requiring
# LUFA board drivers). If USER is selected, put custom board drivers in a directory called
# "Board" inside the application directory.
BOARD = USER
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Starting byte address of the bootloader, as a byte address - computed via the formula
# BOOT_START = ((FLASH_SIZE_KB - BOOT_SECTION_SIZE_KB) * 1024)
#
# Note that the bootloader size and start address given in AVRStudio is in words and not
# bytes, and so will need to be doubled to obtain the byte address needed by AVR-GCC.
FLASH_SIZE_KB = 32
BOOT_SECTION_SIZE_KB = 4
BOOT_START = 0x$(shell echo "obase=16; ($(FLASH_SIZE_KB) - $(BOOT_SECTION_SIZE_KB)) * 1024" | bc)
# Output format. (can be srec, ihex, binary)
FORMAT = ihex
# Target file name (without extension).
TARGET = Caterina
# Object files directory
# To put object files in current directory, use a dot (.), do NOT make
# this an empty or blank macro!
OBJDIR = .
# Path to the LUFA library
LUFA_PATH = LUFA-111009
# LUFA library compile-time options and predefined tokens
LUFA_OPTS = -D USB_DEVICE_ONLY
LUFA_OPTS += -D DEVICE_STATE_AS_GPIOR=0
LUFA_OPTS += -D ORDERED_EP_CONFIG
LUFA_OPTS += -D FIXED_CONTROL_ENDPOINT_SIZE=8
LUFA_OPTS += -D FIXED_NUM_CONFIGURATIONS=1
LUFA_OPTS += -D USE_RAM_DESCRIPTORS
LUFA_OPTS += -D USE_STATIC_OPTIONS="(USB_DEVICE_OPT_FULLSPEED | USB_OPT_REG_ENABLED | USB_OPT_AUTO_PLL)"
LUFA_OPTS += -D NO_INTERNAL_SERIAL
LUFA_OPTS += -D NO_DEVICE_SELF_POWER
LUFA_OPTS += -D NO_DEVICE_REMOTE_WAKEUP
LUFA_OPTS += -D NO_SOF_EVENTS
#LUFA_OPTS += -D NO_BLOCK_SUPPORT
#LUFA_OPTS += -D NO_EEPROM_BYTE_SUPPORT
#LUFA_OPTS += -D NO_FLASH_BYTE_SUPPORT
LUFA_OPTS += -D NO_LOCK_BYTE_WRITE_SUPPORT
# Create the LUFA source path variables by including the LUFA root makefile
include $(LUFA_PATH)/LUFA/makefile
# List C source files here. (C dependencies are automatically generated.)
SRC = $(TARGET).c \
Descriptors.c \
$(LUFA_SRC_USB) \
# List C++ source files here. (C dependencies are automatically generated.)
CPPSRC =
# List Assembler source files here.
# Make them always end in a capital .S. Files ending in a lowercase .s
# will not be considered source files but generated files (assembler
# output from the compiler), and will be deleted upon "make clean"!
# Even though the DOS/Win* filesystem matches both .s and .S the same,
# it will preserve the spelling of the filenames, and gcc itself does
# care about how the name is spelled on its command-line.
ASRC =
# Optimization level, can be [0, 1, 2, 3, s].
# 0 = turn off optimization. s = optimize for size.
# (Note: 3 is not always the best optimization level. See avr-libc FAQ.)
OPT = s
# Debugging format.
# Native formats for AVR-GCC's -g are dwarf-2 [default] or stabs.
# AVR Studio 4.10 requires dwarf-2.
# AVR [Extended] COFF format requires stabs, plus an avr-objcopy run.
DEBUG = dwarf-2
# List any extra directories to look for include files here.
# Each directory must be seperated by a space.
# Use forward slashes for directory separators.
# For a directory that has spaces, enclose it in quotes.
EXTRAINCDIRS = $(LUFA_PATH)/
# Compiler flag to set the C Standard level.
# c89 = "ANSI" C
# gnu89 = c89 plus GCC extensions
# c99 = ISO C99 standard (not yet fully implemented)
# gnu99 = c99 plus GCC extensions
CSTANDARD = -std=c99
# Place -D or -U options here for C sources
CDEFS = -DF_CPU=$(F_CPU)UL
CDEFS += -DF_USB=$(F_USB)UL
CDEFS += -DBOARD=BOARD_$(BOARD) -DARCH=ARCH_$(ARCH)
CDEFS += -DBOOT_START_ADDR=$(BOOT_START)UL
CDEFS += -DDEVICE_VID=$(VID)UL
CDEFS += -DDEVICE_PID=$(PID)UL
CDEFS += $(LUFA_OPTS)
# Place -D or -U options here for ASM sources
ADEFS = -DF_CPU=$(F_CPU)
ADEFS += -DF_USB=$(F_USB)UL
ADEFS += -DBOARD=BOARD_$(BOARD)
ADEFS += -DBOOT_START_ADDR=$(BOOT_START)UL
ADEFS += $(LUFA_OPTS)
# Place -D or -U options here for C++ sources
CPPDEFS = -DF_CPU=$(F_CPU)UL
CPPDEFS += -DF_USB=$(F_USB)UL
CPPDEFS += -DBOARD=BOARD_$(BOARD)
CPPDEFS += -DBOOT_START_ADDR=$(BOOT_START)UL
CPPDEFS += $(LUFA_OPTS)
#CPPDEFS += -D__STDC_LIMIT_MACROS
#CPPDEFS += -D__STDC_CONSTANT_MACROS
#---------------- Compiler Options C ----------------
# -g*: generate debugging information
# -O*: optimization level
# -f...: tuning, see GCC manual and avr-libc documentation
# -Wall...: warning level
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns...: create assembler listing
CFLAGS = -g$(DEBUG)
CFLAGS += $(CDEFS)
CFLAGS += -O$(OPT)
CFLAGS += -funsigned-char
CFLAGS += -funsigned-bitfields
CFLAGS += -ffunction-sections
CFLAGS += -fno-inline-small-functions
CFLAGS += -fpack-struct
CFLAGS += -fshort-enums
CFLAGS += -fno-strict-aliasing
CFLAGS += -Wall
CFLAGS += -Wstrict-prototypes
#CFLAGS += -mshort-calls
#CFLAGS += -fno-unit-at-a-time
#CFLAGS += -Wundef
#CFLAGS += -Wunreachable-code
#CFLAGS += -Wsign-compare
CFLAGS += -Wa,-adhlns=$(<:%.c=$(OBJDIR)/%.lst)
CFLAGS += $(patsubst %,-I%,$(EXTRAINCDIRS))
CFLAGS += $(CSTANDARD)
#---------------- Compiler Options C++ ----------------
# -g*: generate debugging information
# -O*: optimization level
# -f...: tuning, see GCC manual and avr-libc documentation
# -Wall...: warning level
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns...: create assembler listing
CPPFLAGS = -g$(DEBUG)
CPPFLAGS += $(CPPDEFS)
CPPFLAGS += -O$(OPT)
CPPFLAGS += -funsigned-char
CPPFLAGS += -funsigned-bitfields
CPPFLAGS += -fpack-struct
CPPFLAGS += -fshort-enums
CPPFLAGS += -fno-exceptions
CPPFLAGS += -Wall
CPPFLAGS += -Wundef
#CPPFLAGS += -mshort-calls
#CPPFLAGS += -fno-unit-at-a-time
#CPPFLAGS += -Wstrict-prototypes
#CPPFLAGS += -Wunreachable-code
#CPPFLAGS += -Wsign-compare
CPPFLAGS += -Wa,-adhlns=$(<:%.cpp=$(OBJDIR)/%.lst)
CPPFLAGS += $(patsubst %,-I%,$(EXTRAINCDIRS))
#CPPFLAGS += $(CSTANDARD)
#---------------- Assembler Options ----------------
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns: create listing
# -gstabs: have the assembler create line number information; note that
# for use in COFF files, additional information about filenames
# and function names needs to be present in the assembler source
# files -- see avr-libc docs [FIXME: not yet described there]
# -listing-cont-lines: Sets the maximum number of continuation lines of hex
# dump that will be displayed for a given single line of source input.
ASFLAGS = $(ADEFS) -Wa,-adhlns=$(<:%.S=$(OBJDIR)/%.lst),-gstabs,--listing-cont-lines=100
#---------------- Library Options ----------------
# Minimalistic printf version
PRINTF_LIB_MIN = -Wl,-u,vfprintf -lprintf_min
# Floating point printf version (requires MATH_LIB = -lm below)
PRINTF_LIB_FLOAT = -Wl,-u,vfprintf -lprintf_flt
# If this is left blank, then it will use the Standard printf version.
PRINTF_LIB =
#PRINTF_LIB = $(PRINTF_LIB_MIN)
#PRINTF_LIB = $(PRINTF_LIB_FLOAT)
# Minimalistic scanf version
SCANF_LIB_MIN = -Wl,-u,vfscanf -lscanf_min
# Floating point + %[ scanf version (requires MATH_LIB = -lm below)
SCANF_LIB_FLOAT = -Wl,-u,vfscanf -lscanf_flt
# If this is left blank, then it will use the Standard scanf version.
SCANF_LIB =
#SCANF_LIB = $(SCANF_LIB_MIN)
#SCANF_LIB = $(SCANF_LIB_FLOAT)
MATH_LIB = -lm
# List any extra directories to look for libraries here.
# Each directory must be seperated by a space.
# Use forward slashes for directory separators.
# For a directory that has spaces, enclose it in quotes.
EXTRALIBDIRS =
#---------------- External Memory Options ----------------
# 64 KB of external RAM, starting after internal RAM (ATmega128!),
# used for variables (.data/.bss) and heap (malloc()).
#EXTMEMOPTS = -Wl,-Tdata=0x801100,--defsym=__heap_end=0x80ffff
# 64 KB of external RAM, starting after internal RAM (ATmega128!),
# only used for heap (malloc()).
#EXTMEMOPTS = -Wl,--section-start,.data=0x801100,--defsym=__heap_end=0x80ffff
EXTMEMOPTS =
#---------------- Linker Options ----------------
# -Wl,...: tell GCC to pass this to linker.
# -Map: create map file
# --cref: add cross reference to map file
LDFLAGS = -Wl,-Map=$(TARGET).map,--cref
LDFLAGS += -Wl,--section-start=.text=$(BOOT_START)
LDFLAGS += -Wl,--relax
LDFLAGS += -Wl,--gc-sections
LDFLAGS += $(EXTMEMOPTS)
LDFLAGS += $(patsubst %,-L%,$(EXTRALIBDIRS))
LDFLAGS += $(PRINTF_LIB) $(SCANF_LIB) $(MATH_LIB)
#LDFLAGS += -T linker_script.x
#---------------- Programming Options (avrdude) ----------------
# Programming hardware
# Type: avrdude -c ?
# to get a full listing.
#
#AVRDUDE_PROGRAMMER = avrispmkII
AVRDUDE_PROGRAMMER = usbtiny
# com1 = serial port. Use lpt1 to connect to parallel port.
AVRDUDE_PORT = usb
AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex
#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep
# Uncomment the following if you want avrdude's erase cycle counter.
# Note that this counter needs to be initialized first using -Yn,
# see avrdude manual.
#AVRDUDE_ERASE_COUNTER = -y
# Uncomment the following if you do /not/ wish a verification to be
# performed after programming the device.
#AVRDUDE_NO_VERIFY = -V
# Increase verbosity level. Please use this when submitting bug
# reports about avrdude. See <http://savannah.nongnu.org/projects/avrdude>
# to submit bug reports.
#AVRDUDE_VERBOSE = -v -v
AVRDUDE_FLAGS = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER)
AVRDUDE_FLAGS += $(AVRDUDE_NO_VERIFY)
AVRDUDE_FLAGS += $(AVRDUDE_VERBOSE)
AVRDUDE_FLAGS += $(AVRDUDE_ERASE_COUNTER)
#---------------- Debugging Options ----------------
# For simulavr only - target MCU frequency.
DEBUG_MFREQ = $(F_CPU)
# Set the DEBUG_UI to either gdb or insight.
# DEBUG_UI = gdb
DEBUG_UI = insight
# Set the debugging back-end to either avarice, simulavr.
DEBUG_BACKEND = avarice
#DEBUG_BACKEND = simulavr
# GDB Init Filename.
GDBINIT_FILE = __avr_gdbinit
# When using avarice settings for the JTAG
JTAG_DEV = /dev/com1
# Debugging port used to communicate between GDB / avarice / simulavr.
DEBUG_PORT = 4242
# Debugging host used to communicate between GDB / avarice / simulavr, normally
# just set to localhost unless doing some sort of crazy debugging when
# avarice is running on a different computer.
DEBUG_HOST = localhost
#============================================================================
# Define programs and commands.
SHELL = sh
CC = avr-gcc
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
SIZE = avr-size
AR = avr-ar rcs
NM = avr-nm
#AVRDUDE = /Applications/avrdude -C /Applications/avrdude.conf -B 1
AVRDUDE = /home/david/tmp/Arduino-master/build/linux/dist/tools/avrdude -B 1 -C /home/david/tmp/Arduino-master/build/linux/dist/tools/avrdude.conf
REMOVE = rm -f
REMOVEDIR = rm -rf
COPY = cp
WINSHELL = cmd
# Define Messages
# English
MSG_ERRORS_NONE = Errors: none
MSG_BEGIN = -------- begin --------
MSG_END = -------- end --------
MSG_SIZE_BEFORE = Size before:
MSG_SIZE_AFTER = Size after:
MSG_COFF = Converting to AVR COFF:
MSG_EXTENDED_COFF = Converting to AVR Extended COFF:
MSG_FLASH = Creating load file for Flash:
MSG_EEPROM = Creating load file for EEPROM:
MSG_EXTENDED_LISTING = Creating Extended Listing:
MSG_SYMBOL_TABLE = Creating Symbol Table:
MSG_LINKING = Linking:
MSG_COMPILING = Compiling C:
MSG_COMPILING_CPP = Compiling C++:
MSG_ASSEMBLING = Assembling:
MSG_CLEANING = Cleaning project:
MSG_CREATING_LIBRARY = Creating library:
# Define all object files.
OBJ = $(SRC:%.c=$(OBJDIR)/%.o) $(CPPSRC:%.cpp=$(OBJDIR)/%.o) $(ASRC:%.S=$(OBJDIR)/%.o)
# Define all listing files.
LST = $(SRC:%.c=$(OBJDIR)/%.lst) $(CPPSRC:%.cpp=$(OBJDIR)/%.lst) $(ASRC:%.S=$(OBJDIR)/%.lst)
# Compiler flags to generate dependency files.
GENDEPFLAGS = -MMD -MP -MF .dep/$(@F).d
# Combine all necessary flags and optional flags.
# Add target processor to flags.
ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS) $(GENDEPFLAGS)
ALL_CPPFLAGS = -mmcu=$(MCU) -I. -x c++ $(CPPFLAGS) $(GENDEPFLAGS)
ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)
# Default target.
all: begin gccversion sizebefore build sizeafter end
# Change the build target to build a HEX file or a library.
build: elf hex eep lss sym
#build: lib
elf: $(TARGET).elf
hex: $(TARGET).hex
eep: $(TARGET).eep
lss: $(TARGET).lss
sym: $(TARGET).sym
LIBNAME=lib$(TARGET).a
lib: $(LIBNAME)
# Eye candy.
# AVR Studio 3.x does not check make's exit code but relies on
# the following magic strings to be generated by the compile job.
begin:
@echo
@echo $(MSG_BEGIN)
end:
@echo $(MSG_END)
@echo
# Display size of file.
HEXSIZE = $(SIZE) --target=$(FORMAT) $(TARGET).hex
ELFSIZE = $(SIZE) $(MCU_FLAG) $(FORMAT_FLAG) $(TARGET).elf
MCU_FLAG = $(shell $(SIZE) --help | grep -- --mcu > /dev/null && echo --mcu=$(MCU) )
FORMAT_FLAG = $(shell $(SIZE) --help | grep -- --format=.*avr > /dev/null && echo --format=avr )
sizebefore:
@if test -f $(TARGET).elf; then echo; echo $(MSG_SIZE_BEFORE); $(ELFSIZE); \
2>/dev/null; echo; fi
sizeafter:
@if test -f $(TARGET).elf; then echo; echo $(MSG_SIZE_AFTER); $(ELFSIZE); \
2>/dev/null; echo; fi
# Display compiler version information.
gccversion :
@$(CC) --version
# Program the device.
program: $(TARGET).hex $(TARGET).eep
$(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) $(AVRDUDE_WRITE_EEPROM)
# Generate avr-gdb config/init file which does the following:
# define the reset signal, load the target file, connect to target, and set
# a breakpoint at main().
gdb-config:
@$(REMOVE) $(GDBINIT_FILE)
@echo define reset >> $(GDBINIT_FILE)
@echo SIGNAL SIGHUP >> $(GDBINIT_FILE)
@echo end >> $(GDBINIT_FILE)
@echo file $(TARGET).elf >> $(GDBINIT_FILE)
@echo target remote $(DEBUG_HOST):$(DEBUG_PORT) >> $(GDBINIT_FILE)
ifeq ($(DEBUG_BACKEND),simulavr)
@echo load >> $(GDBINIT_FILE)
endif
@echo break main >> $(GDBINIT_FILE)
debug: gdb-config $(TARGET).elf
ifeq ($(DEBUG_BACKEND), avarice)
@echo Starting AVaRICE - Press enter when "waiting to connect" message displays.
@$(WINSHELL) /c start avarice --jtag $(JTAG_DEV) --erase --program --file \
$(TARGET).elf $(DEBUG_HOST):$(DEBUG_PORT)
@$(WINSHELL) /c pause
else
@$(WINSHELL) /c start simulavr --gdbserver --device $(MCU) --clock-freq \
$(DEBUG_MFREQ) --port $(DEBUG_PORT)
endif
@$(WINSHELL) /c start avr-$(DEBUG_UI) --command=$(GDBINIT_FILE)
# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
COFFCONVERT = $(OBJCOPY) --debugging
COFFCONVERT += --change-section-address .data-0x800000
COFFCONVERT += --change-section-address .bss-0x800000
COFFCONVERT += --change-section-address .noinit-0x800000
COFFCONVERT += --change-section-address .eeprom-0x810000
coff: $(TARGET).elf
@echo
@echo $(MSG_COFF) $(TARGET).cof
$(COFFCONVERT) -O coff-avr $< $(TARGET).cof
extcoff: $(TARGET).elf
@echo
@echo $(MSG_EXTENDED_COFF) $(TARGET).cof
$(COFFCONVERT) -O coff-ext-avr $< $(TARGET).cof
# Create final output files (.hex, .eep) from ELF output file.
%.hex: %.elf
@echo
@echo $(MSG_FLASH) $@
$(OBJCOPY) -O $(FORMAT) -R .eeprom -R .fuse -R .lock $< $@
%.eep: %.elf
@echo
@echo $(MSG_EEPROM) $@
-$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
--change-section-lma .eeprom=0 --no-change-warnings -O $(FORMAT) $< $@ || exit 0
# Create extended listing file from ELF output file.
%.lss: %.elf
@echo
@echo $(MSG_EXTENDED_LISTING) $@
$(OBJDUMP) -h -S -z $< > $@
# Create a symbol table from ELF output file.
%.sym: %.elf
@echo
@echo $(MSG_SYMBOL_TABLE) $@
$(NM) -n $< > $@
# Create library from object files.
.SECONDARY : $(TARGET).a
.PRECIOUS : $(OBJ)
%.a: $(OBJ)
@echo
@echo $(MSG_CREATING_LIBRARY) $@
$(AR) $@ $(OBJ)
# Link: create ELF output file from object files.
.SECONDARY : $(TARGET).elf
.PRECIOUS : $(OBJ)
%.elf: $(OBJ)
@echo
@echo $(MSG_LINKING) $@
$(CC) $(ALL_CFLAGS) $^ --output $@ $(LDFLAGS)
# Compile: create object files from C source files.
$(OBJDIR)/%.o : %.c
@echo
@echo $(MSG_COMPILING) $<
$(CC) -c $(ALL_CFLAGS) $< -o $@
# Compile: create object files from C++ source files.
$(OBJDIR)/%.o : %.cpp
@echo
@echo $(MSG_COMPILING_CPP) $<
$(CC) -c $(ALL_CPPFLAGS) $< -o $@
# Compile: create assembler files from C source files.
%.s : %.c
$(CC) -S $(ALL_CFLAGS) $< -o $@
# Compile: create assembler files from C++ source files.
%.s : %.cpp
$(CC) -S $(ALL_CPPFLAGS) $< -o $@
# Assemble: create object files from assembler source files.
$(OBJDIR)/%.o : %.S
@echo
@echo $(MSG_ASSEMBLING) $<
$(CC) -c $(ALL_ASFLAGS) $< -o $@
# Create preprocessed source for use in sending a bug report.
%.i : %.c
$(CC) -E -mmcu=$(MCU) -I. $(CFLAGS) $< -o $@
# Target: clean project.
clean: begin clean_list end
clean_list :
@echo
@echo $(MSG_CLEANING)
$(REMOVE) $(TARGET).hex
$(REMOVE) $(TARGET).eep
$(REMOVE) $(TARGET).cof
$(REMOVE) $(TARGET).elf
$(REMOVE) $(TARGET).map
$(REMOVE) $(TARGET).sym
$(REMOVE) $(TARGET).lss
$(REMOVE) $(SRC:%.c=$(OBJDIR)/%.o) $(CPPSRC:%.cpp=$(OBJDIR)/%.o) $(ASRC:%.S=$(OBJDIR)/%.o)
$(REMOVE) $(SRC:%.c=$(OBJDIR)/%.lst) $(CPPSRC:%.cpp=$(OBJDIR)/%.lst) $(ASRC:%.S=$(OBJDIR)/%.lst)
$(REMOVE) $(SRC:.c=.s)
$(REMOVE) $(SRC:.c=.d)
$(REMOVE) $(SRC:.c=.i)
$(REMOVEDIR) .dep
doxygen:
@echo Generating Project Documentation \($(TARGET)\)...
@doxygen Doxygen.conf
@echo Documentation Generation Complete.
clean_doxygen:
rm -rf Documentation
checksource:
@for f in $(SRC) $(CPPSRC) $(ASRC); do \
if [ -f $$f ]; then \
echo "Found Source File: $$f" ; \
else \
echo "Source File Not Found: $$f" ; \
fi; done
# Create object files directory
$(shell mkdir $(OBJDIR) 2>/dev/null)
# Include the dependency files.
-include $(shell mkdir .dep 2>/dev/null) $(wildcard .dep/*)
# Listing of phony targets.
.PHONY : all begin finish end sizebefore sizeafter gccversion \
build elf hex eep lss sym coff extcoff doxygen clean \
clean_list clean_doxygen program debug gdb-config checksource

View File

@ -0,0 +1,27 @@
Building the bootloader for the Arduino Robot
=============================================
The Arduino Robot has two boards featuring the atmega32U4 processor from Atmel. Each one of them is identified as a different board at the USB level and has a different bootloader.
The Arduino Robot Control board has the USB identifier 0x0038. This is the value configured by default in the Makefile.
The Arduino Robot Motor board has the USB identifier 0x0039. If you want to compile/upload this version of the bootloader, you will have to edit the Makefile, comment away the like dedicated to the PID and uncomment the one that configures such variable accordingly.
The general conditions for using these bootloaders require downloading a specific version of LUFA as explained here:
1. Download the LUFA-111009 file (http://fourwalledcubicle.com/blog/2011/10/lufa-111009-released/).
2. Extract that file directly to the Caterina-Arduino_Robot bootloader directory.
3. Open a command prompt in the Caterina-Arduino_Robot bootloader directory.
4. Type 'make'.
5. Enjoy!
Programming the bootloader for one of the Arduino Robot boards
1. Open a command prompt in the Caterina-Arduino_Robot folder.
2. Connect your programmer- use a 2x3 .1" header, pressed against the programming vias.
3. Edit the make file for it to include the right programmer (e.g. in my lab I have AVRMKII and USBTINY ISP)
4. Type 'make program' into the command prompt.
Differences between this bootoloader and the standard one for Leonardo boards
=============================================================================
This bootloader is different from the one on the standard Leonardo boards. To enter the bootloader, you need to double click the reset button. You need to click twice in less that 3/4 of a second (easy uh?). This bootloader, designed in the first place for the LilypadUSB, seems to be optimal for situations when users are e.g. using their robots in soccer competitions where they make direct manipulation of the board as it runs.

View File

@ -67,6 +67,10 @@ void attachInterrupt(uint8_t interruptNum, void (*userFunc)(void), int mode) {
EICRA = (EICRA & ~((1<<ISC30) | (1<<ISC31))) | (mode << ISC30);
EIMSK |= (1<<INT3);
break;
case 4:
EICRB = (EICRB & ~((1<<ISC60) | (1<<ISC61))) | (mode << ISC60);
EIMSK |= (1<<INT6);
break;
#elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
case 2:
EICRA = (EICRA & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
@ -167,6 +171,9 @@ void detachInterrupt(uint8_t interruptNum) {
case 3:
EIMSK &= ~(1<<INT3);
break;
case 4:
EIMSK &= ~(1<<INT6);
break;
#elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
case 2:
EIMSK &= ~(1 << INT0);
@ -250,6 +257,11 @@ ISR(INT3_vect) {
intFunc[EXTERNAL_INT_3]();
}
ISR(INT6_vect) {
if(intFunc[EXTERNAL_INT_4])
intFunc[EXTERNAL_INT_4]();
}
#elif defined(EICRA) && defined(EICRB)
ISR(INT0_vect) {

View File

@ -57,7 +57,7 @@ extern "C"{
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__)
#define EXTERNAL_NUM_INTERRUPTS 3
#elif defined(__AVR_ATmega32U4__)
#define EXTERNAL_NUM_INTERRUPTS 4
#define EXTERNAL_NUM_INTERRUPTS 5
#else
#define EXTERNAL_NUM_INTERRUPTS 2
#endif

View File

@ -0,0 +1,215 @@
#ifndef Arduino_h
#define Arduino_h
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <avr/pgmspace.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include "binary.h"
#ifdef __cplusplus
extern "C"{
#endif
#define HIGH 0x1
#define LOW 0x0
#define INPUT 0x0
#define OUTPUT 0x1
#define INPUT_PULLUP 0x2
#define true 0x1
#define false 0x0
#define PI 3.1415926535897932384626433832795
#define HALF_PI 1.5707963267948966192313216916398
#define TWO_PI 6.283185307179586476925286766559
#define DEG_TO_RAD 0.017453292519943295769236907684886
#define RAD_TO_DEG 57.295779513082320876798154814105
#define SERIAL 0x0
#define DISPLAY 0x1
#define LSBFIRST 0
#define MSBFIRST 1
#define CHANGE 1
#define FALLING 2
#define RISING 3
#if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__) || defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
#define DEFAULT 0
#define EXTERNAL 1
#define INTERNAL 2
#else
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) || defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__)
#define INTERNAL1V1 2
#define INTERNAL2V56 3
#else
#define INTERNAL 3
#endif
#define DEFAULT 1
#define EXTERNAL 0
#endif
// undefine stdlib's abs if encountered
#ifdef abs
#undef abs
#endif
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
#define abs(x) ((x)>0?(x):-(x))
#define constrain(amt,low,high) ((amt)<(low)?(low):((amt)>(high)?(high):(amt)))
#define round(x) ((x)>=0?(long)((x)+0.5):(long)((x)-0.5))
#define radians(deg) ((deg)*DEG_TO_RAD)
#define degrees(rad) ((rad)*RAD_TO_DEG)
#define sq(x) ((x)*(x))
#define interrupts() sei()
#define noInterrupts() cli()
#define clockCyclesPerMicrosecond() ( F_CPU / 1000000L )
#define clockCyclesToMicroseconds(a) ( (a) / clockCyclesPerMicrosecond() )
#define microsecondsToClockCycles(a) ( (a) * clockCyclesPerMicrosecond() )
#define lowByte(w) ((uint8_t) ((w) & 0xff))
#define highByte(w) ((uint8_t) ((w) >> 8))
#define bitRead(value, bit) (((value) >> (bit)) & 0x01)
#define bitSet(value, bit) ((value) |= (1UL << (bit)))
#define bitClear(value, bit) ((value) &= ~(1UL << (bit)))
#define bitWrite(value, bit, bitvalue) (bitvalue ? bitSet(value, bit) : bitClear(value, bit))
typedef unsigned int word;
#define bit(b) (1UL << (b))
typedef uint8_t boolean;
typedef uint8_t byte;
void init(void);
void pinMode(uint8_t, uint8_t);
void digitalWrite(uint8_t, uint8_t);
int digitalRead(uint8_t);
int analogRead(uint8_t);
void analogReference(uint8_t mode);
void analogWrite(uint8_t, int);
unsigned long millis(void);
unsigned long micros(void);
void delay(unsigned long);
void delayMicroseconds(unsigned int us);
unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout);
void shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t val);
uint8_t shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder);
void attachInterrupt(uint8_t, void (*)(void), int mode);
void detachInterrupt(uint8_t);
void setup(void);
void loop(void);
// Get the bit location within the hardware port of the given virtual pin.
// This comes from the pins_*.c file for the active board configuration.
#define analogInPinToBit(P) (P)
// On the ATmega1280, the addresses of some of the port registers are
// greater than 255, so we can't store them in uint8_t's.
extern const uint16_t PROGMEM port_to_mode_PGM[];
extern const uint16_t PROGMEM port_to_input_PGM[];
extern const uint16_t PROGMEM port_to_output_PGM[];
extern const uint8_t PROGMEM digital_pin_to_port_PGM[];
// extern const uint8_t PROGMEM digital_pin_to_bit_PGM[];
extern const uint8_t PROGMEM digital_pin_to_bit_mask_PGM[];
extern const uint8_t PROGMEM digital_pin_to_timer_PGM[];
// Get the bit location within the hardware port of the given virtual pin.
// This comes from the pins_*.c file for the active board configuration.
//
// These perform slightly better as macros compared to inline functions
//
#define digitalPinToPort(P) ( pgm_read_byte( digital_pin_to_port_PGM + (P) ) )
#define digitalPinToBitMask(P) ( pgm_read_byte( digital_pin_to_bit_mask_PGM + (P) ) )
#define digitalPinToTimer(P) ( pgm_read_byte( digital_pin_to_timer_PGM + (P) ) )
#define analogInPinToBit(P) (P)
#define portOutputRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_output_PGM + (P))) )
#define portInputRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_input_PGM + (P))) )
#define portModeRegister(P) ( (volatile uint8_t *)( pgm_read_word( port_to_mode_PGM + (P))) )
#define NOT_A_PIN 0
#define NOT_A_PORT 0
#ifdef ARDUINO_MAIN
#define PA 1
#define PB 2
#define PC 3
#define PD 4
#define PE 5
#define PF 6
#define PG 7
#define PH 8
#define PJ 10
#define PK 11
#define PL 12
#endif
#define NOT_ON_TIMER 0
#define TIMER0A 1
#define TIMER0B 2
#define TIMER1A 3
#define TIMER1B 4
#define TIMER2 5
#define TIMER2A 6
#define TIMER2B 7
#define TIMER3A 8
#define TIMER3B 9
#define TIMER3C 10
#define TIMER4A 11
#define TIMER4B 12
#define TIMER4C 13
#define TIMER4D 14
#define TIMER5A 15
#define TIMER5B 16
#define TIMER5C 17
#ifdef __cplusplus
} // extern "C"
#endif
#ifdef __cplusplus
#include "WCharacter.h"
#include "WString.h"
#include "HardwareSerial.h"
uint16_t makeWord(uint16_t w);
uint16_t makeWord(byte h, byte l);
#define word(...) makeWord(__VA_ARGS__)
unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout = 1000000L);
void tone(uint8_t _pin, unsigned int frequency, unsigned long duration = 0);
void noTone(uint8_t _pin);
// WMath prototypes
long random(long);
long random(long, long);
void randomSeed(unsigned int);
long map(long, long, long, long, long);
#endif
#include "pins_arduino.h"
#endif

View File

@ -0,0 +1,239 @@
/* Copyright (c) 2011, Peter Barrett
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#include "Platform.h"
#include "USBAPI.h"
#include <avr/wdt.h>
#if defined(USBCON)
#ifdef CDC_ENABLED
#if (RAMEND < 1000)
#define SERIAL_BUFFER_SIZE 16
#else
#define SERIAL_BUFFER_SIZE 64
#endif
struct ring_buffer
{
unsigned char buffer[SERIAL_BUFFER_SIZE];
volatile int head;
volatile int tail;
};
ring_buffer cdc_rx_buffer = { { 0 }, 0, 0};
typedef struct
{
u32 dwDTERate;
u8 bCharFormat;
u8 bParityType;
u8 bDataBits;
u8 lineState;
} LineInfo;
static volatile LineInfo _usbLineInfo = { 57600, 0x00, 0x00, 0x00, 0x00 };
#define WEAK __attribute__ ((weak))
extern const CDCDescriptor _cdcInterface PROGMEM;
const CDCDescriptor _cdcInterface =
{
D_IAD(0,2,CDC_COMMUNICATION_INTERFACE_CLASS,CDC_ABSTRACT_CONTROL_MODEL,1),
// CDC communication interface
D_INTERFACE(CDC_ACM_INTERFACE,1,CDC_COMMUNICATION_INTERFACE_CLASS,CDC_ABSTRACT_CONTROL_MODEL,0),
D_CDCCS(CDC_HEADER,0x10,0x01), // Header (1.10 bcd)
D_CDCCS(CDC_CALL_MANAGEMENT,1,1), // Device handles call management (not)
D_CDCCS4(CDC_ABSTRACT_CONTROL_MANAGEMENT,6), // SET_LINE_CODING, GET_LINE_CODING, SET_CONTROL_LINE_STATE supported
D_CDCCS(CDC_UNION,CDC_ACM_INTERFACE,CDC_DATA_INTERFACE), // Communication interface is master, data interface is slave 0
D_ENDPOINT(USB_ENDPOINT_IN (CDC_ENDPOINT_ACM),USB_ENDPOINT_TYPE_INTERRUPT,0x10,0x40),
// CDC data interface
D_INTERFACE(CDC_DATA_INTERFACE,2,CDC_DATA_INTERFACE_CLASS,0,0),
D_ENDPOINT(USB_ENDPOINT_OUT(CDC_ENDPOINT_OUT),USB_ENDPOINT_TYPE_BULK,0x40,0),
D_ENDPOINT(USB_ENDPOINT_IN (CDC_ENDPOINT_IN ),USB_ENDPOINT_TYPE_BULK,0x40,0)
};
int WEAK CDC_GetInterface(u8* interfaceNum)
{
interfaceNum[0] += 2; // uses 2
return USB_SendControl(TRANSFER_PGM,&_cdcInterface,sizeof(_cdcInterface));
}
bool WEAK CDC_Setup(Setup& setup)
{
u8 r = setup.bRequest;
u8 requestType = setup.bmRequestType;
if (REQUEST_DEVICETOHOST_CLASS_INTERFACE == requestType)
{
if (CDC_GET_LINE_CODING == r)
{
USB_SendControl(0,(void*)&_usbLineInfo,7);
return true;
}
}
if (REQUEST_HOSTTODEVICE_CLASS_INTERFACE == requestType)
{
if (CDC_SET_LINE_CODING == r)
{
USB_RecvControl((void*)&_usbLineInfo,7);
return true;
}
if (CDC_SET_CONTROL_LINE_STATE == r)
{
_usbLineInfo.lineState = setup.wValueL;
// auto-reset into the bootloader is triggered when the port, already
// open at 1200 bps, is closed. this is the signal to start the watchdog
// with a relatively long period so it can finish housekeeping tasks
// like servicing endpoints before the sketch ends
if (1200 == _usbLineInfo.dwDTERate) {
// We check DTR state to determine if host port is open (bit 0 of lineState).
if ((_usbLineInfo.lineState & 0x01) == 0) {
*(uint16_t *)0x0800 = 0x7777;
wdt_enable(WDTO_120MS);
} else {
// Most OSs do some intermediate steps when configuring ports and DTR can
// twiggle more than once before stabilizing.
// To avoid spurious resets we set the watchdog to 250ms and eventually
// cancel if DTR goes back high.
wdt_disable();
wdt_reset();
*(uint16_t *)0x0800 = 0x0;
}
}
return true;
}
}
return false;
}
int _serialPeek = -1;
void Serial_::begin(uint16_t baud_count)
{
}
void Serial_::end(void)
{
}
void Serial_::accept(void)
{
ring_buffer *buffer = &cdc_rx_buffer;
int i = (unsigned int)(buffer->head+1) % SERIAL_BUFFER_SIZE;
// if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head.
// while we have room to store a byte
while (i != buffer->tail) {
int c = USB_Recv(CDC_RX);
if (c == -1)
break; // no more data
buffer->buffer[buffer->head] = c;
buffer->head = i;
i = (unsigned int)(buffer->head+1) % SERIAL_BUFFER_SIZE;
}
}
int Serial_::available(void)
{
ring_buffer *buffer = &cdc_rx_buffer;
return (unsigned int)(SERIAL_BUFFER_SIZE + buffer->head - buffer->tail) % SERIAL_BUFFER_SIZE;
}
int Serial_::peek(void)
{
ring_buffer *buffer = &cdc_rx_buffer;
if (buffer->head == buffer->tail) {
return -1;
} else {
return buffer->buffer[buffer->tail];
}
}
int Serial_::read(void)
{
ring_buffer *buffer = &cdc_rx_buffer;
// if the head isn't ahead of the tail, we don't have any characters
if (buffer->head == buffer->tail) {
return -1;
} else {
unsigned char c = buffer->buffer[buffer->tail];
buffer->tail = (unsigned int)(buffer->tail + 1) % SERIAL_BUFFER_SIZE;
return c;
}
}
void Serial_::flush(void)
{
USB_Flush(CDC_TX);
}
size_t Serial_::write(uint8_t c)
{
/* only try to send bytes if the high-level CDC connection itself
is open (not just the pipe) - the OS should set lineState when the port
is opened and clear lineState when the port is closed.
bytes sent before the user opens the connection or after
the connection is closed are lost - just like with a UART. */
// TODO - ZE - check behavior on different OSes and test what happens if an
// open connection isn't broken cleanly (cable is yanked out, host dies
// or locks up, or host virtual serial port hangs)
if (_usbLineInfo.lineState > 0) {
int r = USB_Send(CDC_TX,&c,1);
if (r > 0) {
return r;
} else {
setWriteError();
return 0;
}
}
setWriteError();
return 0;
}
// This operator is a convenient way for a sketch to check whether the
// port has actually been configured and opened by the host (as opposed
// to just being connected to the host). It can be used, for example, in
// setup() before printing to ensure that an application on the host is
// actually ready to receive and display the data.
// We add a short delay before returning to fix a bug observed by Federico
// where the port is configured (lineState != 0) but not quite opened.
Serial_::operator bool() {
bool result = false;
if (_usbLineInfo.lineState > 0)
result = true;
delay(10);
return result;
}
Serial_ Serial;
#endif
#endif /* if defined(USBCON) */

View File

@ -0,0 +1,26 @@
#ifndef client_h
#define client_h
#include "Print.h"
#include "Stream.h"
#include "IPAddress.h"
class Client : public Stream {
public:
virtual int connect(IPAddress ip, uint16_t port) =0;
virtual int connect(const char *host, uint16_t port) =0;
virtual size_t write(uint8_t) =0;
virtual size_t write(const uint8_t *buf, size_t size) =0;
virtual int available() = 0;
virtual int read() = 0;
virtual int read(uint8_t *buf, size_t size) = 0;
virtual int peek() = 0;
virtual void flush() = 0;
virtual void stop() = 0;
virtual uint8_t connected() = 0;
virtual operator bool() = 0;
protected:
uint8_t* rawIPAddress(IPAddress& addr) { return addr.raw_address(); };
};
#endif

View File

@ -0,0 +1,520 @@
/* Copyright (c) 2011, Peter Barrett
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#include "Platform.h"
#include "USBAPI.h"
#include "USBDesc.h"
#if defined(USBCON)
#ifdef HID_ENABLED
//#define RAWHID_ENABLED
// Singletons for mouse and keyboard
Mouse_ Mouse;
Keyboard_ Keyboard;
//================================================================================
//================================================================================
// HID report descriptor
#define LSB(_x) ((_x) & 0xFF)
#define MSB(_x) ((_x) >> 8)
#define RAWHID_USAGE_PAGE 0xFFC0
#define RAWHID_USAGE 0x0C00
#define RAWHID_TX_SIZE 64
#define RAWHID_RX_SIZE 64
extern const u8 _hidReportDescriptor[] PROGMEM;
const u8 _hidReportDescriptor[] = {
// Mouse
0x05, 0x01, // USAGE_PAGE (Generic Desktop) // 54
0x09, 0x02, // USAGE (Mouse)
0xa1, 0x01, // COLLECTION (Application)
0x09, 0x01, // USAGE (Pointer)
0xa1, 0x00, // COLLECTION (Physical)
0x85, 0x01, // REPORT_ID (1)
0x05, 0x09, // USAGE_PAGE (Button)
0x19, 0x01, // USAGE_MINIMUM (Button 1)
0x29, 0x03, // USAGE_MAXIMUM (Button 3)
0x15, 0x00, // LOGICAL_MINIMUM (0)
0x25, 0x01, // LOGICAL_MAXIMUM (1)
0x95, 0x03, // REPORT_COUNT (3)
0x75, 0x01, // REPORT_SIZE (1)
0x81, 0x02, // INPUT (Data,Var,Abs)
0x95, 0x01, // REPORT_COUNT (1)
0x75, 0x05, // REPORT_SIZE (5)
0x81, 0x03, // INPUT (Cnst,Var,Abs)
0x05, 0x01, // USAGE_PAGE (Generic Desktop)
0x09, 0x30, // USAGE (X)
0x09, 0x31, // USAGE (Y)
0x09, 0x38, // USAGE (Wheel)
0x15, 0x81, // LOGICAL_MINIMUM (-127)
0x25, 0x7f, // LOGICAL_MAXIMUM (127)
0x75, 0x08, // REPORT_SIZE (8)
0x95, 0x03, // REPORT_COUNT (3)
0x81, 0x06, // INPUT (Data,Var,Rel)
0xc0, // END_COLLECTION
0xc0, // END_COLLECTION
// Keyboard
0x05, 0x01, // USAGE_PAGE (Generic Desktop) // 47
0x09, 0x06, // USAGE (Keyboard)
0xa1, 0x01, // COLLECTION (Application)
0x85, 0x02, // REPORT_ID (2)
0x05, 0x07, // USAGE_PAGE (Keyboard)
0x19, 0xe0, // USAGE_MINIMUM (Keyboard LeftControl)
0x29, 0xe7, // USAGE_MAXIMUM (Keyboard Right GUI)
0x15, 0x00, // LOGICAL_MINIMUM (0)
0x25, 0x01, // LOGICAL_MAXIMUM (1)
0x75, 0x01, // REPORT_SIZE (1)
0x95, 0x08, // REPORT_COUNT (8)
0x81, 0x02, // INPUT (Data,Var,Abs)
0x95, 0x01, // REPORT_COUNT (1)
0x75, 0x08, // REPORT_SIZE (8)
0x81, 0x03, // INPUT (Cnst,Var,Abs)
0x95, 0x06, // REPORT_COUNT (6)
0x75, 0x08, // REPORT_SIZE (8)
0x15, 0x00, // LOGICAL_MINIMUM (0)
0x25, 0x65, // LOGICAL_MAXIMUM (101)
0x05, 0x07, // USAGE_PAGE (Keyboard)
0x19, 0x00, // USAGE_MINIMUM (Reserved (no event indicated))
0x29, 0x65, // USAGE_MAXIMUM (Keyboard Application)
0x81, 0x00, // INPUT (Data,Ary,Abs)
0xc0, // END_COLLECTION
#if RAWHID_ENABLED
// RAW HID
0x06, LSB(RAWHID_USAGE_PAGE), MSB(RAWHID_USAGE_PAGE), // 30
0x0A, LSB(RAWHID_USAGE), MSB(RAWHID_USAGE),
0xA1, 0x01, // Collection 0x01
0x85, 0x03, // REPORT_ID (3)
0x75, 0x08, // report size = 8 bits
0x15, 0x00, // logical minimum = 0
0x26, 0xFF, 0x00, // logical maximum = 255
0x95, 64, // report count TX
0x09, 0x01, // usage
0x81, 0x02, // Input (array)
0x95, 64, // report count RX
0x09, 0x02, // usage
0x91, 0x02, // Output (array)
0xC0 // end collection
#endif
};
extern const HIDDescriptor _hidInterface PROGMEM;
const HIDDescriptor _hidInterface =
{
D_INTERFACE(HID_INTERFACE,1,3,0,0),
D_HIDREPORT(sizeof(_hidReportDescriptor)),
D_ENDPOINT(USB_ENDPOINT_IN (HID_ENDPOINT_INT),USB_ENDPOINT_TYPE_INTERRUPT,0x40,0x01)
};
//================================================================================
//================================================================================
// Driver
u8 _hid_protocol = 1;
u8 _hid_idle = 1;
#define WEAK __attribute__ ((weak))
int WEAK HID_GetInterface(u8* interfaceNum)
{
interfaceNum[0] += 1; // uses 1
return USB_SendControl(TRANSFER_PGM,&_hidInterface,sizeof(_hidInterface));
}
int WEAK HID_GetDescriptor(int i)
{
return USB_SendControl(TRANSFER_PGM,_hidReportDescriptor,sizeof(_hidReportDescriptor));
}
void WEAK HID_SendReport(u8 id, const void* data, int len)
{
USB_Send(HID_TX, &id, 1);
USB_Send(HID_TX | TRANSFER_RELEASE,data,len);
}
bool WEAK HID_Setup(Setup& setup)
{
u8 r = setup.bRequest;
u8 requestType = setup.bmRequestType;
if (REQUEST_DEVICETOHOST_CLASS_INTERFACE == requestType)
{
if (HID_GET_REPORT == r)
{
//HID_GetReport();
return true;
}
if (HID_GET_PROTOCOL == r)
{
//Send8(_hid_protocol); // TODO
return true;
}
}
if (REQUEST_HOSTTODEVICE_CLASS_INTERFACE == requestType)
{
if (HID_SET_PROTOCOL == r)
{
_hid_protocol = setup.wValueL;
return true;
}
if (HID_SET_IDLE == r)
{
_hid_idle = setup.wValueL;
return true;
}
}
return false;
}
//================================================================================
//================================================================================
// Mouse
Mouse_::Mouse_(void) : _buttons(0)
{
}
void Mouse_::begin(void)
{
}
void Mouse_::end(void)
{
}
void Mouse_::click(uint8_t b)
{
_buttons = b;
move(0,0,0);
_buttons = 0;
move(0,0,0);
}
void Mouse_::move(signed char x, signed char y, signed char wheel)
{
u8 m[4];
m[0] = _buttons;
m[1] = x;
m[2] = y;
m[3] = wheel;
HID_SendReport(1,m,4);
}
void Mouse_::buttons(uint8_t b)
{
if (b != _buttons)
{
_buttons = b;
move(0,0,0);
}
}
void Mouse_::press(uint8_t b)
{
buttons(_buttons | b);
}
void Mouse_::release(uint8_t b)
{
buttons(_buttons & ~b);
}
bool Mouse_::isPressed(uint8_t b)
{
if ((b & _buttons) > 0)
return true;
return false;
}
//================================================================================
//================================================================================
// Keyboard
Keyboard_::Keyboard_(void)
{
}
void Keyboard_::begin(void)
{
}
void Keyboard_::end(void)
{
}
void Keyboard_::sendReport(KeyReport* keys)
{
HID_SendReport(2,keys,sizeof(KeyReport));
}
extern
const uint8_t _asciimap[128] PROGMEM;
#define SHIFT 0x80
const uint8_t _asciimap[128] =
{
0x00, // NUL
0x00, // SOH
0x00, // STX
0x00, // ETX
0x00, // EOT
0x00, // ENQ
0x00, // ACK
0x00, // BEL
0x2a, // BS Backspace
0x2b, // TAB Tab
0x28, // LF Enter
0x00, // VT
0x00, // FF
0x00, // CR
0x00, // SO
0x00, // SI
0x00, // DEL
0x00, // DC1
0x00, // DC2
0x00, // DC3
0x00, // DC4
0x00, // NAK
0x00, // SYN
0x00, // ETB
0x00, // CAN
0x00, // EM
0x00, // SUB
0x00, // ESC
0x00, // FS
0x00, // GS
0x00, // RS
0x00, // US
0x2c, // ' '
0x1e|SHIFT, // !
0x34|SHIFT, // "
0x20|SHIFT, // #
0x21|SHIFT, // $
0x22|SHIFT, // %
0x24|SHIFT, // &
0x34, // '
0x26|SHIFT, // (
0x27|SHIFT, // )
0x25|SHIFT, // *
0x2e|SHIFT, // +
0x36, // ,
0x2d, // -
0x37, // .
0x38, // /
0x27, // 0
0x1e, // 1
0x1f, // 2
0x20, // 3
0x21, // 4
0x22, // 5
0x23, // 6
0x24, // 7
0x25, // 8
0x26, // 9
0x33|SHIFT, // :
0x33, // ;
0x36|SHIFT, // <
0x2e, // =
0x37|SHIFT, // >
0x38|SHIFT, // ?
0x1f|SHIFT, // @
0x04|SHIFT, // A
0x05|SHIFT, // B
0x06|SHIFT, // C
0x07|SHIFT, // D
0x08|SHIFT, // E
0x09|SHIFT, // F
0x0a|SHIFT, // G
0x0b|SHIFT, // H
0x0c|SHIFT, // I
0x0d|SHIFT, // J
0x0e|SHIFT, // K
0x0f|SHIFT, // L
0x10|SHIFT, // M
0x11|SHIFT, // N
0x12|SHIFT, // O
0x13|SHIFT, // P
0x14|SHIFT, // Q
0x15|SHIFT, // R
0x16|SHIFT, // S
0x17|SHIFT, // T
0x18|SHIFT, // U
0x19|SHIFT, // V
0x1a|SHIFT, // W
0x1b|SHIFT, // X
0x1c|SHIFT, // Y
0x1d|SHIFT, // Z
0x2f, // [
0x31, // bslash
0x30, // ]
0x23|SHIFT, // ^
0x2d|SHIFT, // _
0x35, // `
0x04, // a
0x05, // b
0x06, // c
0x07, // d
0x08, // e
0x09, // f
0x0a, // g
0x0b, // h
0x0c, // i
0x0d, // j
0x0e, // k
0x0f, // l
0x10, // m
0x11, // n
0x12, // o
0x13, // p
0x14, // q
0x15, // r
0x16, // s
0x17, // t
0x18, // u
0x19, // v
0x1a, // w
0x1b, // x
0x1c, // y
0x1d, // z
0x2f|SHIFT, //
0x31|SHIFT, // |
0x30|SHIFT, // }
0x35|SHIFT, // ~
0 // DEL
};
uint8_t USBPutChar(uint8_t c);
// press() adds the specified key (printing, non-printing, or modifier)
// to the persistent key report and sends the report. Because of the way
// USB HID works, the host acts like the key remains pressed until we
// call release(), releaseAll(), or otherwise clear the report and resend.
size_t Keyboard_::press(uint8_t k)
{
uint8_t i;
if (k >= 136) { // it's a non-printing key (not a modifier)
k = k - 136;
} else if (k >= 128) { // it's a modifier key
_keyReport.modifiers |= (1<<(k-128));
k = 0;
} else { // it's a printing key
k = pgm_read_byte(_asciimap + k);
if (!k) {
setWriteError();
return 0;
}
if (k & 0x80) { // it's a capital letter or other character reached with shift
_keyReport.modifiers |= 0x02; // the left shift modifier
k &= 0x7F;
}
}
// Add k to the key report only if it's not already present
// and if there is an empty slot.
if (_keyReport.keys[0] != k && _keyReport.keys[1] != k &&
_keyReport.keys[2] != k && _keyReport.keys[3] != k &&
_keyReport.keys[4] != k && _keyReport.keys[5] != k) {
for (i=0; i<6; i++) {
if (_keyReport.keys[i] == 0x00) {
_keyReport.keys[i] = k;
break;
}
}
if (i == 6) {
setWriteError();
return 0;
}
}
sendReport(&_keyReport);
return 1;
}
// release() takes the specified key out of the persistent key report and
// sends the report. This tells the OS the key is no longer pressed and that
// it shouldn't be repeated any more.
size_t Keyboard_::release(uint8_t k)
{
uint8_t i;
if (k >= 136) { // it's a non-printing key (not a modifier)
k = k - 136;
} else if (k >= 128) { // it's a modifier key
_keyReport.modifiers &= ~(1<<(k-128));
k = 0;
} else { // it's a printing key
k = pgm_read_byte(_asciimap + k);
if (!k) {
return 0;
}
if (k & 0x80) { // it's a capital letter or other character reached with shift
_keyReport.modifiers &= ~(0x02); // the left shift modifier
k &= 0x7F;
}
}
// Test the key report to see if k is present. Clear it if it exists.
// Check all positions in case the key is present more than once (which it shouldn't be)
for (i=0; i<6; i++) {
if (0 != k && _keyReport.keys[i] == k) {
_keyReport.keys[i] = 0x00;
}
}
sendReport(&_keyReport);
return 1;
}
void Keyboard_::releaseAll(void)
{
_keyReport.keys[0] = 0;
_keyReport.keys[1] = 0;
_keyReport.keys[2] = 0;
_keyReport.keys[3] = 0;
_keyReport.keys[4] = 0;
_keyReport.keys[5] = 0;
_keyReport.modifiers = 0;
sendReport(&_keyReport);
}
size_t Keyboard_::write(uint8_t c)
{
uint8_t p = press(c); // Keydown
uint8_t r = release(c); // Keyup
return (p); // just return the result of press() since release() almost always returns 1
}
#endif
#endif /* if defined(USBCON) */

View File

@ -0,0 +1,508 @@
/*
HardwareSerial.cpp - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
Modified 28 September 2010 by Mark Sproul
Modified 14 August 2012 by Alarus
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "Arduino.h"
#include "wiring_private.h"
// this next line disables the entire HardwareSerial.cpp,
// this is so I can support Attiny series and any other chip without a uart
#if defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H)
#include "HardwareSerial.h"
/*
* on ATmega8, the uart and its bits are not numbered, so there is no "TXC0"
* definition.
*/
#if !defined(TXC0)
#if defined(TXC)
#define TXC0 TXC
#elif defined(TXC1)
// Some devices have uart1 but no uart0
#define TXC0 TXC1
#else
#error TXC0 not definable in HardwareSerial.h
#endif
#endif
// Define constants and variables for buffering incoming serial data. We're
// using a ring buffer (I think), in which head is the index of the location
// to which to write the next incoming character and tail is the index of the
// location from which to read.
#if (RAMEND < 1000)
#define SERIAL_BUFFER_SIZE 16
#else
#define SERIAL_BUFFER_SIZE 64
#endif
struct ring_buffer
{
unsigned char buffer[SERIAL_BUFFER_SIZE];
volatile unsigned int head;
volatile unsigned int tail;
};
#if defined(USBCON)
ring_buffer rx_buffer = { { 0 }, 0, 0};
ring_buffer tx_buffer = { { 0 }, 0, 0};
#endif
#if defined(UBRRH) || defined(UBRR0H)
ring_buffer rx_buffer = { { 0 }, 0, 0 };
ring_buffer tx_buffer = { { 0 }, 0, 0 };
#endif
#if defined(UBRR1H)
ring_buffer rx_buffer1 = { { 0 }, 0, 0 };
ring_buffer tx_buffer1 = { { 0 }, 0, 0 };
#endif
#if defined(UBRR2H)
ring_buffer rx_buffer2 = { { 0 }, 0, 0 };
ring_buffer tx_buffer2 = { { 0 }, 0, 0 };
#endif
#if defined(UBRR3H)
ring_buffer rx_buffer3 = { { 0 }, 0, 0 };
ring_buffer tx_buffer3 = { { 0 }, 0, 0 };
#endif
inline void store_char(unsigned char c, ring_buffer *buffer)
{
int i = (unsigned int)(buffer->head + 1) % SERIAL_BUFFER_SIZE;
// if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head.
if (i != buffer->tail) {
buffer->buffer[buffer->head] = c;
buffer->head = i;
}
}
#if !defined(USART0_RX_vect) && defined(USART1_RX_vect)
// do nothing - on the 32u4 the first USART is USART1
#else
#if !defined(USART_RX_vect) && !defined(USART0_RX_vect) && \
!defined(USART_RXC_vect)
#error "Don't know what the Data Received vector is called for the first UART"
#else
void serialEvent() __attribute__((weak));
void serialEvent() {}
#define serialEvent_implemented
#if defined(USART_RX_vect)
ISR(USART_RX_vect)
#elif defined(USART0_RX_vect)
ISR(USART0_RX_vect)
#elif defined(USART_RXC_vect)
ISR(USART_RXC_vect) // ATmega8
#endif
{
#if defined(UDR0)
if (bit_is_clear(UCSR0A, UPE0)) {
unsigned char c = UDR0;
store_char(c, &rx_buffer);
} else {
unsigned char c = UDR0;
};
#elif defined(UDR)
if (bit_is_clear(UCSRA, PE)) {
unsigned char c = UDR;
store_char(c, &rx_buffer);
} else {
unsigned char c = UDR;
};
#else
#error UDR not defined
#endif
}
#endif
#endif
#if defined(USART1_RX_vect)
void serialEvent1() __attribute__((weak));
void serialEvent1() {}
#define serialEvent1_implemented
ISR(USART1_RX_vect)
{
if (bit_is_clear(UCSR1A, UPE1)) {
unsigned char c = UDR1;
store_char(c, &rx_buffer1);
} else {
unsigned char c = UDR1;
};
}
#endif
#if defined(USART2_RX_vect) && defined(UDR2)
void serialEvent2() __attribute__((weak));
void serialEvent2() {}
#define serialEvent2_implemented
ISR(USART2_RX_vect)
{
if (bit_is_clear(UCSR2A, UPE2)) {
unsigned char c = UDR2;
store_char(c, &rx_buffer2);
} else {
unsigned char c = UDR2;
};
}
#endif
#if defined(USART3_RX_vect) && defined(UDR3)
void serialEvent3() __attribute__((weak));
void serialEvent3() {}
#define serialEvent3_implemented
ISR(USART3_RX_vect)
{
if (bit_is_clear(UCSR3A, UPE3)) {
unsigned char c = UDR3;
store_char(c, &rx_buffer3);
} else {
unsigned char c = UDR3;
};
}
#endif
void serialEventRun(void)
{
#ifdef serialEvent_implemented
if (Serial.available()) serialEvent();
#endif
#ifdef serialEvent1_implemented
if (Serial1.available()) serialEvent1();
#endif
#ifdef serialEvent2_implemented
if (Serial2.available()) serialEvent2();
#endif
#ifdef serialEvent3_implemented
if (Serial3.available()) serialEvent3();
#endif
}
#if !defined(USART0_UDRE_vect) && defined(USART1_UDRE_vect)
// do nothing - on the 32u4 the first USART is USART1
#else
#if !defined(UART0_UDRE_vect) && !defined(UART_UDRE_vect) && !defined(USART0_UDRE_vect) && !defined(USART_UDRE_vect)
#error "Don't know what the Data Register Empty vector is called for the first UART"
#else
#if defined(UART0_UDRE_vect)
ISR(UART0_UDRE_vect)
#elif defined(UART_UDRE_vect)
ISR(UART_UDRE_vect)
#elif defined(USART0_UDRE_vect)
ISR(USART0_UDRE_vect)
#elif defined(USART_UDRE_vect)
ISR(USART_UDRE_vect)
#endif
{
if (tx_buffer.head == tx_buffer.tail) {
// Buffer empty, so disable interrupts
#if defined(UCSR0B)
cbi(UCSR0B, UDRIE0);
#else
cbi(UCSRB, UDRIE);
#endif
}
else {
// There is more data in the output buffer. Send the next byte
unsigned char c = tx_buffer.buffer[tx_buffer.tail];
tx_buffer.tail = (tx_buffer.tail + 1) % SERIAL_BUFFER_SIZE;
#if defined(UDR0)
UDR0 = c;
#elif defined(UDR)
UDR = c;
#else
#error UDR not defined
#endif
}
}
#endif
#endif
#ifdef USART1_UDRE_vect
ISR(USART1_UDRE_vect)
{
if (tx_buffer1.head == tx_buffer1.tail) {
// Buffer empty, so disable interrupts
cbi(UCSR1B, UDRIE1);
}
else {
// There is more data in the output buffer. Send the next byte
unsigned char c = tx_buffer1.buffer[tx_buffer1.tail];
tx_buffer1.tail = (tx_buffer1.tail + 1) % SERIAL_BUFFER_SIZE;
UDR1 = c;
}
}
#endif
#ifdef USART2_UDRE_vect
ISR(USART2_UDRE_vect)
{
if (tx_buffer2.head == tx_buffer2.tail) {
// Buffer empty, so disable interrupts
cbi(UCSR2B, UDRIE2);
}
else {
// There is more data in the output buffer. Send the next byte
unsigned char c = tx_buffer2.buffer[tx_buffer2.tail];
tx_buffer2.tail = (tx_buffer2.tail + 1) % SERIAL_BUFFER_SIZE;
UDR2 = c;
}
}
#endif
#ifdef USART3_UDRE_vect
ISR(USART3_UDRE_vect)
{
if (tx_buffer3.head == tx_buffer3.tail) {
// Buffer empty, so disable interrupts
cbi(UCSR3B, UDRIE3);
}
else {
// There is more data in the output buffer. Send the next byte
unsigned char c = tx_buffer3.buffer[tx_buffer3.tail];
tx_buffer3.tail = (tx_buffer3.tail + 1) % SERIAL_BUFFER_SIZE;
UDR3 = c;
}
}
#endif
// Constructors ////////////////////////////////////////////////////////////////
HardwareSerial::HardwareSerial(ring_buffer *rx_buffer, ring_buffer *tx_buffer,
volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,
volatile uint8_t *ucsra, volatile uint8_t *ucsrb,
volatile uint8_t *ucsrc, volatile uint8_t *udr,
uint8_t rxen, uint8_t txen, uint8_t rxcie, uint8_t udrie, uint8_t u2x)
{
_rx_buffer = rx_buffer;
_tx_buffer = tx_buffer;
_ubrrh = ubrrh;
_ubrrl = ubrrl;
_ucsra = ucsra;
_ucsrb = ucsrb;
_ucsrc = ucsrc;
_udr = udr;
_rxen = rxen;
_txen = txen;
_rxcie = rxcie;
_udrie = udrie;
_u2x = u2x;
}
// Public Methods //////////////////////////////////////////////////////////////
void HardwareSerial::begin(unsigned long baud)
{
uint16_t baud_setting;
bool use_u2x = true;
#if F_CPU == 16000000UL
// hardcoded exception for compatibility with the bootloader shipped
// with the Duemilanove and previous boards and the firmware on the 8U2
// on the Uno and Mega 2560.
if (baud == 57600) {
use_u2x = false;
}
#endif
try_again:
if (use_u2x) {
*_ucsra = 1 << _u2x;
baud_setting = (F_CPU / 4 / baud - 1) / 2;
} else {
*_ucsra = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2;
}
if ((baud_setting > 4095) && use_u2x)
{
use_u2x = false;
goto try_again;
}
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
*_ubrrh = baud_setting >> 8;
*_ubrrl = baud_setting;
transmitting = false;
sbi(*_ucsrb, _rxen);
sbi(*_ucsrb, _txen);
sbi(*_ucsrb, _rxcie);
cbi(*_ucsrb, _udrie);
}
void HardwareSerial::begin(unsigned long baud, byte config)
{
uint16_t baud_setting;
uint8_t current_config;
bool use_u2x = true;
#if F_CPU == 16000000UL
// hardcoded exception for compatibility with the bootloader shipped
// with the Duemilanove and previous boards and the firmware on the 8U2
// on the Uno and Mega 2560.
if (baud == 57600) {
use_u2x = false;
}
#endif
try_again:
if (use_u2x) {
*_ucsra = 1 << _u2x;
baud_setting = (F_CPU / 4 / baud - 1) / 2;
} else {
*_ucsra = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2;
}
if ((baud_setting > 4095) && use_u2x)
{
use_u2x = false;
goto try_again;
}
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
*_ubrrh = baud_setting >> 8;
*_ubrrl = baud_setting;
//set the data bits, parity, and stop bits
#if defined(__AVR_ATmega8__)
config |= 0x80; // select UCSRC register (shared with UBRRH)
#endif
*_ucsrc = config;
sbi(*_ucsrb, _rxen);
sbi(*_ucsrb, _txen);
sbi(*_ucsrb, _rxcie);
cbi(*_ucsrb, _udrie);
}
void HardwareSerial::end()
{
// wait for transmission of outgoing data
while (_tx_buffer->head != _tx_buffer->tail)
;
cbi(*_ucsrb, _rxen);
cbi(*_ucsrb, _txen);
cbi(*_ucsrb, _rxcie);
cbi(*_ucsrb, _udrie);
// clear any received data
_rx_buffer->head = _rx_buffer->tail;
}
int HardwareSerial::available(void)
{
return (unsigned int)(SERIAL_BUFFER_SIZE + _rx_buffer->head - _rx_buffer->tail) % SERIAL_BUFFER_SIZE;
}
int HardwareSerial::peek(void)
{
if (_rx_buffer->head == _rx_buffer->tail) {
return -1;
} else {
return _rx_buffer->buffer[_rx_buffer->tail];
}
}
int HardwareSerial::read(void)
{
// if the head isn't ahead of the tail, we don't have any characters
if (_rx_buffer->head == _rx_buffer->tail) {
return -1;
} else {
unsigned char c = _rx_buffer->buffer[_rx_buffer->tail];
_rx_buffer->tail = (unsigned int)(_rx_buffer->tail + 1) % SERIAL_BUFFER_SIZE;
return c;
}
}
void HardwareSerial::flush()
{
// UDR is kept full while the buffer is not empty, so TXC triggers when EMPTY && SENT
while (transmitting && ! (*_ucsra & _BV(TXC0)));
transmitting = false;
}
size_t HardwareSerial::write(uint8_t c)
{
int i = (_tx_buffer->head + 1) % SERIAL_BUFFER_SIZE;
// If the output buffer is full, there's nothing for it other than to
// wait for the interrupt handler to empty it a bit
// ???: return 0 here instead?
while (i == _tx_buffer->tail)
;
_tx_buffer->buffer[_tx_buffer->head] = c;
_tx_buffer->head = i;
sbi(*_ucsrb, _udrie);
// clear the TXC bit -- "can be cleared by writing a one to its bit location"
transmitting = true;
sbi(*_ucsra, TXC0);
return 1;
}
HardwareSerial::operator bool() {
return true;
}
// Preinstantiate Objects //////////////////////////////////////////////////////
#if defined(UBRRH) && defined(UBRRL)
HardwareSerial Serial(&rx_buffer, &tx_buffer, &UBRRH, &UBRRL, &UCSRA, &UCSRB, &UCSRC, &UDR, RXEN, TXEN, RXCIE, UDRIE, U2X);
#elif defined(UBRR0H) && defined(UBRR0L)
HardwareSerial Serial(&rx_buffer, &tx_buffer, &UBRR0H, &UBRR0L, &UCSR0A, &UCSR0B, &UCSR0C, &UDR0, RXEN0, TXEN0, RXCIE0, UDRIE0, U2X0);
#elif defined(USBCON)
// do nothing - Serial object and buffers are initialized in CDC code
#else
#error no serial port defined (port 0)
#endif
#if defined(UBRR1H)
HardwareSerial Serial1(&rx_buffer1, &tx_buffer1, &UBRR1H, &UBRR1L, &UCSR1A, &UCSR1B, &UCSR1C, &UDR1, RXEN1, TXEN1, RXCIE1, UDRIE1, U2X1);
#endif
#if defined(UBRR2H)
HardwareSerial Serial2(&rx_buffer2, &tx_buffer2, &UBRR2H, &UBRR2L, &UCSR2A, &UCSR2B, &UCSR2C, &UDR2, RXEN2, TXEN2, RXCIE2, UDRIE2, U2X2);
#endif
#if defined(UBRR3H)
HardwareSerial Serial3(&rx_buffer3, &tx_buffer3, &UBRR3H, &UBRR3L, &UCSR3A, &UCSR3B, &UCSR3C, &UDR3, RXEN3, TXEN3, RXCIE3, UDRIE3, U2X3);
#endif
#endif // whole file

View File

@ -0,0 +1,115 @@
/*
HardwareSerial.h - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 28 September 2010 by Mark Sproul
Modified 14 August 2012 by Alarus
*/
#ifndef HardwareSerial_h
#define HardwareSerial_h
#include <inttypes.h>
#include "Stream.h"
struct ring_buffer;
class HardwareSerial : public Stream
{
private:
ring_buffer *_rx_buffer;
ring_buffer *_tx_buffer;
volatile uint8_t *_ubrrh;
volatile uint8_t *_ubrrl;
volatile uint8_t *_ucsra;
volatile uint8_t *_ucsrb;
volatile uint8_t *_ucsrc;
volatile uint8_t *_udr;
uint8_t _rxen;
uint8_t _txen;
uint8_t _rxcie;
uint8_t _udrie;
uint8_t _u2x;
bool transmitting;
public:
HardwareSerial(ring_buffer *rx_buffer, ring_buffer *tx_buffer,
volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,
volatile uint8_t *ucsra, volatile uint8_t *ucsrb,
volatile uint8_t *ucsrc, volatile uint8_t *udr,
uint8_t rxen, uint8_t txen, uint8_t rxcie, uint8_t udrie, uint8_t u2x);
void begin(unsigned long);
void begin(unsigned long, uint8_t);
void end();
virtual int available(void);
virtual int peek(void);
virtual int read(void);
virtual void flush(void);
virtual size_t write(uint8_t);
inline size_t write(unsigned long n) { return write((uint8_t)n); }
inline size_t write(long n) { return write((uint8_t)n); }
inline size_t write(unsigned int n) { return write((uint8_t)n); }
inline size_t write(int n) { return write((uint8_t)n); }
using Print::write; // pull in write(str) and write(buf, size) from Print
operator bool();
};
// Define config for Serial.begin(baud, config);
#define SERIAL_5N1 0x00
#define SERIAL_6N1 0x02
#define SERIAL_7N1 0x04
#define SERIAL_8N1 0x06
#define SERIAL_5N2 0x08
#define SERIAL_6N2 0x0A
#define SERIAL_7N2 0x0C
#define SERIAL_8N2 0x0E
#define SERIAL_5E1 0x20
#define SERIAL_6E1 0x22
#define SERIAL_7E1 0x24
#define SERIAL_8E1 0x26
#define SERIAL_5E2 0x28
#define SERIAL_6E2 0x2A
#define SERIAL_7E2 0x2C
#define SERIAL_8E2 0x2E
#define SERIAL_5O1 0x30
#define SERIAL_6O1 0x32
#define SERIAL_7O1 0x34
#define SERIAL_8O1 0x36
#define SERIAL_5O2 0x38
#define SERIAL_6O2 0x3A
#define SERIAL_7O2 0x3C
#define SERIAL_8O2 0x3E
#if defined(UBRRH) || defined(UBRR0H)
extern HardwareSerial Serial;
#elif defined(USBCON)
#include "USBAPI.h"
// extern HardwareSerial Serial_;
#endif
#if defined(UBRR1H)
extern HardwareSerial Serial1;
#endif
#if defined(UBRR2H)
extern HardwareSerial Serial2;
#endif
#if defined(UBRR3H)
extern HardwareSerial Serial3;
#endif
extern void serialEventRun(void) __attribute__((weak));
#endif

View File

@ -0,0 +1,56 @@
#include <Arduino.h>
#include <IPAddress.h>
IPAddress::IPAddress()
{
memset(_address, 0, sizeof(_address));
}
IPAddress::IPAddress(uint8_t first_octet, uint8_t second_octet, uint8_t third_octet, uint8_t fourth_octet)
{
_address[0] = first_octet;
_address[1] = second_octet;
_address[2] = third_octet;
_address[3] = fourth_octet;
}
IPAddress::IPAddress(uint32_t address)
{
memcpy(_address, &address, sizeof(_address));
}
IPAddress::IPAddress(const uint8_t *address)
{
memcpy(_address, address, sizeof(_address));
}
IPAddress& IPAddress::operator=(const uint8_t *address)
{
memcpy(_address, address, sizeof(_address));
return *this;
}
IPAddress& IPAddress::operator=(uint32_t address)
{
memcpy(_address, (const uint8_t *)&address, sizeof(_address));
return *this;
}
bool IPAddress::operator==(const uint8_t* addr)
{
return memcmp(addr, _address, sizeof(_address)) == 0;
}
size_t IPAddress::printTo(Print& p) const
{
size_t n = 0;
for (int i =0; i < 3; i++)
{
n += p.print(_address[i], DEC);
n += p.print('.');
}
n += p.print(_address[3], DEC);
return n;
}

View File

@ -0,0 +1,76 @@
/*
*
* MIT License:
* Copyright (c) 2011 Adrian McEwen
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* adrianm@mcqn.com 1/1/2011
*/
#ifndef IPAddress_h
#define IPAddress_h
#include <Printable.h>
// A class to make it easier to handle and pass around IP addresses
class IPAddress : public Printable {
private:
uint8_t _address[4]; // IPv4 address
// Access the raw byte array containing the address. Because this returns a pointer
// to the internal structure rather than a copy of the address this function should only
// be used when you know that the usage of the returned uint8_t* will be transient and not
// stored.
uint8_t* raw_address() { return _address; };
public:
// Constructors
IPAddress();
IPAddress(uint8_t first_octet, uint8_t second_octet, uint8_t third_octet, uint8_t fourth_octet);
IPAddress(uint32_t address);
IPAddress(const uint8_t *address);
// Overloaded cast operator to allow IPAddress objects to be used where a pointer
// to a four-byte uint8_t array is expected
operator uint32_t() { return *((uint32_t*)_address); };
bool operator==(const IPAddress& addr) { return (*((uint32_t*)_address)) == (*((uint32_t*)addr._address)); };
bool operator==(const uint8_t* addr);
// Overloaded index operator to allow getting and setting individual octets of the address
uint8_t operator[](int index) const { return _address[index]; };
uint8_t& operator[](int index) { return _address[index]; };
// Overloaded copy operators to allow initialisation of IPAddress objects from other types
IPAddress& operator=(const uint8_t *address);
IPAddress& operator=(uint32_t address);
virtual size_t printTo(Print& p) const;
friend class EthernetClass;
friend class UDP;
friend class Client;
friend class Server;
friend class DhcpClass;
friend class DNSClient;
};
const IPAddress INADDR_NONE(0,0,0,0);
#endif

View File

@ -0,0 +1,23 @@
#ifndef __PLATFORM_H__
#define __PLATFORM_H__
#include <inttypes.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include <util/delay.h>
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned long u32;
#include "Arduino.h"
#if defined(USBCON)
#include "USBDesc.h"
#include "USBCore.h"
#include "USBAPI.h"
#endif /* if defined(USBCON) */
#endif

View File

@ -0,0 +1,268 @@
/*
Print.cpp - Base class that provides print() and println()
Copyright (c) 2008 David A. Mellis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 23 November 2006 by David A. Mellis
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "Arduino.h"
#include "Print.h"
// Public Methods //////////////////////////////////////////////////////////////
/* default implementation: may be overridden */
size_t Print::write(const uint8_t *buffer, size_t size)
{
size_t n = 0;
while (size--) {
n += write(*buffer++);
}
return n;
}
size_t Print::print(const __FlashStringHelper *ifsh)
{
const char PROGMEM *p = (const char PROGMEM *)ifsh;
size_t n = 0;
while (1) {
unsigned char c = pgm_read_byte(p++);
if (c == 0) break;
n += write(c);
}
return n;
}
size_t Print::print(const String &s)
{
size_t n = 0;
for (uint16_t i = 0; i < s.length(); i++) {
n += write(s[i]);
}
return n;
}
size_t Print::print(const char str[])
{
return write(str);
}
size_t Print::print(char c)
{
return write(c);
}
size_t Print::print(unsigned char b, int base)
{
return print((unsigned long) b, base);
}
size_t Print::print(int n, int base)
{
return print((long) n, base);
}
size_t Print::print(unsigned int n, int base)
{
return print((unsigned long) n, base);
}
size_t Print::print(long n, int base)
{
if (base == 0) {
return write(n);
} else if (base == 10) {
if (n < 0) {
int t = print('-');
n = -n;
return printNumber(n, 10) + t;
}
return printNumber(n, 10);
} else {
return printNumber(n, base);
}
}
size_t Print::print(unsigned long n, int base)
{
if (base == 0) return write(n);
else return printNumber(n, base);
}
size_t Print::print(double n, int digits)
{
return printFloat(n, digits);
}
size_t Print::println(const __FlashStringHelper *ifsh)
{
size_t n = print(ifsh);
n += println();
return n;
}
size_t Print::print(const Printable& x)
{
return x.printTo(*this);
}
size_t Print::println(void)
{
size_t n = print('\r');
n += print('\n');
return n;
}
size_t Print::println(const String &s)
{
size_t n = print(s);
n += println();
return n;
}
size_t Print::println(const char c[])
{
size_t n = print(c);
n += println();
return n;
}
size_t Print::println(char c)
{
size_t n = print(c);
n += println();
return n;
}
size_t Print::println(unsigned char b, int base)
{
size_t n = print(b, base);
n += println();
return n;
}
size_t Print::println(int num, int base)
{
size_t n = print(num, base);
n += println();
return n;
}
size_t Print::println(unsigned int num, int base)
{
size_t n = print(num, base);
n += println();
return n;
}
size_t Print::println(long num, int base)
{
size_t n = print(num, base);
n += println();
return n;
}
size_t Print::println(unsigned long num, int base)
{
size_t n = print(num, base);
n += println();
return n;
}
size_t Print::println(double num, int digits)
{
size_t n = print(num, digits);
n += println();
return n;
}
size_t Print::println(const Printable& x)
{
size_t n = print(x);
n += println();
return n;
}
// Private Methods /////////////////////////////////////////////////////////////
size_t Print::printNumber(unsigned long n, uint8_t base) {
char buf[8 * sizeof(long) + 1]; // Assumes 8-bit chars plus zero byte.
char *str = &buf[sizeof(buf) - 1];
*str = '\0';
// prevent crash if called with base == 1
if (base < 2) base = 10;
do {
unsigned long m = n;
n /= base;
char c = m - base * n;
*--str = c < 10 ? c + '0' : c + 'A' - 10;
} while(n);
return write(str);
}
size_t Print::printFloat(double number, uint8_t digits)
{
size_t n = 0;
if (isnan(number)) return print("nan");
if (isinf(number)) return print("inf");
if (number > 4294967040.0) return print ("ovf"); // constant determined empirically
if (number <-4294967040.0) return print ("ovf"); // constant determined empirically
// Handle negative numbers
if (number < 0.0)
{
n += print('-');
number = -number;
}
// Round correctly so that print(1.999, 2) prints as "2.00"
double rounding = 0.5;
for (uint8_t i=0; i<digits; ++i)
rounding /= 10.0;
number += rounding;
// Extract the integer part of the number and print it
unsigned long int_part = (unsigned long)number;
double remainder = number - (double)int_part;
n += print(int_part);
// Print the decimal point, but only if there are digits beyond
if (digits > 0) {
n += print(".");
}
// Extract digits from the remainder one at a time
while (digits-- > 0)
{
remainder *= 10.0;
int toPrint = int(remainder);
n += print(toPrint);
remainder -= toPrint;
}
return n;
}

View File

@ -0,0 +1,81 @@
/*
Print.h - Base class that provides print() and println()
Copyright (c) 2008 David A. Mellis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef Print_h
#define Print_h
#include <inttypes.h>
#include <stdio.h> // for size_t
#include "WString.h"
#include "Printable.h"
#define DEC 10
#define HEX 16
#define OCT 8
#define BIN 2
class Print
{
private:
int write_error;
size_t printNumber(unsigned long, uint8_t);
size_t printFloat(double, uint8_t);
protected:
void setWriteError(int err = 1) { write_error = err; }
public:
Print() : write_error(0) {}
int getWriteError() { return write_error; }
void clearWriteError() { setWriteError(0); }
virtual size_t write(uint8_t) = 0;
size_t write(const char *str) {
if (str == NULL) return 0;
return write((const uint8_t *)str, strlen(str));
}
virtual size_t write(const uint8_t *buffer, size_t size);
size_t print(const __FlashStringHelper *);
size_t print(const String &);
size_t print(const char[]);
size_t print(char);
size_t print(unsigned char, int = DEC);
size_t print(int, int = DEC);
size_t print(unsigned int, int = DEC);
size_t print(long, int = DEC);
size_t print(unsigned long, int = DEC);
size_t print(double, int = 2);
size_t print(const Printable&);
size_t println(const __FlashStringHelper *);
size_t println(const String &s);
size_t println(const char[]);
size_t println(char);
size_t println(unsigned char, int = DEC);
size_t println(int, int = DEC);
size_t println(unsigned int, int = DEC);
size_t println(long, int = DEC);
size_t println(unsigned long, int = DEC);
size_t println(double, int = 2);
size_t println(const Printable&);
size_t println(void);
};
#endif

View File

@ -0,0 +1,40 @@
/*
Printable.h - Interface class that allows printing of complex types
Copyright (c) 2011 Adrian McEwen. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef Printable_h
#define Printable_h
#include <new.h>
class Print;
/** The Printable class provides a way for new classes to allow themselves to be printed.
By deriving from Printable and implementing the printTo method, it will then be possible
for users to print out instances of this class by passing them into the usual
Print::print and Print::println methods.
*/
class Printable
{
public:
virtual size_t printTo(Print& p) const = 0;
};
#endif

View File

@ -0,0 +1,9 @@
#ifndef server_h
#define server_h
class Server : public Print {
public:
virtual void begin() =0;
};
#endif

View File

@ -0,0 +1,270 @@
/*
Stream.cpp - adds parsing methods to Stream class
Copyright (c) 2008 David A. Mellis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Created July 2011
parsing functions based on TextFinder library by Michael Margolis
*/
#include "Arduino.h"
#include "Stream.h"
#define PARSE_TIMEOUT 1000 // default number of milli-seconds to wait
#define NO_SKIP_CHAR 1 // a magic char not found in a valid ASCII numeric field
// private method to read stream with timeout
int Stream::timedRead()
{
int c;
_startMillis = millis();
do {
c = read();
if (c >= 0) return c;
} while(millis() - _startMillis < _timeout);
return -1; // -1 indicates timeout
}
// private method to peek stream with timeout
int Stream::timedPeek()
{
int c;
_startMillis = millis();
do {
c = peek();
if (c >= 0) return c;
} while(millis() - _startMillis < _timeout);
return -1; // -1 indicates timeout
}
// returns peek of the next digit in the stream or -1 if timeout
// discards non-numeric characters
int Stream::peekNextDigit()
{
int c;
while (1) {
c = timedPeek();
if (c < 0) return c; // timeout
if (c == '-') return c;
if (c >= '0' && c <= '9') return c;
read(); // discard non-numeric
}
}
// Public Methods
//////////////////////////////////////////////////////////////
void Stream::setTimeout(unsigned long timeout) // sets the maximum number of milliseconds to wait
{
_timeout = timeout;
}
// find returns true if the target string is found
bool Stream::find(char *target)
{
return findUntil(target, NULL);
}
// reads data from the stream until the target string of given length is found
// returns true if target string is found, false if timed out
bool Stream::find(char *target, size_t length)
{
return findUntil(target, length, NULL, 0);
}
// as find but search ends if the terminator string is found
bool Stream::findUntil(char *target, char *terminator)
{
return findUntil(target, strlen(target), terminator, strlen(terminator));
}
// reads data from the stream until the target string of the given length is found
// search terminated if the terminator string is found
// returns true if target string is found, false if terminated or timed out
bool Stream::findUntil(char *target, size_t targetLen, char *terminator, size_t termLen)
{
size_t index = 0; // maximum target string length is 64k bytes!
size_t termIndex = 0;
int c;
if( *target == 0)
return true; // return true if target is a null string
while( (c = timedRead()) > 0){
if(c != target[index])
index = 0; // reset index if any char does not match
if( c == target[index]){
//////Serial.print("found "); Serial.write(c); Serial.print("index now"); Serial.println(index+1);
if(++index >= targetLen){ // return true if all chars in the target match
return true;
}
}
if(termLen > 0 && c == terminator[termIndex]){
if(++termIndex >= termLen)
return false; // return false if terminate string found before target string
}
else
termIndex = 0;
}
return false;
}
// returns the first valid (long) integer value from the current position.
// initial characters that are not digits (or the minus sign) are skipped
// function is terminated by the first character that is not a digit.
long Stream::parseInt()
{
return parseInt(NO_SKIP_CHAR); // terminate on first non-digit character (or timeout)
}
// as above but a given skipChar is ignored
// this allows format characters (typically commas) in values to be ignored
long Stream::parseInt(char skipChar)
{
boolean isNegative = false;
long value = 0;
int c;
c = peekNextDigit();
// ignore non numeric leading characters
if(c < 0)
return 0; // zero returned if timeout
do{
if(c == skipChar)
; // ignore this charactor
else if(c == '-')
isNegative = true;
else if(c >= '0' && c <= '9') // is c a digit?
value = value * 10 + c - '0';
read(); // consume the character we got with peek
c = timedPeek();
}
while( (c >= '0' && c <= '9') || c == skipChar );
if(isNegative)
value = -value;
return value;
}
// as parseInt but returns a floating point value
float Stream::parseFloat()
{
return parseFloat(NO_SKIP_CHAR);
}
// as above but the given skipChar is ignored
// this allows format characters (typically commas) in values to be ignored
float Stream::parseFloat(char skipChar){
boolean isNegative = false;
boolean isFraction = false;
long value = 0;
char c;
float fraction = 1.0;
c = peekNextDigit();
// ignore non numeric leading characters
if(c < 0)
return 0; // zero returned if timeout
do{
if(c == skipChar)
; // ignore
else if(c == '-')
isNegative = true;
else if (c == '.')
isFraction = true;
else if(c >= '0' && c <= '9') { // is c a digit?
value = value * 10 + c - '0';
if(isFraction)
fraction *= 0.1;
}
read(); // consume the character we got with peek
c = timedPeek();
}
while( (c >= '0' && c <= '9') || c == '.' || c == skipChar );
if(isNegative)
value = -value;
if(isFraction)
return value * fraction;
else
return value;
}
// read characters from stream into buffer
// terminates if length characters have been read, or timeout (see setTimeout)
// returns the number of characters placed in the buffer
// the buffer is NOT null terminated.
//
size_t Stream::readBytes(char *buffer, size_t length)
{
size_t count = 0;
while (count < length) {
int c = timedRead();
if (c < 0) break;
*buffer++ = (char)c;
count++;
}
return count;
}
// as readBytes with terminator character
// terminates if length characters have been read, timeout, or if the terminator character detected
// returns the number of characters placed in the buffer (0 means no valid data found)
size_t Stream::readBytesUntil(char terminator, char *buffer, size_t length)
{
if (length < 1) return 0;
size_t index = 0;
while (index < length) {
int c = timedRead();
if (c < 0 || c == terminator) break;
*buffer++ = (char)c;
index++;
}
return index; // return number of characters, not including null terminator
}
String Stream::readString()
{
String ret;
int c = timedRead();
while (c >= 0)
{
ret += (char)c;
c = timedRead();
}
return ret;
}
String Stream::readStringUntil(char terminator)
{
String ret;
int c = timedRead();
while (c >= 0 && c != terminator)
{
ret += (char)c;
c = timedRead();
}
return ret;
}

View File

@ -0,0 +1,96 @@
/*
Stream.h - base class for character-based streams.
Copyright (c) 2010 David A. Mellis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
parsing functions based on TextFinder library by Michael Margolis
*/
#ifndef Stream_h
#define Stream_h
#include <inttypes.h>
#include "Print.h"
// compatability macros for testing
/*
#define getInt() parseInt()
#define getInt(skipChar) parseInt(skipchar)
#define getFloat() parseFloat()
#define getFloat(skipChar) parseFloat(skipChar)
#define getString( pre_string, post_string, buffer, length)
readBytesBetween( pre_string, terminator, buffer, length)
*/
class Stream : public Print
{
protected:
unsigned long _timeout; // number of milliseconds to wait for the next char before aborting timed read
unsigned long _startMillis; // used for timeout measurement
int timedRead(); // private method to read stream with timeout
int timedPeek(); // private method to peek stream with timeout
int peekNextDigit(); // returns the next numeric digit in the stream or -1 if timeout
public:
virtual int available() = 0;
virtual int read() = 0;
virtual int peek() = 0;
virtual void flush() = 0;
Stream() {_timeout=1000;}
// parsing methods
void setTimeout(unsigned long timeout); // sets maximum milliseconds to wait for stream data, default is 1 second
bool find(char *target); // reads data from the stream until the target string is found
// returns true if target string is found, false if timed out (see setTimeout)
bool find(char *target, size_t length); // reads data from the stream until the target string of given length is found
// returns true if target string is found, false if timed out
bool findUntil(char *target, char *terminator); // as find but search ends if the terminator string is found
bool findUntil(char *target, size_t targetLen, char *terminate, size_t termLen); // as above but search ends if the terminate string is found
long parseInt(); // returns the first valid (long) integer value from the current position.
// initial characters that are not digits (or the minus sign) are skipped
// integer is terminated by the first character that is not a digit.
float parseFloat(); // float version of parseInt
size_t readBytes( char *buffer, size_t length); // read chars from stream into buffer
// terminates if length characters have been read or timeout (see setTimeout)
// returns the number of characters placed in the buffer (0 means no valid data found)
size_t readBytesUntil( char terminator, char *buffer, size_t length); // as readBytes with terminator character
// terminates if length characters have been read, timeout, or if the terminator character detected
// returns the number of characters placed in the buffer (0 means no valid data found)
// Arduino String functions to be added here
String readString();
String readStringUntil(char terminator);
protected:
long parseInt(char skipChar); // as above but the given skipChar is ignored
// as above but the given skipChar is ignored
// this allows format characters (typically commas) in values to be ignored
float parseFloat(char skipChar); // as above but the given skipChar is ignored
};
#endif

View File

@ -0,0 +1,616 @@
/* Tone.cpp
A Tone Generator Library
Written by Brett Hagman
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Version Modified By Date Comments
------- ----------- -------- --------
0001 B Hagman 09/08/02 Initial coding
0002 B Hagman 09/08/18 Multiple pins
0003 B Hagman 09/08/18 Moved initialization from constructor to begin()
0004 B Hagman 09/09/26 Fixed problems with ATmega8
0005 B Hagman 09/11/23 Scanned prescalars for best fit on 8 bit timers
09/11/25 Changed pin toggle method to XOR
09/11/25 Fixed timer0 from being excluded
0006 D Mellis 09/12/29 Replaced objects with functions
0007 M Sproul 10/08/29 Changed #ifdefs from cpu to register
0008 S Kanemoto 12/06/22 Fixed for Leonardo by @maris_HY
*************************************************/
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include "Arduino.h"
#include "pins_arduino.h"
#if defined(__AVR_ATmega8__) || defined(__AVR_ATmega128__)
#define TCCR2A TCCR2
#define TCCR2B TCCR2
#define COM2A1 COM21
#define COM2A0 COM20
#define OCR2A OCR2
#define TIMSK2 TIMSK
#define OCIE2A OCIE2
#define TIMER2_COMPA_vect TIMER2_COMP_vect
#define TIMSK1 TIMSK
#endif
// timerx_toggle_count:
// > 0 - duration specified
// = 0 - stopped
// < 0 - infinitely (until stop() method called, or new play() called)
#if !defined(__AVR_ATmega8__)
volatile long timer0_toggle_count;
volatile uint8_t *timer0_pin_port;
volatile uint8_t timer0_pin_mask;
#endif
volatile long timer1_toggle_count;
volatile uint8_t *timer1_pin_port;
volatile uint8_t timer1_pin_mask;
volatile long timer2_toggle_count;
volatile uint8_t *timer2_pin_port;
volatile uint8_t timer2_pin_mask;
#if defined(TIMSK3)
volatile long timer3_toggle_count;
volatile uint8_t *timer3_pin_port;
volatile uint8_t timer3_pin_mask;
#endif
#if defined(TIMSK4)
volatile long timer4_toggle_count;
volatile uint8_t *timer4_pin_port;
volatile uint8_t timer4_pin_mask;
#endif
#if defined(TIMSK5)
volatile long timer5_toggle_count;
volatile uint8_t *timer5_pin_port;
volatile uint8_t timer5_pin_mask;
#endif
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define AVAILABLE_TONE_PINS 1
#define USE_TIMER2
const uint8_t PROGMEM tone_pin_to_timer_PGM[] = { 2 /*, 3, 4, 5, 1, 0 */ };
static uint8_t tone_pins[AVAILABLE_TONE_PINS] = { 255 /*, 255, 255, 255, 255, 255 */ };
#elif defined(__AVR_ATmega8__)
#define AVAILABLE_TONE_PINS 1
#define USE_TIMER2
const uint8_t PROGMEM tone_pin_to_timer_PGM[] = { 2 /*, 1 */ };
static uint8_t tone_pins[AVAILABLE_TONE_PINS] = { 255 /*, 255 */ };
#elif defined(__AVR_ATmega32U4__)
#define AVAILABLE_TONE_PINS 1
#define USE_TIMER3
const uint8_t PROGMEM tone_pin_to_timer_PGM[] = { 3 /*, 1 */ };
static uint8_t tone_pins[AVAILABLE_TONE_PINS] = { 255 /*, 255 */ };
#else
#define AVAILABLE_TONE_PINS 1
#define USE_TIMER2
// Leave timer 0 to last.
const uint8_t PROGMEM tone_pin_to_timer_PGM[] = { 2 /*, 1, 0 */ };
static uint8_t tone_pins[AVAILABLE_TONE_PINS] = { 255 /*, 255, 255 */ };
#endif
static int8_t toneBegin(uint8_t _pin)
{
int8_t _timer = -1;
// if we're already using the pin, the timer should be configured.
for (int i = 0; i < AVAILABLE_TONE_PINS; i++) {
if (tone_pins[i] == _pin) {
return pgm_read_byte(tone_pin_to_timer_PGM + i);
}
}
// search for an unused timer.
for (int i = 0; i < AVAILABLE_TONE_PINS; i++) {
if (tone_pins[i] == 255) {
tone_pins[i] = _pin;
_timer = pgm_read_byte(tone_pin_to_timer_PGM + i);
break;
}
}
if (_timer != -1)
{
// Set timer specific stuff
// All timers in CTC mode
// 8 bit timers will require changing prescalar values,
// whereas 16 bit timers are set to either ck/1 or ck/64 prescalar
switch (_timer)
{
#if defined(TCCR0A) && defined(TCCR0B)
case 0:
// 8 bit timer
TCCR0A = 0;
TCCR0B = 0;
bitWrite(TCCR0A, WGM01, 1);
bitWrite(TCCR0B, CS00, 1);
timer0_pin_port = portOutputRegister(digitalPinToPort(_pin));
timer0_pin_mask = digitalPinToBitMask(_pin);
break;
#endif
#if defined(TCCR1A) && defined(TCCR1B) && defined(WGM12)
case 1:
// 16 bit timer
TCCR1A = 0;
TCCR1B = 0;
bitWrite(TCCR1B, WGM12, 1);
bitWrite(TCCR1B, CS10, 1);
timer1_pin_port = portOutputRegister(digitalPinToPort(_pin));
timer1_pin_mask = digitalPinToBitMask(_pin);
break;
#endif
#if defined(TCCR2A) && defined(TCCR2B)
case 2:
// 8 bit timer
TCCR2A = 0;
TCCR2B = 0;
bitWrite(TCCR2A, WGM21, 1);
bitWrite(TCCR2B, CS20, 1);
timer2_pin_port = portOutputRegister(digitalPinToPort(_pin));
timer2_pin_mask = digitalPinToBitMask(_pin);
break;
#endif
#if defined(TCCR3A) && defined(TCCR3B) && defined(TIMSK3)
case 3:
// 16 bit timer
TCCR3A = 0;
TCCR3B = 0;
bitWrite(TCCR3B, WGM32, 1);
bitWrite(TCCR3B, CS30, 1);
timer3_pin_port = portOutputRegister(digitalPinToPort(_pin));
timer3_pin_mask = digitalPinToBitMask(_pin);
break;
#endif
#if defined(TCCR4A) && defined(TCCR4B) && defined(TIMSK4)
case 4:
// 16 bit timer
TCCR4A = 0;
TCCR4B = 0;
#if defined(WGM42)
bitWrite(TCCR4B, WGM42, 1);
#elif defined(CS43)
#warning this may not be correct
// atmega32u4
bitWrite(TCCR4B, CS43, 1);
#endif
bitWrite(TCCR4B, CS40, 1);
timer4_pin_port = portOutputRegister(digitalPinToPort(_pin));
timer4_pin_mask = digitalPinToBitMask(_pin);
break;
#endif
#if defined(TCCR5A) && defined(TCCR5B) && defined(TIMSK5)
case 5:
// 16 bit timer
TCCR5A = 0;
TCCR5B = 0;
bitWrite(TCCR5B, WGM52, 1);
bitWrite(TCCR5B, CS50, 1);
timer5_pin_port = portOutputRegister(digitalPinToPort(_pin));
timer5_pin_mask = digitalPinToBitMask(_pin);
break;
#endif
}
}
return _timer;
}
// frequency (in hertz) and duration (in milliseconds).
void tone(uint8_t _pin, unsigned int frequency, unsigned long duration)
{
uint8_t prescalarbits = 0b001;
long toggle_count = 0;
uint32_t ocr = 0;
int8_t _timer;
_timer = toneBegin(_pin);
if (_timer >= 0)
{
// Set the pinMode as OUTPUT
pinMode(_pin, OUTPUT);
// if we are using an 8 bit timer, scan through prescalars to find the best fit
if (_timer == 0 || _timer == 2)
{
ocr = F_CPU / frequency / 2 - 1;
prescalarbits = 0b001; // ck/1: same for both timers
if (ocr > 255)
{
ocr = F_CPU / frequency / 2 / 8 - 1;
prescalarbits = 0b010; // ck/8: same for both timers
if (_timer == 2 && ocr > 255)
{
ocr = F_CPU / frequency / 2 / 32 - 1;
prescalarbits = 0b011;
}
if (ocr > 255)
{
ocr = F_CPU / frequency / 2 / 64 - 1;
prescalarbits = _timer == 0 ? 0b011 : 0b100;
if (_timer == 2 && ocr > 255)
{
ocr = F_CPU / frequency / 2 / 128 - 1;
prescalarbits = 0b101;
}
if (ocr > 255)
{
ocr = F_CPU / frequency / 2 / 256 - 1;
prescalarbits = _timer == 0 ? 0b100 : 0b110;
if (ocr > 255)
{
// can't do any better than /1024
ocr = F_CPU / frequency / 2 / 1024 - 1;
prescalarbits = _timer == 0 ? 0b101 : 0b111;
}
}
}
}
#if defined(TCCR0B)
if (_timer == 0)
{
TCCR0B = prescalarbits;
}
else
#endif
#if defined(TCCR2B)
{
TCCR2B = prescalarbits;
}
#else
{
// dummy place holder to make the above ifdefs work
}
#endif
}
else
{
// two choices for the 16 bit timers: ck/1 or ck/64
ocr = F_CPU / frequency / 2 - 1;
prescalarbits = 0b001;
if (ocr > 0xffff)
{
ocr = F_CPU / frequency / 2 / 64 - 1;
prescalarbits = 0b011;
}
if (_timer == 1)
{
#if defined(TCCR1B)
TCCR1B = (TCCR1B & 0b11111000) | prescalarbits;
#endif
}
#if defined(TCCR3B)
else if (_timer == 3)
TCCR3B = (TCCR3B & 0b11111000) | prescalarbits;
#endif
#if defined(TCCR4B)
else if (_timer == 4)
TCCR4B = (TCCR4B & 0b11111000) | prescalarbits;
#endif
#if defined(TCCR5B)
else if (_timer == 5)
TCCR5B = (TCCR5B & 0b11111000) | prescalarbits;
#endif
}
// Calculate the toggle count
if (duration > 0)
{
toggle_count = 2 * frequency * duration / 1000;
}
else
{
toggle_count = -1;
}
// Set the OCR for the given timer,
// set the toggle count,
// then turn on the interrupts
switch (_timer)
{
#if defined(OCR0A) && defined(TIMSK0) && defined(OCIE0A)
case 0:
OCR0A = ocr;
timer0_toggle_count = toggle_count;
bitWrite(TIMSK0, OCIE0A, 1);
break;
#endif
case 1:
#if defined(OCR1A) && defined(TIMSK1) && defined(OCIE1A)
OCR1A = ocr;
timer1_toggle_count = toggle_count;
bitWrite(TIMSK1, OCIE1A, 1);
#elif defined(OCR1A) && defined(TIMSK) && defined(OCIE1A)
// this combination is for at least the ATmega32
OCR1A = ocr;
timer1_toggle_count = toggle_count;
bitWrite(TIMSK, OCIE1A, 1);
#endif
break;
#if defined(OCR2A) && defined(TIMSK2) && defined(OCIE2A)
case 2:
OCR2A = ocr;
timer2_toggle_count = toggle_count;
bitWrite(TIMSK2, OCIE2A, 1);
break;
#endif
#if defined(TIMSK3)
case 3:
OCR3A = ocr;
timer3_toggle_count = toggle_count;
bitWrite(TIMSK3, OCIE3A, 1);
break;
#endif
#if defined(TIMSK4)
case 4:
OCR4A = ocr;
timer4_toggle_count = toggle_count;
bitWrite(TIMSK4, OCIE4A, 1);
break;
#endif
#if defined(OCR5A) && defined(TIMSK5) && defined(OCIE5A)
case 5:
OCR5A = ocr;
timer5_toggle_count = toggle_count;
bitWrite(TIMSK5, OCIE5A, 1);
break;
#endif
}
}
}
// XXX: this function only works properly for timer 2 (the only one we use
// currently). for the others, it should end the tone, but won't restore
// proper PWM functionality for the timer.
void disableTimer(uint8_t _timer)
{
switch (_timer)
{
case 0:
#if defined(TIMSK0)
TIMSK0 = 0;
#elif defined(TIMSK)
TIMSK = 0; // atmega32
#endif
break;
#if defined(TIMSK1) && defined(OCIE1A)
case 1:
bitWrite(TIMSK1, OCIE1A, 0);
break;
#endif
case 2:
#if defined(TIMSK2) && defined(OCIE2A)
bitWrite(TIMSK2, OCIE2A, 0); // disable interrupt
#endif
#if defined(TCCR2A) && defined(WGM20)
TCCR2A = (1 << WGM20);
#endif
#if defined(TCCR2B) && defined(CS22)
TCCR2B = (TCCR2B & 0b11111000) | (1 << CS22);
#endif
#if defined(OCR2A)
OCR2A = 0;
#endif
break;
#if defined(TIMSK3)
case 3:
TIMSK3 = 0;
break;
#endif
#if defined(TIMSK4)
case 4:
TIMSK4 = 0;
break;
#endif
#if defined(TIMSK5)
case 5:
TIMSK5 = 0;
break;
#endif
}
}
void noTone(uint8_t _pin)
{
int8_t _timer = -1;
for (int i = 0; i < AVAILABLE_TONE_PINS; i++) {
if (tone_pins[i] == _pin) {
_timer = pgm_read_byte(tone_pin_to_timer_PGM + i);
tone_pins[i] = 255;
}
}
disableTimer(_timer);
digitalWrite(_pin, 0);
}
#ifdef USE_TIMER0
ISR(TIMER0_COMPA_vect)
{
if (timer0_toggle_count != 0)
{
// toggle the pin
*timer0_pin_port ^= timer0_pin_mask;
if (timer0_toggle_count > 0)
timer0_toggle_count--;
}
else
{
disableTimer(0);
*timer0_pin_port &= ~(timer0_pin_mask); // keep pin low after stop
}
}
#endif
#ifdef USE_TIMER1
ISR(TIMER1_COMPA_vect)
{
if (timer1_toggle_count != 0)
{
// toggle the pin
*timer1_pin_port ^= timer1_pin_mask;
if (timer1_toggle_count > 0)
timer1_toggle_count--;
}
else
{
disableTimer(1);
*timer1_pin_port &= ~(timer1_pin_mask); // keep pin low after stop
}
}
#endif
#ifdef USE_TIMER2
ISR(TIMER2_COMPA_vect)
{
if (timer2_toggle_count != 0)
{
// toggle the pin
*timer2_pin_port ^= timer2_pin_mask;
if (timer2_toggle_count > 0)
timer2_toggle_count--;
}
else
{
// need to call noTone() so that the tone_pins[] entry is reset, so the
// timer gets initialized next time we call tone().
// XXX: this assumes timer 2 is always the first one used.
noTone(tone_pins[0]);
// disableTimer(2);
// *timer2_pin_port &= ~(timer2_pin_mask); // keep pin low after stop
}
}
#endif
#ifdef USE_TIMER3
ISR(TIMER3_COMPA_vect)
{
if (timer3_toggle_count != 0)
{
// toggle the pin
*timer3_pin_port ^= timer3_pin_mask;
if (timer3_toggle_count > 0)
timer3_toggle_count--;
}
else
{
disableTimer(3);
*timer3_pin_port &= ~(timer3_pin_mask); // keep pin low after stop
}
}
#endif
#ifdef USE_TIMER4
ISR(TIMER4_COMPA_vect)
{
if (timer4_toggle_count != 0)
{
// toggle the pin
*timer4_pin_port ^= timer4_pin_mask;
if (timer4_toggle_count > 0)
timer4_toggle_count--;
}
else
{
disableTimer(4);
*timer4_pin_port &= ~(timer4_pin_mask); // keep pin low after stop
}
}
#endif
#ifdef USE_TIMER5
ISR(TIMER5_COMPA_vect)
{
if (timer5_toggle_count != 0)
{
// toggle the pin
*timer5_pin_port ^= timer5_pin_mask;
if (timer5_toggle_count > 0)
timer5_toggle_count--;
}
else
{
disableTimer(5);
*timer5_pin_port &= ~(timer5_pin_mask); // keep pin low after stop
}
}
#endif

View File

@ -0,0 +1,196 @@
#ifndef __USBAPI__
#define __USBAPI__
#if defined(USBCON)
//================================================================================
//================================================================================
// USB
class USBDevice_
{
public:
USBDevice_();
bool configured();
void attach();
void detach(); // Serial port goes down too...
void poll();
};
extern USBDevice_ USBDevice;
//================================================================================
//================================================================================
// Serial over CDC (Serial1 is the physical port)
class Serial_ : public Stream
{
private:
ring_buffer *_cdc_rx_buffer;
public:
void begin(uint16_t baud_count);
void end(void);
virtual int available(void);
virtual void accept(void);
virtual int peek(void);
virtual int read(void);
virtual void flush(void);
virtual size_t write(uint8_t);
using Print::write; // pull in write(str) and write(buf, size) from Print
operator bool();
};
extern Serial_ Serial;
//================================================================================
//================================================================================
// Mouse
#define MOUSE_LEFT 1
#define MOUSE_RIGHT 2
#define MOUSE_MIDDLE 4
#define MOUSE_ALL (MOUSE_LEFT | MOUSE_RIGHT | MOUSE_MIDDLE)
class Mouse_
{
private:
uint8_t _buttons;
void buttons(uint8_t b);
public:
Mouse_(void);
void begin(void);
void end(void);
void click(uint8_t b = MOUSE_LEFT);
void move(signed char x, signed char y, signed char wheel = 0);
void press(uint8_t b = MOUSE_LEFT); // press LEFT by default
void release(uint8_t b = MOUSE_LEFT); // release LEFT by default
bool isPressed(uint8_t b = MOUSE_LEFT); // check LEFT by default
};
extern Mouse_ Mouse;
//================================================================================
//================================================================================
// Keyboard
#define KEY_LEFT_CTRL 0x80
#define KEY_LEFT_SHIFT 0x81
#define KEY_LEFT_ALT 0x82
#define KEY_LEFT_GUI 0x83
#define KEY_RIGHT_CTRL 0x84
#define KEY_RIGHT_SHIFT 0x85
#define KEY_RIGHT_ALT 0x86
#define KEY_RIGHT_GUI 0x87
#define KEY_UP_ARROW 0xDA
#define KEY_DOWN_ARROW 0xD9
#define KEY_LEFT_ARROW 0xD8
#define KEY_RIGHT_ARROW 0xD7
#define KEY_BACKSPACE 0xB2
#define KEY_TAB 0xB3
#define KEY_RETURN 0xB0
#define KEY_ESC 0xB1
#define KEY_INSERT 0xD1
#define KEY_DELETE 0xD4
#define KEY_PAGE_UP 0xD3
#define KEY_PAGE_DOWN 0xD6
#define KEY_HOME 0xD2
#define KEY_END 0xD5
#define KEY_CAPS_LOCK 0xC1
#define KEY_F1 0xC2
#define KEY_F2 0xC3
#define KEY_F3 0xC4
#define KEY_F4 0xC5
#define KEY_F5 0xC6
#define KEY_F6 0xC7
#define KEY_F7 0xC8
#define KEY_F8 0xC9
#define KEY_F9 0xCA
#define KEY_F10 0xCB
#define KEY_F11 0xCC
#define KEY_F12 0xCD
// Low level key report: up to 6 keys and shift, ctrl etc at once
typedef struct
{
uint8_t modifiers;
uint8_t reserved;
uint8_t keys[6];
} KeyReport;
class Keyboard_ : public Print
{
private:
KeyReport _keyReport;
void sendReport(KeyReport* keys);
public:
Keyboard_(void);
void begin(void);
void end(void);
virtual size_t write(uint8_t k);
virtual size_t press(uint8_t k);
virtual size_t release(uint8_t k);
virtual void releaseAll(void);
};
extern Keyboard_ Keyboard;
//================================================================================
//================================================================================
// Low level API
typedef struct
{
uint8_t bmRequestType;
uint8_t bRequest;
uint8_t wValueL;
uint8_t wValueH;
uint16_t wIndex;
uint16_t wLength;
} Setup;
//================================================================================
//================================================================================
// HID 'Driver'
int HID_GetInterface(uint8_t* interfaceNum);
int HID_GetDescriptor(int i);
bool HID_Setup(Setup& setup);
void HID_SendReport(uint8_t id, const void* data, int len);
//================================================================================
//================================================================================
// MSC 'Driver'
int MSC_GetInterface(uint8_t* interfaceNum);
int MSC_GetDescriptor(int i);
bool MSC_Setup(Setup& setup);
bool MSC_Data(uint8_t rx,uint8_t tx);
//================================================================================
//================================================================================
// CSC 'Driver'
int CDC_GetInterface(uint8_t* interfaceNum);
int CDC_GetDescriptor(int i);
bool CDC_Setup(Setup& setup);
//================================================================================
//================================================================================
#define TRANSFER_PGM 0x80
#define TRANSFER_RELEASE 0x40
#define TRANSFER_ZERO 0x20
int USB_SendControl(uint8_t flags, const void* d, int len);
int USB_RecvControl(void* d, int len);
uint8_t USB_Available(uint8_t ep);
int USB_Send(uint8_t ep, const void* data, int len); // blocking
int USB_Recv(uint8_t ep, void* data, int len); // non-blocking
int USB_Recv(uint8_t ep); // non-blocking
void USB_Flush(uint8_t ep);
#endif
#endif /* if defined(USBCON) */

View File

@ -0,0 +1,684 @@
/* Copyright (c) 2010, Peter Barrett
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#include "Platform.h"
#include "USBAPI.h"
#include "USBDesc.h"
#if defined(USBCON)
#define EP_TYPE_CONTROL 0x00
#define EP_TYPE_BULK_IN 0x81
#define EP_TYPE_BULK_OUT 0x80
#define EP_TYPE_INTERRUPT_IN 0xC1
#define EP_TYPE_INTERRUPT_OUT 0xC0
#define EP_TYPE_ISOCHRONOUS_IN 0x41
#define EP_TYPE_ISOCHRONOUS_OUT 0x40
/** Pulse generation counters to keep track of the number of milliseconds remaining for each pulse type */
#define TX_RX_LED_PULSE_MS 100
volatile u8 TxLEDPulse; /**< Milliseconds remaining for data Tx LED pulse */
volatile u8 RxLEDPulse; /**< Milliseconds remaining for data Rx LED pulse */
//==================================================================
//==================================================================
extern const u16 STRING_LANGUAGE[] PROGMEM;
extern const u16 STRING_IPRODUCT[] PROGMEM;
extern const u16 STRING_IMANUFACTURER[] PROGMEM;
extern const DeviceDescriptor USB_DeviceDescriptor PROGMEM;
extern const DeviceDescriptor USB_DeviceDescriptorA PROGMEM;
const u16 STRING_LANGUAGE[2] = {
(3<<8) | (2+2),
0x0409 // English
};
const u16 STRING_IPRODUCT[17] = {
(3<<8) | (2+2*16),
#if USB_PID == 0x8036
'A','r','d','u','i','n','o',' ','L','e','o','n','a','r','d','o'
#elif USB_PID == 0x8037
'A','r','d','u','i','n','o',' ','M','i','c','r','o',' ',' ',' '
#elif USB_PID == 0x803C
'A','r','d','u','i','n','o',' ','E','s','p','l','o','r','a',' '
#elif USB_PID == 0x9208
'L','i','l','y','P','a','d','U','S','B',' ',' ',' ',' ',' ',' '
#else
'U','S','B',' ','I','O',' ','B','o','a','r','d',' ',' ',' ',' '
#endif
};
const u16 STRING_IMANUFACTURER[12] = {
(3<<8) | (2+2*11),
#if USB_VID == 0x2341
'A','r','d','u','i','n','o',' ','L','L','C'
#elif USB_VID == 0x1b4f
'S','p','a','r','k','F','u','n',' ',' ',' '
#else
'U','n','k','n','o','w','n',' ',' ',' ',' '
#endif
};
#ifdef CDC_ENABLED
#define DEVICE_CLASS 0x02
#else
#define DEVICE_CLASS 0x00
#endif
// DEVICE DESCRIPTOR
const DeviceDescriptor USB_DeviceDescriptor =
D_DEVICE(0x00,0x00,0x00,64,USB_VID,USB_PID,0x100,IMANUFACTURER,IPRODUCT,0,1);
const DeviceDescriptor USB_DeviceDescriptorA =
D_DEVICE(DEVICE_CLASS,0x00,0x00,64,USB_VID,USB_PID,0x100,IMANUFACTURER,IPRODUCT,0,1);
//==================================================================
//==================================================================
volatile u8 _usbConfiguration = 0;
static inline void WaitIN(void)
{
while (!(UEINTX & (1<<TXINI)));
}
static inline void ClearIN(void)
{
UEINTX = ~(1<<TXINI);
}
static inline void WaitOUT(void)
{
while (!(UEINTX & (1<<RXOUTI)))
;
}
static inline u8 WaitForINOrOUT()
{
while (!(UEINTX & ((1<<TXINI)|(1<<RXOUTI))))
;
return (UEINTX & (1<<RXOUTI)) == 0;
}
static inline void ClearOUT(void)
{
UEINTX = ~(1<<RXOUTI);
}
void Recv(volatile u8* data, u8 count)
{
while (count--)
*data++ = UEDATX;
RXLED1; // light the RX LED
RxLEDPulse = TX_RX_LED_PULSE_MS;
}
static inline u8 Recv8()
{
RXLED1; // light the RX LED
RxLEDPulse = TX_RX_LED_PULSE_MS;
return UEDATX;
}
static inline void Send8(u8 d)
{
UEDATX = d;
}
static inline void SetEP(u8 ep)
{
UENUM = ep;
}
static inline u8 FifoByteCount()
{
return UEBCLX;
}
static inline u8 ReceivedSetupInt()
{
return UEINTX & (1<<RXSTPI);
}
static inline void ClearSetupInt()
{
UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI));
}
static inline void Stall()
{
UECONX = (1<<STALLRQ) | (1<<EPEN);
}
static inline u8 ReadWriteAllowed()
{
return UEINTX & (1<<RWAL);
}
static inline u8 Stalled()
{
return UEINTX & (1<<STALLEDI);
}
static inline u8 FifoFree()
{
return UEINTX & (1<<FIFOCON);
}
static inline void ReleaseRX()
{
UEINTX = 0x6B; // FIFOCON=0 NAKINI=1 RWAL=1 NAKOUTI=0 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=1
}
static inline void ReleaseTX()
{
UEINTX = 0x3A; // FIFOCON=0 NAKINI=0 RWAL=1 NAKOUTI=1 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=0
}
static inline u8 FrameNumber()
{
return UDFNUML;
}
//==================================================================
//==================================================================
u8 USBGetConfiguration(void)
{
return _usbConfiguration;
}
#define USB_RECV_TIMEOUT
class LockEP
{
u8 _sreg;
public:
LockEP(u8 ep) : _sreg(SREG)
{
cli();
SetEP(ep & 7);
}
~LockEP()
{
SREG = _sreg;
}
};
// Number of bytes, assumes a rx endpoint
u8 USB_Available(u8 ep)
{
LockEP lock(ep);
return FifoByteCount();
}
// Non Blocking receive
// Return number of bytes read
int USB_Recv(u8 ep, void* d, int len)
{
if (!_usbConfiguration || len < 0)
return -1;
LockEP lock(ep);
u8 n = FifoByteCount();
len = min(n,len);
n = len;
u8* dst = (u8*)d;
while (n--)
*dst++ = Recv8();
if (len && !FifoByteCount()) // release empty buffer
ReleaseRX();
return len;
}
// Recv 1 byte if ready
int USB_Recv(u8 ep)
{
u8 c;
if (USB_Recv(ep,&c,1) != 1)
return -1;
return c;
}
// Space in send EP
u8 USB_SendSpace(u8 ep)
{
LockEP lock(ep);
if (!ReadWriteAllowed())
return 0;
return 64 - FifoByteCount();
}
// Blocking Send of data to an endpoint
int USB_Send(u8 ep, const void* d, int len)
{
if (!_usbConfiguration)
return -1;
int r = len;
const u8* data = (const u8*)d;
u8 zero = ep & TRANSFER_ZERO;
u8 timeout = 250; // 250ms timeout on send? TODO
while (len)
{
u8 n = USB_SendSpace(ep);
if (n == 0)
{
if (!(--timeout))
return -1;
delay(1);
continue;
}
if (n > len)
n = len;
len -= n;
{
LockEP lock(ep);
if (ep & TRANSFER_ZERO)
{
while (n--)
Send8(0);
}
else if (ep & TRANSFER_PGM)
{
while (n--)
Send8(pgm_read_byte(data++));
}
else
{
while (n--)
Send8(*data++);
}
if (!ReadWriteAllowed() || ((len == 0) && (ep & TRANSFER_RELEASE))) // Release full buffer
ReleaseTX();
}
}
TXLED1; // light the TX LED
TxLEDPulse = TX_RX_LED_PULSE_MS;
return r;
}
extern const u8 _initEndpoints[] PROGMEM;
const u8 _initEndpoints[] =
{
0,
#ifdef CDC_ENABLED
EP_TYPE_INTERRUPT_IN, // CDC_ENDPOINT_ACM
EP_TYPE_BULK_OUT, // CDC_ENDPOINT_OUT
EP_TYPE_BULK_IN, // CDC_ENDPOINT_IN
#endif
#ifdef HID_ENABLED
EP_TYPE_INTERRUPT_IN // HID_ENDPOINT_INT
#endif
};
#define EP_SINGLE_64 0x32 // EP0
#define EP_DOUBLE_64 0x36 // Other endpoints
static
void InitEP(u8 index, u8 type, u8 size)
{
UENUM = index;
UECONX = 1;
UECFG0X = type;
UECFG1X = size;
}
static
void InitEndpoints()
{
for (u8 i = 1; i < sizeof(_initEndpoints); i++)
{
UENUM = i;
UECONX = 1;
UECFG0X = pgm_read_byte(_initEndpoints+i);
UECFG1X = EP_DOUBLE_64;
}
UERST = 0x7E; // And reset them
UERST = 0;
}
// Handle CLASS_INTERFACE requests
static
bool ClassInterfaceRequest(Setup& setup)
{
u8 i = setup.wIndex;
#ifdef CDC_ENABLED
if (CDC_ACM_INTERFACE == i)
return CDC_Setup(setup);
#endif
#ifdef HID_ENABLED
if (HID_INTERFACE == i)
return HID_Setup(setup);
#endif
return false;
}
int _cmark;
int _cend;
void InitControl(int end)
{
SetEP(0);
_cmark = 0;
_cend = end;
}
static
bool SendControl(u8 d)
{
if (_cmark < _cend)
{
if (!WaitForINOrOUT())
return false;
Send8(d);
if (!((_cmark + 1) & 0x3F))
ClearIN(); // Fifo is full, release this packet
}
_cmark++;
return true;
};
// Clipped by _cmark/_cend
int USB_SendControl(u8 flags, const void* d, int len)
{
int sent = len;
const u8* data = (const u8*)d;
bool pgm = flags & TRANSFER_PGM;
while (len--)
{
u8 c = pgm ? pgm_read_byte(data++) : *data++;
if (!SendControl(c))
return -1;
}
return sent;
}
// Does not timeout or cross fifo boundaries
// Will only work for transfers <= 64 bytes
// TODO
int USB_RecvControl(void* d, int len)
{
WaitOUT();
Recv((u8*)d,len);
ClearOUT();
return len;
}
int SendInterfaces()
{
int total = 0;
u8 interfaces = 0;
#ifdef CDC_ENABLED
total = CDC_GetInterface(&interfaces);
#endif
#ifdef HID_ENABLED
total += HID_GetInterface(&interfaces);
#endif
return interfaces;
}
// Construct a dynamic configuration descriptor
// This really needs dynamic endpoint allocation etc
// TODO
static
bool SendConfiguration(int maxlen)
{
// Count and measure interfaces
InitControl(0);
int interfaces = SendInterfaces();
ConfigDescriptor config = D_CONFIG(_cmark + sizeof(ConfigDescriptor),interfaces);
// Now send them
InitControl(maxlen);
USB_SendControl(0,&config,sizeof(ConfigDescriptor));
SendInterfaces();
return true;
}
u8 _cdcComposite = 0;
static
bool SendDescriptor(Setup& setup)
{
u8 t = setup.wValueH;
if (USB_CONFIGURATION_DESCRIPTOR_TYPE == t)
return SendConfiguration(setup.wLength);
InitControl(setup.wLength);
#ifdef HID_ENABLED
if (HID_REPORT_DESCRIPTOR_TYPE == t)
return HID_GetDescriptor(t);
#endif
u8 desc_length = 0;
const u8* desc_addr = 0;
if (USB_DEVICE_DESCRIPTOR_TYPE == t)
{
if (setup.wLength == 8)
_cdcComposite = 1;
desc_addr = _cdcComposite ? (const u8*)&USB_DeviceDescriptorA : (const u8*)&USB_DeviceDescriptor;
}
else if (USB_STRING_DESCRIPTOR_TYPE == t)
{
if (setup.wValueL == 0)
desc_addr = (const u8*)&STRING_LANGUAGE;
else if (setup.wValueL == IPRODUCT)
desc_addr = (const u8*)&STRING_IPRODUCT;
else if (setup.wValueL == IMANUFACTURER)
desc_addr = (const u8*)&STRING_IMANUFACTURER;
else
return false;
}
if (desc_addr == 0)
return false;
if (desc_length == 0)
desc_length = pgm_read_byte(desc_addr);
USB_SendControl(TRANSFER_PGM,desc_addr,desc_length);
return true;
}
// Endpoint 0 interrupt
ISR(USB_COM_vect)
{
SetEP(0);
if (!ReceivedSetupInt())
return;
Setup setup;
Recv((u8*)&setup,8);
ClearSetupInt();
u8 requestType = setup.bmRequestType;
if (requestType & REQUEST_DEVICETOHOST)
WaitIN();
else
ClearIN();
bool ok = true;
if (REQUEST_STANDARD == (requestType & REQUEST_TYPE))
{
// Standard Requests
u8 r = setup.bRequest;
if (GET_STATUS == r)
{
Send8(0); // TODO
Send8(0);
}
else if (CLEAR_FEATURE == r)
{
}
else if (SET_FEATURE == r)
{
}
else if (SET_ADDRESS == r)
{
WaitIN();
UDADDR = setup.wValueL | (1<<ADDEN);
}
else if (GET_DESCRIPTOR == r)
{
ok = SendDescriptor(setup);
}
else if (SET_DESCRIPTOR == r)
{
ok = false;
}
else if (GET_CONFIGURATION == r)
{
Send8(1);
}
else if (SET_CONFIGURATION == r)
{
if (REQUEST_DEVICE == (requestType & REQUEST_RECIPIENT))
{
InitEndpoints();
_usbConfiguration = setup.wValueL;
} else
ok = false;
}
else if (GET_INTERFACE == r)
{
}
else if (SET_INTERFACE == r)
{
}
}
else
{
InitControl(setup.wLength); // Max length of transfer
ok = ClassInterfaceRequest(setup);
}
if (ok)
ClearIN();
else
{
Stall();
}
}
void USB_Flush(u8 ep)
{
SetEP(ep);
if (FifoByteCount())
ReleaseTX();
}
// General interrupt
ISR(USB_GEN_vect)
{
u8 udint = UDINT;
UDINT = 0;
// End of Reset
if (udint & (1<<EORSTI))
{
InitEP(0,EP_TYPE_CONTROL,EP_SINGLE_64); // init ep0
_usbConfiguration = 0; // not configured yet
UEIENX = 1 << RXSTPE; // Enable interrupts for ep0
}
// Start of Frame - happens every millisecond so we use it for TX and RX LED one-shot timing, too
if (udint & (1<<SOFI))
{
#ifdef CDC_ENABLED
USB_Flush(CDC_TX); // Send a tx frame if found
if (USB_Available(CDC_RX)) // Handle received bytes (if any)
Serial.accept();
#endif
// check whether the one-shot period has elapsed. if so, turn off the LED
if (TxLEDPulse && !(--TxLEDPulse))
TXLED0;
if (RxLEDPulse && !(--RxLEDPulse))
RXLED0;
}
}
// VBUS or counting frames
// Any frame counting?
u8 USBConnected()
{
u8 f = UDFNUML;
delay(3);
return f != UDFNUML;
}
//=======================================================================
//=======================================================================
USBDevice_ USBDevice;
USBDevice_::USBDevice_()
{
}
void USBDevice_::attach()
{
_usbConfiguration = 0;
UHWCON = 0x01; // power internal reg
USBCON = (1<<USBE)|(1<<FRZCLK); // clock frozen, usb enabled
#if F_CPU == 16000000UL
PLLCSR = 0x12; // Need 16 MHz xtal
#elif F_CPU == 8000000UL
PLLCSR = 0x02; // Need 8 MHz xtal
#endif
while (!(PLLCSR & (1<<PLOCK))) // wait for lock pll
;
// Some tests on specific versions of macosx (10.7.3), reported some
// strange behaviuors when the board is reset using the serial
// port touch at 1200 bps. This delay fixes this behaviour.
delay(1);
USBCON = ((1<<USBE)|(1<<OTGPADE)); // start USB clock
UDIEN = (1<<EORSTE)|(1<<SOFE); // Enable interrupts for EOR (End of Reset) and SOF (start of frame)
UDCON = 0; // enable attach resistor
TX_RX_LED_INIT;
}
void USBDevice_::detach()
{
}
// Check for interrupts
// TODO: VBUS detection
bool USBDevice_::configured()
{
return _usbConfiguration;
}
void USBDevice_::poll()
{
}
#endif /* if defined(USBCON) */

View File

@ -0,0 +1,303 @@
// Copyright (c) 2010, Peter Barrett
/*
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#ifndef __USBCORE_H__
#define __USBCORE_H__
// Standard requests
#define GET_STATUS 0
#define CLEAR_FEATURE 1
#define SET_FEATURE 3
#define SET_ADDRESS 5
#define GET_DESCRIPTOR 6
#define SET_DESCRIPTOR 7
#define GET_CONFIGURATION 8
#define SET_CONFIGURATION 9
#define GET_INTERFACE 10
#define SET_INTERFACE 11
// bmRequestType
#define REQUEST_HOSTTODEVICE 0x00
#define REQUEST_DEVICETOHOST 0x80
#define REQUEST_DIRECTION 0x80
#define REQUEST_STANDARD 0x00
#define REQUEST_CLASS 0x20
#define REQUEST_VENDOR 0x40
#define REQUEST_TYPE 0x60
#define REQUEST_DEVICE 0x00
#define REQUEST_INTERFACE 0x01
#define REQUEST_ENDPOINT 0x02
#define REQUEST_OTHER 0x03
#define REQUEST_RECIPIENT 0x03
#define REQUEST_DEVICETOHOST_CLASS_INTERFACE (REQUEST_DEVICETOHOST + REQUEST_CLASS + REQUEST_INTERFACE)
#define REQUEST_HOSTTODEVICE_CLASS_INTERFACE (REQUEST_HOSTTODEVICE + REQUEST_CLASS + REQUEST_INTERFACE)
// Class requests
#define CDC_SET_LINE_CODING 0x20
#define CDC_GET_LINE_CODING 0x21
#define CDC_SET_CONTROL_LINE_STATE 0x22
#define MSC_RESET 0xFF
#define MSC_GET_MAX_LUN 0xFE
#define HID_GET_REPORT 0x01
#define HID_GET_IDLE 0x02
#define HID_GET_PROTOCOL 0x03
#define HID_SET_REPORT 0x09
#define HID_SET_IDLE 0x0A
#define HID_SET_PROTOCOL 0x0B
// Descriptors
#define USB_DEVICE_DESC_SIZE 18
#define USB_CONFIGUARTION_DESC_SIZE 9
#define USB_INTERFACE_DESC_SIZE 9
#define USB_ENDPOINT_DESC_SIZE 7
#define USB_DEVICE_DESCRIPTOR_TYPE 1
#define USB_CONFIGURATION_DESCRIPTOR_TYPE 2
#define USB_STRING_DESCRIPTOR_TYPE 3
#define USB_INTERFACE_DESCRIPTOR_TYPE 4
#define USB_ENDPOINT_DESCRIPTOR_TYPE 5
#define USB_DEVICE_CLASS_COMMUNICATIONS 0x02
#define USB_DEVICE_CLASS_HUMAN_INTERFACE 0x03
#define USB_DEVICE_CLASS_STORAGE 0x08
#define USB_DEVICE_CLASS_VENDOR_SPECIFIC 0xFF
#define USB_CONFIG_POWERED_MASK 0x40
#define USB_CONFIG_BUS_POWERED 0x80
#define USB_CONFIG_SELF_POWERED 0xC0
#define USB_CONFIG_REMOTE_WAKEUP 0x20
// bMaxPower in Configuration Descriptor
#define USB_CONFIG_POWER_MA(mA) ((mA)/2)
// bEndpointAddress in Endpoint Descriptor
#define USB_ENDPOINT_DIRECTION_MASK 0x80
#define USB_ENDPOINT_OUT(addr) ((addr) | 0x00)
#define USB_ENDPOINT_IN(addr) ((addr) | 0x80)
#define USB_ENDPOINT_TYPE_MASK 0x03
#define USB_ENDPOINT_TYPE_CONTROL 0x00
#define USB_ENDPOINT_TYPE_ISOCHRONOUS 0x01
#define USB_ENDPOINT_TYPE_BULK 0x02
#define USB_ENDPOINT_TYPE_INTERRUPT 0x03
#define TOBYTES(x) ((x) & 0xFF),(((x) >> 8) & 0xFF)
#define CDC_V1_10 0x0110
#define CDC_COMMUNICATION_INTERFACE_CLASS 0x02
#define CDC_CALL_MANAGEMENT 0x01
#define CDC_ABSTRACT_CONTROL_MODEL 0x02
#define CDC_HEADER 0x00
#define CDC_ABSTRACT_CONTROL_MANAGEMENT 0x02
#define CDC_UNION 0x06
#define CDC_CS_INTERFACE 0x24
#define CDC_CS_ENDPOINT 0x25
#define CDC_DATA_INTERFACE_CLASS 0x0A
#define MSC_SUBCLASS_SCSI 0x06
#define MSC_PROTOCOL_BULK_ONLY 0x50
#define HID_HID_DESCRIPTOR_TYPE 0x21
#define HID_REPORT_DESCRIPTOR_TYPE 0x22
#define HID_PHYSICAL_DESCRIPTOR_TYPE 0x23
// Device
typedef struct {
u8 len; // 18
u8 dtype; // 1 USB_DEVICE_DESCRIPTOR_TYPE
u16 usbVersion; // 0x200
u8 deviceClass;
u8 deviceSubClass;
u8 deviceProtocol;
u8 packetSize0; // Packet 0
u16 idVendor;
u16 idProduct;
u16 deviceVersion; // 0x100
u8 iManufacturer;
u8 iProduct;
u8 iSerialNumber;
u8 bNumConfigurations;
} DeviceDescriptor;
// Config
typedef struct {
u8 len; // 9
u8 dtype; // 2
u16 clen; // total length
u8 numInterfaces;
u8 config;
u8 iconfig;
u8 attributes;
u8 maxPower;
} ConfigDescriptor;
// String
// Interface
typedef struct
{
u8 len; // 9
u8 dtype; // 4
u8 number;
u8 alternate;
u8 numEndpoints;
u8 interfaceClass;
u8 interfaceSubClass;
u8 protocol;
u8 iInterface;
} InterfaceDescriptor;
// Endpoint
typedef struct
{
u8 len; // 7
u8 dtype; // 5
u8 addr;
u8 attr;
u16 packetSize;
u8 interval;
} EndpointDescriptor;
// Interface Association Descriptor
// Used to bind 2 interfaces together in CDC compostite device
typedef struct
{
u8 len; // 8
u8 dtype; // 11
u8 firstInterface;
u8 interfaceCount;
u8 functionClass;
u8 funtionSubClass;
u8 functionProtocol;
u8 iInterface;
} IADDescriptor;
// CDC CS interface descriptor
typedef struct
{
u8 len; // 5
u8 dtype; // 0x24
u8 subtype;
u8 d0;
u8 d1;
} CDCCSInterfaceDescriptor;
typedef struct
{
u8 len; // 4
u8 dtype; // 0x24
u8 subtype;
u8 d0;
} CDCCSInterfaceDescriptor4;
typedef struct
{
u8 len;
u8 dtype; // 0x24
u8 subtype; // 1
u8 bmCapabilities;
u8 bDataInterface;
} CMFunctionalDescriptor;
typedef struct
{
u8 len;
u8 dtype; // 0x24
u8 subtype; // 1
u8 bmCapabilities;
} ACMFunctionalDescriptor;
typedef struct
{
// IAD
IADDescriptor iad; // Only needed on compound device
// Control
InterfaceDescriptor cif; //
CDCCSInterfaceDescriptor header;
CMFunctionalDescriptor callManagement; // Call Management
ACMFunctionalDescriptor controlManagement; // ACM
CDCCSInterfaceDescriptor functionalDescriptor; // CDC_UNION
EndpointDescriptor cifin;
// Data
InterfaceDescriptor dif;
EndpointDescriptor in;
EndpointDescriptor out;
} CDCDescriptor;
typedef struct
{
InterfaceDescriptor msc;
EndpointDescriptor in;
EndpointDescriptor out;
} MSCDescriptor;
typedef struct
{
u8 len; // 9
u8 dtype; // 0x21
u8 addr;
u8 versionL; // 0x101
u8 versionH; // 0x101
u8 country;
u8 desctype; // 0x22 report
u8 descLenL;
u8 descLenH;
} HIDDescDescriptor;
typedef struct
{
InterfaceDescriptor hid;
HIDDescDescriptor desc;
EndpointDescriptor in;
} HIDDescriptor;
#define D_DEVICE(_class,_subClass,_proto,_packetSize0,_vid,_pid,_version,_im,_ip,_is,_configs) \
{ 18, 1, 0x200, _class,_subClass,_proto,_packetSize0,_vid,_pid,_version,_im,_ip,_is,_configs }
#define D_CONFIG(_totalLength,_interfaces) \
{ 9, 2, _totalLength,_interfaces, 1, 0, USB_CONFIG_BUS_POWERED, USB_CONFIG_POWER_MA(500) }
#define D_INTERFACE(_n,_numEndpoints,_class,_subClass,_protocol) \
{ 9, 4, _n, 0, _numEndpoints, _class,_subClass, _protocol, 0 }
#define D_ENDPOINT(_addr,_attr,_packetSize, _interval) \
{ 7, 5, _addr,_attr,_packetSize, _interval }
#define D_IAD(_firstInterface, _count, _class, _subClass, _protocol) \
{ 8, 11, _firstInterface, _count, _class, _subClass, _protocol, 0 }
#define D_HIDREPORT(_descriptorLength) \
{ 9, 0x21, 0x1, 0x1, 0, 1, 0x22, _descriptorLength, 0 }
#define D_CDCCS(_subtype,_d0,_d1) { 5, 0x24, _subtype, _d0, _d1 }
#define D_CDCCS4(_subtype,_d0) { 4, 0x24, _subtype, _d0 }
#endif

View File

@ -0,0 +1,63 @@
/* Copyright (c) 2011, Peter Barrett
**
** Permission to use, copy, modify, and/or distribute this software for
** any purpose with or without fee is hereby granted, provided that the
** above copyright notice and this permission notice appear in all copies.
**
** THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
** WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
** WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR
** BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES
** OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
** WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
** ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
** SOFTWARE.
*/
#define CDC_ENABLED
#define HID_ENABLED
#ifdef CDC_ENABLED
#define CDC_INTERFACE_COUNT 2
#define CDC_ENPOINT_COUNT 3
#else
#define CDC_INTERFACE_COUNT 0
#define CDC_ENPOINT_COUNT 0
#endif
#ifdef HID_ENABLED
#define HID_INTERFACE_COUNT 1
#define HID_ENPOINT_COUNT 1
#else
#define HID_INTERFACE_COUNT 0
#define HID_ENPOINT_COUNT 0
#endif
#define CDC_ACM_INTERFACE 0 // CDC ACM
#define CDC_DATA_INTERFACE 1 // CDC Data
#define CDC_FIRST_ENDPOINT 1
#define CDC_ENDPOINT_ACM (CDC_FIRST_ENDPOINT) // CDC First
#define CDC_ENDPOINT_OUT (CDC_FIRST_ENDPOINT+1)
#define CDC_ENDPOINT_IN (CDC_FIRST_ENDPOINT+2)
#define HID_INTERFACE (CDC_ACM_INTERFACE + CDC_INTERFACE_COUNT) // HID Interface
#define HID_FIRST_ENDPOINT (CDC_FIRST_ENDPOINT + CDC_ENPOINT_COUNT)
#define HID_ENDPOINT_INT (HID_FIRST_ENDPOINT)
#define INTERFACE_COUNT (MSC_INTERFACE + MSC_INTERFACE_COUNT)
#ifdef CDC_ENABLED
#define CDC_RX CDC_ENDPOINT_OUT
#define CDC_TX CDC_ENDPOINT_IN
#endif
#ifdef HID_ENABLED
#define HID_TX HID_ENDPOINT_INT
#endif
#define IMANUFACTURER 1
#define IPRODUCT 2

View File

@ -0,0 +1,88 @@
/*
* Udp.cpp: Library to send/receive UDP packets.
*
* NOTE: UDP is fast, but has some important limitations (thanks to Warren Gray for mentioning these)
* 1) UDP does not guarantee the order in which assembled UDP packets are received. This
* might not happen often in practice, but in larger network topologies, a UDP
* packet can be received out of sequence.
* 2) UDP does not guard against lost packets - so packets *can* disappear without the sender being
* aware of it. Again, this may not be a concern in practice on small local networks.
* For more information, see http://www.cafeaulait.org/course/week12/35.html
*
* MIT License:
* Copyright (c) 2008 Bjoern Hartmann
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* bjoern@cs.stanford.edu 12/30/2008
*/
#ifndef udp_h
#define udp_h
#include <Stream.h>
#include <IPAddress.h>
class UDP : public Stream {
public:
virtual uint8_t begin(uint16_t) =0; // initialize, start listening on specified port. Returns 1 if successful, 0 if there are no sockets available to use
virtual void stop() =0; // Finish with the UDP socket
// Sending UDP packets
// Start building up a packet to send to the remote host specific in ip and port
// Returns 1 if successful, 0 if there was a problem with the supplied IP address or port
virtual int beginPacket(IPAddress ip, uint16_t port) =0;
// Start building up a packet to send to the remote host specific in host and port
// Returns 1 if successful, 0 if there was a problem resolving the hostname or port
virtual int beginPacket(const char *host, uint16_t port) =0;
// Finish off this packet and send it
// Returns 1 if the packet was sent successfully, 0 if there was an error
virtual int endPacket() =0;
// Write a single byte into the packet
virtual size_t write(uint8_t) =0;
// Write size bytes from buffer into the packet
virtual size_t write(const uint8_t *buffer, size_t size) =0;
// Start processing the next available incoming packet
// Returns the size of the packet in bytes, or 0 if no packets are available
virtual int parsePacket() =0;
// Number of bytes remaining in the current packet
virtual int available() =0;
// Read a single byte from the current packet
virtual int read() =0;
// Read up to len bytes from the current packet and place them into buffer
// Returns the number of bytes read, or 0 if none are available
virtual int read(unsigned char* buffer, size_t len) =0;
// Read up to len characters from the current packet and place them into buffer
// Returns the number of characters read, or 0 if none are available
virtual int read(char* buffer, size_t len) =0;
// Return the next byte from the current packet without moving on to the next byte
virtual int peek() =0;
virtual void flush() =0; // Finish reading the current packet
// Return the IP address of the host who sent the current incoming packet
virtual IPAddress remoteIP() =0;
// Return the port of the host who sent the current incoming packet
virtual uint16_t remotePort() =0;
protected:
uint8_t* rawIPAddress(IPAddress& addr) { return addr.raw_address(); };
};
#endif

View File

@ -0,0 +1,168 @@
/*
WCharacter.h - Character utility functions for Wiring & Arduino
Copyright (c) 2010 Hernando Barragan. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef Character_h
#define Character_h
#include <ctype.h>
// WCharacter.h prototypes
inline boolean isAlphaNumeric(int c) __attribute__((always_inline));
inline boolean isAlpha(int c) __attribute__((always_inline));
inline boolean isAscii(int c) __attribute__((always_inline));
inline boolean isWhitespace(int c) __attribute__((always_inline));
inline boolean isControl(int c) __attribute__((always_inline));
inline boolean isDigit(int c) __attribute__((always_inline));
inline boolean isGraph(int c) __attribute__((always_inline));
inline boolean isLowerCase(int c) __attribute__((always_inline));
inline boolean isPrintable(int c) __attribute__((always_inline));
inline boolean isPunct(int c) __attribute__((always_inline));
inline boolean isSpace(int c) __attribute__((always_inline));
inline boolean isUpperCase(int c) __attribute__((always_inline));
inline boolean isHexadecimalDigit(int c) __attribute__((always_inline));
inline int toAscii(int c) __attribute__((always_inline));
inline int toLowerCase(int c) __attribute__((always_inline));
inline int toUpperCase(int c)__attribute__((always_inline));
// Checks for an alphanumeric character.
// It is equivalent to (isalpha(c) || isdigit(c)).
inline boolean isAlphaNumeric(int c)
{
return ( isalnum(c) == 0 ? false : true);
}
// Checks for an alphabetic character.
// It is equivalent to (isupper(c) || islower(c)).
inline boolean isAlpha(int c)
{
return ( isalpha(c) == 0 ? false : true);
}
// Checks whether c is a 7-bit unsigned char value
// that fits into the ASCII character set.
inline boolean isAscii(int c)
{
return ( isascii (c) == 0 ? false : true);
}
// Checks for a blank character, that is, a space or a tab.
inline boolean isWhitespace(int c)
{
return ( isblank (c) == 0 ? false : true);
}
// Checks for a control character.
inline boolean isControl(int c)
{
return ( iscntrl (c) == 0 ? false : true);
}
// Checks for a digit (0 through 9).
inline boolean isDigit(int c)
{
return ( isdigit (c) == 0 ? false : true);
}
// Checks for any printable character except space.
inline boolean isGraph(int c)
{
return ( isgraph (c) == 0 ? false : true);
}
// Checks for a lower-case character.
inline boolean isLowerCase(int c)
{
return (islower (c) == 0 ? false : true);
}
// Checks for any printable character including space.
inline boolean isPrintable(int c)
{
return ( isprint (c) == 0 ? false : true);
}
// Checks for any printable character which is not a space
// or an alphanumeric character.
inline boolean isPunct(int c)
{
return ( ispunct (c) == 0 ? false : true);
}
// Checks for white-space characters. For the avr-libc library,
// these are: space, formfeed ('\f'), newline ('\n'), carriage
// return ('\r'), horizontal tab ('\t'), and vertical tab ('\v').
inline boolean isSpace(int c)
{
return ( isspace (c) == 0 ? false : true);
}
// Checks for an uppercase letter.
inline boolean isUpperCase(int c)
{
return ( isupper (c) == 0 ? false : true);
}
// Checks for a hexadecimal digits, i.e. one of 0 1 2 3 4 5 6 7
// 8 9 a b c d e f A B C D E F.
inline boolean isHexadecimalDigit(int c)
{
return ( isxdigit (c) == 0 ? false : true);
}
// Converts c to a 7-bit unsigned char value that fits into the
// ASCII character set, by clearing the high-order bits.
inline int toAscii(int c)
{
return toascii (c);
}
// Warning:
// Many people will be unhappy if you use this function.
// This function will convert accented letters into random
// characters.
// Converts the letter c to lower case, if possible.
inline int toLowerCase(int c)
{
return tolower (c);
}
// Converts the letter c to upper case, if possible.
inline int toUpperCase(int c)
{
return toupper (c);
}
#endif

View File

@ -0,0 +1,334 @@
/* -*- mode: jde; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
Part of the Wiring project - http://wiring.uniandes.edu.co
Copyright (c) 2004-05 Hernando Barragan
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
Modified 24 November 2006 by David A. Mellis
Modified 1 August 2010 by Mark Sproul
*/
#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <stdio.h>
#include "wiring_private.h"
static volatile voidFuncPtr intFunc[EXTERNAL_NUM_INTERRUPTS];
// volatile static voidFuncPtr twiIntFunc;
void attachInterrupt(uint8_t interruptNum, void (*userFunc)(void), int mode) {
if(interruptNum < EXTERNAL_NUM_INTERRUPTS) {
intFunc[interruptNum] = userFunc;
// Configure the interrupt mode (trigger on low input, any change, rising
// edge, or falling edge). The mode constants were chosen to correspond
// to the configuration bits in the hardware register, so we simply shift
// the mode into place.
// Enable the interrupt.
switch (interruptNum) {
#if defined(__AVR_ATmega32U4__)
// I hate doing this, but the register assignment differs between the 1280/2560
// and the 32U4. Since avrlib defines registers PCMSK1 and PCMSK2 that aren't
// even present on the 32U4 this is the only way to distinguish between them.
case 0:
EICRA = (EICRA & ~((1<<ISC00) | (1<<ISC01))) | (mode << ISC00);
EIMSK |= (1<<INT0);
break;
case 1:
EICRA = (EICRA & ~((1<<ISC10) | (1<<ISC11))) | (mode << ISC10);
EIMSK |= (1<<INT1);
break;
case 2:
EICRA = (EICRA & ~((1<<ISC20) | (1<<ISC21))) | (mode << ISC20);
EIMSK |= (1<<INT2);
break;
case 3:
EICRA = (EICRA & ~((1<<ISC30) | (1<<ISC31))) | (mode << ISC30);
EIMSK |= (1<<INT3);
break;
case 4:
EICRB = (EICRB & ~((1<<ISC60) | (1<<ISC61))) | (mode << ISC60);
EIMSK |= (1<<INT6);
break;
#elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
case 2:
EICRA = (EICRA & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
EIMSK |= (1 << INT0);
break;
case 3:
EICRA = (EICRA & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
EIMSK |= (1 << INT1);
break;
case 4:
EICRA = (EICRA & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
EIMSK |= (1 << INT2);
break;
case 5:
EICRA = (EICRA & ~((1 << ISC30) | (1 << ISC31))) | (mode << ISC30);
EIMSK |= (1 << INT3);
break;
case 0:
EICRB = (EICRB & ~((1 << ISC40) | (1 << ISC41))) | (mode << ISC40);
EIMSK |= (1 << INT4);
break;
case 1:
EICRB = (EICRB & ~((1 << ISC50) | (1 << ISC51))) | (mode << ISC50);
EIMSK |= (1 << INT5);
break;
case 6:
EICRB = (EICRB & ~((1 << ISC60) | (1 << ISC61))) | (mode << ISC60);
EIMSK |= (1 << INT6);
break;
case 7:
EICRB = (EICRB & ~((1 << ISC70) | (1 << ISC71))) | (mode << ISC70);
EIMSK |= (1 << INT7);
break;
#else
case 0:
#if defined(EICRA) && defined(ISC00) && defined(EIMSK)
EICRA = (EICRA & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
EIMSK |= (1 << INT0);
#elif defined(MCUCR) && defined(ISC00) && defined(GICR)
MCUCR = (MCUCR & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
GICR |= (1 << INT0);
#elif defined(MCUCR) && defined(ISC00) && defined(GIMSK)
MCUCR = (MCUCR & ~((1 << ISC00) | (1 << ISC01))) | (mode << ISC00);
GIMSK |= (1 << INT0);
#else
#error attachInterrupt not finished for this CPU (case 0)
#endif
break;
case 1:
#if defined(EICRA) && defined(ISC10) && defined(ISC11) && defined(EIMSK)
EICRA = (EICRA & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
EIMSK |= (1 << INT1);
#elif defined(MCUCR) && defined(ISC10) && defined(ISC11) && defined(GICR)
MCUCR = (MCUCR & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
GICR |= (1 << INT1);
#elif defined(MCUCR) && defined(ISC10) && defined(GIMSK) && defined(GIMSK)
MCUCR = (MCUCR & ~((1 << ISC10) | (1 << ISC11))) | (mode << ISC10);
GIMSK |= (1 << INT1);
#else
#warning attachInterrupt may need some more work for this cpu (case 1)
#endif
break;
case 2:
#if defined(EICRA) && defined(ISC20) && defined(ISC21) && defined(EIMSK)
EICRA = (EICRA & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
EIMSK |= (1 << INT2);
#elif defined(MCUCR) && defined(ISC20) && defined(ISC21) && defined(GICR)
MCUCR = (MCUCR & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
GICR |= (1 << INT2);
#elif defined(MCUCR) && defined(ISC20) && defined(GIMSK) && defined(GIMSK)
MCUCR = (MCUCR & ~((1 << ISC20) | (1 << ISC21))) | (mode << ISC20);
GIMSK |= (1 << INT2);
#endif
break;
#endif
}
}
}
void detachInterrupt(uint8_t interruptNum) {
if(interruptNum < EXTERNAL_NUM_INTERRUPTS) {
// Disable the interrupt. (We can't assume that interruptNum is equal
// to the number of the EIMSK bit to clear, as this isn't true on the
// ATmega8. There, INT0 is 6 and INT1 is 7.)
switch (interruptNum) {
#if defined(__AVR_ATmega32U4__)
case 0:
EIMSK &= ~(1<<INT0);
break;
case 1:
EIMSK &= ~(1<<INT1);
break;
case 2:
EIMSK &= ~(1<<INT2);
break;
case 3:
EIMSK &= ~(1<<INT3);
break;
case 4:
EIMSK &= ~(1<<INT6);
break;
#elif defined(EICRA) && defined(EICRB) && defined(EIMSK)
case 2:
EIMSK &= ~(1 << INT0);
break;
case 3:
EIMSK &= ~(1 << INT1);
break;
case 4:
EIMSK &= ~(1 << INT2);
break;
case 5:
EIMSK &= ~(1 << INT3);
break;
case 0:
EIMSK &= ~(1 << INT4);
break;
case 1:
EIMSK &= ~(1 << INT5);
break;
case 6:
EIMSK &= ~(1 << INT6);
break;
case 7:
EIMSK &= ~(1 << INT7);
break;
#else
case 0:
#if defined(EIMSK) && defined(INT0)
EIMSK &= ~(1 << INT0);
#elif defined(GICR) && defined(ISC00)
GICR &= ~(1 << INT0); // atmega32
#elif defined(GIMSK) && defined(INT0)
GIMSK &= ~(1 << INT0);
#else
#error detachInterrupt not finished for this cpu
#endif
break;
case 1:
#if defined(EIMSK) && defined(INT1)
EIMSK &= ~(1 << INT1);
#elif defined(GICR) && defined(INT1)
GICR &= ~(1 << INT1); // atmega32
#elif defined(GIMSK) && defined(INT1)
GIMSK &= ~(1 << INT1);
#else
#warning detachInterrupt may need some more work for this cpu (case 1)
#endif
break;
#endif
}
intFunc[interruptNum] = 0;
}
}
/*
void attachInterruptTwi(void (*userFunc)(void) ) {
twiIntFunc = userFunc;
}
*/
#if defined(__AVR_ATmega32U4__)
ISR(INT0_vect) {
if(intFunc[EXTERNAL_INT_0])
intFunc[EXTERNAL_INT_0]();
}
ISR(INT1_vect) {
if(intFunc[EXTERNAL_INT_1])
intFunc[EXTERNAL_INT_1]();
}
ISR(INT2_vect) {
if(intFunc[EXTERNAL_INT_2])
intFunc[EXTERNAL_INT_2]();
}
ISR(INT3_vect) {
if(intFunc[EXTERNAL_INT_3])
intFunc[EXTERNAL_INT_3]();
}
ISR(INT6_vect) {
if(intFunc[EXTERNAL_INT_4])
intFunc[EXTERNAL_INT_4]();
}
#elif defined(EICRA) && defined(EICRB)
ISR(INT0_vect) {
if(intFunc[EXTERNAL_INT_2])
intFunc[EXTERNAL_INT_2]();
}
ISR(INT1_vect) {
if(intFunc[EXTERNAL_INT_3])
intFunc[EXTERNAL_INT_3]();
}
ISR(INT2_vect) {
if(intFunc[EXTERNAL_INT_4])
intFunc[EXTERNAL_INT_4]();
}
ISR(INT3_vect) {
if(intFunc[EXTERNAL_INT_5])
intFunc[EXTERNAL_INT_5]();
}
ISR(INT4_vect) {
if(intFunc[EXTERNAL_INT_0])
intFunc[EXTERNAL_INT_0]();
}
ISR(INT5_vect) {
if(intFunc[EXTERNAL_INT_1])
intFunc[EXTERNAL_INT_1]();
}
ISR(INT6_vect) {
if(intFunc[EXTERNAL_INT_6])
intFunc[EXTERNAL_INT_6]();
}
ISR(INT7_vect) {
if(intFunc[EXTERNAL_INT_7])
intFunc[EXTERNAL_INT_7]();
}
#else
ISR(INT0_vect) {
if(intFunc[EXTERNAL_INT_0])
intFunc[EXTERNAL_INT_0]();
}
ISR(INT1_vect) {
if(intFunc[EXTERNAL_INT_1])
intFunc[EXTERNAL_INT_1]();
}
#if defined(EICRA) && defined(ISC20)
ISR(INT2_vect) {
if(intFunc[EXTERNAL_INT_2])
intFunc[EXTERNAL_INT_2]();
}
#endif
#endif
/*
ISR(TWI_vect) {
if(twiIntFunc)
twiIntFunc();
}
*/

View File

@ -0,0 +1,60 @@
/* -*- mode: jde; c-basic-offset: 2; indent-tabs-mode: nil -*- */
/*
Part of the Wiring project - http://wiring.org.co
Copyright (c) 2004-06 Hernando Barragan
Modified 13 August 2006, David A. Mellis for Arduino - http://www.arduino.cc/
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id$
*/
extern "C" {
#include "stdlib.h"
}
void randomSeed(unsigned int seed)
{
if (seed != 0) {
srandom(seed);
}
}
long random(long howbig)
{
if (howbig == 0) {
return 0;
}
return random() % howbig;
}
long random(long howsmall, long howbig)
{
if (howsmall >= howbig) {
return howsmall;
}
long diff = howbig - howsmall;
return random(diff) + howsmall;
}
long map(long x, long in_min, long in_max, long out_min, long out_max)
{
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
unsigned int makeWord(unsigned int w) { return w; }
unsigned int makeWord(unsigned char h, unsigned char l) { return (h << 8) | l; }

View File

@ -0,0 +1,645 @@
/*
WString.cpp - String library for Wiring & Arduino
...mostly rewritten by Paul Stoffregen...
Copyright (c) 2009-10 Hernando Barragan. All rights reserved.
Copyright 2011, Paul Stoffregen, paul@pjrc.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "WString.h"
/*********************************************/
/* Constructors */
/*********************************************/
String::String(const char *cstr)
{
init();
if (cstr) copy(cstr, strlen(cstr));
}
String::String(const String &value)
{
init();
*this = value;
}
#ifdef __GXX_EXPERIMENTAL_CXX0X__
String::String(String &&rval)
{
init();
move(rval);
}
String::String(StringSumHelper &&rval)
{
init();
move(rval);
}
#endif
String::String(char c)
{
init();
char buf[2];
buf[0] = c;
buf[1] = 0;
*this = buf;
}
String::String(unsigned char value, unsigned char base)
{
init();
char buf[9];
utoa(value, buf, base);
*this = buf;
}
String::String(int value, unsigned char base)
{
init();
char buf[18];
itoa(value, buf, base);
*this = buf;
}
String::String(unsigned int value, unsigned char base)
{
init();
char buf[17];
utoa(value, buf, base);
*this = buf;
}
String::String(long value, unsigned char base)
{
init();
char buf[34];
ltoa(value, buf, base);
*this = buf;
}
String::String(unsigned long value, unsigned char base)
{
init();
char buf[33];
ultoa(value, buf, base);
*this = buf;
}
String::~String()
{
free(buffer);
}
/*********************************************/
/* Memory Management */
/*********************************************/
inline void String::init(void)
{
buffer = NULL;
capacity = 0;
len = 0;
flags = 0;
}
void String::invalidate(void)
{
if (buffer) free(buffer);
buffer = NULL;
capacity = len = 0;
}
unsigned char String::reserve(unsigned int size)
{
if (buffer && capacity >= size) return 1;
if (changeBuffer(size)) {
if (len == 0) buffer[0] = 0;
return 1;
}
return 0;
}
unsigned char String::changeBuffer(unsigned int maxStrLen)
{
char *newbuffer = (char *)realloc(buffer, maxStrLen + 1);
if (newbuffer) {
buffer = newbuffer;
capacity = maxStrLen;
return 1;
}
return 0;
}
/*********************************************/
/* Copy and Move */
/*********************************************/
String & String::copy(const char *cstr, unsigned int length)
{
if (!reserve(length)) {
invalidate();
return *this;
}
len = length;
strcpy(buffer, cstr);
return *this;
}
#ifdef __GXX_EXPERIMENTAL_CXX0X__
void String::move(String &rhs)
{
if (buffer) {
if (capacity >= rhs.len) {
strcpy(buffer, rhs.buffer);
len = rhs.len;
rhs.len = 0;
return;
} else {
free(buffer);
}
}
buffer = rhs.buffer;
capacity = rhs.capacity;
len = rhs.len;
rhs.buffer = NULL;
rhs.capacity = 0;
rhs.len = 0;
}
#endif
String & String::operator = (const String &rhs)
{
if (this == &rhs) return *this;
if (rhs.buffer) copy(rhs.buffer, rhs.len);
else invalidate();
return *this;
}
#ifdef __GXX_EXPERIMENTAL_CXX0X__
String & String::operator = (String &&rval)
{
if (this != &rval) move(rval);
return *this;
}
String & String::operator = (StringSumHelper &&rval)
{
if (this != &rval) move(rval);
return *this;
}
#endif
String & String::operator = (const char *cstr)
{
if (cstr) copy(cstr, strlen(cstr));
else invalidate();
return *this;
}
/*********************************************/
/* concat */
/*********************************************/
unsigned char String::concat(const String &s)
{
return concat(s.buffer, s.len);
}
unsigned char String::concat(const char *cstr, unsigned int length)
{
unsigned int newlen = len + length;
if (!cstr) return 0;
if (length == 0) return 1;
if (!reserve(newlen)) return 0;
strcpy(buffer + len, cstr);
len = newlen;
return 1;
}
unsigned char String::concat(const char *cstr)
{
if (!cstr) return 0;
return concat(cstr, strlen(cstr));
}
unsigned char String::concat(char c)
{
char buf[2];
buf[0] = c;
buf[1] = 0;
return concat(buf, 1);
}
unsigned char String::concat(unsigned char num)
{
char buf[4];
itoa(num, buf, 10);
return concat(buf, strlen(buf));
}
unsigned char String::concat(int num)
{
char buf[7];
itoa(num, buf, 10);
return concat(buf, strlen(buf));
}
unsigned char String::concat(unsigned int num)
{
char buf[6];
utoa(num, buf, 10);
return concat(buf, strlen(buf));
}
unsigned char String::concat(long num)
{
char buf[12];
ltoa(num, buf, 10);
return concat(buf, strlen(buf));
}
unsigned char String::concat(unsigned long num)
{
char buf[11];
ultoa(num, buf, 10);
return concat(buf, strlen(buf));
}
/*********************************************/
/* Concatenate */
/*********************************************/
StringSumHelper & operator + (const StringSumHelper &lhs, const String &rhs)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!a.concat(rhs.buffer, rhs.len)) a.invalidate();
return a;
}
StringSumHelper & operator + (const StringSumHelper &lhs, const char *cstr)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!cstr || !a.concat(cstr, strlen(cstr))) a.invalidate();
return a;
}
StringSumHelper & operator + (const StringSumHelper &lhs, char c)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!a.concat(c)) a.invalidate();
return a;
}
StringSumHelper & operator + (const StringSumHelper &lhs, unsigned char num)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!a.concat(num)) a.invalidate();
return a;
}
StringSumHelper & operator + (const StringSumHelper &lhs, int num)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!a.concat(num)) a.invalidate();
return a;
}
StringSumHelper & operator + (const StringSumHelper &lhs, unsigned int num)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!a.concat(num)) a.invalidate();
return a;
}
StringSumHelper & operator + (const StringSumHelper &lhs, long num)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!a.concat(num)) a.invalidate();
return a;
}
StringSumHelper & operator + (const StringSumHelper &lhs, unsigned long num)
{
StringSumHelper &a = const_cast<StringSumHelper&>(lhs);
if (!a.concat(num)) a.invalidate();
return a;
}
/*********************************************/
/* Comparison */
/*********************************************/
int String::compareTo(const String &s) const
{
if (!buffer || !s.buffer) {
if (s.buffer && s.len > 0) return 0 - *(unsigned char *)s.buffer;
if (buffer && len > 0) return *(unsigned char *)buffer;
return 0;
}
return strcmp(buffer, s.buffer);
}
unsigned char String::equals(const String &s2) const
{
return (len == s2.len && compareTo(s2) == 0);
}
unsigned char String::equals(const char *cstr) const
{
if (len == 0) return (cstr == NULL || *cstr == 0);
if (cstr == NULL) return buffer[0] == 0;
return strcmp(buffer, cstr) == 0;
}
unsigned char String::operator<(const String &rhs) const
{
return compareTo(rhs) < 0;
}
unsigned char String::operator>(const String &rhs) const
{
return compareTo(rhs) > 0;
}
unsigned char String::operator<=(const String &rhs) const
{
return compareTo(rhs) <= 0;
}
unsigned char String::operator>=(const String &rhs) const
{
return compareTo(rhs) >= 0;
}
unsigned char String::equalsIgnoreCase( const String &s2 ) const
{
if (this == &s2) return 1;
if (len != s2.len) return 0;
if (len == 0) return 1;
const char *p1 = buffer;
const char *p2 = s2.buffer;
while (*p1) {
if (tolower(*p1++) != tolower(*p2++)) return 0;
}
return 1;
}
unsigned char String::startsWith( const String &s2 ) const
{
if (len < s2.len) return 0;
return startsWith(s2, 0);
}
unsigned char String::startsWith( const String &s2, unsigned int offset ) const
{
if (offset > len - s2.len || !buffer || !s2.buffer) return 0;
return strncmp( &buffer[offset], s2.buffer, s2.len ) == 0;
}
unsigned char String::endsWith( const String &s2 ) const
{
if ( len < s2.len || !buffer || !s2.buffer) return 0;
return strcmp(&buffer[len - s2.len], s2.buffer) == 0;
}
/*********************************************/
/* Character Access */
/*********************************************/
char String::charAt(unsigned int loc) const
{
return operator[](loc);
}
void String::setCharAt(unsigned int loc, char c)
{
if (loc < len) buffer[loc] = c;
}
char & String::operator[](unsigned int index)
{
static char dummy_writable_char;
if (index >= len || !buffer) {
dummy_writable_char = 0;
return dummy_writable_char;
}
return buffer[index];
}
char String::operator[]( unsigned int index ) const
{
if (index >= len || !buffer) return 0;
return buffer[index];
}
void String::getBytes(unsigned char *buf, unsigned int bufsize, unsigned int index) const
{
if (!bufsize || !buf) return;
if (index >= len) {
buf[0] = 0;
return;
}
unsigned int n = bufsize - 1;
if (n > len - index) n = len - index;
strncpy((char *)buf, buffer + index, n);
buf[n] = 0;
}
/*********************************************/
/* Search */
/*********************************************/
int String::indexOf(char c) const
{
return indexOf(c, 0);
}
int String::indexOf( char ch, unsigned int fromIndex ) const
{
if (fromIndex >= len) return -1;
const char* temp = strchr(buffer + fromIndex, ch);
if (temp == NULL) return -1;
return temp - buffer;
}
int String::indexOf(const String &s2) const
{
return indexOf(s2, 0);
}
int String::indexOf(const String &s2, unsigned int fromIndex) const
{
if (fromIndex >= len) return -1;
const char *found = strstr(buffer + fromIndex, s2.buffer);
if (found == NULL) return -1;
return found - buffer;
}
int String::lastIndexOf( char theChar ) const
{
return lastIndexOf(theChar, len - 1);
}
int String::lastIndexOf(char ch, unsigned int fromIndex) const
{
if (fromIndex >= len) return -1;
char tempchar = buffer[fromIndex + 1];
buffer[fromIndex + 1] = '\0';
char* temp = strrchr( buffer, ch );
buffer[fromIndex + 1] = tempchar;
if (temp == NULL) return -1;
return temp - buffer;
}
int String::lastIndexOf(const String &s2) const
{
return lastIndexOf(s2, len - s2.len);
}
int String::lastIndexOf(const String &s2, unsigned int fromIndex) const
{
if (s2.len == 0 || len == 0 || s2.len > len) return -1;
if (fromIndex >= len) fromIndex = len - 1;
int found = -1;
for (char *p = buffer; p <= buffer + fromIndex; p++) {
p = strstr(p, s2.buffer);
if (!p) break;
if ((unsigned int)(p - buffer) <= fromIndex) found = p - buffer;
}
return found;
}
String String::substring( unsigned int left ) const
{
return substring(left, len);
}
String String::substring(unsigned int left, unsigned int right) const
{
if (left > right) {
unsigned int temp = right;
right = left;
left = temp;
}
String out;
if (left > len) return out;
if (right > len) right = len;
char temp = buffer[right]; // save the replaced character
buffer[right] = '\0';
out = buffer + left; // pointer arithmetic
buffer[right] = temp; //restore character
return out;
}
/*********************************************/
/* Modification */
/*********************************************/
void String::replace(char find, char replace)
{
if (!buffer) return;
for (char *p = buffer; *p; p++) {
if (*p == find) *p = replace;
}
}
void String::replace(const String& find, const String& replace)
{
if (len == 0 || find.len == 0) return;
int diff = replace.len - find.len;
char *readFrom = buffer;
char *foundAt;
if (diff == 0) {
while ((foundAt = strstr(readFrom, find.buffer)) != NULL) {
memcpy(foundAt, replace.buffer, replace.len);
readFrom = foundAt + replace.len;
}
} else if (diff < 0) {
char *writeTo = buffer;
while ((foundAt = strstr(readFrom, find.buffer)) != NULL) {
unsigned int n = foundAt - readFrom;
memcpy(writeTo, readFrom, n);
writeTo += n;
memcpy(writeTo, replace.buffer, replace.len);
writeTo += replace.len;
readFrom = foundAt + find.len;
len += diff;
}
strcpy(writeTo, readFrom);
} else {
unsigned int size = len; // compute size needed for result
while ((foundAt = strstr(readFrom, find.buffer)) != NULL) {
readFrom = foundAt + find.len;
size += diff;
}
if (size == len) return;
if (size > capacity && !changeBuffer(size)) return; // XXX: tell user!
int index = len - 1;
while (index >= 0 && (index = lastIndexOf(find, index)) >= 0) {
readFrom = buffer + index + find.len;
memmove(readFrom + diff, readFrom, len - (readFrom - buffer));
len += diff;
buffer[len] = 0;
memcpy(buffer + index, replace.buffer, replace.len);
index--;
}
}
}
void String::toLowerCase(void)
{
if (!buffer) return;
for (char *p = buffer; *p; p++) {
*p = tolower(*p);
}
}
void String::toUpperCase(void)
{
if (!buffer) return;
for (char *p = buffer; *p; p++) {
*p = toupper(*p);
}
}
void String::trim(void)
{
if (!buffer || len == 0) return;
char *begin = buffer;
while (isspace(*begin)) begin++;
char *end = buffer + len - 1;
while (isspace(*end) && end >= begin) end--;
len = end + 1 - begin;
if (begin > buffer) memcpy(buffer, begin, len);
buffer[len] = 0;
}
/*********************************************/
/* Parsing / Conversion */
/*********************************************/
long String::toInt(void) const
{
if (buffer) return atol(buffer);
return 0;
}

View File

@ -0,0 +1,206 @@
/*
WString.h - String library for Wiring & Arduino
...mostly rewritten by Paul Stoffregen...
Copyright (c) 2009-10 Hernando Barragan. All right reserved.
Copyright 2011, Paul Stoffregen, paul@pjrc.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef String_class_h
#define String_class_h
#ifdef __cplusplus
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <avr/pgmspace.h>
// When compiling programs with this class, the following gcc parameters
// dramatically increase performance and memory (RAM) efficiency, typically
// with little or no increase in code size.
// -felide-constructors
// -std=c++0x
class __FlashStringHelper;
#define F(string_literal) (reinterpret_cast<const __FlashStringHelper *>(PSTR(string_literal)))
// An inherited class for holding the result of a concatenation. These
// result objects are assumed to be writable by subsequent concatenations.
class StringSumHelper;
// The string class
class String
{
// use a function pointer to allow for "if (s)" without the
// complications of an operator bool(). for more information, see:
// http://www.artima.com/cppsource/safebool.html
typedef void (String::*StringIfHelperType)() const;
void StringIfHelper() const {}
public:
// constructors
// creates a copy of the initial value.
// if the initial value is null or invalid, or if memory allocation
// fails, the string will be marked as invalid (i.e. "if (s)" will
// be false).
String(const char *cstr = "");
String(const String &str);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
String(String &&rval);
String(StringSumHelper &&rval);
#endif
explicit String(char c);
explicit String(unsigned char, unsigned char base=10);
explicit String(int, unsigned char base=10);
explicit String(unsigned int, unsigned char base=10);
explicit String(long, unsigned char base=10);
explicit String(unsigned long, unsigned char base=10);
~String(void);
// memory management
// return true on success, false on failure (in which case, the string
// is left unchanged). reserve(0), if successful, will validate an
// invalid string (i.e., "if (s)" will be true afterwards)
unsigned char reserve(unsigned int size);
inline unsigned int length(void) const {return len;}
// creates a copy of the assigned value. if the value is null or
// invalid, or if the memory allocation fails, the string will be
// marked as invalid ("if (s)" will be false).
String & operator = (const String &rhs);
String & operator = (const char *cstr);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
String & operator = (String &&rval);
String & operator = (StringSumHelper &&rval);
#endif
// concatenate (works w/ built-in types)
// returns true on success, false on failure (in which case, the string
// is left unchanged). if the argument is null or invalid, the
// concatenation is considered unsucessful.
unsigned char concat(const String &str);
unsigned char concat(const char *cstr);
unsigned char concat(char c);
unsigned char concat(unsigned char c);
unsigned char concat(int num);
unsigned char concat(unsigned int num);
unsigned char concat(long num);
unsigned char concat(unsigned long num);
// if there's not enough memory for the concatenated value, the string
// will be left unchanged (but this isn't signalled in any way)
String & operator += (const String &rhs) {concat(rhs); return (*this);}
String & operator += (const char *cstr) {concat(cstr); return (*this);}
String & operator += (char c) {concat(c); return (*this);}
String & operator += (unsigned char num) {concat(num); return (*this);}
String & operator += (int num) {concat(num); return (*this);}
String & operator += (unsigned int num) {concat(num); return (*this);}
String & operator += (long num) {concat(num); return (*this);}
String & operator += (unsigned long num) {concat(num); return (*this);}
friend StringSumHelper & operator + (const StringSumHelper &lhs, const String &rhs);
friend StringSumHelper & operator + (const StringSumHelper &lhs, const char *cstr);
friend StringSumHelper & operator + (const StringSumHelper &lhs, char c);
friend StringSumHelper & operator + (const StringSumHelper &lhs, unsigned char num);
friend StringSumHelper & operator + (const StringSumHelper &lhs, int num);
friend StringSumHelper & operator + (const StringSumHelper &lhs, unsigned int num);
friend StringSumHelper & operator + (const StringSumHelper &lhs, long num);
friend StringSumHelper & operator + (const StringSumHelper &lhs, unsigned long num);
// comparison (only works w/ Strings and "strings")
operator StringIfHelperType() const { return buffer ? &String::StringIfHelper : 0; }
int compareTo(const String &s) const;
unsigned char equals(const String &s) const;
unsigned char equals(const char *cstr) const;
unsigned char operator == (const String &rhs) const {return equals(rhs);}
unsigned char operator == (const char *cstr) const {return equals(cstr);}
unsigned char operator != (const String &rhs) const {return !equals(rhs);}
unsigned char operator != (const char *cstr) const {return !equals(cstr);}
unsigned char operator < (const String &rhs) const;
unsigned char operator > (const String &rhs) const;
unsigned char operator <= (const String &rhs) const;
unsigned char operator >= (const String &rhs) const;
unsigned char equalsIgnoreCase(const String &s) const;
unsigned char startsWith( const String &prefix) const;
unsigned char startsWith(const String &prefix, unsigned int offset) const;
unsigned char endsWith(const String &suffix) const;
// character acccess
char charAt(unsigned int index) const;
void setCharAt(unsigned int index, char c);
char operator [] (unsigned int index) const;
char& operator [] (unsigned int index);
void getBytes(unsigned char *buf, unsigned int bufsize, unsigned int index=0) const;
void toCharArray(char *buf, unsigned int bufsize, unsigned int index=0) const
{getBytes((unsigned char *)buf, bufsize, index);}
const char * c_str() const { return buffer; }
// search
int indexOf( char ch ) const;
int indexOf( char ch, unsigned int fromIndex ) const;
int indexOf( const String &str ) const;
int indexOf( const String &str, unsigned int fromIndex ) const;
int lastIndexOf( char ch ) const;
int lastIndexOf( char ch, unsigned int fromIndex ) const;
int lastIndexOf( const String &str ) const;
int lastIndexOf( const String &str, unsigned int fromIndex ) const;
String substring( unsigned int beginIndex ) const;
String substring( unsigned int beginIndex, unsigned int endIndex ) const;
// modification
void replace(char find, char replace);
void replace(const String& find, const String& replace);
void toLowerCase(void);
void toUpperCase(void);
void trim(void);
// parsing/conversion
long toInt(void) const;
protected:
char *buffer; // the actual char array
unsigned int capacity; // the array length minus one (for the '\0')
unsigned int len; // the String length (not counting the '\0')
unsigned char flags; // unused, for future features
protected:
void init(void);
void invalidate(void);
unsigned char changeBuffer(unsigned int maxStrLen);
unsigned char concat(const char *cstr, unsigned int length);
// copy and move
String & copy(const char *cstr, unsigned int length);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
void move(String &rhs);
#endif
};
class StringSumHelper : public String
{
public:
StringSumHelper(const String &s) : String(s) {}
StringSumHelper(const char *p) : String(p) {}
StringSumHelper(char c) : String(c) {}
StringSumHelper(unsigned char num) : String(num) {}
StringSumHelper(int num) : String(num) {}
StringSumHelper(unsigned int num) : String(num) {}
StringSumHelper(long num) : String(num) {}
StringSumHelper(unsigned long num) : String(num) {}
};
#endif // __cplusplus
#endif // String_class_h

View File

@ -0,0 +1,515 @@
#ifndef Binary_h
#define Binary_h
#define B0 0
#define B00 0
#define B000 0
#define B0000 0
#define B00000 0
#define B000000 0
#define B0000000 0
#define B00000000 0
#define B1 1
#define B01 1
#define B001 1
#define B0001 1
#define B00001 1
#define B000001 1
#define B0000001 1
#define B00000001 1
#define B10 2
#define B010 2
#define B0010 2
#define B00010 2
#define B000010 2
#define B0000010 2
#define B00000010 2
#define B11 3
#define B011 3
#define B0011 3
#define B00011 3
#define B000011 3
#define B0000011 3
#define B00000011 3
#define B100 4
#define B0100 4
#define B00100 4
#define B000100 4
#define B0000100 4
#define B00000100 4
#define B101 5
#define B0101 5
#define B00101 5
#define B000101 5
#define B0000101 5
#define B00000101 5
#define B110 6
#define B0110 6
#define B00110 6
#define B000110 6
#define B0000110 6
#define B00000110 6
#define B111 7
#define B0111 7
#define B00111 7
#define B000111 7
#define B0000111 7
#define B00000111 7
#define B1000 8
#define B01000 8
#define B001000 8
#define B0001000 8
#define B00001000 8
#define B1001 9
#define B01001 9
#define B001001 9
#define B0001001 9
#define B00001001 9
#define B1010 10
#define B01010 10
#define B001010 10
#define B0001010 10
#define B00001010 10
#define B1011 11
#define B01011 11
#define B001011 11
#define B0001011 11
#define B00001011 11
#define B1100 12
#define B01100 12
#define B001100 12
#define B0001100 12
#define B00001100 12
#define B1101 13
#define B01101 13
#define B001101 13
#define B0001101 13
#define B00001101 13
#define B1110 14
#define B01110 14
#define B001110 14
#define B0001110 14
#define B00001110 14
#define B1111 15
#define B01111 15
#define B001111 15
#define B0001111 15
#define B00001111 15
#define B10000 16
#define B010000 16
#define B0010000 16
#define B00010000 16
#define B10001 17
#define B010001 17
#define B0010001 17
#define B00010001 17
#define B10010 18
#define B010010 18
#define B0010010 18
#define B00010010 18
#define B10011 19
#define B010011 19
#define B0010011 19
#define B00010011 19
#define B10100 20
#define B010100 20
#define B0010100 20
#define B00010100 20
#define B10101 21
#define B010101 21
#define B0010101 21
#define B00010101 21
#define B10110 22
#define B010110 22
#define B0010110 22
#define B00010110 22
#define B10111 23
#define B010111 23
#define B0010111 23
#define B00010111 23
#define B11000 24
#define B011000 24
#define B0011000 24
#define B00011000 24
#define B11001 25
#define B011001 25
#define B0011001 25
#define B00011001 25
#define B11010 26
#define B011010 26
#define B0011010 26
#define B00011010 26
#define B11011 27
#define B011011 27
#define B0011011 27
#define B00011011 27
#define B11100 28
#define B011100 28
#define B0011100 28
#define B00011100 28
#define B11101 29
#define B011101 29
#define B0011101 29
#define B00011101 29
#define B11110 30
#define B011110 30
#define B0011110 30
#define B00011110 30
#define B11111 31
#define B011111 31
#define B0011111 31
#define B00011111 31
#define B100000 32
#define B0100000 32
#define B00100000 32
#define B100001 33
#define B0100001 33
#define B00100001 33
#define B100010 34
#define B0100010 34
#define B00100010 34
#define B100011 35
#define B0100011 35
#define B00100011 35
#define B100100 36
#define B0100100 36
#define B00100100 36
#define B100101 37
#define B0100101 37
#define B00100101 37
#define B100110 38
#define B0100110 38
#define B00100110 38
#define B100111 39
#define B0100111 39
#define B00100111 39
#define B101000 40
#define B0101000 40
#define B00101000 40
#define B101001 41
#define B0101001 41
#define B00101001 41
#define B101010 42
#define B0101010 42
#define B00101010 42
#define B101011 43
#define B0101011 43
#define B00101011 43
#define B101100 44
#define B0101100 44
#define B00101100 44
#define B101101 45
#define B0101101 45
#define B00101101 45
#define B101110 46
#define B0101110 46
#define B00101110 46
#define B101111 47
#define B0101111 47
#define B00101111 47
#define B110000 48
#define B0110000 48
#define B00110000 48
#define B110001 49
#define B0110001 49
#define B00110001 49
#define B110010 50
#define B0110010 50
#define B00110010 50
#define B110011 51
#define B0110011 51
#define B00110011 51
#define B110100 52
#define B0110100 52
#define B00110100 52
#define B110101 53
#define B0110101 53
#define B00110101 53
#define B110110 54
#define B0110110 54
#define B00110110 54
#define B110111 55
#define B0110111 55
#define B00110111 55
#define B111000 56
#define B0111000 56
#define B00111000 56
#define B111001 57
#define B0111001 57
#define B00111001 57
#define B111010 58
#define B0111010 58
#define B00111010 58
#define B111011 59
#define B0111011 59
#define B00111011 59
#define B111100 60
#define B0111100 60
#define B00111100 60
#define B111101 61
#define B0111101 61
#define B00111101 61
#define B111110 62
#define B0111110 62
#define B00111110 62
#define B111111 63
#define B0111111 63
#define B00111111 63
#define B1000000 64
#define B01000000 64
#define B1000001 65
#define B01000001 65
#define B1000010 66
#define B01000010 66
#define B1000011 67
#define B01000011 67
#define B1000100 68
#define B01000100 68
#define B1000101 69
#define B01000101 69
#define B1000110 70
#define B01000110 70
#define B1000111 71
#define B01000111 71
#define B1001000 72
#define B01001000 72
#define B1001001 73
#define B01001001 73
#define B1001010 74
#define B01001010 74
#define B1001011 75
#define B01001011 75
#define B1001100 76
#define B01001100 76
#define B1001101 77
#define B01001101 77
#define B1001110 78
#define B01001110 78
#define B1001111 79
#define B01001111 79
#define B1010000 80
#define B01010000 80
#define B1010001 81
#define B01010001 81
#define B1010010 82
#define B01010010 82
#define B1010011 83
#define B01010011 83
#define B1010100 84
#define B01010100 84
#define B1010101 85
#define B01010101 85
#define B1010110 86
#define B01010110 86
#define B1010111 87
#define B01010111 87
#define B1011000 88
#define B01011000 88
#define B1011001 89
#define B01011001 89
#define B1011010 90
#define B01011010 90
#define B1011011 91
#define B01011011 91
#define B1011100 92
#define B01011100 92
#define B1011101 93
#define B01011101 93
#define B1011110 94
#define B01011110 94
#define B1011111 95
#define B01011111 95
#define B1100000 96
#define B01100000 96
#define B1100001 97
#define B01100001 97
#define B1100010 98
#define B01100010 98
#define B1100011 99
#define B01100011 99
#define B1100100 100
#define B01100100 100
#define B1100101 101
#define B01100101 101
#define B1100110 102
#define B01100110 102
#define B1100111 103
#define B01100111 103
#define B1101000 104
#define B01101000 104
#define B1101001 105
#define B01101001 105
#define B1101010 106
#define B01101010 106
#define B1101011 107
#define B01101011 107
#define B1101100 108
#define B01101100 108
#define B1101101 109
#define B01101101 109
#define B1101110 110
#define B01101110 110
#define B1101111 111
#define B01101111 111
#define B1110000 112
#define B01110000 112
#define B1110001 113
#define B01110001 113
#define B1110010 114
#define B01110010 114
#define B1110011 115
#define B01110011 115
#define B1110100 116
#define B01110100 116
#define B1110101 117
#define B01110101 117
#define B1110110 118
#define B01110110 118
#define B1110111 119
#define B01110111 119
#define B1111000 120
#define B01111000 120
#define B1111001 121
#define B01111001 121
#define B1111010 122
#define B01111010 122
#define B1111011 123
#define B01111011 123
#define B1111100 124
#define B01111100 124
#define B1111101 125
#define B01111101 125
#define B1111110 126
#define B01111110 126
#define B1111111 127
#define B01111111 127
#define B10000000 128
#define B10000001 129
#define B10000010 130
#define B10000011 131
#define B10000100 132
#define B10000101 133
#define B10000110 134
#define B10000111 135
#define B10001000 136
#define B10001001 137
#define B10001010 138
#define B10001011 139
#define B10001100 140
#define B10001101 141
#define B10001110 142
#define B10001111 143
#define B10010000 144
#define B10010001 145
#define B10010010 146
#define B10010011 147
#define B10010100 148
#define B10010101 149
#define B10010110 150
#define B10010111 151
#define B10011000 152
#define B10011001 153
#define B10011010 154
#define B10011011 155
#define B10011100 156
#define B10011101 157
#define B10011110 158
#define B10011111 159
#define B10100000 160
#define B10100001 161
#define B10100010 162
#define B10100011 163
#define B10100100 164
#define B10100101 165
#define B10100110 166
#define B10100111 167
#define B10101000 168
#define B10101001 169
#define B10101010 170
#define B10101011 171
#define B10101100 172
#define B10101101 173
#define B10101110 174
#define B10101111 175
#define B10110000 176
#define B10110001 177
#define B10110010 178
#define B10110011 179
#define B10110100 180
#define B10110101 181
#define B10110110 182
#define B10110111 183
#define B10111000 184
#define B10111001 185
#define B10111010 186
#define B10111011 187
#define B10111100 188
#define B10111101 189
#define B10111110 190
#define B10111111 191
#define B11000000 192
#define B11000001 193
#define B11000010 194
#define B11000011 195
#define B11000100 196
#define B11000101 197
#define B11000110 198
#define B11000111 199
#define B11001000 200
#define B11001001 201
#define B11001010 202
#define B11001011 203
#define B11001100 204
#define B11001101 205
#define B11001110 206
#define B11001111 207
#define B11010000 208
#define B11010001 209
#define B11010010 210
#define B11010011 211
#define B11010100 212
#define B11010101 213
#define B11010110 214
#define B11010111 215
#define B11011000 216
#define B11011001 217
#define B11011010 218
#define B11011011 219
#define B11011100 220
#define B11011101 221
#define B11011110 222
#define B11011111 223
#define B11100000 224
#define B11100001 225
#define B11100010 226
#define B11100011 227
#define B11100100 228
#define B11100101 229
#define B11100110 230
#define B11100111 231
#define B11101000 232
#define B11101001 233
#define B11101010 234
#define B11101011 235
#define B11101100 236
#define B11101101 237
#define B11101110 238
#define B11101111 239
#define B11110000 240
#define B11110001 241
#define B11110010 242
#define B11110011 243
#define B11110100 244
#define B11110101 245
#define B11110110 246
#define B11110111 247
#define B11111000 248
#define B11111001 249
#define B11111010 250
#define B11111011 251
#define B11111100 252
#define B11111101 253
#define B11111110 254
#define B11111111 255
#endif

View File

@ -0,0 +1,20 @@
#include <Arduino.h>
int main(void)
{
init();
#if defined(USBCON)
USBDevice.attach();
#endif
setup();
for (;;) {
loop();
if (serialEventRun) serialEventRun();
}
return 0;
}

View File

@ -0,0 +1,28 @@
#include <new.h>
void * operator new(size_t size)
{
return malloc(size);
}
void * operator new[](size_t size)
{
return malloc(size);
}
void operator delete(void * ptr)
{
free(ptr);
}
void operator delete[](void * ptr)
{
free(ptr);
}
int __cxa_guard_acquire(__guard *g) {return !*(char *)(g);};
void __cxa_guard_release (__guard *g) {*(char *)g = 1;};
void __cxa_guard_abort (__guard *) {};
void __cxa_pure_virtual(void) {};

View File

@ -0,0 +1,24 @@
/* Header to define new/delete operators as they aren't provided by avr-gcc by default
Taken from http://www.avrfreaks.net/index.php?name=PNphpBB2&file=viewtopic&t=59453
*/
#ifndef NEW_H
#define NEW_H
#include <stdlib.h>
void * operator new(size_t size);
void * operator new[](size_t size);
void operator delete(void * ptr);
void operator delete[](void * ptr);
__extension__ typedef int __guard __attribute__((mode (__DI__)));
extern "C" int __cxa_guard_acquire(__guard *);
extern "C" void __cxa_guard_release (__guard *);
extern "C" void __cxa_guard_abort (__guard *);
extern "C" void __cxa_pure_virtual(void);
#endif

View File

@ -0,0 +1,324 @@
/*
wiring.c - Partial implementation of the Wiring API for the ATmega8.
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id$
*/
#include "wiring_private.h"
// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
// the overflow handler is called every 256 ticks.
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
// the whole number of milliseconds per timer0 overflow
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
// the fractional number of milliseconds per timer0 overflow. we shift right
// by three to fit these numbers into a byte. (for the clock speeds we care
// about - 8 and 16 MHz - this doesn't lose precision.)
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
#define FRACT_MAX (1000 >> 3)
volatile unsigned long timer0_overflow_count = 0;
volatile unsigned long timer0_millis = 0;
static unsigned char timer0_fract = 0;
#if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
ISR(TIM0_OVF_vect)
#else
ISR(TIMER0_OVF_vect)
#endif
{
// copy these to local variables so they can be stored in registers
// (volatile variables must be read from memory on every access)
unsigned long m = timer0_millis;
unsigned char f = timer0_fract;
m += MILLIS_INC;
f += FRACT_INC;
if (f >= FRACT_MAX) {
f -= FRACT_MAX;
m += 1;
}
timer0_fract = f;
timer0_millis = m;
timer0_overflow_count++;
}
unsigned long millis()
{
unsigned long m;
uint8_t oldSREG = SREG;
// disable interrupts while we read timer0_millis or we might get an
// inconsistent value (e.g. in the middle of a write to timer0_millis)
cli();
m = timer0_millis;
SREG = oldSREG;
return m;
}
unsigned long micros() {
unsigned long m;
uint8_t oldSREG = SREG, t;
cli();
m = timer0_overflow_count;
#if defined(TCNT0)
t = TCNT0;
#elif defined(TCNT0L)
t = TCNT0L;
#else
#error TIMER 0 not defined
#endif
#ifdef TIFR0
if ((TIFR0 & _BV(TOV0)) && (t < 255))
m++;
#else
if ((TIFR & _BV(TOV0)) && (t < 255))
m++;
#endif
SREG = oldSREG;
return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
}
void delay(unsigned long ms)
{
uint16_t start = (uint16_t)micros();
while (ms > 0) {
if (((uint16_t)micros() - start) >= 1000) {
ms--;
start += 1000;
}
}
}
/* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock. */
void delayMicroseconds(unsigned int us)
{
// calling avrlib's delay_us() function with low values (e.g. 1 or
// 2 microseconds) gives delays longer than desired.
//delay_us(us);
#if F_CPU >= 20000000L
// for the 20 MHz clock on rare Arduino boards
// for a one-microsecond delay, simply wait 2 cycle and return. The overhead
// of the function call yields a delay of exactly a one microsecond.
__asm__ __volatile__ (
"nop" "\n\t"
"nop"); //just waiting 2 cycle
if (--us == 0)
return;
// the following loop takes a 1/5 of a microsecond (4 cycles)
// per iteration, so execute it five times for each microsecond of
// delay requested.
us = (us<<2) + us; // x5 us
// account for the time taken in the preceeding commands.
us -= 2;
#elif F_CPU >= 16000000L
// for the 16 MHz clock on most Arduino boards
// for a one-microsecond delay, simply return. the overhead
// of the function call yields a delay of approximately 1 1/8 us.
if (--us == 0)
return;
// the following loop takes a quarter of a microsecond (4 cycles)
// per iteration, so execute it four times for each microsecond of
// delay requested.
us <<= 2;
// account for the time taken in the preceeding commands.
us -= 2;
#else
// for the 8 MHz internal clock on the ATmega168
// for a one- or two-microsecond delay, simply return. the overhead of
// the function calls takes more than two microseconds. can't just
// subtract two, since us is unsigned; we'd overflow.
if (--us == 0)
return;
if (--us == 0)
return;
// the following loop takes half of a microsecond (4 cycles)
// per iteration, so execute it twice for each microsecond of
// delay requested.
us <<= 1;
// partially compensate for the time taken by the preceeding commands.
// we can't subtract any more than this or we'd overflow w/ small delays.
us--;
#endif
// busy wait
__asm__ __volatile__ (
"1: sbiw %0,1" "\n\t" // 2 cycles
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
);
}
void init()
{
// this needs to be called before setup() or some functions won't
// work there
sei();
// on the ATmega168, timer 0 is also used for fast hardware pwm
// (using phase-correct PWM would mean that timer 0 overflowed half as often
// resulting in different millis() behavior on the ATmega8 and ATmega168)
#if defined(TCCR0A) && defined(WGM01)
sbi(TCCR0A, WGM01);
sbi(TCCR0A, WGM00);
#endif
// set timer 0 prescale factor to 64
#if defined(__AVR_ATmega128__)
// CPU specific: different values for the ATmega128
sbi(TCCR0, CS02);
#elif defined(TCCR0) && defined(CS01) && defined(CS00)
// this combination is for the standard atmega8
sbi(TCCR0, CS01);
sbi(TCCR0, CS00);
#elif defined(TCCR0B) && defined(CS01) && defined(CS00)
// this combination is for the standard 168/328/1280/2560
sbi(TCCR0B, CS01);
sbi(TCCR0B, CS00);
#elif defined(TCCR0A) && defined(CS01) && defined(CS00)
// this combination is for the __AVR_ATmega645__ series
sbi(TCCR0A, CS01);
sbi(TCCR0A, CS00);
#else
#error Timer 0 prescale factor 64 not set correctly
#endif
// enable timer 0 overflow interrupt
#if defined(TIMSK) && defined(TOIE0)
sbi(TIMSK, TOIE0);
#elif defined(TIMSK0) && defined(TOIE0)
sbi(TIMSK0, TOIE0);
#else
#error Timer 0 overflow interrupt not set correctly
#endif
// timers 1 and 2 are used for phase-correct hardware pwm
// this is better for motors as it ensures an even waveform
// note, however, that fast pwm mode can achieve a frequency of up
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
#if defined(TCCR1B) && defined(CS11) && defined(CS10)
TCCR1B = 0;
// set timer 1 prescale factor to 64
sbi(TCCR1B, CS11);
#if F_CPU >= 8000000L
sbi(TCCR1B, CS10);
#endif
#elif defined(TCCR1) && defined(CS11) && defined(CS10)
sbi(TCCR1, CS11);
#if F_CPU >= 8000000L
sbi(TCCR1, CS10);
#endif
#endif
// put timer 1 in 8-bit phase correct pwm mode
#if defined(TCCR1A) && defined(WGM10)
sbi(TCCR1A, WGM10);
#elif defined(TCCR1)
#warning this needs to be finished
#endif
// set timer 2 prescale factor to 64
#if defined(TCCR2) && defined(CS22)
sbi(TCCR2, CS22);
#elif defined(TCCR2B) && defined(CS22)
sbi(TCCR2B, CS22);
#else
#warning Timer 2 not finished (may not be present on this CPU)
#endif
// configure timer 2 for phase correct pwm (8-bit)
#if defined(TCCR2) && defined(WGM20)
sbi(TCCR2, WGM20);
#elif defined(TCCR2A) && defined(WGM20)
sbi(TCCR2A, WGM20);
#else
#warning Timer 2 not finished (may not be present on this CPU)
#endif
#if defined(TCCR3B) && defined(CS31) && defined(WGM30)
sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64
sbi(TCCR3B, CS30);
sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
#endif
#if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */
sbi(TCCR4B, CS42); // set timer4 prescale factor to 64
sbi(TCCR4B, CS41);
sbi(TCCR4B, CS40);
sbi(TCCR4D, WGM40); // put timer 4 in phase- and frequency-correct PWM mode
sbi(TCCR4A, PWM4A); // enable PWM mode for comparator OCR4A
sbi(TCCR4C, PWM4D); // enable PWM mode for comparator OCR4D
#else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */
#if defined(TCCR4B) && defined(CS41) && defined(WGM40)
sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64
sbi(TCCR4B, CS40);
sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode
#endif
#endif /* end timer4 block for ATMEGA1280/2560 and similar */
#if defined(TCCR5B) && defined(CS51) && defined(WGM50)
sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64
sbi(TCCR5B, CS50);
sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode
#endif
#if defined(ADCSRA)
// set a2d prescale factor to 128
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
// XXX: this will not work properly for other clock speeds, and
// this code should use F_CPU to determine the prescale factor.
sbi(ADCSRA, ADPS2);
sbi(ADCSRA, ADPS1);
sbi(ADCSRA, ADPS0);
// enable a2d conversions
sbi(ADCSRA, ADEN);
#endif
// the bootloader connects pins 0 and 1 to the USART; disconnect them
// here so they can be used as normal digital i/o; they will be
// reconnected in Serial.begin()
#if defined(UCSRB)
UCSRB = 0;
#elif defined(UCSR0B)
UCSR0B = 0;
#endif
}

View File

@ -0,0 +1,284 @@
/*
wiring_analog.c - analog input and output
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
Modified 28 September 2010 by Mark Sproul
$Id: wiring.c 248 2007-02-03 15:36:30Z mellis $
*/
#include "wiring_private.h"
#include "pins_arduino.h"
uint8_t analog_reference = DEFAULT;
void analogReference(uint8_t mode)
{
// can't actually set the register here because the default setting
// will connect AVCC and the AREF pin, which would cause a short if
// there's something connected to AREF.
analog_reference = mode;
}
int analogRead(uint8_t pin)
{
uint8_t low, high;
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
if (pin >= 54) pin -= 54; // allow for channel or pin numbers
#elif defined(__AVR_ATmega32U4__)
if (pin >= 18) pin -= 18; // allow for channel or pin numbers
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__)
if (pin >= 24) pin -= 24; // allow for channel or pin numbers
#elif defined(analogPinToChannel) && (defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__))
pin = analogPinToChannel(pin);
#else
if (pin >= 14) pin -= 14; // allow for channel or pin numbers
#endif
#if defined(__AVR_ATmega32U4__)
pin = analogPinToChannel(pin);
ADCSRB = (ADCSRB & ~(1 << MUX5)) | (((pin >> 3) & 0x01) << MUX5);
#elif defined(ADCSRB) && defined(MUX5)
// the MUX5 bit of ADCSRB selects whether we're reading from channels
// 0 to 7 (MUX5 low) or 8 to 15 (MUX5 high).
ADCSRB = (ADCSRB & ~(1 << MUX5)) | (((pin >> 3) & 0x01) << MUX5);
#endif
// set the analog reference (high two bits of ADMUX) and select the
// channel (low 4 bits). this also sets ADLAR (left-adjust result)
// to 0 (the default).
#if defined(ADMUX)
ADMUX = (analog_reference << 6) | (pin & 0x07);
#endif
// without a delay, we seem to read from the wrong channel
//delay(1);
#if defined(ADCSRA) && defined(ADCL)
// start the conversion
sbi(ADCSRA, ADSC);
// ADSC is cleared when the conversion finishes
while (bit_is_set(ADCSRA, ADSC));
// we have to read ADCL first; doing so locks both ADCL
// and ADCH until ADCH is read. reading ADCL second would
// cause the results of each conversion to be discarded,
// as ADCL and ADCH would be locked when it completed.
low = ADCL;
high = ADCH;
#else
// we dont have an ADC, return 0
low = 0;
high = 0;
#endif
// combine the two bytes
return (high << 8) | low;
}
// Right now, PWM output only works on the pins with
// hardware support. These are defined in the appropriate
// pins_*.c file. For the rest of the pins, we default
// to digital output.
void analogWrite(uint8_t pin, int val)
{
// We need to make sure the PWM output is enabled for those pins
// that support it, as we turn it off when digitally reading or
// writing with them. Also, make sure the pin is in output mode
// for consistenty with Wiring, which doesn't require a pinMode
// call for the analog output pins.
pinMode(pin, OUTPUT);
if (val == 0)
{
digitalWrite(pin, LOW);
}
else if (val == 255)
{
digitalWrite(pin, HIGH);
}
else
{
switch(digitalPinToTimer(pin))
{
// XXX fix needed for atmega8
#if defined(TCCR0) && defined(COM00) && !defined(__AVR_ATmega8__)
case TIMER0A:
// connect pwm to pin on timer 0
sbi(TCCR0, COM00);
OCR0 = val; // set pwm duty
break;
#endif
#if defined(TCCR0A) && defined(COM0A1)
case TIMER0A:
// connect pwm to pin on timer 0, channel A
sbi(TCCR0A, COM0A1);
OCR0A = val; // set pwm duty
break;
#endif
#if defined(TCCR0A) && defined(COM0B1)
case TIMER0B:
// connect pwm to pin on timer 0, channel B
sbi(TCCR0A, COM0B1);
OCR0B = val; // set pwm duty
break;
#endif
#if defined(TCCR1A) && defined(COM1A1)
case TIMER1A:
// connect pwm to pin on timer 1, channel A
sbi(TCCR1A, COM1A1);
OCR1A = val; // set pwm duty
break;
#endif
#if defined(TCCR1A) && defined(COM1B1)
case TIMER1B:
// connect pwm to pin on timer 1, channel B
sbi(TCCR1A, COM1B1);
OCR1B = val; // set pwm duty
break;
#endif
#if defined(TCCR2) && defined(COM21)
case TIMER2:
// connect pwm to pin on timer 2
sbi(TCCR2, COM21);
OCR2 = val; // set pwm duty
break;
#endif
#if defined(TCCR2A) && defined(COM2A1)
case TIMER2A:
// connect pwm to pin on timer 2, channel A
sbi(TCCR2A, COM2A1);
OCR2A = val; // set pwm duty
break;
#endif
#if defined(TCCR2A) && defined(COM2B1)
case TIMER2B:
// connect pwm to pin on timer 2, channel B
sbi(TCCR2A, COM2B1);
OCR2B = val; // set pwm duty
break;
#endif
#if defined(TCCR3A) && defined(COM3A1)
case TIMER3A:
// connect pwm to pin on timer 3, channel A
sbi(TCCR3A, COM3A1);
OCR3A = val; // set pwm duty
break;
#endif
#if defined(TCCR3A) && defined(COM3B1)
case TIMER3B:
// connect pwm to pin on timer 3, channel B
sbi(TCCR3A, COM3B1);
OCR3B = val; // set pwm duty
break;
#endif
#if defined(TCCR3A) && defined(COM3C1)
case TIMER3C:
// connect pwm to pin on timer 3, channel C
sbi(TCCR3A, COM3C1);
OCR3C = val; // set pwm duty
break;
#endif
#if defined(TCCR4A)
case TIMER4A:
//connect pwm to pin on timer 4, channel A
sbi(TCCR4A, COM4A1);
#if defined(COM4A0) // only used on 32U4
cbi(TCCR4A, COM4A0);
#endif
OCR4A = val; // set pwm duty
break;
#endif
#if defined(TCCR4A) && defined(COM4B1)
case TIMER4B:
// connect pwm to pin on timer 4, channel B
sbi(TCCR4A, COM4B1);
OCR4B = val; // set pwm duty
break;
#endif
#if defined(TCCR4A) && defined(COM4C1)
case TIMER4C:
// connect pwm to pin on timer 4, channel C
sbi(TCCR4A, COM4C1);
OCR4C = val; // set pwm duty
break;
#endif
#if defined(TCCR4C) && defined(COM4D1)
case TIMER4D:
// connect pwm to pin on timer 4, channel D
sbi(TCCR4C, COM4D1);
#if defined(COM4D0) // only used on 32U4
cbi(TCCR4C, COM4D0);
#endif
OCR4D = val; // set pwm duty
break;
#endif
#if defined(TCCR5A) && defined(COM5A1)
case TIMER5A:
// connect pwm to pin on timer 5, channel A
sbi(TCCR5A, COM5A1);
OCR5A = val; // set pwm duty
break;
#endif
#if defined(TCCR5A) && defined(COM5B1)
case TIMER5B:
// connect pwm to pin on timer 5, channel B
sbi(TCCR5A, COM5B1);
OCR5B = val; // set pwm duty
break;
#endif
#if defined(TCCR5A) && defined(COM5C1)
case TIMER5C:
// connect pwm to pin on timer 5, channel C
sbi(TCCR5A, COM5C1);
OCR5C = val; // set pwm duty
break;
#endif
case NOT_ON_TIMER:
default:
if (val < 128) {
digitalWrite(pin, LOW);
} else {
digitalWrite(pin, HIGH);
}
}
}
}

View File

@ -0,0 +1,178 @@
/*
wiring_digital.c - digital input and output functions
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
Modified 28 September 2010 by Mark Sproul
$Id: wiring.c 248 2007-02-03 15:36:30Z mellis $
*/
#define ARDUINO_MAIN
#include "wiring_private.h"
#include "pins_arduino.h"
void pinMode(uint8_t pin, uint8_t mode)
{
uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
volatile uint8_t *reg, *out;
if (port == NOT_A_PIN) return;
// JWS: can I let the optimizer do this?
reg = portModeRegister(port);
out = portOutputRegister(port);
if (mode == INPUT) {
uint8_t oldSREG = SREG;
cli();
*reg &= ~bit;
*out &= ~bit;
SREG = oldSREG;
} else if (mode == INPUT_PULLUP) {
uint8_t oldSREG = SREG;
cli();
*reg &= ~bit;
*out |= bit;
SREG = oldSREG;
} else {
uint8_t oldSREG = SREG;
cli();
*reg |= bit;
SREG = oldSREG;
}
}
// Forcing this inline keeps the callers from having to push their own stuff
// on the stack. It is a good performance win and only takes 1 more byte per
// user than calling. (It will take more bytes on the 168.)
//
// But shouldn't this be moved into pinMode? Seems silly to check and do on
// each digitalread or write.
//
// Mark Sproul:
// - Removed inline. Save 170 bytes on atmega1280
// - changed to a switch statment; added 32 bytes but much easier to read and maintain.
// - Added more #ifdefs, now compiles for atmega645
//
//static inline void turnOffPWM(uint8_t timer) __attribute__ ((always_inline));
//static inline void turnOffPWM(uint8_t timer)
static void turnOffPWM(uint8_t timer)
{
switch (timer)
{
#if defined(TCCR1A) && defined(COM1A1)
case TIMER1A: cbi(TCCR1A, COM1A1); break;
#endif
#if defined(TCCR1A) && defined(COM1B1)
case TIMER1B: cbi(TCCR1A, COM1B1); break;
#endif
#if defined(TCCR2) && defined(COM21)
case TIMER2: cbi(TCCR2, COM21); break;
#endif
#if defined(TCCR0A) && defined(COM0A1)
case TIMER0A: cbi(TCCR0A, COM0A1); break;
#endif
#if defined(TIMER0B) && defined(COM0B1)
case TIMER0B: cbi(TCCR0A, COM0B1); break;
#endif
#if defined(TCCR2A) && defined(COM2A1)
case TIMER2A: cbi(TCCR2A, COM2A1); break;
#endif
#if defined(TCCR2A) && defined(COM2B1)
case TIMER2B: cbi(TCCR2A, COM2B1); break;
#endif
#if defined(TCCR3A) && defined(COM3A1)
case TIMER3A: cbi(TCCR3A, COM3A1); break;
#endif
#if defined(TCCR3A) && defined(COM3B1)
case TIMER3B: cbi(TCCR3A, COM3B1); break;
#endif
#if defined(TCCR3A) && defined(COM3C1)
case TIMER3C: cbi(TCCR3A, COM3C1); break;
#endif
#if defined(TCCR4A) && defined(COM4A1)
case TIMER4A: cbi(TCCR4A, COM4A1); break;
#endif
#if defined(TCCR4A) && defined(COM4B1)
case TIMER4B: cbi(TCCR4A, COM4B1); break;
#endif
#if defined(TCCR4A) && defined(COM4C1)
case TIMER4C: cbi(TCCR4A, COM4C1); break;
#endif
#if defined(TCCR4C) && defined(COM4D1)
case TIMER4D: cbi(TCCR4C, COM4D1); break;
#endif
#if defined(TCCR5A)
case TIMER5A: cbi(TCCR5A, COM5A1); break;
case TIMER5B: cbi(TCCR5A, COM5B1); break;
case TIMER5C: cbi(TCCR5A, COM5C1); break;
#endif
}
}
void digitalWrite(uint8_t pin, uint8_t val)
{
uint8_t timer = digitalPinToTimer(pin);
uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
volatile uint8_t *out;
if (port == NOT_A_PIN) return;
// If the pin that support PWM output, we need to turn it off
// before doing a digital write.
if (timer != NOT_ON_TIMER) turnOffPWM(timer);
out = portOutputRegister(port);
uint8_t oldSREG = SREG;
cli();
if (val == LOW) {
*out &= ~bit;
} else {
*out |= bit;
}
SREG = oldSREG;
}
int digitalRead(uint8_t pin)
{
uint8_t timer = digitalPinToTimer(pin);
uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
if (port == NOT_A_PIN) return LOW;
// If the pin that support PWM output, we need to turn it off
// before getting a digital reading.
if (timer != NOT_ON_TIMER) turnOffPWM(timer);
if (*portInputRegister(port) & bit) return HIGH;
return LOW;
}

View File

@ -0,0 +1,71 @@
/*
wiring_private.h - Internal header file.
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id: wiring.h 239 2007-01-12 17:58:39Z mellis $
*/
#ifndef WiringPrivate_h
#define WiringPrivate_h
#include <avr/io.h>
#include <avr/interrupt.h>
#include <stdio.h>
#include <stdarg.h>
#include "Arduino.h"
#ifdef __cplusplus
extern "C"{
#endif
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
#define EXTERNAL_INT_0 0
#define EXTERNAL_INT_1 1
#define EXTERNAL_INT_2 2
#define EXTERNAL_INT_3 3
#define EXTERNAL_INT_4 4
#define EXTERNAL_INT_5 5
#define EXTERNAL_INT_6 6
#define EXTERNAL_INT_7 7
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define EXTERNAL_NUM_INTERRUPTS 8
#elif defined(__AVR_ATmega1284__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644__) || defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__)
#define EXTERNAL_NUM_INTERRUPTS 3
#elif defined(__AVR_ATmega32U4__)
#define EXTERNAL_NUM_INTERRUPTS 5
#else
#define EXTERNAL_NUM_INTERRUPTS 2
#endif
typedef void (*voidFuncPtr)(void);
#ifdef __cplusplus
} // extern "C"
#endif
#endif

View File

@ -0,0 +1,69 @@
/*
wiring_pulse.c - pulseIn() function
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id: wiring.c 248 2007-02-03 15:36:30Z mellis $
*/
#include "wiring_private.h"
#include "pins_arduino.h"
/* Measures the length (in microseconds) of a pulse on the pin; state is HIGH
* or LOW, the type of pulse to measure. Works on pulses from 2-3 microseconds
* to 3 minutes in length, but must be called at least a few dozen microseconds
* before the start of the pulse. */
unsigned long pulseIn(uint8_t pin, uint8_t state, unsigned long timeout)
{
// cache the port and bit of the pin in order to speed up the
// pulse width measuring loop and achieve finer resolution. calling
// digitalRead() instead yields much coarser resolution.
uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
uint8_t stateMask = (state ? bit : 0);
unsigned long width = 0; // keep initialization out of time critical area
// convert the timeout from microseconds to a number of times through
// the initial loop; it takes 16 clock cycles per iteration.
unsigned long numloops = 0;
unsigned long maxloops = microsecondsToClockCycles(timeout) / 16;
// wait for any previous pulse to end
while ((*portInputRegister(port) & bit) == stateMask)
if (numloops++ == maxloops)
return 0;
// wait for the pulse to start
while ((*portInputRegister(port) & bit) != stateMask)
if (numloops++ == maxloops)
return 0;
// wait for the pulse to stop
while ((*portInputRegister(port) & bit) == stateMask) {
if (numloops++ == maxloops)
return 0;
width++;
}
// convert the reading to microseconds. The loop has been determined
// to be 20 clock cycles long and have about 16 clocks between the edge
// and the start of the loop. There will be some error introduced by
// the interrupt handlers.
return clockCyclesToMicroseconds(width * 21 + 16);
}

View File

@ -0,0 +1,55 @@
/*
wiring_shift.c - shiftOut() function
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id: wiring.c 248 2007-02-03 15:36:30Z mellis $
*/
#include "wiring_private.h"
uint8_t shiftIn(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder) {
uint8_t value = 0;
uint8_t i;
for (i = 0; i < 8; ++i) {
digitalWrite(clockPin, HIGH);
if (bitOrder == LSBFIRST)
value |= digitalRead(dataPin) << i;
else
value |= digitalRead(dataPin) << (7 - i);
digitalWrite(clockPin, LOW);
}
return value;
}
void shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, uint8_t val)
{
uint8_t i;
for (i = 0; i < 8; i++) {
if (bitOrder == LSBFIRST)
digitalWrite(dataPin, !!(val & (1 << i)));
else
digitalWrite(dataPin, !!(val & (1 << (7 - i))));
digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);
}
}

View File

@ -0,0 +1,688 @@
/******************************************************************
This is the core graphics library for all our displays, providing
basic graphics primitives (points, lines, circles, etc.). It needs
to be paired with a hardware-specific library for each display
device we carry (handling the lower-level functions).
Adafruit invests time and resources providing this open
source code, please support Adafruit and open-source hardware
by purchasing products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
BSD license, check license.txt for more information.
All text above must be included in any redistribution.
******************************************************************/
#include "Adafruit_GFX.h"
#include "glcdfont.c"
#include <avr/pgmspace.h>
void Adafruit_GFX::constructor(int16_t w, int16_t h) {
_width = WIDTH = w;
_height = HEIGHT = h;
rotation = 0;
cursor_y = cursor_x = 0;
textsize = 1;
textcolor = textbgcolor = 0xFFFF;
wrap = true;
strokeColor = 0;
useStroke = true;
fillColor = 0;
useFill = false;
}
// draw a circle outline
void Adafruit_GFX::drawCircle(int16_t x0, int16_t y0, int16_t r,
uint16_t color) {
int16_t f = 1 - r;
int16_t ddF_x = 1;
int16_t ddF_y = -2 * r;
int16_t x = 0;
int16_t y = r;
drawPixel(x0, y0+r, color);
drawPixel(x0, y0-r, color);
drawPixel(x0+r, y0, color);
drawPixel(x0-r, y0, color);
while (x<y) {
if (f >= 0) {
y--;
ddF_y += 2;
f += ddF_y;
}
x++;
ddF_x += 2;
f += ddF_x;
drawPixel(x0 + x, y0 + y, color);
drawPixel(x0 - x, y0 + y, color);
drawPixel(x0 + x, y0 - y, color);
drawPixel(x0 - x, y0 - y, color);
drawPixel(x0 + y, y0 + x, color);
drawPixel(x0 - y, y0 + x, color);
drawPixel(x0 + y, y0 - x, color);
drawPixel(x0 - y, y0 - x, color);
}
}
void Adafruit_GFX::drawCircleHelper( int16_t x0, int16_t y0,
int16_t r, uint8_t cornername, uint16_t color) {
int16_t f = 1 - r;
int16_t ddF_x = 1;
int16_t ddF_y = -2 * r;
int16_t x = 0;
int16_t y = r;
while (x<y) {
if (f >= 0) {
y--;
ddF_y += 2;
f += ddF_y;
}
x++;
ddF_x += 2;
f += ddF_x;
if (cornername & 0x4) {
drawPixel(x0 + x, y0 + y, color);
drawPixel(x0 + y, y0 + x, color);
}
if (cornername & 0x2) {
drawPixel(x0 + x, y0 - y, color);
drawPixel(x0 + y, y0 - x, color);
}
if (cornername & 0x8) {
drawPixel(x0 - y, y0 + x, color);
drawPixel(x0 - x, y0 + y, color);
}
if (cornername & 0x1) {
drawPixel(x0 - y, y0 - x, color);
drawPixel(x0 - x, y0 - y, color);
}
}
}
void Adafruit_GFX::fillCircle(int16_t x0, int16_t y0, int16_t r,
uint16_t color) {
drawFastVLine(x0, y0-r, 2*r+1, color);
fillCircleHelper(x0, y0, r, 3, 0, color);
}
// used to do circles and roundrects!
void Adafruit_GFX::fillCircleHelper(int16_t x0, int16_t y0, int16_t r,
uint8_t cornername, int16_t delta, uint16_t color) {
int16_t f = 1 - r;
int16_t ddF_x = 1;
int16_t ddF_y = -2 * r;
int16_t x = 0;
int16_t y = r;
while (x<y) {
if (f >= 0) {
y--;
ddF_y += 2;
f += ddF_y;
}
x++;
ddF_x += 2;
f += ddF_x;
if (cornername & 0x1) {
drawFastVLine(x0+x, y0-y, 2*y+1+delta, color);
drawFastVLine(x0+y, y0-x, 2*x+1+delta, color);
}
if (cornername & 0x2) {
drawFastVLine(x0-x, y0-y, 2*y+1+delta, color);
drawFastVLine(x0-y, y0-x, 2*x+1+delta, color);
}
}
}
// bresenham's algorithm - thx wikpedia
void Adafruit_GFX::drawLine(int16_t x0, int16_t y0,
int16_t x1, int16_t y1,
uint16_t color) {
int16_t steep = abs(y1 - y0) > abs(x1 - x0);
if (steep) {
swap(x0, y0);
swap(x1, y1);
}
if (x0 > x1) {
swap(x0, x1);
swap(y0, y1);
}
int16_t dx, dy;
dx = x1 - x0;
dy = abs(y1 - y0);
int16_t err = dx / 2;
int16_t ystep;
if (y0 < y1) {
ystep = 1;
} else {
ystep = -1;
}
for (; x0<=x1; x0++) {
if (steep) {
drawPixel(y0, x0, color);
} else {
drawPixel(x0, y0, color);
}
err -= dy;
if (err < 0) {
y0 += ystep;
err += dx;
}
}
}
// draw a rectangle
void Adafruit_GFX::drawRect(int16_t x, int16_t y,
int16_t w, int16_t h,
uint16_t color) {
drawFastHLine(x, y, w, color);
drawFastHLine(x, y+h-1, w, color);
drawFastVLine(x, y, h, color);
drawFastVLine(x+w-1, y, h, color);
}
void Adafruit_GFX::drawFastVLine(int16_t x, int16_t y,
int16_t h, uint16_t color) {
// stupidest version - update in subclasses if desired!
drawLine(x, y, x, y+h-1, color);
}
void Adafruit_GFX::drawFastHLine(int16_t x, int16_t y,
int16_t w, uint16_t color) {
// stupidest version - update in subclasses if desired!
drawLine(x, y, x+w-1, y, color);
}
void Adafruit_GFX::fillRect(int16_t x, int16_t y, int16_t w, int16_t h,
uint16_t color) {
// stupidest version - update in subclasses if desired!
for (int16_t i=x; i<x+w; i++) {
drawFastVLine(i, y, h, color);
}
}
void Adafruit_GFX::fillScreen(uint16_t color) {
fillRect(0, 0, _width, _height, color);
}
// draw a rounded rectangle!
void Adafruit_GFX::drawRoundRect(int16_t x, int16_t y, int16_t w,
int16_t h, int16_t r, uint16_t color) {
// smarter version
drawFastHLine(x+r , y , w-2*r, color); // Top
drawFastHLine(x+r , y+h-1, w-2*r, color); // Bottom
drawFastVLine( x , y+r , h-2*r, color); // Left
drawFastVLine( x+w-1, y+r , h-2*r, color); // Right
// draw four corners
drawCircleHelper(x+r , y+r , r, 1, color);
drawCircleHelper(x+w-r-1, y+r , r, 2, color);
drawCircleHelper(x+w-r-1, y+h-r-1, r, 4, color);
drawCircleHelper(x+r , y+h-r-1, r, 8, color);
}
// fill a rounded rectangle!
void Adafruit_GFX::fillRoundRect(int16_t x, int16_t y, int16_t w,
int16_t h, int16_t r, uint16_t color) {
// smarter version
fillRect(x+r, y, w-2*r, h, color);
// draw four corners
fillCircleHelper(x+w-r-1, y+r, r, 1, h-2*r-1, color);
fillCircleHelper(x+r , y+r, r, 2, h-2*r-1, color);
}
// draw a triangle!
void Adafruit_GFX::drawTriangle(int16_t x0, int16_t y0,
int16_t x1, int16_t y1,
int16_t x2, int16_t y2, uint16_t color) {
drawLine(x0, y0, x1, y1, color);
drawLine(x1, y1, x2, y2, color);
drawLine(x2, y2, x0, y0, color);
}
// fill a triangle!
void Adafruit_GFX::fillTriangle ( int16_t x0, int16_t y0,
int16_t x1, int16_t y1,
int16_t x2, int16_t y2, uint16_t color) {
int16_t a, b, y, last;
// Sort coordinates by Y order (y2 >= y1 >= y0)
if (y0 > y1) {
swap(y0, y1); swap(x0, x1);
}
if (y1 > y2) {
swap(y2, y1); swap(x2, x1);
}
if (y0 > y1) {
swap(y0, y1); swap(x0, x1);
}
if(y0 == y2) { // Handle awkward all-on-same-line case as its own thing
a = b = x0;
if(x1 < a) a = x1;
else if(x1 > b) b = x1;
if(x2 < a) a = x2;
else if(x2 > b) b = x2;
drawFastHLine(a, y0, b-a+1, color);
return;
}
int16_t
dx01 = x1 - x0,
dy01 = y1 - y0,
dx02 = x2 - x0,
dy02 = y2 - y0,
dx12 = x2 - x1,
dy12 = y2 - y1,
sa = 0,
sb = 0;
// For upper part of triangle, find scanline crossings for segments
// 0-1 and 0-2. If y1=y2 (flat-bottomed triangle), the scanline y1
// is included here (and second loop will be skipped, avoiding a /0
// error there), otherwise scanline y1 is skipped here and handled
// in the second loop...which also avoids a /0 error here if y0=y1
// (flat-topped triangle).
if(y1 == y2) last = y1; // Include y1 scanline
else last = y1-1; // Skip it
for(y=y0; y<=last; y++) {
a = x0 + sa / dy01;
b = x0 + sb / dy02;
sa += dx01;
sb += dx02;
/* longhand:
a = x0 + (x1 - x0) * (y - y0) / (y1 - y0);
b = x0 + (x2 - x0) * (y - y0) / (y2 - y0);
*/
if(a > b) swap(a,b);
drawFastHLine(a, y, b-a+1, color);
}
// For lower part of triangle, find scanline crossings for segments
// 0-2 and 1-2. This loop is skipped if y1=y2.
sa = dx12 * (y - y1);
sb = dx02 * (y - y0);
for(; y<=y2; y++) {
a = x1 + sa / dy12;
b = x0 + sb / dy02;
sa += dx12;
sb += dx02;
/* longhand:
a = x1 + (x2 - x1) * (y - y1) / (y2 - y1);
b = x0 + (x2 - x0) * (y - y0) / (y2 - y0);
*/
if(a > b) swap(a,b);
drawFastHLine(a, y, b-a+1, color);
}
}
void Adafruit_GFX::drawBitmap(int16_t x, int16_t y,
const uint8_t *bitmap, int16_t w, int16_t h,
uint16_t color) {
int16_t i, j, byteWidth = (w + 7) / 8;
for(j=0; j<h; j++) {
for(i=0; i<w; i++ ) {
if(pgm_read_byte(bitmap + j * byteWidth + i / 8) & (128 >> (i & 7))) {
drawPixel(x+i, y+j, color);
}
}
}
}
#if ARDUINO >= 100
size_t Adafruit_GFX::write(uint8_t c) {
#else
void Adafruit_GFX::write(uint8_t c) {
#endif
if (c == '\n') {
cursor_y += textsize*8;
cursor_x = 0;
} else if (c == '\r') {
// skip em
} else {
drawChar(cursor_x, cursor_y, c, textcolor, textbgcolor, textsize);
cursor_x += textsize*6;
if (wrap && (cursor_x > (_width - textsize*6))) {
cursor_y += textsize*8;
cursor_x = 0;
}
}
#if ARDUINO >= 100
return 1;
#endif
}
// draw a character
void Adafruit_GFX::drawChar(int16_t x, int16_t y, unsigned char c,
uint16_t color, uint16_t bg, uint8_t size) {
if((x >= _width) || // Clip right
(y >= _height) || // Clip bottom
((x + 5 * size - 1) < 0) || // Clip left
((y + 8 * size - 1) < 0)) // Clip top
return;
for (int8_t i=0; i<6; i++ ) {
uint8_t line;
if (i == 5)
line = 0x0;
else
line = pgm_read_byte(font+(c*5)+i);
for (int8_t j = 0; j<8; j++) {
if (line & 0x1) {
if (size == 1) // default size
drawPixel(x+i, y+j, color);
else { // big size
fillRect(x+(i*size), y+(j*size), size, size, color);
}
} else if (bg != color) {
if (size == 1) // default size
drawPixel(x+i, y+j, bg);
else { // big size
fillRect(x+i*size, y+j*size, size, size, bg);
}
}
line >>= 1;
}
}
}
void Adafruit_GFX::setCursor(int16_t x, int16_t y) {
cursor_x = x;
cursor_y = y;
}
void Adafruit_GFX::setTextSize(uint8_t s) {
textsize = (s > 0) ? s : 1;
}
void Adafruit_GFX::setTextColor(uint16_t c) {
textcolor = c;
textbgcolor = c;
// for 'transparent' background, we'll set the bg
// to the same as fg instead of using a flag
}
void Adafruit_GFX::setTextColor(uint16_t c, uint16_t b) {
textcolor = c;
textbgcolor = b;
}
void Adafruit_GFX::setTextWrap(boolean w) {
wrap = w;
}
uint8_t Adafruit_GFX::getRotation(void) {
rotation %= 4;
return rotation;
}
void Adafruit_GFX::setRotation(uint8_t x) {
x %= 4; // cant be higher than 3
rotation = x;
switch (x) {
case 0:
case 2:
_width = WIDTH;
_height = HEIGHT;
break;
case 1:
case 3:
_width = HEIGHT;
_height = WIDTH;
break;
}
}
void Adafruit_GFX::invertDisplay(boolean i) {
// do nothing, can be subclassed
}
// return the size of the display which depends on the rotation!
int16_t Adafruit_GFX::width(void) {
return _width;
}
int16_t Adafruit_GFX::height(void) {
return _height;
}
uint16_t Adafruit_GFX::newColor(uint8_t r, uint8_t g, uint8_t b) {
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
}
void Adafruit_GFX::background(uint8_t red, uint8_t green, uint8_t blue) {
background(newColor(red, green, blue));
}
void Adafruit_GFX::background(color c) {
fillScreen(c);
}
void Adafruit_GFX::stroke(uint8_t red, uint8_t green, uint8_t blue) {
stroke(newColor(red, green, blue));
}
void Adafruit_GFX::stroke(color c) {
useStroke = true;
strokeColor = c;
setTextColor(c);
}
void Adafruit_GFX::noStroke() {
useStroke = false;
}
void Adafruit_GFX::noFill() {
useFill = false;
}
void Adafruit_GFX::fill(uint8_t red, uint8_t green, uint8_t blue) {
fill(newColor(red, green, blue));
}
void Adafruit_GFX::fill(color c) {
useFill = true;
fillColor = c;
}
void Adafruit_GFX::text(int value, uint8_t x, uint8_t y){
if (!useStroke)
return;
setTextWrap(false);
setTextColor(strokeColor);
setCursor(x, y);
print(value);
}
void Adafruit_GFX::text(long value, uint8_t x, uint8_t y){
if (!useStroke)
return;
setTextWrap(false);
setTextColor(strokeColor);
setCursor(x, y);
print(value);
}
void Adafruit_GFX::text(char value, uint8_t x, uint8_t y){
if (!useStroke)
return;
setTextWrap(false);
setTextColor(strokeColor);
setCursor(x, y);
print(value);
}
void Adafruit_GFX::text(const char * text, int16_t x, int16_t y) {
if (!useStroke)
return;
setTextWrap(false);
setTextColor(strokeColor);
setCursor(x, y);
print(text);
}
void Adafruit_GFX::textWrap(const char * text, int16_t x, int16_t y) {
if (!useStroke)
return;
setTextWrap(true);
setTextColor(strokeColor);
setCursor(x, y);
print(text);
}
void Adafruit_GFX::textSize(uint8_t size) {
setTextSize(size);
}
void Adafruit_GFX::point(int16_t x, int16_t y) {
if (!useStroke)
return;
drawPixel(x, y, strokeColor);
}
void Adafruit_GFX::line(int16_t x1, int16_t y1, int16_t x2, int16_t y2) {
if (!useStroke)
return;
if (x1 == x2) {
drawFastVLine(x1, y1, y2 - y1, strokeColor);
}
else if (y1 == y2) {
drawFastHLine(x1, y1, x2 - x1, strokeColor);
}
else {
drawLine(x1, y1, x2, y2, strokeColor);
}
}
void Adafruit_GFX::rect(int16_t x, int16_t y, int16_t width, int16_t height) {
if (useFill) {
fillRect(x, y, width, height, fillColor);
}
if (useStroke) {
drawRect(x, y, width, height, strokeColor);
}
}
void Adafruit_GFX::rect(int16_t x, int16_t y, int16_t width, int16_t height, int16_t radius) {
if (radius == 0) {
rect(x, y, width, height);
}
if (useFill) {
fillRoundRect(x, y, width, height, radius, fillColor);
}
if (useStroke) {
drawRoundRect(x, y, width, height, radius, strokeColor);
}
}
void Adafruit_GFX::circle(int16_t x, int16_t y, int16_t r) {
if (r == 0)
return;
if (useFill) {
fillCircle(x, y, r, fillColor);
}
if (useStroke) {
drawCircle(x, y, r, strokeColor);
}
}
void Adafruit_GFX::triangle(int16_t x1, int16_t y1, int16_t x2, int16_t y2, int16_t x3, int16_t y3) {
if (useFill) {
fillTriangle(x1, y1, x2, y2, x3, y3, fillColor);
}
if (useStroke) {
drawTriangle(x1, y1, x2, y2, x3, y3, strokeColor);
}
}
#define BUFFPIXEL 20
/*
void Adafruit_GFX::image(PImage & img, uint16_t x, uint16_t y) {
int w, h, row, col;
uint8_t r, g, b;
uint32_t pos = 0;
uint8_t sdbuffer[3*BUFFPIXEL]; // pixel buffer (R+G+B per pixel)
uint8_t buffidx = sizeof(sdbuffer); // Current position in sdbuffer
// Crop area to be loaded
w = img._bmpWidth;
h = img._bmpHeight;
if((x+w-1) >= width()) w = width() - x;
if((y+h-1) >= height()) h = height() - y;
// Set TFT address window to clipped image bounds
//setAddrWindow(x, y, x+w-1, y+h-1);
for (row=0; row<h; row++) { // For each scanline...
// Seek to start of scan line. It might seem labor-
// intensive to be doing this on every line, but this
// method covers a lot of gritty details like cropping
// and scanline padding. Also, the seek only takes
// place if the file position actually needs to change
// (avoids a lot of cluster math in SD library).
if(img._flip) // Bitmap is stored bottom-to-top order (normal BMP)
pos = img._bmpImageoffset + (img._bmpHeight - 1 - row) * img._rowSize;
else // Bitmap is stored top-to-bottom
pos = img._bmpImageoffset + row * img._rowSize;
if(img._bmpFile.position() != pos) { // Need seek?
img._bmpFile.seek(pos);
buffidx = sizeof(sdbuffer); // Force buffer reload
}
for (col=0; col<w; col++) { // For each pixel...
// Time to read more pixel data?
if (buffidx >= sizeof(sdbuffer)) { // Indeed
img._bmpFile.read(sdbuffer, sizeof(sdbuffer));
buffidx = 0; // Set index to beginning
}
// Convert pixel from BMP to TFT format, push to display
b = sdbuffer[buffidx++];
g = sdbuffer[buffidx++];
r = sdbuffer[buffidx++];
//pushColor(tft.Color565(r,g,b));
drawPixel(x + col, y + row, newColor(r, g, b));
} // end pixel
} // end scanline
}*/

View File

@ -0,0 +1,190 @@
/******************************************************************
This is the core graphics library for all our displays, providing
basic graphics primitives (points, lines, circles, etc.). It needs
to be paired with a hardware-specific library for each display
device we carry (handling the lower-level functions).
Adafruit invests time and resources providing this open
source code, please support Adafruit and open-source hardware
by purchasing products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
BSD license, check license.txt for more information.
All text above must be included in any redistribution.
******************************************************************/
#ifndef _ADAFRUIT_GFX_H
#define _ADAFRUIT_GFX_H
#if ARDUINO >= 100
#include "Arduino.h"
#include "Print.h"
#else
#include "WProgram.h"
#endif
//#include "PImage.h"
#define swap(a, b) { int16_t t = a; a = b; b = t; }
/* TODO
enum RectMode {
CORNER,
CORNERS,
RADIUS,
CENTER
};
*/
typedef uint16_t color;
class Adafruit_GFX : public Print {
public:
//Adafruit_GFX();
// i have no idea why we have to formally call the constructor. kinda sux
void constructor(int16_t w, int16_t h);
// this must be defined by the subclass
virtual void drawPixel(int16_t x, int16_t y, uint16_t color);
virtual void invertDisplay(boolean i);
// these are 'generic' drawing functions, so we can share them!
virtual void drawLine(int16_t x0, int16_t y0, int16_t x1, int16_t y1,
uint16_t color);
virtual void drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color);
virtual void drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color);
virtual void drawRect(int16_t x, int16_t y, int16_t w, int16_t h,
uint16_t color);
virtual void fillRect(int16_t x, int16_t y, int16_t w, int16_t h,
uint16_t color);
virtual void fillScreen(uint16_t color);
void drawCircle(int16_t x0, int16_t y0, int16_t r, uint16_t color);
void drawCircleHelper(int16_t x0, int16_t y0,
int16_t r, uint8_t cornername, uint16_t color);
void fillCircle(int16_t x0, int16_t y0, int16_t r, uint16_t color);
void fillCircleHelper(int16_t x0, int16_t y0, int16_t r,
uint8_t cornername, int16_t delta, uint16_t color);
void drawTriangle(int16_t x0, int16_t y0, int16_t x1, int16_t y1,
int16_t x2, int16_t y2, uint16_t color);
void fillTriangle(int16_t x0, int16_t y0, int16_t x1, int16_t y1,
int16_t x2, int16_t y2, uint16_t color);
void drawRoundRect(int16_t x0, int16_t y0, int16_t w, int16_t h,
int16_t radius, uint16_t color);
void fillRoundRect(int16_t x0, int16_t y0, int16_t w, int16_t h,
int16_t radius, uint16_t color);
void drawBitmap(int16_t x, int16_t y,
const uint8_t *bitmap, int16_t w, int16_t h,
uint16_t color);
void drawChar(int16_t x, int16_t y, unsigned char c,
uint16_t color, uint16_t bg, uint8_t size);
#if ARDUINO >= 100
virtual size_t write(uint8_t);
#else
virtual void write(uint8_t);
#endif
void setCursor(int16_t x, int16_t y);
void setTextColor(uint16_t c);
void setTextColor(uint16_t c, uint16_t bg);
void setTextSize(uint8_t s);
void setTextWrap(boolean w);
int16_t height(void);
int16_t width(void);
void setRotation(uint8_t r);
uint8_t getRotation(void);
/*
* Processing-like graphics primitives
*/
/// transforms a color in 16-bit form given the RGB components.
/// The default implementation makes a 5-bit red, a 6-bit
/// green and a 5-bit blue (MSB to LSB). Devices that use
/// different scheme should override this.
virtual uint16_t newColor(uint8_t red, uint8_t green, uint8_t blue);
// http://processing.org/reference/background_.html
void background(uint8_t red, uint8_t green, uint8_t blue);
void background(color c);
// http://processing.org/reference/fill_.html
void fill(uint8_t red, uint8_t green, uint8_t blue);
void fill(color c);
// http://processing.org/reference/noFill_.html
void noFill();
// http://processing.org/reference/stroke_.html
void stroke(uint8_t red, uint8_t green, uint8_t blue);
void stroke(color c);
// http://processing.org/reference/noStroke_.html
void noStroke();
void text(const char * text, int16_t x, int16_t y);
void text(int value, uint8_t posX, uint8_t posY);
void text(long value, uint8_t posX, uint8_t posY);
void text(char value, uint8_t posX, uint8_t posY);
void textWrap(const char * text, int16_t x, int16_t y);
void textSize(uint8_t size);
// similar to ellipse() in Processing, but with
// a single radius.
// http://processing.org/reference/ellipse_.html
void circle(int16_t x, int16_t y, int16_t r);
void point(int16_t x, int16_t y);
void line(int16_t x1, int16_t y1, int16_t x2, int16_t y2);
void quad(int16_t x1, int16_t y1, int16_t x2, int16_t y2, int16_t x3, int16_t y3, int16_t x4, int16_t y4);
void rect(int16_t x, int16_t y, int16_t width, int16_t height);
void rect(int16_t x, int16_t y, int16_t width, int16_t height, int16_t radius);
void triangle(int16_t x1, int16_t y1, int16_t x2, int16_t y2, int16_t x3, int16_t y3);
/* TODO
void rectMode(RectMode mode);
void pushStyle();
void popStyle();
*/
// PImage loadImage(const char * fileName) { return PImage::loadImage(fileName); }
// void image(PImage & img, uint16_t x, uint16_t y);
protected:
int16_t WIDTH, HEIGHT; // this is the 'raw' display w/h - never changes
int16_t _width, _height; // dependent on rotation
int16_t cursor_x, cursor_y;
uint16_t textcolor, textbgcolor;
uint8_t textsize;
uint8_t rotation;
boolean wrap; // If set, 'wrap' text at right edge of display
/*
* Processing-style graphics state
*/
color strokeColor;
bool useStroke;
color fillColor;
bool useFill;
};
#endif

View File

@ -0,0 +1,40 @@
#include "ArduinoRobot.h"
#include "Multiplexer.h"
#include "Wire.h"
#include "EasyTransfer2.h"
//RobotControl::RobotControl(){}
RobotControl::RobotControl():Arduino_LCD(LCD_CS,DC_LCD,RST_LCD){
}
void RobotControl::begin(){
Wire.begin();
//Compass
//nothing here
//TK sensors
uint8_t MuxPins[]={MUXA,MUXB,MUXC,MUXD};
Multiplexer::begin(MuxPins,MUX_IN,4);
//piezo
pinMode(BUZZ,OUTPUT);
//communication
Serial1.begin(9600);
messageOut.begin(&Serial1);
messageIn.begin(&Serial1);
//TFT initialization
//Arduino_LCD::initR(INITR_GREENTAB);
}
void RobotControl::setMode(uint8_t mode){
messageOut.writeByte(COMMAND_SWITCH_MODE);
messageOut.writeByte(mode);
messageOut.sendData();
}
RobotControl Robot=RobotControl();

View File

@ -0,0 +1,360 @@
#ifndef ArduinoRobot_h
#define ArduinoRobot_h
#include "Arduino_LCD.h" // Hardware-specific library
//#include "FormattedText.h"
#include "SquawkSD.h"
#include "Multiplexer.h"
#include "EasyTransfer2.h"
#include "EEPROM_I2C.h"
#include "Compass.h"
#include "Fat16.h"
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#define BUTTON_NONE -1
#define BUTTON_LEFT 0
#define BUTTON_DOWN 1
#define BUTTON_UP 2
#define BUTTON_RIGHT 3
#define BUTTON_MIDDLE 4
#define NUMBER_BUTTONS 5
//beep length
#define BEEP_SIMPLE 0
#define BEEP_DOUBLE 1
#define BEEP_LONG 2
// image locations on the EEPROM
#define HOME_BMP 0
#define BATTERY_BMP 2048
#define COMPASS_BMP 4096
#define CONTROL_BMP 6144
#define GEARS_BMP 8192
#define LIGHT_BMP 10240
#define OSCILLO_BMP 12288
#define VOLT_BMP 14336
#define INICIO_BMP 16384 // this is a full screen splash
//Command code
#define COMMAND_SWITCH_MODE 0
#define COMMAND_RUN 10
#define COMMAND_MOTORS_STOP 11
#define COMMAND_ANALOG_WRITE 20
#define COMMAND_DIGITAL_WRITE 30
#define COMMAND_ANALOG_READ 40
#define COMMAND_ANALOG_READ_RE 41
#define COMMAND_DIGITAL_READ 50
#define COMMAND_DIGITAL_READ_RE 51
#define COMMAND_READ_IR 60
#define COMMAND_READ_IR_RE 61
#define COMMAND_ACTION_DONE 70
#define COMMAND_READ_TRIM 80
#define COMMAND_READ_TRIM_RE 81
#define COMMAND_PAUSE_MODE 90
#define COMMAND_LINE_FOLLOW_CONFIG 100
//component codename
#define CN_LEFT_MOTOR 0
#define CN_RIGHT_MOTOR 1
#define CN_IR 2
//motor board modes
#define MODE_SIMPLE 0
#define MODE_LINE_FOLLOW 1
#define MODE_ADJUST_MOTOR 2
#define MODE_IR_CONTROL 3
//port types, for R/W
#define TYPE_TOP_TK 0
#define TYPE_TOP_TKD 1
#define TYPE_BOTTOM_TK 2
//top TKs
#define TK0 100
#define TK1 101
#define TK2 102
#define TK3 103
#define TK4 104
#define TK5 105
#define TK6 106
#define TK7 107
//bottom TKs, just for communication purpose
#define B_TK1 201
#define B_TK2 202
#define B_TK3 203
#define B_TK4 204
//bottom IRs, for communication purpose
#define B_IR0 210
#define B_IR1 211
#define B_IR2 212
#define B_IR3 213
#define B_IR4 214
#ifndef LED1
#define LED1 17
#endif
//320 - 337 username,
#define ADDRESS_USERNAME 320
//338 - 355 robotname,
#define ADDRESS_ROBOTNAME 338
//356 - 373 cityname,
#define ADDRESS_CITYNAME 356
//374- 391 countryname,
#define ADDRESS_COUNTRYNAME 374
//508-511 robot info
#define ADDRESS_ROBOTINFO 508
#define BLACK ILI9163C_BLACK
#define BLUE ILI9163C_BLUE
#define RED ILI9163C_RED
#define GREEN ILI9163C_GREEN
#define CYAN ILI9163C_CYAN
#define MAGENTA ILI9163C_MAGENTA
#define YELLOW ILI9163C_YELLOW
#define WHITE ILI9163C_WHITE
//A data structure for storing the current state of motor board
struct MOTOR_BOARD_DATA{
int _B_TK1;
int _B_TK2;
int _B_TK3;
int _B_TK4;
/*int _B_IR0;
int _B_IR1;
int _B_IR2;
int _B_IR3;
int _B_IR4;*/
};
/*
A message structure will be:
switch mode:
byte COMMAND_SWITCH_MODE, byte mode
run:
byte COMMAND_RUN, int speedL, int speedR
analogWrite:
byte COMMAND_ANALOG_WRITE, byte codename, byte value;
digitalWrite:
byte COMMAND_DIGITAL_WRITE, byte codename, byte value;
analogRead:
byte COMMAND_ANALOG_READ, byte codename;
analogRead return:
byte COMMAND_ANALOG_READ_RE, byte codename, int value;
digitalRead return:
byte COMMAND_DIGITAL_READ_RE, byte codename, byte value;
read IR:
byte COMMAND_READ_IR, int valueA, int valueB, int valueC, int valueD;
*/
#define NUM_EEPROM_BMP 10
struct EEPROM_BMP{
char name[8];
uint8_t width;
uint8_t height;
uint16_t address;
};
//if you call #undef USE_SQUAWK_SYNTH_SD at the beginning of your sketch,
//it's going to remove anything regarding sound playing
class RobotControl:public Multiplexer,
public EEPROM_I2C,
public Compass,
public SquawkSynthSD,
//public FormattedText
public Arduino_LCD
{
public:
RobotControl();
void begin();
void setMode(uint8_t mode);
//Read & Write, TK0 - TK7, TKD0 - TKD1, bottom TK0 - TK4
bool digitalRead(uint8_t port);
int analogRead(uint8_t port);
void digitalWrite(uint8_t port, bool value);
void analogWrite(uint8_t port, uint8_t value);//It's not available, as there's no pin can be used for analog write
//IR sensors from the bottom board
//define an array as "int arr[4];", and supply the arry name here
uint16_t IRarray[5];
void updateIR();
//on board Potentiometor
int knobRead();
//Potentiometor of the motor board
int trimRead();
//on board piezo
void beginSpeaker(uint16_t frequency=44100);
void playMelody(char* script);
void playFile(char* filename);
void stopPlayFile();
void beep(int beep_length=BEEP_SIMPLE);
void tempoWrite(int tempo);
void tuneWrite(float tune);
//compass
uint16_t compassRead();
void drawCompass(uint16_t value);
void drawBase();
void drawDire(int16_t dire);
//keyboard
void keyboardCalibrate(int *vals);
int8_t keyboardRead();//return the key that is being pressed?Has been pressed(with _processKeyboard)?
//movement
void moveForward(int speed);
void moveBackward(int speed);
void turnLeft(int speed);
void turnRight(int speed);
void motorsStop();
void motorsWritePct(int speedLeftPct, int speedRightPct);
void motorsWrite(int speedLeft,int speedRight);
void pointTo(int degrees);//turn to an absolute angle from the compass
void turn(int degress);//turn certain degrees from the current heading
//Line Following
void lineFollowConfig(uint8_t KP, uint8_t KD, uint8_t robotSpeed, uint8_t intergrationTime);//default 11 5 50 10
//TFT LCD
//use the same commands as Arduino_LCD
void beginTFT(uint16_t foreGround=BLACK, uint16_t background=WHITE);
/*void text(int value, uint8_t posX, uint8_t posY, bool EW);
void text(long value, uint8_t posX, uint8_t posY, bool EW);
void text(char* value, uint8_t posX, uint8_t posY, bool EW);
void text(char value, uint8_t posX, uint8_t posY, bool EW);*/
void debugPrint(long value, uint8_t x=0, uint8_t y=0);
void clearScreen();
void drawBMP(char* filename, uint8_t x, uint8_t y);//detect if draw with EEPROM or SD, and draw it
void _drawBMP(uint32_t iconOffset, uint8_t x, uint8_t y, uint8_t width, uint8_t height);//draw from EEPROM
void _drawBMP(char* filename, uint8_t x, uint8_t y);//draw from SD
void beginBMPFromEEPROM();
void endBMPFromEEPROM();
uint16_t foreGround;//foreground color
uint16_t backGround;//background color
//SD card
void beginSD();
//Information
void userNameRead(char* container);
void robotNameRead(char* container);
void cityNameRead(char* container);
void countryNameRead(char* container);
void userNameWrite(char* text);
void robotNameWrite(char* text);
void cityNameWrite(char* text);
void countryNameWrite(char* text);
//Others
bool isActionDone();
void pauseMode(uint8_t onOff);
void displayLogos();
void waitContinue(uint8_t key=BUTTON_MIDDLE);
private:
//Read & Write
uint8_t _getTypeCode(uint8_t port);//different ports need different actions
uint8_t _portToTopMux(uint8_t port);//get the number for multiplexer within top TKs
uint8_t _topDPortToAPort(uint8_t port);//get the corrensponding analogIn pin for top TKDs
bool _digitalReadTopMux(uint8_t port);//TK0 - TK7
int _analogReadTopMux(uint8_t port);
bool _digitalReadTopPin(uint8_t port);
int _analogReadTopPin(uint8_t port);
void _digitalWriteTopPin(uint8_t port, bool value);
MOTOR_BOARD_DATA motorBoardData;
int* parseMBDPort(uint8_t port);
int get_motorBoardData(uint8_t port);
void set_motorBoardData(uint8_t port, int value);
bool _requestDigitalRead(uint8_t port);
int _requestAnalogRead(uint8_t port);
void _requestDigitalWrite(uint8_t port, uint8_t value);
//LCD
void _enableLCD();
void _setWrite(uint8_t posX, uint8_t posY);
void _setErase(uint8_t posX, uint8_t posY);
//SD
SdCard card;
Fat16 file;
Fat16 melody;
void _enableSD();
//keyboard
void _processKeyboard(); //need to run in loop, detect if the key is actually pressed
int averageAnalogInput(int pinNum);
//Ultrasonic ranger
//uint8_t pinTrigger_UR;
//uint8_t pinEcho_UR;
//Melody
void playNote(byte period, word length, char modifier);
//Communication
EasyTransfer2 messageOut;
EasyTransfer2 messageIn;
//TFT LCD
bool _isEEPROM_BMP_Allocated;
EEPROM_BMP * _eeprom_bmp;
void _drawBMP_EEPROM(uint16_t address, uint8_t width, uint8_t height);
void _drawBMP_SD(char* filename, uint8_t x, uint8_t y);
};
inline void RobotControl::userNameRead(char* container){
EEPROM_I2C::readBuffer(ADDRESS_USERNAME,(uint8_t*)container,18);
}
inline void RobotControl::robotNameRead(char* container){
EEPROM_I2C::readBuffer(ADDRESS_ROBOTNAME,(uint8_t*)container,18);
}
inline void RobotControl::cityNameRead(char* container){
EEPROM_I2C::readBuffer(ADDRESS_CITYNAME,(uint8_t*)container,18);
}
inline void RobotControl::countryNameRead(char* container){
EEPROM_I2C::readBuffer(ADDRESS_COUNTRYNAME,(uint8_t*)container,18);
}
inline void RobotControl::userNameWrite(char* text){
EEPROM_I2C::writePage(ADDRESS_USERNAME,(uint8_t*)text,18);
}
inline void RobotControl::robotNameWrite(char* text){
EEPROM_I2C::writePage(ADDRESS_ROBOTNAME,(uint8_t*)text,18);
}
inline void RobotControl::cityNameWrite(char* text){
EEPROM_I2C::writePage(ADDRESS_CITYNAME,(uint8_t*)text,18);
}
inline void RobotControl::countryNameWrite(char* text){
EEPROM_I2C::writePage(ADDRESS_COUNTRYNAME,(uint8_t*)text,18);
}
extern RobotControl Robot;
#endif

View File

@ -0,0 +1,706 @@
/***************************************************
This is a library for the Adafruit 1.8" SPI display.
This library works with the Adafruit 1.8" TFT Breakout w/SD card
----> http://www.adafruit.com/products/358
as well as Adafruit raw 1.8" TFT display
----> http://www.adafruit.com/products/618
Check out the links above for our tutorials and wiring diagrams
These displays use SPI to communicate, 4 or 5 pins are required to
interface (RST is optional)
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
MIT license, all text above must be included in any redistribution
****************************************************/
#include "Arduino_LCD.h"
//#include <avr/pgmspace.h>
#include <limits.h>
//#include "pins_arduino.h"
#include "wiring_private.h"
#include <SPI.h>
// Constructor when using software SPI. All output pins are configurable.
Arduino_LCD::Arduino_LCD(uint8_t cs, uint8_t rs, uint8_t sid,
uint8_t sclk, uint8_t rst) {
_cs = cs;
_rs = rs;
_sid = sid;
_sclk = sclk;
_rst = rst;
hwSPI = false;
}
// Constructor when using hardware SPI. Faster, but must use SPI pins
// specific to each board type (e.g. 11,13 for Uno, 51,52 for Mega, etc.)
Arduino_LCD::Arduino_LCD(uint8_t cs, uint8_t rs, uint8_t rst) {
_cs = cs;
_rs = rs;
_rst = rst;
hwSPI = true;
_sid = _sclk = 0;
}
inline void Arduino_LCD::spiwrite(uint8_t c) {
//Serial.println(c, HEX);
/* if (hwSPI) {
SPDR = c;
while(!(SPSR & _BV(SPIF)));
} else {
// Fast SPI bitbang swiped from LPD8806 library
for(uint8_t bit = 0x80; bit; bit >>= 1) {
if(c & bit) *dataport |= datapinmask;
else *dataport &= ~datapinmask;
*clkport |= clkpinmask;
*clkport &= ~clkpinmask;
}
}
*/
SPI.transfer(c);
}
void Arduino_LCD::writecommand(uint8_t c) {
// *rsport &= ~rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, LOW);
digitalWrite(_cs, LOW);
//Serial.print("C ");
spiwrite(c);
//SPI.transfer(c);
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
void Arduino_LCD::writedata(uint8_t c) {
// *rsport &= ~rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, HIGH);
digitalWrite(_cs, LOW);
//Serial.print("D ");
spiwrite(c);
//SPI.transfer(c);
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
// Rather than a bazillion writecommand() and writedata() calls, screen
// initialization commands and arguments are organized in these tables
// stored in PROGMEM. The table may look bulky, but that's mostly the
// formatting -- storage-wise this is hundreds of bytes more compact
// than the equivalent code. Companion function follows.
#define DELAY 0x80
//PROGMEM static prog_uchar
/*uint8_t
Bcmd[] = { // Initialization commands for 7735B screens
18, // 18 commands in list:
ILI9163C_SWRESET, DELAY, // 1: Software reset, no args, w/delay
50, // 50 ms delay
ILI9163C_SLPOUT , DELAY, // 2: Out of sleep mode, no args, w/delay
255, // 255 = 500 ms delay
ILI9163C_COLMOD , 1+DELAY, // 3: Set color mode, 1 arg + delay: // I THINK THERE WAS SOMETHING HERE BECAUSE THE COMMAND IS CALLED 3A on Adafruits
0x05, // 16-bit color
10, // 10 ms delay
ILI9163C_FRMCTR1, 3+DELAY, // 4: Frame rate control, 3 args + delay:
0x00, // fastest refresh
0x06, // 6 lines front porch
0x03, // 3 lines back porch
10, // 10 ms delay
ILI9163C_MADCTL , 1 , // 5: Memory access ctrl (directions), 1 arg:
0x08, // Row addr/col addr, bottom to top refresh
ILI9163C_DISSET5, 2 , // 6: Display settings #5, 2 args, no delay:
0x15, // 1 clk cycle nonoverlap, 2 cycle gate
// rise, 3 cycle osc equalize
0x02, // Fix on VTL
ILI9163C_INVCTR , 1 , // 7: Display inversion control, 1 arg:
0x0, // Line inversion
ILI9163C_PWCTR1 , 2+DELAY, // 8: Power control, 2 args + delay:
0x02, // GVDD = 4.7V
0x70, // 1.0uA
10, // 10 ms delay
ILI9163C_PWCTR2 , 1 , // 9: Power control, 1 arg, no delay:
0x05, // VGH = 14.7V, VGL = -7.35V
ILI9163C_PWCTR3 , 2 , // 10: Power control, 2 args, no delay:
0x01, // Opamp current small
0x02, // Boost frequency
ILI9163C_VMCTR1 , 2+DELAY, // 11: Power control, 2 args + delay:
0x3C, // VCOMH = 4V
0x38, // VCOML = -1.1V
10, // 10 ms delay
ILI9163C_PWCTR6 , 2 , // 12: Power control, 2 args, no delay:
0x11, 0x15,
ILI9163C_GMCTRP1,16 , // 13: Magical unicorn dust, 16 args, no delay:
0x09, 0x16, 0x09, 0x20, // (seriously though, not sure what
0x21, 0x1B, 0x13, 0x19, // these config values represent)
0x17, 0x15, 0x1E, 0x2B,
0x04, 0x05, 0x02, 0x0E,
ILI9163C_GMCTRN1,16+DELAY, // 14: Sparkles and rainbows, 16 args + delay:
0x0B, 0x14, 0x08, 0x1E, // (ditto)
0x22, 0x1D, 0x18, 0x1E,
0x1B, 0x1A, 0x24, 0x2B,
0x06, 0x06, 0x02, 0x0F,
10, // 10 ms delay
ILI9163C_CASET , 4 , // 15: Column addr set, 4 args, no delay:
0x00, 0x02, // XSTART = 2
0x00, 0x81, // XEND = 129
ILI9163C_RASET , 4 , // 16: Row addr set, 4 args, no delay:
0x00, 0x02, // XSTART = 1
0x00, 0x81, // XEND = 160
ILI9163C_NORON , DELAY, // 17: Normal display on, no args, w/delay
10, // 10 ms delay
ILI9163C_DISPON , DELAY, // 18: Main screen turn on, no args, w/delay
255 }, // 255 = 500 ms delay
*/
uint8_t
Bcmd[] = { // Initialization commands for 7735B screens
19, // 19 commands in list:
ILI9163C_SWRESET, DELAY, // 1: Software reset, no args, w/delay
50, // 50 ms delay
0x11 , DELAY, // 2: Out of sleep mode, no args, w/delay
100, // 255 = 500 ms delay
0x26 , 1, // 3: Set default gamma
0x04, // 16-bit color
0xb1, 2, // 4: Frame Rate
0x0b,
0x14,
0xc0, 2, // 5: VRH1[4:0] & VC[2:0]
0x08,
0x00,
0xc1, 1, // 6: BT[2:0]
0x05,
0xc5, 2, // 7: VMH[6:0] & VML[6:0]
0x41,
0x30,
0xc7, 1, // 8: LCD Driving control
0xc1,
0xEC, 1, // 9: Set pumping color freq
0x1b,
0x3a , 1 + DELAY, // 10: Set color format
0x55, // 16-bit color
100,
0x2a, 4, // 11: Set Column Address
0x00,
0x00,
0x00,
0x7f,
0x2b, 4, // 12: Set Page Address
0x00,
0x00,
0x00,
0x9f,
0x36, 1, // 12+1: Set Scanning Direction
0xc8,
0xb7, 1, // 14: Set Source Output Direciton
0x00,
0xf2, 1, // 15: Enable Gamma bit
0x01,
0xe0, 15 + DELAY, // 16: magic
0x28, 0x24, 0x22, 0x31,
0x2b, 0x0e, 0x53, 0xa5,
0x42, 0x16, 0x18, 0x12,
0x1a, 0x14, 0x03,
50,
0xe1, 15 + DELAY, // 17: more magic
0x17, 0x1b, 0x1d, 0x0e,
0x14, 0x11, 0x2c, 0xa5,
0x3d, 0x09, 0x27, 0x2d,
0x25, 0x2b, 0x3c,
50,
ILI9163C_NORON , DELAY, // 18: Normal display on, no args, w/delay
10, // 10 ms delay
ILI9163C_DISPON , DELAY, // 19: Main screen turn on, no args w/delay
100 }, // 100 ms delay
Rcmd1[] = { // Init for 7735R, part 1 (red or green tab)
15, // 15 commands in list:
ILI9163C_SWRESET, DELAY, // 1: Software reset, 0 args, w/delay
150, // 150 ms delay
ILI9163C_SLPOUT , DELAY, // 2: Out of sleep mode, 0 args, w/delay
255, // 500 ms delay
ILI9163C_FRMCTR1, 3 , // 3: Frame rate ctrl - normal mode, 3 args:
0x01, 0x2C, 0x2D, // Rate = fosc/(1x2+40) * (LINE+2C+2D)
ILI9163C_FRMCTR2, 3 , // 4: Frame rate control - idle mode, 3 args:
0x01, 0x2C, 0x2D, // Rate = fosc/(1x2+40) * (LINE+2C+2D)
ILI9163C_FRMCTR3, 6 , // 5: Frame rate ctrl - partial mode, 6 args:
0x01, 0x2C, 0x2D, // Dot inversion mode
0x01, 0x2C, 0x2D, // Line inversion mode
ILI9163C_INVCTR , 1 , // 6: Display inversion ctrl, 1 arg, no delay:
0x07, // No inversion
ILI9163C_PWCTR1 , 3 , // 7: Power control, 3 args, no delay:
0xA2,
0x02, // -4.6V
0x84, // AUTO mode
ILI9163C_PWCTR2 , 1 , // 8: Power control, 1 arg, no delay:
0xC5, // VGH25 = 2.4C VGSEL = -10 VGH = 3 * AVDD
ILI9163C_PWCTR3 , 2 , // 9: Power control, 2 args, no delay:
0x0A, // Opamp current small
0x00, // Boost frequency
ILI9163C_PWCTR4 , 2 , // 10: Power control, 2 args, no delay:
0x8A, // BCLK/2, Opamp current small & Medium low
0x2A,
ILI9163C_PWCTR5 , 2 , // 11: Power control, 2 args, no delay:
0x8A, 0xEE,
ILI9163C_VMCTR1 , 1 , // 12: Power control, 1 arg, no delay:
0x0E,
ILI9163C_INVOFF , 0 , // 13: Don't invert display, no args, no delay
ILI9163C_MADCTL , 1 , // 14: Memory access control (directions), 1 arg:
0xC8, // row addr/col addr, bottom to top refresh
ILI9163C_COLMOD , 1 , // 15: set color mode, 1 arg, no delay:
0x05 }, // 16-bit color
Rcmd2green[] = { // Init for 7735R, part 2 (green tab only)
2, // 2 commands in list:
ILI9163C_CASET , 4 , // 1: Column addr set, 4 args, no delay:
0x00, 0x02, // XSTART = 0
0x00, 0x7F+0x02, // XEND = 127
ILI9163C_RASET , 4 , // 2: Row addr set, 4 args, no delay:
0x00, 0x01, // XSTART = 0
0x00, 0x9F+0x01 }, // XEND = 159
Rcmd2red[] = { // Init for 7735R, part 2 (red tab only)
2, // 2 commands in list:
ILI9163C_CASET , 4 , // 1: Column addr set, 4 args, no delay:
0x00, 0x00, // XSTART = 0
0x00, 0x7F, // XEND = 127
ILI9163C_RASET , 4 , // 2: Row addr set, 4 args, no delay:
0x00, 0x00, // XSTART = 0
0x00, 0x9F }, // XEND = 159
Rcmd3[] = { // Init for 7735R, part 3 (red or green tab)
4, // 4 commands in list:
ILI9163C_GMCTRP1, 16 , // 1: Magical unicorn dust, 16 args, no delay:
0x02, 0x1c, 0x07, 0x12,
0x37, 0x32, 0x29, 0x2d,
0x29, 0x25, 0x2B, 0x39,
0x00, 0x01, 0x03, 0x10,
ILI9163C_GMCTRN1, 16 , // 2: Sparkles and rainbows, 16 args, no delay:
0x03, 0x1d, 0x07, 0x06,
0x2E, 0x2C, 0x29, 0x2D,
0x2E, 0x2E, 0x37, 0x3F,
0x00, 0x00, 0x02, 0x10,
ILI9163C_NORON , DELAY, // 3: Normal display on, no args, w/delay
10, // 10 ms delay
ILI9163C_DISPON , DELAY, // 4: Main screen turn on, no args w/delay
100 }; // 100 ms delay
// Companion code to the above tables. Reads and issues
// a series of LCD commands stored in PROGMEM byte array.
//void Arduino_LCD::commandList(prog_uchar *addr) {
void Arduino_LCD::commandList(uint8_t *addr) {
uint8_t numCommands, numArgs;
uint16_t ms;
numCommands = *addr++; // Number of commands to follow
while(numCommands--) { // For each command...
writecommand(*addr++); // Read, issue command
numArgs = *addr++; // Number of args to follow
ms = numArgs & DELAY; // If hibit set, delay follows args
numArgs &= ~DELAY; // Mask out delay bit
while(numArgs--) { // For each argument...
writedata(*addr++); // Read, issue argument
}
if(ms) {
ms = *addr++; // Read post-command delay time (ms)
if(ms == 255) ms = 500; // If 255, delay for 500 ms
delay(ms);
}
}
}
// Initialization code common to both 'B' and 'R' type displays
//void Arduino_LCD::commonInit(prog_uchar *cmdList) {
void Arduino_LCD::commonInit(uint8_t *cmdList) {
constructor(ILI9163C_TFTWIDTH, ILI9163C_TFTHEIGHT);
colstart = rowstart = 0; // May be overridden in init func
pinMode(_rs, OUTPUT);
pinMode(_cs, OUTPUT);
/*
csport = portOutputRegister(digitalPinToPort(_cs));
cspinmask = digitalPinToBitMask(_cs);
rsport = portOutputRegister(digitalPinToPort(_rs));
rspinmask = digitalPinToBitMask(_rs);
*/
// if(hwSPI) { // Using hardware SPI
SPI.begin();
SPI.setClockDivider(21); // 4 MHz (half speed)
// SPI.setClockDivider(SPI_CLOCK_DIV4); // 4 MHz (half speed)
// SPI.setBitOrder(MSBFIRST);
// there is no setBitOrder on the SPI library for the Due
SPI.setDataMode(SPI_MODE0);
/*
} else {
pinMode(_sclk, OUTPUT);
pinMode(_sid , OUTPUT);
clkport = portOutputRegister(digitalPinToPort(_sclk));
clkpinmask = digitalPinToBitMask(_sclk);
dataport = portOutputRegister(digitalPinToPort(_sid));
datapinmask = digitalPinToBitMask(_sid);
*clkport &= ~clkpinmask;
*dataport &= ~datapinmask;
}
*/
// toggle RST low to reset; CS low so it'll listen to us
// *csport &= ~cspinmask;
digitalWrite(_cs, LOW);
if (_rst) {
pinMode(_rst, OUTPUT);
digitalWrite(_rst, HIGH);
delay(500);
digitalWrite(_rst, LOW);
delay(500);
digitalWrite(_rst, HIGH);
delay(500);
}
if(cmdList) commandList(cmdList);
}
// Initialization for ST7735B screens
void Arduino_LCD::initB(void) {
commonInit(Bcmd);
commandList(Rcmd3);
}
// Initialization for ST7735R screens (green or red tabs)
void Arduino_LCD::initR(uint8_t options) {
commonInit(Rcmd1);
if(options == INITR_GREENTAB) {
commandList(Rcmd2green);
colstart = 2;
rowstart = 1;
} else {
// colstart, rowstart left at default '0' values
commandList(Rcmd2red);
}
commandList(Rcmd3);
}
void Arduino_LCD::setAddrWindow(uint8_t x0, uint8_t y0, uint8_t x1,
uint8_t y1) {
writecommand(ILI9163C_CASET); // Column addr set
writedata(0x00);
writedata(x0+colstart); // XSTART
writedata(0x00);
writedata(x1+colstart); // XEND
writecommand(ILI9163C_RASET); // Row addr set
writedata(0x00);
writedata(y0+rowstart); // YSTART
writedata(0x00);
writedata(y1+rowstart); // YEND
writecommand(ILI9163C_RAMWR); // write to RAM
}
void Arduino_LCD::fillScreen(uint16_t color) {
uint8_t x, y, hi = color >> 8, lo = color;
setAddrWindow(0, 0, _width-1, _height-1);
// *rsport |= rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, HIGH);
digitalWrite(_cs, LOW);
for(y=_height; y>0; y--) {
for(x=_width; x>0; x--) {
//SPI.transfer(hi);
//SPI.transfer(lo);
spiwrite(hi);
spiwrite(lo);
}
}
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
void Arduino_LCD::pushColor(uint16_t color) {
// *rsport |= rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, HIGH);
digitalWrite(_cs, LOW);
spiwrite(color >> 8);
spiwrite(color);
//SPI.transfer(color>>8);
//SPI.transfer(color);
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
void Arduino_LCD::drawPixel(int16_t x, int16_t y, uint16_t color) {
if((x < 0) ||(x >= _width) || (y < 0) || (y >= _height)) return;
setAddrWindow(x,y,x+1,y+1);
// *rsport |= rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, HIGH);
digitalWrite(_cs, LOW);
spiwrite(color >> 8);
spiwrite(color);
//SPI.transfer(color>>8);
//SPI.transfer(color);
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
void Arduino_LCD::drawFastVLine(int16_t x, int16_t y, int16_t h,
uint16_t color) {
// Rudimentary clipping
if((x >= _width) || (y >= _height)) return;
if((y+h-1) >= _height) h = _height-y;
setAddrWindow(x, y, x, y+h-1);
uint8_t hi = color >> 8, lo = color;
// *rsport |= rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, HIGH);
digitalWrite(_cs, LOW);
while (h--) {
spiwrite(hi);
spiwrite(lo);
//SPI.transfer(hi);
//SPI.transfer(lo);
}
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
void Arduino_LCD::drawFastHLine(int16_t x, int16_t y, int16_t w,
uint16_t color) {
// Rudimentary clipping
if((x >= _width) || (y >= _height)) return;
if((x+w-1) >= _width) w = _width-x;
setAddrWindow(x, y, x+w-1, y);
uint8_t hi = color >> 8, lo = color;
// *rsport |= rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, HIGH);
digitalWrite(_cs, LOW);
while (w--) {
spiwrite(hi);
spiwrite(lo);
//SPI.transfer(hi);
//SPI.transfer(lo);
}
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
// fill a rectangle
void Arduino_LCD::fillRect(int16_t x, int16_t y, int16_t w, int16_t h,
uint16_t color) {
// rudimentary clipping (drawChar w/big text requires this)
if((x >= _width) || (y >= _height)) return;
if((x + w - 1) >= _width) w = _width - x;
if((y + h - 1) >= _height) h = _height - y;
setAddrWindow(x, y, x+w-1, y+h-1);
uint8_t hi = color >> 8, lo = color;
// *rsport |= rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, HIGH);
digitalWrite(_cs, LOW);
for(y=h; y>0; y--) {
for(x=w; x>0; x--) {
spiwrite(hi);
spiwrite(lo);
//SPI.transfer(hi);
//SPI.transfer(lo);
}
}
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
// Pass 8-bit (each) R,G,B, get back 16-bit packed color
uint16_t Arduino_LCD::Color565(uint8_t r, uint8_t g, uint8_t b) {
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
}
#define MADCTL_MY 0x80
#define MADCTL_MX 0x40
#define MADCTL_MV 0x20
#define MADCTL_ML 0x10
#define MADCTL_RGB 0x08
#define MADCTL_MH 0x04
void Arduino_LCD::setRotation(uint8_t m) {
writecommand(ILI9163C_MADCTL);
rotation = m % 4; // can't be higher than 3
switch (rotation) {
case 0:
writedata(MADCTL_MX | MADCTL_MY | MADCTL_RGB);
_width = ILI9163C_TFTWIDTH;
_height = ILI9163C_TFTHEIGHT;
break;
case 1:
writedata(MADCTL_MY | MADCTL_MV | MADCTL_RGB);
_width = ILI9163C_TFTHEIGHT;
_height = ILI9163C_TFTWIDTH;
break;
case 2:
writedata(MADCTL_RGB);
_width = ILI9163C_TFTWIDTH;
_height = ILI9163C_TFTHEIGHT;
break;
case 3:
writedata(MADCTL_MX | MADCTL_MV | MADCTL_RGB);
_width = ILI9163C_TFTHEIGHT;
_height = ILI9163C_TFTWIDTH;
break;
}
}
void Arduino_LCD::invertDisplay(boolean i) {
writecommand(i ? ILI9163C_INVON : ILI9163C_INVOFF);
}
/*
18, // there are 17 commands
ILI9163C_SWRESET, DELAY, // 1: Software reset, no args, w/delay
50, // 50 ms delay
0x11, //Exit Sleep
DELAY,50,
0x26, //Set Default Gamma
0x104,
//0xF2, //E0h & E1h Enable/Disable
//0x100,
0xB1,
0x10C,
0x114,
0xC0, //Set VRH1[4:0] & VC[2:0] for VCI1 & GVDD
0x10C,
0x105,
0xC1, //Set BT[2:0] for AVDD & VCL & VGH & VGL
0x102,
0xC5, //Set VMH[6:0] & VML[6:0] for VOMH & VCOML
0x129,
0x143,
0xC7,
0x140,
0x3a, //Set Color Format
0x105,
0x2A, //Set Column Address
0x100,
0x100,
0x100,
0x17F,
0x2B, //Set Page Address
0x100,
0x100,
0x100,
0x19F,
0x36, //Set Scanning Direction, RGB
0x1C0,
0xB7, //Set Source Output Direction
0x100,
0xf2, //Enable Gamma bit
0x101,
0xE0,
0x136,//p1
0x129,//p2
0x112,//p3
0x122,//p4
0x11C,//p5
0x115,//p6
0x142,//p7
0x1B7,//p8
0x12F,//p9
0x113,//p10
0x112,//p11
0x10A,//p12
0x111,//p13
0x10B,//p14
0x106,//p15
0xE1,
0x109,//p1
0x116,//p2
0x12D,//p3
0x10D,//p4
0x113,//p5
0x115,//p6
0x140,//p7
0x148,//p8
0x153,//p9
0x10C,//p10
0x11D,//p11
0x125,//p12
0x12E,//p13
0x134,//p14
0x139,//p15
0x33, // scroll setup
0x100,
0x100,
0x100,
0x1C1,
0x100,
0x100,
0x29, // Display On
0x2C}, // write gram
*/

View File

@ -0,0 +1,141 @@
/***************************************************
This is a library for the Adafruit 1.8" SPI display.
This library works with the Adafruit 1.8" TFT Breakout w/SD card
----> http://www.adafruit.com/products/358
as well as Adafruit raw 1.8" TFT display
----> http://www.adafruit.com/products/618
Check out the links above for our tutorials and wiring diagrams
These displays use SPI to communicate, 4 or 5 pins are required to
interface (RST is optional)
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
MIT license, all text above must be included in any redistribution
****************************************************/
#ifndef _ARDUINO_LCDH_
#define _ARDUINO_LCDH_
#if ARDUINO >= 100
#include "Arduino.h"
#include "Print.h"
#else
#include "WProgram.h"
#endif
#include "Adafruit_GFX.h"
//#include <avr/pgmspace.h>
// some flags for initR() :(
#define INITR_GREENTAB 0x0
#define INITR_REDTAB 0x1
#define ILI9163C_TFTWIDTH 128
#define ILI9163C_TFTHEIGHT 160
#define ILI9163C_NOP 0x00
#define ILI9163C_SWRESET 0x01
#define ILI9163C_RDDID 0x04
#define ILI9163C_RDDST 0x09
#define ILI9163C_SLPIN 0x10
#define ILI9163C_SLPOUT 0x11
#define ILI9163C_PTLON 0x12
#define ILI9163C_NORON 0x13
#define ILI9163C_INVOFF 0x20
#define ILI9163C_INVON 0x21
#define ILI9163C_DISPOFF 0x28
#define ILI9163C_DISPON 0x29
#define ILI9163C_CASET 0x2A
#define ILI9163C_RASET 0x2B
#define ILI9163C_RAMWR 0x2C
#define ILI9163C_RAMRD 0x2E
#define ILI9163C_PTLAR 0x30
#define ILI9163C_COLMOD 0x3A // this is interface pixel format, this might be the issue
#define ILI9163C_MADCTL 0x36
#define ILI9163C_FRMCTR1 0xB1
#define ILI9163C_FRMCTR2 0xB2
#define ILI9163C_FRMCTR3 0xB3
#define ILI9163C_INVCTR 0xB4
#define ILI9163C_DISSET5 0xB6
#define ILI9163C_PWCTR1 0xC0
#define ILI9163C_PWCTR2 0xC1
#define ILI9163C_PWCTR3 0xC2
#define ILI9163C_PWCTR4 0xC3
#define ILI9163C_PWCTR5 0xC4
#define ILI9163C_VMCTR1 0xC5
#define ILI9163C_RDID1 0xDA
#define ILI9163C_RDID2 0xDB
#define ILI9163C_RDID3 0xDC
#define ILI9163C_RDID4 0xDD
#define ILI9163C_PWCTR6 0xFC
#define ILI9163C_GMCTRP1 0xE0
#define ILI9163C_GMCTRN1 0xE1
// Color definitions
#define ILI9163C_BLACK 0x0000
#define ILI9163C_BLUE 0x001F
#define ILI9163C_RED 0xF800
#define ILI9163C_GREEN 0x07E0
#define ILI9163C_CYAN 0x07FF
#define ILI9163C_MAGENTA 0xF81F
#define ILI9163C_YELLOW 0xFFE0
#define ILI9163C_WHITE 0xFFFF
class Arduino_LCD : public Adafruit_GFX {
public:
Arduino_LCD(uint8_t CS, uint8_t RS, uint8_t SID, uint8_t SCLK, uint8_t RST);
Arduino_LCD(uint8_t CS, uint8_t RS, uint8_t RST);
void initB(void), // for ST7735B displays
initR(uint8_t options = INITR_GREENTAB), // for ST7735R
setAddrWindow(uint8_t x0, uint8_t y0, uint8_t x1, uint8_t y1),
pushColor(uint16_t color),
fillScreen(uint16_t color),
drawPixel(int16_t x, int16_t y, uint16_t color),
drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color),
drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color),
fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color),
setRotation(uint8_t r),
invertDisplay(boolean i);
uint16_t Color565(uint8_t r, uint8_t g, uint8_t b);
/* These are not for current use, 8-bit protocol only!
uint8_t readdata(void),
readcommand8(uint8_t);
uint16_t readcommand16(uint8_t);
uint32_t readcommand32(uint8_t);
void dummyclock(void);
*/
private:
void spiwrite(uint8_t),
writecommand(uint8_t c),
writedata(uint8_t d),
// commandList(prog_uchar *addr),
// commonInit(prog_uchar *cmdList);
commandList(uint8_t *addr),
commonInit(uint8_t *cmdList);
//uint8_t spiread(void);
boolean hwSPI;
volatile uint8_t *dataport, *clkport, *csport, *rsport;
uint8_t _cs, _rs, _rst, _sid, _sclk,
datapinmask, clkpinmask, cspinmask, rspinmask,
colstart, rowstart; // some displays need this changed
};
#endif

View File

@ -0,0 +1,34 @@
#include "Compass.h"
#include <Wire.h>
void Compass::begin(){
Wire.begin();
}
float Compass::getReading(){
_beginTransmission();
_endTransmission();
//time delays required by HMC6352 upon receipt of the command
//Get Data. Compensate and Calculate New Heading : 6ms
delay(6);
Wire.requestFrom(HMC6352SlaveAddress, 2); //get the two data bytes, MSB and LSB
//"The heading output data will be the value in tenths of degrees
//from zero to 3599 and provided in binary format over the two bytes."
byte MSB = Wire.read();
byte LSB = Wire.read();
float headingSum = (MSB << 8) + LSB; //(MSB / LSB sum)
float headingInt = headingSum / 10;
return headingInt;
}
void Compass::_beginTransmission(){
Wire.beginTransmission(HMC6352SlaveAddress);
Wire.write(HMC6352ReadAddress);
}
void Compass::_endTransmission(){
Wire.endTransmission();
}

View File

@ -0,0 +1,24 @@
#ifndef Compass_h
#define Compass_h
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
//0x21==0x42>>1, from bildr's code
#define HMC6352SlaveAddress 0x21
#define HMC6352ReadAddress 0x41
class Compass{
public:
void begin();
float getReading();
private:
void _beginTransmission();
void _endTransmission();
};
#endif

View File

@ -0,0 +1,62 @@
#include "EEPROM_I2C.h"
#include <Wire.h>
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
void EEPROM_I2C::begin(){
Wire.begin();
}
void EEPROM_I2C::writeByte(unsigned int eeaddress, byte data){
int rdata = data;
this->_beginTransmission(eeaddress);
Wire.write(rdata);
this->_endTransmission();
}
byte EEPROM_I2C::readByte(unsigned int eeaddress){
int rdata;
this->_beginTransmission(eeaddress);
this->_endTransmission();
Wire.requestFrom(DEVICEADDRESS,1);
if (Wire.available()) rdata = Wire.read();
return rdata;
}
void EEPROM_I2C::writePage(unsigned int eeaddress, byte* data, byte length ){
this->_beginTransmission(eeaddress);
byte c;
for ( c = 0; c < length; c++)
Wire.write(data[c]);
this->_endTransmission();
delay(10); // need some delay
}
void EEPROM_I2C::readBuffer(unsigned int eeaddress, byte *buffer, int length ){
this->_beginTransmission(eeaddress);
this->_endTransmission();
Wire.requestFrom(DEVICEADDRESS,length);
for ( int c = 0; c < length; c++ )
if (Wire.available()) buffer[c] = Wire.read();
}
void EEPROM_I2C::_beginTransmission(unsigned int eeaddress){
Wire.beginTransmission(DEVICEADDRESS);
Wire.write((eeaddress >> 8)); // Address High Byte
Wire.write((eeaddress & 0xFF)); // Address Low Byte
}
void EEPROM_I2C::_endTransmission(){
Wire.endTransmission();
}

View File

@ -0,0 +1,31 @@
#ifndef EEPROM_I2C_h
#define EEPROM_I2C_h
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#define EE24LC512MAXBYTES 64000
#define DEVICEADDRESS 0x50
class EEPROM_I2C{
public:
void begin();
void writeByte(unsigned int eeaddresspage, byte data);
byte readByte(unsigned int eeaddresspage);
void writePage(unsigned int eeaddresspage, byte* data, byte length );
void readBuffer(unsigned int eeaddress, byte *buffer, int length );
//uint16_t readPixel(uint16_t theMemoryAddress);
//void readImage(uint16_t theMemoryAddress, int width, int height);
protected:
void _beginTransmission(unsigned int eeaddress);
void _endTransmission();
};
#endif

View File

@ -0,0 +1,152 @@
#include "EasyTransfer2.h"
//Captures address and size of struct
void EasyTransfer2::begin(HardwareSerial *theSerial){
_serial = theSerial;
//dynamic creation of rx parsing buffer in RAM
//rx_buffer = (uint8_t*) malloc(size);
resetData();
}
void EasyTransfer2::writeByte(uint8_t dat){
if(position<20)
data[position++]=dat;
size++;
}
void EasyTransfer2::writeInt(int dat){
if(position<19){
data[position++]=dat>>8;
data[position++]=dat;
size+=2;
}
}
uint8_t EasyTransfer2::readByte(){
if(position>=size)return 0;
return data[position++];
}
int EasyTransfer2::readInt(){
if(position+1>=size)return 0;
int dat_1=data[position++]<<8;
int dat_2=data[position++];
int dat= dat_1 | dat_2;
return dat;
}
void EasyTransfer2::resetData(){
for(int i=0;i<20;i++){
data[i]=0;
}
size=0;
position=0;
}
//Sends out struct in binary, with header, length info and checksum
void EasyTransfer2::sendData(){
uint8_t CS = size;
_serial->write(0x06);
_serial->write(0x85);
_serial->write(size);
for(int i = 0; i<size; i++){
CS^=*(data+i);
_serial->write(*(data+i));
//Serial.print(*(data+i));
//Serial.print(",");
}
//Serial.println("");
_serial->write(CS);
resetData();
}
boolean EasyTransfer2::receiveData(){
//start off by looking for the header bytes. If they were already found in a previous call, skip it.
if(rx_len == 0){
//this size check may be redundant due to the size check below, but for now I'll leave it the way it is.
if(_serial->available() >= 3){
//this will block until a 0x06 is found or buffer size becomes less then 3.
while(_serial->read() != 0x06) {
//This will trash any preamble junk in the serial buffer
//but we need to make sure there is enough in the buffer to process while we trash the rest
//if the buffer becomes too empty, we will escape and try again on the next call
if(_serial->available() < 3)
return false;
}
//Serial.println("head");
if (_serial->read() == 0x85){
rx_len = _serial->read();
//Serial.print("rx_len:");
//Serial.println(rx_len);
resetData();
//make sure the binary structs on both Arduinos are the same size.
/*if(rx_len != size){
rx_len = 0;
return false;
}*/
}
}
//Serial.println("nothing");
}
//we get here if we already found the header bytes, the struct size matched what we know, and now we are byte aligned.
if(rx_len != 0){
while(_serial->available() && rx_array_inx <= rx_len){
data[rx_array_inx++] = _serial->read();
}
if(rx_len == (rx_array_inx-1)){
//seem to have got whole message
//last uint8_t is CS
calc_CS = rx_len;
//Serial.print("len:");
//Serial.println(rx_len);
for (int i = 0; i<rx_len; i++){
calc_CS^=data[i];
//Serial.print("m");
//Serial.print(data[i]);
//Serial.print(",");
}
//Serial.println();
//Serial.print(data[rx_array_inx-1]);
//Serial.print(" ");
//Serial.println(calc_CS);
if(calc_CS == data[rx_array_inx-1]){//CS good
//resetData();
//memcpy(data,d,rx_len);
for(int i=0;i<20;i++){
//Serial.print(data[i]);
//Serial.print(",");
}
//Serial.println("");
size=rx_len;
rx_len = 0;
rx_array_inx = 0;
return true;
}
else{
//Serial.println("CS");
resetData();
//failed checksum, need to clear this out anyway
rx_len = 0;
rx_array_inx = 0;
return false;
}
}
}
//Serial.print(rx_len);
//Serial.print(" ");
//Serial.print(rx_array_inx);
//Serial.print(" ");
//Serial.println("Short");
return false;
}

View File

@ -0,0 +1,76 @@
/******************************************************************
* EasyTransfer Arduino Library
* details and example sketch:
* http://www.billporter.info/easytransfer-arduino-library/
*
* Brought to you by:
* Bill Porter
* www.billporter.info
*
* See Readme for other info and version history
*
*
*This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
<http://www.gnu.org/licenses/>
*
*This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.
*To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or
*send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
******************************************************************/
#ifndef EasyTransfer2_h
#define EasyTransfer2_h
//make it a little prettier on the front end.
#define details(name) (byte*)&name,sizeof(name)
//Not neccessary, but just in case.
#if ARDUINO > 22
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "HardwareSerial.h"
//#include <NewSoftSerial.h>
#include <math.h>
#include <stdio.h>
#include <stdint.h>
#include <avr/io.h>
class EasyTransfer2 {
public:
void begin(HardwareSerial *theSerial);
//void begin(uint8_t *, uint8_t, NewSoftSerial *theSerial);
void sendData();
boolean receiveData();
void writeByte(uint8_t dat);
void writeInt(int dat);
uint8_t readByte();
int readInt();
private:
HardwareSerial *_serial;
void resetData();
uint8_t data[20]; //data storage, for both read and send
uint8_t position;
uint8_t size; //size of data in bytes. Both for read and send
//uint8_t * address; //address of struct
//uint8_t size; //size of struct
//uint8_t * rx_buffer; //address for temporary storage and parsing buffer
//uint8_t rx_buffer[20];
uint8_t rx_array_inx; //index for RX parsing buffer
uint8_t rx_len; //RX packet length according to the packet
uint8_t calc_CS; //calculated Chacksum
};
#endif

View File

@ -0,0 +1,990 @@
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include <avr/pgmspace.h>
#if ARDUINO < 100
#include <WProgram.h>
#else // ARDUINO
#include <Arduino.h>
#endif // ARDUINO
#include <Fat16.h>
//-----------------------------------------------------------------------------
// volume info
uint8_t Fat16::volumeInitialized_ = 0; // true if FAT16 volume is valid
uint8_t Fat16::fatCount_; // number of file allocation tables
uint8_t Fat16::blocksPerCluster_; // must be power of 2
uint16_t Fat16::rootDirEntryCount_; // should be 512 for FAT16
fat_t Fat16::blocksPerFat_; // number of blocks in one FAT
fat_t Fat16::clusterCount_; // total clusters in volume
uint32_t Fat16::fatStartBlock_; // start of first FAT
uint32_t Fat16::rootDirStartBlock_; // start of root dir
uint32_t Fat16::dataStartBlock_; // start of data clusters
//------------------------------------------------------------------------------
// raw block cache
SdCard *Fat16::rawDev_ = 0; // class for block read and write
uint32_t Fat16::cacheBlockNumber_ = 0XFFFFFFFF; // init to invalid block number
cache16_t Fat16::cacheBuffer_; // 512 byte cache for SdCard
uint8_t Fat16::cacheDirty_ = 0; // cacheFlush() will write block if true
uint32_t Fat16::cacheMirrorBlock_ = 0; // mirror block for second FAT
//------------------------------------------------------------------------------
// callback function for date/time
void (*Fat16::dateTime_)(uint16_t* date, uint16_t* time) = NULL;
#if ALLOW_DEPRECATED_FUNCTIONS
void (*Fat16::oldDateTime_)(uint16_t& date, uint16_t& time) = NULL; // NOLINT
#endif // ALLOW_DEPRECATED_FUNCTIONS
//------------------------------------------------------------------------------
// format 8.3 name for directory entry
static uint8_t make83Name(const char* str, uint8_t* name) {
uint8_t c;
uint8_t n = 7; // max index for part before dot
uint8_t i = 0;
// blank fill name and extension
while (i < 11) name[i++] = ' ';
i = 0;
while ((c = *str++) != '\0') {
if (c == '.') {
if (n == 10) return false; // only one dot allowed
n = 10; // max index for full 8.3 name
i = 8; // place for extension
} else {
// illegal FAT characters
PGM_P p = PSTR("|<>^+=?/[];,*\"\\");
uint8_t b;
while ((b = pgm_read_byte(p++))) if (b == c) return false;
// check length and only allow ASCII printable characters
if (i > n || c < 0X21 || c > 0X7E) return false;
// only upper case allowed in 8.3 names - convert lower to upper
name[i++] = c < 'a' || c > 'z' ? c : c + ('A' - 'a');
}
}
// must have a file name, extension is optional
return name[0] != ' ';
}
//==============================================================================
// Fat16 member functions
//------------------------------------------------------------------------------
uint8_t Fat16::addCluster(void) {
// start search after last cluster of file or at cluster two in FAT
fat_t freeCluster = curCluster_ ? curCluster_ : 1;
for (fat_t i = 0; ; i++) {
// return no free clusters
if (i >= clusterCount_) return false;
// Fat has clusterCount + 2 entries
if (freeCluster > clusterCount_) freeCluster = 1;
freeCluster++;
fat_t value;
if (!fatGet(freeCluster, &value)) return false;
if (value == 0) break;
}
// mark cluster allocated
if (!fatPut(freeCluster, FAT16EOC)) return false;
if (curCluster_ != 0) {
// link cluster to chain
if (!fatPut(curCluster_, freeCluster)) return false;
} else {
// first cluster of file so update directory entry
flags_ |= F_FILE_DIR_DIRTY;
firstCluster_ = freeCluster;
}
curCluster_ = freeCluster;
return true;
}
//------------------------------------------------------------------------------
//
dir_t* Fat16::cacheDirEntry(uint16_t index, uint8_t action) {
if (index >= rootDirEntryCount_) return NULL;
if (!cacheRawBlock(rootDirStartBlock_ + (index >> 4), action)) return NULL;
return &cacheBuffer_.dir[index & 0XF];
}
//------------------------------------------------------------------------------
//
uint8_t Fat16::cacheFlush(void) {
if (cacheDirty_) {
if (!rawDev_->writeBlock(cacheBlockNumber_, cacheBuffer_.data)) {
return false;
}
// mirror FAT tables
if (cacheMirrorBlock_) {
if (!rawDev_->writeBlock(cacheMirrorBlock_, cacheBuffer_.data)) {
return false;
}
cacheMirrorBlock_ = 0;
}
cacheDirty_ = 0;
}
return true;
}
//------------------------------------------------------------------------------
//
uint8_t Fat16::cacheRawBlock(uint32_t blockNumber, uint8_t action) {
if (cacheBlockNumber_ != blockNumber) {
if (!cacheFlush()) return false;
if (!rawDev_->readBlock(blockNumber, cacheBuffer_.data)) return false;
cacheBlockNumber_ = blockNumber;
}
cacheDirty_ |= action;
return true;
}
//------------------------------------------------------------------------------
/**
* Close a file and force cached data and directory information
* to be written to the storage device.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
* Reasons for failure include no file is open or an I/O error.
*/
uint8_t Fat16::close(void) {
if (!sync()) return false;
flags_ = 0;
return true;
}
//------------------------------------------------------------------------------
/**
* Return a files directory entry
*
* \param[out] dir Location for return of the files directory entry.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Fat16::dirEntry(dir_t* dir) {
if (!sync()) return false;
dir_t* p = cacheDirEntry(dirEntryIndex_, CACHE_FOR_WRITE);
if (!p) return false;
memcpy(dir, p, sizeof(dir_t));
return true;
}
//------------------------------------------------------------------------------
uint8_t Fat16::fatGet(fat_t cluster, fat_t* value) {
if (cluster > (clusterCount_ + 1)) return false;
uint32_t lba = fatStartBlock_ + (cluster >> 8);
if (lba != cacheBlockNumber_) {
if (!cacheRawBlock(lba)) return false;
}
*value = cacheBuffer_.fat[cluster & 0XFF];
return true;
}
//------------------------------------------------------------------------------
uint8_t Fat16::fatPut(fat_t cluster, fat_t value) {
if (cluster < 2) return false;
if (cluster > (clusterCount_ + 1)) return false;
uint32_t lba = fatStartBlock_ + (cluster >> 8);
if (lba != cacheBlockNumber_) {
if (!cacheRawBlock(lba)) return false;
}
cacheBuffer_.fat[cluster & 0XFF] = value;
cacheSetDirty();
// mirror second FAT
if (fatCount_ > 1) cacheMirrorBlock_ = lba + blocksPerFat_;
return true;
}
//------------------------------------------------------------------------------
// free a cluster chain
uint8_t Fat16::freeChain(fat_t cluster) {
while (1) {
fat_t next;
if (!fatGet(cluster, &next)) return false;
if (!fatPut(cluster, 0)) return false;
if (isEOC(next)) return true;
cluster = next;
}
}
//------------------------------------------------------------------------------
/**
* Initialize a FAT16 volume.
*
* \param[in] dev The SdCard where the volume is located.
*
* \param[in] part The partition to be used. Legal values for \a part are
* 1-4 to use the corresponding partition on a device formatted with
* a MBR, Master Boot Record, or zero if the device is formatted as
* a super floppy with the FAT boot sector in block zero.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure. reasons for
* failure include not finding a valid FAT16 file system in the
* specified partition, a call to init() after a volume has
* been successful initialized or an I/O error.
*
*/
uint8_t Fat16::init(SdCard* dev, uint8_t part) {
// error if invalid partition
if (part > 4) return false;
rawDev_ = dev;
uint32_t volumeStartBlock = 0;
// if part == 0 assume super floppy with FAT16 boot sector in block zero
// if part > 0 assume mbr volume with partition table
if (part) {
if (!cacheRawBlock(volumeStartBlock)) return false;
volumeStartBlock = cacheBuffer_.mbr.part[part - 1].firstSector;
}
if (!cacheRawBlock(volumeStartBlock)) return false;
// check boot block signature
if (cacheBuffer_.data[510] != BOOTSIG0 ||
cacheBuffer_.data[511] != BOOTSIG1) return false;
bpb_t* bpb = &cacheBuffer_.fbs.bpb;
fatCount_ = bpb->fatCount;
blocksPerCluster_ = bpb->sectorsPerCluster;
blocksPerFat_ = bpb->sectorsPerFat16;
rootDirEntryCount_ = bpb->rootDirEntryCount;
fatStartBlock_ = volumeStartBlock + bpb->reservedSectorCount;
rootDirStartBlock_ = fatStartBlock_ + bpb->fatCount*bpb->sectorsPerFat16;
dataStartBlock_ = rootDirStartBlock_
+ ((32*bpb->rootDirEntryCount + 511)/512);
uint32_t totalBlocks = bpb->totalSectors16 ?
bpb->totalSectors16 : bpb->totalSectors32;
clusterCount_ = (totalBlocks - (dataStartBlock_ - volumeStartBlock))
/bpb->sectorsPerCluster;
// verify valid FAT16 volume
if (bpb->bytesPerSector != 512 // only allow 512 byte blocks
|| bpb->sectorsPerFat16 == 0 // zero for FAT32
|| clusterCount_ < 4085 // FAT12 if true
|| totalBlocks > 0X800000 // Max size for FAT16 volume
|| bpb->reservedSectorCount == 0 // invalid volume
|| bpb->fatCount == 0 // invalid volume
|| bpb->sectorsPerFat16 < (clusterCount_ >> 8) // invalid volume
|| bpb->sectorsPerCluster == 0 // invalid volume
// power of 2 test
|| bpb->sectorsPerCluster & (bpb->sectorsPerCluster - 1)) {
// not a usable FAT16 bpb
return false;
}
volumeInitialized_ = 1;
return true;
}
//------------------------------------------------------------------------------
/** List directory contents to Serial.
*
* \param[in] flags The inclusive OR of
*
* LS_DATE - %Print file modification date
*
* LS_SIZE - %Print file size.
*/
void Fat16::ls(uint8_t flags) {
dir_t d;
for (uint16_t index = 0; readDir(&d, &index, DIR_ATT_VOLUME_ID); index++) {
// print file name with possible blank fill
printDirName(d, flags & (LS_DATE | LS_SIZE) ? 14 : 0);
// print modify date/time if requested
if (flags & LS_DATE) {
printFatDate(d.lastWriteDate);
Serial.write(' ');
printFatTime(d.lastWriteTime);
}
// print size if requested
if (DIR_IS_FILE(&d) && (flags & LS_SIZE)) {
Serial.write(' ');
Serial.print(d.fileSize);
}
Serial.println();
}
}
//------------------------------------------------------------------------------
/**
* Open a file by file name.
*
* \note The file must be in the root directory and must have a DOS
* 8.3 name.
*
* \param[in] fileName A valid 8.3 DOS name for a file in the root directory.
*
* \param[in] oflag Values for \a oflag are constructed by a bitwise-inclusive
* OR of flags from the following list
*
* O_READ - Open for reading.
*
* O_RDONLY - Same as O_READ.
*
* O_WRITE - Open for writing.
*
* O_WRONLY - Same as O_WRITE.
*
* O_RDWR - Open for reading and writing.
*
* O_APPEND - If set, the file offset shall be set to the end of the
* file prior to each write.
*
* O_CREAT - If the file exists, this flag has no effect except as noted
* under O_EXCL below. Otherwise, the file shall be created
*
* O_EXCL - If O_CREAT and O_EXCL are set, open() shall fail if the file exists.
*
* O_SYNC - Call sync() after each write. This flag should not be used with
* write(uint8_t), write_P(PGM_P), writeln_P(PGM_P), or the Arduino Print class.
* These functions do character a time writes so sync() will be called
* after each byte.
*
* O_TRUNC - If the file exists and is a regular file, and the file is
* successfully opened and is not read only, its length shall be truncated to 0.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
* Reasons for failure include the FAT volume has not been initialized,
* a file is already open, \a fileName is invalid, the file does not exist,
* is a directory, or can't be opened in the access mode specified by oflag.
*/
uint8_t Fat16::open(const char* fileName, uint8_t oflag) {
uint8_t dname[11]; // name formated for dir entry
int16_t empty = -1; // index of empty slot
dir_t* p; // pointer to cached dir entry
if (!volumeInitialized_ || isOpen()) return false;
// error if invalid name
if (!make83Name(fileName, dname)) return false;
for (uint16_t index = 0; index < rootDirEntryCount_; index++) {
if (!(p = cacheDirEntry(index))) return false;
if (p->name[0] == DIR_NAME_FREE || p->name[0] == DIR_NAME_DELETED) {
// remember first empty slot
if (empty < 0) empty = index;
// done if no entries follow
if (p->name[0] == DIR_NAME_FREE) break;
} else if (!memcmp(dname, p->name, 11)) {
// don't open existing file if O_CREAT and O_EXCL
if ((oflag & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) return false;
// open existing file
return open(index, oflag);
}
}
// error if directory is full
if (empty < 0) return false;
// only create file if O_CREAT and O_WRITE
if ((oflag & (O_CREAT | O_WRITE)) != (O_CREAT | O_WRITE)) return false;
if (!(p = cacheDirEntry(empty, CACHE_FOR_WRITE))) return false;
// initialize as empty file
memset(p, 0, sizeof(dir_t));
memcpy(p->name, dname, 11);
// set timestamps
if (dateTime_) {
// call user function
dateTime_(&p->creationDate, &p->creationTime);
} else {
// use default date/time
p->creationDate = FAT_DEFAULT_DATE;
p->creationTime = FAT_DEFAULT_TIME;
}
p->lastAccessDate = p->creationDate;
p->lastWriteDate = p->creationDate;
p->lastWriteTime = p->creationTime;
// insure created directory entry will be written to storage device
if (!cacheFlush()) return false;
// open entry
return open(empty, oflag);
}
//------------------------------------------------------------------------------
/**
* Open a file by file index.
*
* \param[in] index The root directory index of the file to be opened. See \link
* Fat16::readDir() readDir()\endlink.
*
* \param[in] oflag See \link Fat16::open(const char*, uint8_t)\endlink.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
* Reasons for failure include the FAT volume has not been initialized,
* a file is already open, \a index is invalid or is not the index of a
* file or the file cannot be opened in the access mode specified by oflag.
*/
uint8_t Fat16::open(uint16_t index, uint8_t oflag) {
if (!volumeInitialized_ || isOpen()) return false;
if ((oflag & O_TRUNC) && !(oflag & O_WRITE)) return false;
dir_t* d = cacheDirEntry(index);
// if bad file index or I/O error
if (!d) return false;
// error if unused entry
if (d->name[0] == DIR_NAME_FREE || d->name[0] == DIR_NAME_DELETED) {
return false;
}
// error if long name, volume label or subdirectory
if ((d->attributes & (DIR_ATT_VOLUME_ID | DIR_ATT_DIRECTORY)) != 0) {
return false;
}
// don't allow write or truncate if read-only
if (d->attributes & DIR_ATT_READ_ONLY) {
if (oflag & (O_WRITE | O_TRUNC)) return false;
}
curCluster_ = 0;
curPosition_ = 0;
dirEntryIndex_ = index;
fileSize_ = d->fileSize;
firstCluster_ = d->firstClusterLow;
flags_ = oflag & (O_ACCMODE | O_SYNC | O_APPEND);
if (oflag & O_TRUNC ) return truncate(0);
return true;
}
//------------------------------------------------------------------------------
/** %Print the name field of a directory entry in 8.3 format to Serial.
*
* \param[in] dir The directory structure containing the name.
* \param[in] width Blank fill name if length is less than \a width.
*/
void Fat16::printDirName(const dir_t& dir, uint8_t width) {
uint8_t w = 0;
for (uint8_t i = 0; i < 11; i++) {
if (dir.name[i] == ' ') continue;
if (i == 8) {
Serial.write('.');
w++;
}
Serial.write(dir.name[i]);
w++;
}
if (DIR_IS_SUBDIR(&dir)) {
Serial.write('/');
w++;
}
while (w < width) {
Serial.write(' ');
w++;
}
}
//------------------------------------------------------------------------------
/** %Print a directory date field to Serial.
*
* Format is yyyy-mm-dd.
*
* \param[in] fatDate The date field from a directory entry.
*/
void Fat16::printFatDate(uint16_t fatDate) {
Serial.print(FAT_YEAR(fatDate));
Serial.write('-');
printTwoDigits(FAT_MONTH(fatDate));
Serial.write('-');
printTwoDigits(FAT_DAY(fatDate));
}
//------------------------------------------------------------------------------
/** %Print a directory time field to Serial.
*
* Format is hh:mm:ss.
*
* \param[in] fatTime The time field from a directory entry.
*/
void Fat16::printFatTime(uint16_t fatTime) {
printTwoDigits(FAT_HOUR(fatTime));
Serial.write(':');
printTwoDigits(FAT_MINUTE(fatTime));
Serial.write(':');
printTwoDigits(FAT_SECOND(fatTime));
}
//------------------------------------------------------------------------------
/** %Print a value as two digits to Serial.
*
* \param[in] v Value to be printed, 0 <= \a v <= 99
*/
void Fat16::printTwoDigits(uint8_t v) {
char str[3];
str[0] = '0' + v/10;
str[1] = '0' + v % 10;
str[2] = 0;
Serial.print(str);
}
//------------------------------------------------------------------------------
/**
* Read the next byte from a file.
*
* \return For success read returns the next byte in the file as an int.
* If an error occurs or end of file is reached -1 is returned.
*/
int16_t Fat16::read(void) {
uint8_t b;
return read(&b, 1) == 1 ? b : -1;
}
//------------------------------------------------------------------------------
/**
* Read data from a file at starting at the current file position.
*
* \param[out] buf Pointer to the location that will receive the data.
*
* \param[in] nbyte Maximum number of bytes to read.
*
* \return For success read returns the number of bytes read.
* A value less than \a nbyte, including zero, may be returned
* if end of file is reached.
* If an error occurs, read returns -1. Possible errors include
* read called before a file has been opened, the file has not been opened in
* read mode, a corrupt file system, or an I/O error.
*/
int16_t Fat16::read(void* buf, uint16_t nbyte) {
// convert void pointer to uin8_t pointer
uint8_t* dst = reinterpret_cast<uint8_t*>(buf);
// error if not open for read
if (!(flags_ & O_READ)) return -1;
// don't read beyond end of file
if ((curPosition_ + nbyte) > fileSize_) nbyte = fileSize_ - curPosition_;
// bytes left to read in loop
uint16_t nToRead = nbyte;
while (nToRead > 0) {
uint8_t blkOfCluster = blockOfCluster(curPosition_);
uint16_t blockOffset = cacheDataOffset(curPosition_);
if (blkOfCluster == 0 && blockOffset == 0) {
// start next cluster
if (curCluster_ == 0) {
curCluster_ = firstCluster_;
} else {
if (!fatGet(curCluster_, &curCluster_)) return -1;
}
// return error if bad cluster chain
if (curCluster_ < 2 || isEOC(curCluster_)) return -1;
}
// cache data block
if (!cacheRawBlock(dataBlockLba(curCluster_, blkOfCluster))) return -1;
// location of data in cache
uint8_t* src = cacheBuffer_.data + blockOffset;
// max number of byte available in block
uint16_t n = 512 - blockOffset;
// lesser of available and amount to read
if (n > nToRead) n = nToRead;
// copy data to caller
memcpy(dst, src, n);
curPosition_ += n;
dst += n;
nToRead -= n;
}
return nbyte;
}
//------------------------------------------------------------------------------
/**
* Read the next short, 8.3, directory entry.
*
* Unused entries and entries for long names are skipped.
*
* \param[out] dir Location that will receive the entry.
*
* \param[in,out] index The search starts at \a index and \a index is
* updated with the root directory index of the found directory entry.
* If the entry is a file, it may be opened by calling
* \link Fat16::open(uint16_t, uint8_t) \endlink.
*
* \param[in] skip Skip entries that have these attributes. If \a skip
* is not specified, the default is to skip the volume label and directories.
*
* \return The value one, true, is returned for success and the value zero,
* false, is returned if an error occurs or the end of the root directory is
* reached. On success, \a entry is set to the index of the found directory
* entry.
*/
uint8_t Fat16::readDir(dir_t* dir, uint16_t* index, uint8_t skip) {
dir_t* p;
for (uint16_t i = *index; ; i++) {
if (i >= rootDirEntryCount_) return false;
if (!(p = cacheDirEntry(i))) return false;
// done if beyond last used entry
if (p->name[0] == DIR_NAME_FREE) return false;
// skip deleted entry
if (p->name[0] == DIR_NAME_DELETED) continue;
// skip long names
if ((p->attributes & DIR_ATT_LONG_NAME_MASK) == DIR_ATT_LONG_NAME) continue;
// skip if attribute match
if (p->attributes & skip) continue;
// return found index
*index = i;
break;
}
memcpy(dir, p, sizeof(dir_t));
return true;
}
//------------------------------------------------------------------------------
/**
* Remove a file. The directory entry and all data for the file are deleted.
*
* \note This function should not be used to delete the 8.3 version of a
* file that has a long name. For example if a file has the long name
* "New Text Document.txt" you should not delete the 8.3 name "NEWTEX~1.TXT".
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
* Reasons for failure include the file is not open for write
* or an I/O error occurred.
*/
uint8_t Fat16::remove(void) {
// error if file is not open for write
if (!(flags_ & O_WRITE)) return false;
if (firstCluster_) {
if (!freeChain(firstCluster_)) return false;
}
dir_t* d = cacheDirEntry(dirEntryIndex_, CACHE_FOR_WRITE);
if (!d) return false;
d->name[0] = DIR_NAME_DELETED;
flags_ = 0;
return cacheFlush();
}
//------------------------------------------------------------------------------
/**
* Remove a file.
*
* The directory entry and all data for the file are deleted.
*
* \param[in] fileName The name of the file to be removed.
*
* \note This function should not be used to delete the 8.3 version of a
* file that has a long name. For example if a file has the long name
* "New Text Document.txt" you should not delete the 8.3 name "NEWTEX~1.TXT".
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
* Reasons for failure include the file is read only, \a fileName is not found
* or an I/O error occurred.
*/
uint8_t Fat16::remove(const char* fileName) {
Fat16 file;
if (!file.open(fileName, O_WRITE)) return false;
return file.remove();
}
//------------------------------------------------------------------------------
/**
* Sets the file's read/write position.
*
* \param[in] pos The new position in bytes from the beginning of the file.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Fat16::seekSet(uint32_t pos) {
// error if file not open or seek past end of file
if (!isOpen() || pos > fileSize_) return false;
if (pos == 0) {
// set position to start of file
curCluster_ = 0;
curPosition_ = 0;
return true;
}
fat_t n = ((pos - 1) >> 9)/blocksPerCluster_;
if (pos < curPosition_ || curPosition_ == 0) {
// must follow chain from first cluster
curCluster_ = firstCluster_;
} else {
// advance from curPosition
n -= ((curPosition_ - 1) >> 9)/blocksPerCluster_;
}
while (n--) {
if (!fatGet(curCluster_, &curCluster_)) return false;
}
curPosition_ = pos;
return true;
}
//------------------------------------------------------------------------------
/**
* The sync() call causes all modified data and directory fields
* to be written to the storage device.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
* Reasons for failure include a call to sync() before a file has been
* opened or an I/O error.
*/
uint8_t Fat16::sync(void) {
if (flags_ & F_FILE_DIR_DIRTY) {
// cache directory entry
dir_t* d = cacheDirEntry(dirEntryIndex_, CACHE_FOR_WRITE);
if (!d) return false;
// update file size and first cluster
d->fileSize = fileSize_;
d->firstClusterLow = firstCluster_;
// set modify time if user supplied a callback date/time function
if (dateTime_) {
dateTime_(&d->lastWriteDate, &d->lastWriteTime);
d->lastAccessDate = d->lastWriteDate;
}
flags_ &= ~F_FILE_DIR_DIRTY;
}
return cacheFlush();
}
//------------------------------------------------------------------------------
/**
* The timestamp() call sets a file's timestamps in its directory entry.
*
* \param[in] flags Values for \a flags are constructed by a bitwise-inclusive
* OR of flags from the following list
*
* T_ACCESS - Set the file's last access date.
*
* T_CREATE - Set the file's creation date and time.
*
* T_WRITE - Set the file's last write/modification date and time.
*
* \param[in] year Valid range 1980 - 2107 inclusive.
*
* \param[in] month Valid range 1 - 12 inclusive.
*
* \param[in] day Valid range 1 - 31 inclusive.
*
* \param[in] hour Valid range 0 - 23 inclusive.
*
* \param[in] minute Valid range 0 - 59 inclusive.
*
* \param[in] second Valid range 0 - 59 inclusive
*
* \note It is possible to set an invalid date since there is no check for
* the number of days in a month.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Fat16::timestamp(uint8_t flags, uint16_t year, uint8_t month,
uint8_t day, uint8_t hour, uint8_t minute, uint8_t second) {
if (!isOpen()
|| year < 1980
|| year > 2107
|| month < 1
|| month > 12
|| day < 1
|| day > 31
|| hour > 23
|| minute > 59
|| second > 59) {
return false;
}
dir_t* d = cacheDirEntry(dirEntryIndex_, CACHE_FOR_WRITE);
if (!d) return false;
uint16_t dirDate = FAT_DATE(year, month, day);
uint16_t dirTime = FAT_TIME(hour, minute, second);
if (flags & T_ACCESS) {
d->lastAccessDate = dirDate;
}
if (flags & T_CREATE) {
d->creationDate = dirDate;
d->creationTime = dirTime;
// seems to be units of 1/100 second not 1/10 as Microsoft standard states
d->creationTimeTenths = second & 1 ? 100 : 0;
}
if (flags & T_WRITE) {
d->lastWriteDate = dirDate;
d->lastWriteTime = dirTime;
}
cacheSetDirty();
return sync();
}
//------------------------------------------------------------------------------
/**
* Truncate a file to a specified length. The current file position
* will be maintained if it is less than or equal to \a length otherwise
* it will be set to end of file.
*
* \param[in] length The desired length for the file.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
* Reasons for failure include file is read only, file is a directory,
* \a length is greater than the current file size or an I/O error occurs.
*/
uint8_t Fat16::truncate(uint32_t length) {
// error if file is not open for write
if (!(flags_ & O_WRITE)) return false;
if (length > fileSize_) return false;
// fileSize and length are zero - nothing to do
if (fileSize_ == 0) return true;
uint32_t newPos = curPosition_ > length ? length : curPosition_;
if (length == 0) {
// free all clusters
if (!freeChain(firstCluster_)) return false;
curCluster_ = firstCluster_ = 0;
} else {
fat_t toFree;
if (!seekSet(length)) return false;
if (!fatGet(curCluster_, &toFree)) return false;
if (!isEOC(toFree)) {
// free extra clusters
if (!fatPut(curCluster_, FAT16EOC)) return false;
if (!freeChain(toFree)) return false;
}
}
fileSize_ = length;
flags_ |= F_FILE_DIR_DIRTY;
if (!sync()) return false;
return seekSet(newPos);
}
//------------------------------------------------------------------------------
/**
* Write data at the current position of an open file.
*
* \note Data is moved to the cache but may not be written to the
* storage device until sync() is called.
*
* \param[in] buf Pointer to the location of the data to be written.
*
* \param[in] nbyte Number of bytes to write.
*
* \return For success write() returns the number of bytes written, always
* \a nbyte. If an error occurs, write() returns -1. Possible errors include
* write() is called before a file has been opened, the file has not been opened
* for write, device is full, a corrupt file system or an I/O error.
*
*/
int16_t Fat16::write(const void* buf, uint16_t nbyte) {
uint16_t nToWrite = nbyte;
const uint8_t* src = reinterpret_cast<const uint8_t*>(buf);
// error if file is not open for write
if (!(flags_ & O_WRITE)) goto writeErrorReturn;
// go to end of file if O_APPEND
if ((flags_ & O_APPEND) && curPosition_ != fileSize_) {
if (!seekEnd()) goto writeErrorReturn;
}
while (nToWrite > 0) {
uint8_t blkOfCluster = blockOfCluster(curPosition_);
uint16_t blockOffset = cacheDataOffset(curPosition_);
if (blkOfCluster == 0 && blockOffset == 0) {
// start of new cluster
if (curCluster_ == 0) {
if (firstCluster_ == 0) {
// allocate first cluster of file
if (!addCluster()) goto writeErrorReturn;
} else {
curCluster_ = firstCluster_;
}
} else {
fat_t next;
if (!fatGet(curCluster_, &next)) goto writeErrorReturn;
if (isEOC(next)) {
// add cluster if at end of chain
if (!addCluster()) goto writeErrorReturn;
} else {
curCluster_ = next;
}
}
}
uint32_t lba = dataBlockLba(curCluster_, blkOfCluster);
if (blockOffset == 0 && curPosition_ >= fileSize_) {
// start of new block don't need to read into cache
if (!cacheFlush()) goto writeErrorReturn;
cacheBlockNumber_ = lba;
cacheSetDirty();
} else {
// rewrite part of block
if (!cacheRawBlock(lba, CACHE_FOR_WRITE)) return -1;
}
uint8_t* dst = cacheBuffer_.data + blockOffset;
// max space in block
uint16_t n = 512 - blockOffset;
// lesser of space and amount to write
if (n > nToWrite) n = nToWrite;
// copy data to cache
memcpy(dst, src, n);
curPosition_ += n;
nToWrite -= n;
src += n;
}
if (curPosition_ > fileSize_) {
// update fileSize and insure sync will update dir entry
fileSize_ = curPosition_;
flags_ |= F_FILE_DIR_DIRTY;
} else if (dateTime_ && nbyte) {
// insure sync will update modified date and time
flags_ |= F_FILE_DIR_DIRTY;
}
if (flags_ & O_SYNC) {
if (!sync()) goto writeErrorReturn;
}
return nbyte;
writeErrorReturn:
writeError = true;
return -1;
}
//------------------------------------------------------------------------------
/**
* Write a byte to a file. Required by the Arduino Print class.
*
* Use Fat16::writeError to check for errors.
*/
#if ARDUINO < 100
void Fat16::write(uint8_t b) {
write(&b, 1);
}
#else // ARDUINO < 100
size_t Fat16::write(uint8_t b) {
return write(&b, 1) == 1 ? 1 : 0;
}
#endif // ARDUINO < 100
//------------------------------------------------------------------------------
/**
* Write a string to a file. Used by the Arduino Print class.
*
* Use Fat16::writeError to check for errors.
*/
#if ARDUINO < 100
void Fat16::write(const char* str) {
write(str, strlen(str));
}
#else // ARDUINO < 100
int16_t Fat16::write(const char* str) {
return write(str, strlen(str));
}
#endif // ARDUINO < 100
//------------------------------------------------------------------------------
/**
* Write a PROGMEM string to a file.
*
* Use Fat16::writeError to check for errors.
*/
void Fat16::write_P(PGM_P str) {
for (uint8_t c; (c = pgm_read_byte(str)); str++) write(c);
}
//------------------------------------------------------------------------------
/**
* Write a PROGMEM string followed by CR/LF to a file.
*
* Use Fat16::writeError to check for errors.
*/
void Fat16::writeln_P(PGM_P str) {
write_P(str);
println();
}

View File

@ -0,0 +1,378 @@
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef Fat16_h
#define Fat16_h
/**
* \file
* Fat16 class
*/
#include <string.h>
#include <avr/pgmspace.h>
#include <Print.h>
#include <SdCard.h>
#include <FatStructs.h>
#include <Fat16Config.h>
//------------------------------------------------------------------------------
/** Fat16 version YYYYMMDD */
#define FAT16_VERSION 20111205
//------------------------------------------------------------------------------
// flags for ls()
/** ls() flag to print modify date */
uint8_t const LS_DATE = 1;
/** ls() flag to print file size */
uint8_t const LS_SIZE = 2;
// use the gnu style oflags
/** open for reading */
uint8_t const O_READ = 0X01;
/** same as O_READ */
uint8_t const O_RDONLY = O_READ;
/** open for write */
uint8_t const O_WRITE = 0X02;
/** same as O_WRITE */
uint8_t const O_WRONLY = O_WRITE;
/** open for reading and writing */
uint8_t const O_RDWR = O_READ | O_WRITE;
/** mask for access modes */
uint8_t const O_ACCMODE = O_READ | O_WRITE;
/** The file offset shall be set to the end of the file prior to each write. */
uint8_t const O_APPEND = 0X04;
/** synchronous writes - call sync() after each write */
uint8_t const O_SYNC = 0X08;
/** create the file if nonexistent */
uint8_t const O_CREAT = 0X10;
/** If O_CREAT and O_EXCL are set, open() shall fail if the file exists */
uint8_t const O_EXCL = 0X20;
/** truncate the file to zero length */
uint8_t const O_TRUNC = 0X40;
// flags for timestamp
/** set the file's last access date */
uint8_t const T_ACCESS = 1;
/** set the file's creation date and time */
uint8_t const T_CREATE = 2;
/** Set the file's write date and time */
uint8_t const T_WRITE = 4;
/** date field for FAT directory entry */
static inline uint16_t FAT_DATE(uint16_t year, uint8_t month, uint8_t day) {
return (year - 1980) << 9 | month << 5 | day;
}
/** year part of FAT directory date field */
static inline uint16_t FAT_YEAR(uint16_t fatDate) {
return 1980 + (fatDate >> 9);
}
/** month part of FAT directory date field */
static inline uint8_t FAT_MONTH(uint16_t fatDate) {
return (fatDate >> 5) & 0XF;
}
/** day part of FAT directory date field */
static inline uint8_t FAT_DAY(uint16_t fatDate) {
return fatDate & 0X1F;
}
/** time field for FAT directory entry */
static inline uint16_t FAT_TIME(uint8_t hour, uint8_t minute, uint8_t second) {
return hour << 11 | minute << 5 | second >> 1;
}
/** hour part of FAT directory time field */
static inline uint8_t FAT_HOUR(uint16_t fatTime) {
return fatTime >> 11;
}
/** minute part of FAT directory time field */
static inline uint8_t FAT_MINUTE(uint16_t fatTime) {
return(fatTime >> 5) & 0X3F;
}
/** second part of FAT directory time field */
static inline uint8_t FAT_SECOND(uint16_t fatTime) {
return 2*(fatTime & 0X1F);
}
/** Default date for file timestamps is 1 Jan 2000 */
uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | (1 << 5) | 1;
/** Default time for file timestamp is 1 am */
uint16_t const FAT_DEFAULT_TIME = (1 << 11);
//------------------------------------------------------------------------------
/**
* \typedef fat_t
*
* \brief Type for FAT16 entry
*/
typedef uint16_t fat_t;
/**
* \union cache16_t
*
* \brief Cache buffer data type
*
*/
union cache16_t {
/** Used to access cached file data blocks. */
uint8_t data[512];
/** Used to access cached FAT entries. */
fat_t fat[256];
/** Used to access cached directory entries. */
dir_t dir[16];
/** Used to access a cached Master Boot Record. */
mbr_t mbr;
/** Used to access to a cached FAT16 boot sector. */
fbs_t fbs;
};
//------------------------------------------------------------------------------
/** \class Fat16
* \brief Fat16 implements a minimal Arduino FAT16 Library
*
* Fat16 does not support subdirectories or long file names.
*/
class Fat16 : public Print {
public:
/*
* Public functions
*/
/** create with file closed */
Fat16(void) : flags_(0) {}
/** \return The current cluster number. */
fat_t curCluster(void) const {return curCluster_;}
uint8_t close(void);
/** \return The count of clusters in the FAT16 volume. */
static fat_t clusterCount(void) {return clusterCount_;}
/** \return The number of 512 byte blocks in a cluster */
static uint8_t clusterSize(void) {return blocksPerCluster_;}
/** \return The current file position. */
uint32_t curPosition(void) const {return curPosition_;}
/**
* Set the date/time callback function
*
* \param[in] dateTime The user's callback function. The callback
* function is of the form:
*
* \code
* void dateTime(uint16_t* date, uint16_t* time) {
* uint16_t year;
* uint8_t month, day, hour, minute, second;
*
* // User gets date and time from GPS or real-time clock here
*
* // return date using FAT_DATE macro to format fields
* *date = FAT_DATE(year, month, day);
*
* // return time using FAT_TIME macro to format fields
* *time = FAT_TIME(hour, minute, second);
* }
* \endcode
*
* Sets the function that is called when a file is created or when
* a file's directory entry is modified by sync(). All timestamps,
* access, creation, and modify, are set when a file is created.
* sync() maintains the last access date and last modify date/time.
*
* See the timestamp() function.
*/
static void dateTimeCallback(
void (*dateTime)(uint16_t* date, uint16_t* time)) {
dateTime_ = dateTime;
}
/**
* Cancel the date/time callback function.
*/
static void dateTimeCallbackCancel(void) {dateTime_ = NULL;}
uint8_t dirEntry(dir_t* dir);
/** \return The file's size in bytes. */
uint32_t fileSize(void) const {return fileSize_;}
static uint8_t init(SdCard* dev, uint8_t part);
/**
* Initialize a FAT16 volume.
*
* First try partition 1 then try super floppy format.
*
* \param[in] dev The SdCard where the volume is located.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure. reasons for
* failure include not finding a valid FAT16 file system, a call
* to init() after a volume has been successful initialized or
* an I/O error.
*
*/
static uint8_t init(SdCard* dev) {
return init(dev, 1) ? true : init(dev, 0);
}
/**
* Checks the file's open/closed status for this instance of Fat16.
* \return The value true if a file is open otherwise false;
*/
uint8_t isOpen(void) const {return (flags_ & O_ACCMODE) != 0;}
static void ls(uint8_t flags = 0);
uint8_t open(const char* fileName, uint8_t oflag);
uint8_t open(uint16_t entry, uint8_t oflag);
static void printDirName(const dir_t& dir, uint8_t width);
static void printFatDate(uint16_t fatDate);
static void printFatTime(uint16_t fatTime);
static void printTwoDigits(uint8_t v);
int16_t read(void);
int16_t read(void* buf, uint16_t nbyte);
static uint8_t readDir(dir_t* dir, uint16_t* index,
uint8_t skip = (DIR_ATT_VOLUME_ID | DIR_ATT_DIRECTORY));
uint8_t remove(void);
static uint8_t remove(const char* fileName);
/** Sets the file's current position to zero. */
void rewind(void) {curPosition_ = curCluster_ = 0;}
/** \return The number of entries in the root directory. */
static uint16_t rootDirEntryCount(void) {return rootDirEntryCount_;}
/** Seek to current position plus \a pos bytes. See Fat16::seekSet(). */
uint8_t seekCur(uint32_t pos) {return seekSet(curPosition_ + pos);}
/** Seek to end of file. See Fat16::seekSet(). */
uint8_t seekEnd(void) {return seekSet(fileSize_);}
uint8_t seekSet(uint32_t pos);
uint8_t sync(void);
uint8_t timestamp(uint8_t flag, uint16_t year, uint8_t month, uint8_t day,
uint8_t hour, uint8_t minute, uint8_t second);
uint8_t truncate(uint32_t size);
/** Fat16::writeError is set to true if an error occurs during a write().
* Set Fat16::writeError to false before calling print() and/or write() and check
* for true after calls to write() and/or print().
*/
bool writeError;
int16_t write(const void *buf, uint16_t nbyte);
#if ARDUINO < 100
void write(uint8_t b);
void write(const char* str);
#else // ARDUINO < 100
size_t write(uint8_t b);
int16_t write(const char* str);
#endif // ARDUINO < 100
void write_P(PGM_P str);
void writeln_P(PGM_P str);
//------------------------------------------------------------------------------
#if FAT16_DEBUG_SUPPORT
/** For debug only. Do not use in applications. */
static cache16_t* dbgBufAdd(void) {return &cacheBuffer_;}
/** For debug only. Do not use in applications. */
static void dbgSetDev(SdCard* dev) {rawDev_ = dev;}
/** For debug only. Do not use in applications. */
static uint8_t* dbgCacheBlock(uint32_t blockNumber) {
return cacheRawBlock(blockNumber) ? cacheBuffer_.data : 0; }
/** For debug only. Do not use in applications. */
static dir_t* dbgCacheDir(uint16_t index) {
return cacheDirEntry(index);}
#endif // FAT16_DEBUG_SUPPORT
//------------------------------------------------------------------------------
#if ALLOW_DEPRECATED_FUNCTIONS
// Deprecated functions - suppress cpplint messages with NOLINT comment
public:
/**
* Deprecated - Use:
* static void Fat16::dateTimeCallback(
* void (*dateTime)(uint16_t* date, uint16_t* time));
*/
static void dateTimeCallback(
void (*dateTime)(uint16_t& date, uint16_t& time)) { // NOLINT
oldDateTime_ = dateTime;
dateTime_ = dateTime ? oldToNew : 0;
}
/** Deprecated - Use: uint8_t Fat16::dirEntry(dir_t* dir); */
uint8_t dirEntry(dir_t& dir) { // NOLINT
return dirEntry(&dir);
}
/** Deprecated - Use: static uint8_t Fat16::init(SdCard *dev); */
static uint8_t init(SdCard& dev) {return init(&dev);} // NOLINT
/** Deprecated - Use: static uint8_t Fat16::init(SdCard *dev, uint8_t part) */
static uint8_t init(SdCard& dev, uint8_t part) { // NOLINT
return init(&dev, part);
}
/**
* Deprecated - Use:
* uint8_t Fat16::readDir(dir_t* dir, uint16_t* index, uint8_t skip);
*/
static uint8_t readDir(dir_t& dir, uint16_t& index, // NOLINT
uint8_t skip = (DIR_ATT_VOLUME_ID | DIR_ATT_DIRECTORY)) {
return readDir(&dir, &index, skip);
}
//------------------------------------------------------------------------------
private:
static void (*oldDateTime_)(uint16_t& date, uint16_t& time); // NOLINT
static void oldToNew(uint16_t *date, uint16_t *time) {
uint16_t d;
uint16_t t;
oldDateTime_(d, t);
*date = d;
*time = t;
}
#endif // ALLOW_DEPRECATED_FUNCTIONS
//------------------------------------------------------------------------------
private:
// Volume info
static uint8_t volumeInitialized_; // true if volume has been initialized
static uint8_t fatCount_; // number of FATs
static uint8_t blocksPerCluster_; // must be power of 2
static uint16_t rootDirEntryCount_; // should be 512 for FAT16
static fat_t blocksPerFat_; // number of blocks in one FAT
static fat_t clusterCount_; // total clusters in volume
static uint32_t fatStartBlock_; // start of first FAT
static uint32_t rootDirStartBlock_; // start of root dir
static uint32_t dataStartBlock_; // start of data clusters
// block cache
static uint8_t const CACHE_FOR_READ = 0; // cache a block for read
static uint8_t const CACHE_FOR_WRITE = 1; // cache a block and set dirty
static SdCard *rawDev_; // Device
static cache16_t cacheBuffer_; // 512 byte cache for raw blocks
static uint32_t cacheBlockNumber_; // Logical number of block in the cache
static uint8_t cacheDirty_; // cacheFlush() will write block if true
static uint32_t cacheMirrorBlock_; // mirror block for second FAT
// callback function for date/time
static void (*dateTime_)(uint16_t* date, uint16_t* time);
// define fields in flags_
static uint8_t const F_OFLAG = O_ACCMODE | O_APPEND | O_SYNC;
static uint8_t const F_FILE_DIR_DIRTY = 0X80; // require sync directory entry
uint8_t flags_; // see above for bit definitions
int16_t dirEntryIndex_; // index of directory entry for open file
fat_t firstCluster_; // first cluster of file
uint32_t fileSize_; // fileSize
fat_t curCluster_; // current cluster
uint32_t curPosition_; // current byte offset
// private functions for cache
static uint8_t blockOfCluster(uint32_t position) {
// depends on blocks per cluster being power of two
return (position >> 9) & (blocksPerCluster_ - 1);
}
static uint16_t cacheDataOffset(uint32_t position) {return position & 0X1FF;}
static dir_t* cacheDirEntry(uint16_t index, uint8_t action = 0);
static uint8_t cacheRawBlock(uint32_t blockNumber, uint8_t action = 0);
static uint8_t cacheFlush(void);
static void cacheSetDirty(void) {cacheDirty_ |= CACHE_FOR_WRITE;}
static uint32_t dataBlockLba(fat_t cluster, uint8_t blockOfCluster) {
return dataStartBlock_ + (uint32_t)(cluster - 2) * blocksPerCluster_
+ blockOfCluster;
}
static uint8_t fatGet(fat_t cluster, fat_t* value);
static uint8_t fatPut(fat_t cluster, fat_t value);
// end of chain test
static uint8_t isEOC(fat_t cluster) {return cluster >= 0XFFF8;}
// allocate a cluster to a file
uint8_t addCluster(void);
// free a cluster chain
uint8_t freeChain(fat_t cluster);
};
#endif // Fat16_h

View File

@ -0,0 +1,38 @@
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
/**
* \file
* Configuration file
*/
#ifndef Fat16Config_h
#define Fat16Config_h
/**
* Allow use of deprecated functions if non-zero
*/
#define ALLOW_DEPRECATED_FUNCTIONS 1
/**
* SdCard::writeBlock will protect block zero if set non-zero
*/
#define SD_PROTECT_BLOCK_ZERO 1
/**
* Set non-zero to allow access to Fat16 internals by cardInfo debug sketch
*/
#define FAT16_DEBUG_SUPPORT 1
#endif // Fat16Config_h

View File

@ -0,0 +1,208 @@
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
/**
\mainpage Arduino Fat16 Library
<CENTER>Copyright &copy; 2008 by William Greiman
</CENTER>
\section Intro Introduction
The Arduino Fat16 Library is a minimal implementation of the FAT16 file system
on standard SD flash memory cards. Fat16 supports read, write, file
creation, deletion, and truncation.
The Fat16 class only supports access to files in the root directory and only
supports short 8.3 names. Directory time and date fields for creation
and modification can be maintained by providing a date/time callback
function \link Fat16::dateTimeCallback() dateTimeCallback()\endlink
or calling \link Fat16::timestamp() timestamp()\endlink.
Fat16 was designed to use the Arduino Print class which
allows files to be written with \link Print::print() print() \endlink and
\link Print::println() println()\endlink.
\section comment Bugs and Comments
If you wish to report bugs or have comments, send email to fat16lib@sbcglobal.net.
\section SDcard SD Cards
Arduinos access SD cards using the cards SPI protocol. PCs, Macs, and
most consumer devices use the 4-bit parallel SD protocol. A card that
functions well on A PC or Mac may not work well on the Arduino.
Most cards have good SPI read performance but cards vary widely in SPI
write performance. Write performance is limited by how efficiently the
card manages internal erase/remapping operations. The Arduino cannot
optimize writes to reduce erase operations because of its limit RAM.
SanDisk cards generally have good write performance. They seem to have
more internal RAM buffering than other cards and therefore can limit
the number of flash erase operations that the Arduino forces due to its
limited RAM.
Some Dane-Elec cards have a write speed that is only 20% as fast as
a good SanDisk card.
\section Hardware Hardware Configuration
Fat16 was developed using an <A HREF = "http://www.adafruit.com/"> Adafruit Industries</A>
<A HREF = "http://ladyada.net/make/gpsshield/modules.html"> GPS Shield</A>.
The hardware interface to the SD card should not use a resistor based level
shifter. SdCard::init() sets the SPI bus frequency to 8 MHz which results in
signal rise times that are too slow for the edge detectors in many newer SD card
controllers when resistor voltage dividers are used.
The 5 to 3.3 V level shifter for 5 V arduinos should be IC based like the
74HC4050N based circuit shown in the file SdLevel.png. The Adafruit Wave Shield
uses a 74AHC125N. Gravitech sells SD and MicroSD Card Adapters based on the
74LCX245.
If you are using a resistor based level shifter and are having problems try
setting the SPI bus frequency to 4 MHz. This can be done by using
card.init(true) to initialize the SD card.
\section Fat16Class Fat16 Usage
The class Fat16 is a minimal implementation of FAT16 on standard SD cards.
High Capacity SD cards, SDHC, are not supported. It should work on all
standard cards from 8MB to 2GB formatted with a FAT16 file system.
\note
The Arduino Print class uses character
at a time writes so it was necessary to use a \link Fat16::sync() sync() \endlink
function to control when data is written to the SD card.
\par
An application which writes to a file using \link Print::print() print()\endlink,
\link Print::println() println() \endlink
or \link Fat16::write write() \endlink must call \link Fat16::sync() sync() \endlink
at the appropriate time to force data and directory information to be written
to the SD Card. Data and directory information are also written to the SD card
when \link Fat16::close() close() \endlink is called.
\par
Applications must use care calling \link Fat16::sync() sync() \endlink
since 2048 bytes of I/O is required to update file and
directory information. This includes writing the current data block, reading
the block that contains the directory entry for update, writing the directory
block back and reading back the current data block.
Fat16 only supports access to files in the root directory and only supports
short 8.3 names.
It is possible to open a file with two or more instances of Fat16. A file may
be corrupted if data is written to the file by more than one instance of Fat16.
Short names are limited to 8 characters followed by an optional period (.)
and extension of up to 3 characters. The characters may be any combination
of letters and digits. The following special characters are also allowed:
$ % ' - _ @ ~ ` ! ( ) { } ^ # &
Short names are always converted to upper case and their original case
value is lost.
Fat16 uses a slightly restricted form of short names.
Only printable ASCII characters are supported. No characters with code point
values greater than 127 are allowed. Space is not allowed even though space
was allowed in the API of early versions of DOS.
Fat16 has been optimized for The Arduino ATmega168. Minimizing RAM use is the
highest priority goal followed by flash use and finally performance.
Most SD cards only support 512 byte block write operations so a 512 byte
cache buffer is used by Fat16. This is the main use of RAM. A small
amount of RAM is used to store key volume and file information.
Flash memory usage can be controlled by selecting options in Fat16Config.h.
\section HowTo How to format SD Cards as FAT16 Volumes
Microsoft operating systems support removable media formatted with a
Master Boot Record, MBR, or formatted as a super floppy with a FAT Boot Sector
in block zero.
Microsoft operating systems expect MBR formatted removable media
to have only one partition. The first partition should be used.
Microsoft operating systems do not support partitioning SD flash cards.
If you erase an SD card with a program like KillDisk, Most versions of
Windows will format the card as a super floppy.
The best way to restore an SD card's MBR is to use SDFormatter
which can be downloaded from:
http://www.sdcard.org/consumers/formatter/
SDFormatter does not have an option for FAT type so it may format
small cards as FAT12.
After the MBR is restored by SDFormatter you may need to reformat small
cards that have been formatted FAT12 to force the volume type to be FAT16.
The FAT type, FAT12, FAT16, or FAT32, is determined by the count
of clusters on the volume and nothing else.
Microsoft published the following code for determining FAT type:
\code
if (CountOfClusters < 4085) {
// Volume is FAT12
}
else if (CountOfClusters < 65525) {
// Volume is FAT16
}
else {
// Volume is FAT32
}
\endcode
If you format a FAT volume with an OS utility , choose a cluster size that
will result in:
4084 < CountOfClusters && CountOfClusters < 65525
The volume will then be FAT16.
If you are formatting an SD card on OS X or Linux, be sure to use the first
partition. Format this partition with a cluster count in above range.
\section References References
The Arduino site:
http://www.arduino.cc/
For more information about FAT file systems see:
http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
For information about using SD cards as SPI devices see:
http://www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
The ATmega328 datasheet:
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf
*/

View File

@ -0,0 +1,74 @@
#ifndef Fat16util_h
#define Fat16util_h
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
/**
* \file
* Useful utility functions.
*/
#if ARDUINO < 100
#include <WProgram.h>
#else // ARDUINO
#include <Arduino.h>
#endif // ARDUINO
#include <avr/pgmspace.h>
/** Store and print a string in flash memory.*/
#define PgmPrint(x) SerialPrint_P(PSTR(x))
/** Store and print a string in flash memory followed by a CR/LF.*/
#define PgmPrintln(x) SerialPrintln_P(PSTR(x))
/** Defined so doxygen works for function definitions. */
#define NOINLINE __attribute__((noinline))
//------------------------------------------------------------------------------
/** Return the number of bytes currently free in RAM. */
static int FreeRam(void) {
extern int __bss_end;
extern int* __brkval;
int free_memory;
if (reinterpret_cast<int>(__brkval) == 0) {
// if no heap use from end of bss section
free_memory = reinterpret_cast<int>(&free_memory)
- reinterpret_cast<int>(&__bss_end);
} else {
// use from top of stack to heap
free_memory = reinterpret_cast<int>(&free_memory)
- reinterpret_cast<int>(__brkval);
}
return free_memory;
}
//------------------------------------------------------------------------------
/**
* %Print a string in flash memory to the serial port.
*
* \param[in] str Pointer to string stored in flash memory.
*/
static NOINLINE void SerialPrint_P(PGM_P str) {
for (uint8_t c; (c = pgm_read_byte(str)); str++) Serial.write(c);
}
//------------------------------------------------------------------------------
/**
* %Print a string in flash memory followed by a CR/LF.
*
* \param[in] str Pointer to string stored in flash memory.
*/
static NOINLINE void SerialPrintln_P(PGM_P str) {
SerialPrint_P(str);
Serial.println();
}
#endif // #define Fat16util_h

View File

@ -0,0 +1,418 @@
/* Arduino Fat16 Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino Fat16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef FatStructs_h
#define FatStructs_h
/**
* \file
* FAT file structures
*/
/*
* mostly from Microsoft document fatgen103.doc
* http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
*/
//------------------------------------------------------------------------------
/** Value for byte 510 of boot block or MBR */
uint8_t const BOOTSIG0 = 0X55;
/** Value for byte 511 of boot block or MBR */
uint8_t const BOOTSIG1 = 0XAA;
//------------------------------------------------------------------------------
/**
* \struct partitionTable
* \brief MBR partition table entry
*
* A partition table entry for a MBR formatted storage device.
* The MBR partition table has four entries.
*/
struct partitionTable {
/**
* Boot Indicator . Indicates whether the volume is the active
* partition. Legal values include: 0X00. Do not use for booting.
* 0X80 Active partition.
*/
uint8_t boot;
/**
* Head part of Cylinder-head-sector address of the first block in
* the partition. Legal values are 0-255. Only used in old PC BIOS.
*/
uint8_t beginHead;
/**
* Sector part of Cylinder-head-sector address of the first block in
* the partition. Legal values are 1-63. Only used in old PC BIOS.
*/
unsigned beginSector : 6;
/** High bits cylinder for first block in partition. */
unsigned beginCylinderHigh : 2;
/**
* Combine beginCylinderLow with beginCylinderHigh. Legal values
* are 0-1023. Only used in old PC BIOS.
*/
uint8_t beginCylinderLow;
/**
* Partition type. See defines that begin with PART_TYPE_ for
* some Microsoft partition types.
*/
uint8_t type;
/**
* head part of cylinder-head-sector address of the last sector in the
* partition. Legal values are 0-255. Only used in old PC BIOS.
*/
uint8_t endHead;
/**
* Sector part of cylinder-head-sector address of the last sector in
* the partition. Legal values are 1-63. Only used in old PC BIOS.
*/
unsigned endSector : 6;
/** High bits of end cylinder */
unsigned endCylinderHigh : 2;
/**
* Combine endCylinderLow with endCylinderHigh. Legal values
* are 0-1023. Only used in old PC BIOS.
*/
uint8_t endCylinderLow;
/** Logical block address of the first block in the partition. */
uint32_t firstSector;
/** Length of the partition, in blocks. */
uint32_t totalSectors;
};
/** Type name for partitionTable */
typedef struct partitionTable part_t;
//------------------------------------------------------------------------------
/**
* \struct masterBootRecord
*
* \brief Master Boot Record
*
* The first block of a storage device that is formatted with a MBR.
*/
struct masterBootRecord {
/** Code Area for master boot program. */
uint8_t codeArea[440];
/** Optional WindowsNT disk signature. May contain more boot code. */
uint32_t diskSignature;
/** Usually zero but may be more boot code. */
uint16_t usuallyZero;
/** Partition tables. */
part_t part[4];
/** First MBR signature byte. Must be 0X55 */
uint8_t mbrSig0;
/** Second MBR signature byte. Must be 0XAA */
uint8_t mbrSig1;
};
/** Type name for masterBootRecord */
typedef struct masterBootRecord mbr_t;
//------------------------------------------------------------------------------
/**
* \struct biosParmBlock
*
* \brief BIOS parameter block
*
* The BIOS parameter block describes the physical layout of a FAT volume.
*/
struct biosParmBlock {
/**
* Count of bytes per sector. This value may take on only the
* following values: 512, 1024, 2048 or 4096
*/
uint16_t bytesPerSector;
/**
* Number of sectors per allocation unit. This value must be a
* power of 2 that is greater than 0. The legal values are
* 1, 2, 4, 8, 16, 32, 64, and 128.
*/
uint8_t sectorsPerCluster;
/**
* Number of sectors before the first FAT.
* This value must not be zero.
*/
uint16_t reservedSectorCount;
/** The count of FAT data structures on the volume. This field should
* always contain the value 2 for any FAT volume of any type.
*/
uint8_t fatCount;
/**
* For FAT12 and FAT16 volumes, this field contains the count of
* 32-byte directory entries in the root directory. For FAT32 volumes,
* this field must be set to 0. For FAT12 and FAT16 volumes, this
* value should always specify a count that when multiplied by 32
* results in a multiple of bytesPerSector. FAT16 volumes should
* use the value 512.
*/
uint16_t rootDirEntryCount;
/**
* This field is the old 16-bit total count of sectors on the volume.
* This count includes the count of all sectors in all four regions
* of the volume. This field can be 0; if it is 0, then totalSectors32
* must be non-zero. For FAT32 volumes, this field must be 0. For
* FAT12 and FAT16 volumes, this field contains the sector count, and
* totalSectors32 is 0 if the total sector count fits
* (is less than 0x10000).
*/
uint16_t totalSectors16;
/**
* This dates back to the old MS-DOS 1.x media determination and is
* no longer usually used for anything. 0xF8 is the standard value
* for fixed (non-removable) media. For removable media, 0xF0 is
* frequently used. Legal values are 0xF0 or 0xF8-0xFF.
*/
uint8_t mediaType;
/**
* Count of sectors occupied by one FAT on FAT12/FAT16 volumes.
* On FAT32 volumes this field must be 0, and sectorsPerFat32
* contains the FAT size count.
*/
uint16_t sectorsPerFat16;
/** Sectors per track for interrupt 0x13. Not used otherwise. */
uint16_t sectorsPerTrtack;
/** Number of heads for interrupt 0x13. Not used otherwise. */
uint16_t headCount;
/**
* Count of hidden sectors preceding the partition that contains this
* FAT volume. This field is generally only relevant for media
* visible on interrupt 0x13.
*/
uint32_t hidddenSectors;
/**
* This field is the new 32-bit total count of sectors on the volume.
* This count includes the count of all sectors in all four regions
* of the volume. This field can be 0; if it is 0, then
* totalSectors16 must be non-zero.
*/
uint32_t totalSectors32;
/**
* Count of sectors occupied by one FAT on FAT32 volumes.
*/
uint32_t sectorsPerFat32;
/**
* This field is only defined for FAT32 media and does not exist on
* FAT12 and FAT16 media.
* Bits 0-3 -- Zero-based number of active FAT.
* Only valid if mirroring is disabled.
* Bits 4-6 -- Reserved.
* Bit 7 -- 0 means the FAT is mirrored at runtime into all FATs.
* -- 1 means only one FAT is active; it is the one referenced in bits 0-3.
* Bits 8-15 -- Reserved.
*/
uint16_t fat32Flags;
/**
* FAT32 version. High byte is major revision number.
* Low byte is minor revision number. Only 0.0 define.
*/
uint16_t fat32Version;
/**
* Cluster number of the first cluster of the root directory for FAT32.
* This usually 2 but not required to be 2.
*/
uint32_t fat32RootCluster;
/**
* Sector number of FSINFO structure in the reserved area of the
* FAT32 volume. Usually 1.
*/
uint16_t fat32FSInfo;
/**
* If non-zero, indicates the sector number in the reserved area
* of the volume of a copy of the boot record. Usually 6.
* No value other than 6 is recommended.
*/
uint16_t fat32BackBootBlock;
/**
* Reserved for future expansion. Code that formats FAT32 volumes
* should always set all of the bytes of this field to 0.
*/
uint8_t fat32Reserved[12];
};
/** Type name for biosParmBlock */
typedef struct biosParmBlock bpb_t;
//------------------------------------------------------------------------------
/**
* \struct fat32BootSector
*
* \brief Boot sector for a FAT16 or FAT32 volume.
*
*/
struct fat32BootSector {
/** X86 jmp to boot program */
uint8_t jmpToBootCode[3];
/** informational only - don't depend on it */
char oemName[8];
/** BIOS Parameter Block */
bpb_t bpb;
/** for int0x13 use value 0X80 for hard drive */
uint8_t driveNumber;
/** used by Windows NT - should be zero for FAT */
uint8_t reserved1;
/** 0X29 if next three fields are valid */
uint8_t bootSignature;
/** usually generated by combining date and time */
uint32_t volumeSerialNumber;
/** should match volume label in root dir */
char volumeLabel[11];
/** informational only - don't depend on it */
char fileSystemType[8];
/** X86 boot code */
uint8_t bootCode[420];
/** must be 0X55 */
uint8_t bootSectorSig0;
/** must be 0XAA */
uint8_t bootSectorSig1;
};
//------------------------------------------------------------------------------
// End Of Chain values for FAT entries
/** FAT16 end of chain value used by Microsoft. */
uint16_t const FAT16EOC = 0XFFFF;
/** Minimum value for FAT16 EOC. Use to test for EOC. */
uint16_t const FAT16EOC_MIN = 0XFFF8;
/** FAT32 end of chain value used by Microsoft. */
uint32_t const FAT32EOC = 0X0FFFFFFF;
/** Minimum value for FAT32 EOC. Use to test for EOC. */
uint32_t const FAT32EOC_MIN = 0X0FFFFFF8;
/** Mask a for FAT32 entry. Entries are 28 bits. */
uint32_t const FAT32MASK = 0X0FFFFFFF;
/** Type name for fat32BootSector */
typedef struct fat32BootSector fbs_t;
//------------------------------------------------------------------------------
/**
* \struct directoryEntry
* \brief FAT short directory entry
*
* Short means short 8.3 name, not the entry size.
*
* Date Format. A FAT directory entry date stamp is a 16-bit field that is
* basically a date relative to the MS-DOS epoch of 01/01/1980. Here is the
* format (bit 0 is the LSB of the 16-bit word, bit 15 is the MSB of the
* 16-bit word):
*
* Bits 9-15: Count of years from 1980, valid value range 0-127
* inclusive (1980-2107).
*
* Bits 5-8: Month of year, 1 = January, valid value range 1-12 inclusive.
*
* Bits 0-4: Day of month, valid value range 1-31 inclusive.
*
* Time Format. A FAT directory entry time stamp is a 16-bit field that has
* a granularity of 2 seconds. Here is the format (bit 0 is the LSB of the
* 16-bit word, bit 15 is the MSB of the 16-bit word).
*
* Bits 11-15: Hours, valid value range 0-23 inclusive.
*
* Bits 5-10: Minutes, valid value range 0-59 inclusive.
*
* Bits 0-4: 2-second count, valid value range 0-29 inclusive (0 - 58 seconds).
*
* The valid time range is from Midnight 00:00:00 to 23:59:58.
*/
struct directoryEntry {
/**
* Short 8.3 name.
* The first eight bytes contain the file name with blank fill.
* The last three bytes contain the file extension with blank fill.
*/
uint8_t name[11];
/** Entry attributes.
*
* The upper two bits of the attribute byte are reserved and should
* always be set to 0 when a file is created and never modified or
* looked at after that. See defines that begin with DIR_ATT_.
*/
uint8_t attributes;
/**
* Reserved for use by Windows NT. Set value to 0 when a file is
* created and never modify or look at it after that.
*/
uint8_t reservedNT;
/**
* The granularity of the seconds part of creationTime is 2 seconds
* so this field is a count of tenths of a second and its valid
* value range is 0-199 inclusive. (WHG note - seems to be hundredths)
*/
uint8_t creationTimeTenths;
/** Time file was created. */
uint16_t creationTime;
/** Date file was created. */
uint16_t creationDate;
/**
* Last access date. Note that there is no last access time, only
* a date. This is the date of last read or write. In the case of
* a write, this should be set to the same date as lastWriteDate.
*/
uint16_t lastAccessDate;
/**
* High word of this entry's first cluster number (always 0 for a
* FAT12 or FAT16 volume).
*/
uint16_t firstClusterHigh;
/** Time of last write. File creation is considered a write. */
uint16_t lastWriteTime;
/** Date of last write. File creation is considered a write. */
uint16_t lastWriteDate;
/** Low word of this entry's first cluster number. */
uint16_t firstClusterLow;
/** 32-bit unsigned holding this file's size in bytes. */
uint32_t fileSize;
};
//------------------------------------------------------------------------------
// Definitions for directory entries
//
/** Type name for directoryEntry */
typedef struct directoryEntry dir_t;
/** escape for name[0] = 0XE5 */
uint8_t const DIR_NAME_0XE5 = 0X05;
/** name[0] value for entry that is free after being "deleted" */
uint8_t const DIR_NAME_DELETED = 0XE5;
/** name[0] value for entry that is free and no allocated entries follow */
uint8_t const DIR_NAME_FREE = 0X00;
/** file is read-only */
uint8_t const DIR_ATT_READ_ONLY = 0X01;
/** File should hidden in directory listings */
uint8_t const DIR_ATT_HIDDEN = 0X02;
/** Entry is for a system file */
uint8_t const DIR_ATT_SYSTEM = 0X04;
/** Directory entry contains the volume label */
uint8_t const DIR_ATT_VOLUME_ID = 0X08;
/** Entry is for a directory */
uint8_t const DIR_ATT_DIRECTORY = 0X10;
/** Old DOS archive bit for backup support */
uint8_t const DIR_ATT_ARCHIVE = 0X20;
/** Test value for long name entry. Test is
(d->attributes & DIR_ATT_LONG_NAME_MASK) == DIR_ATT_LONG_NAME. */
uint8_t const DIR_ATT_LONG_NAME = 0X0F;
/** Test mask for long name entry */
uint8_t const DIR_ATT_LONG_NAME_MASK = 0X3F;
/** defined attribute bits */
uint8_t const DIR_ATT_DEFINED_BITS = 0X3F;
/** Directory entry is part of a long name */
static inline uint8_t DIR_IS_LONG_NAME(const dir_t* dir) {
return (dir->attributes & DIR_ATT_LONG_NAME_MASK) == DIR_ATT_LONG_NAME;
}
/** Mask for file/subdirectory tests */
uint8_t const DIR_ATT_FILE_TYPE_MASK = (DIR_ATT_VOLUME_ID | DIR_ATT_DIRECTORY);
/** Directory entry is for a file */
static inline uint8_t DIR_IS_FILE(const dir_t* dir) {
return (dir->attributes & DIR_ATT_FILE_TYPE_MASK) == 0;
}
/** Directory entry is for a subdirectory */
static inline uint8_t DIR_IS_SUBDIR(const dir_t* dir) {
return (dir->attributes & DIR_ATT_FILE_TYPE_MASK) == DIR_ATT_DIRECTORY;
}
/** Directory entry is for a file or subdirectory */
static inline uint8_t DIR_IS_FILE_OR_SUBDIR(const dir_t* dir) {
return (dir->attributes & DIR_ATT_VOLUME_ID) == 0;
}
#endif // FatStructs_h

View File

@ -0,0 +1,100 @@
#include "ArduinoRobot.h"
#include "SquawkSD.h"
#include "Fat16.h"
SQUAWK_CONSTRUCT_ISR(SQUAWK_PWM_PIN5);
void RobotControl::beginSpeaker(uint16_t frequency){
SquawkSynth::begin(frequency);
SquawkSynth::play();
osc[2].vol = 0x7F;
}
void RobotControl::playNote(byte period, word length, char modifier) {
// Modifier . makes note length 2/3
if(modifier == '.') length = (length * 2) / 3;
// Set up the play frequency, 352800 is [sample_rate]=44100 * [tuning]=8.0
osc[2].freq = 352800 / period;
// Delay, silence, delay
delay(length);
osc[2].freq = 0;
delay(length);
}
void RobotControl::playMelody(char* script){
// Find length of play string
word length = strlen(script);
// Set the default note time
word time = 500;
// Loop through each character in the play string
for(int n = 0; n < length; n++) {
// Fetch the character AFTER the current one - it may contain a modifier
char modifier = script[n + 1];
// Fetch the current character and branch accordingly
switch(script[n]) {
// Notes
case 'c': playNote(214, time, modifier); break; // Play a C
case 'C': playNote(202, time, modifier); break; // Play a C#
case 'd': playNote(190, time, modifier); break; // Play a D
case 'D': playNote(180, time, modifier); break; // Play a D#
case 'e': playNote(170, time, modifier); break; // Play an F
case 'f': playNote(160, time, modifier); break; // Play an F
case 'F': playNote(151, time, modifier); break; // Play an F#
case 'g': playNote(143, time, modifier); break; // Play a G
case 'G': playNote(135, time, modifier); break; // Play a G#
case 'a': playNote(127, time, modifier); break; // Play an A
case 'A': playNote(120, time, modifier); break; // Play an A#
case 'b': playNote(113, time, modifier); break; // Play a B
// Delay
case '-': playNote(0, time, modifier); break; // Play a quiet note
// Note lengths
case '1': time = 1000; break; // Full note
case '2': time = 500; break; // Half note
case '4': time = 250; break; // Quarter note
case '8': time = 50; break; // Eigth note
// Modifier '.' makes note length 2/3
}
}
}
void RobotControl::beep(int beep_length){
char scr1[]="8F";
char scr2[]="8Fe";
char scr3[]="1F";
switch (beep_length)
{
case BEEP_SIMPLE:
default:
playMelody(scr1);
break;
case BEEP_DOUBLE:
playMelody(scr2);
break;
case BEEP_LONG:
playMelody(scr3);
}
}
void RobotControl::tempoWrite(int tempo){
SquawkSynthSD::tempo(tempo);
}
void RobotControl::tuneWrite(float tune){
SquawkSynthSD::tune(tune);
}
void RobotControl::playFile(char* filename){
melody.open(filename,O_READ);
SquawkSynthSD::play(melody);
}
void RobotControl::stopPlayFile(){
melody.close();
}

View File

@ -0,0 +1 @@
#include "ArduinoRobot.h" #include "EasyTransfer2.h" void RobotControl::motorsStop(){ messageOut.writeByte(COMMAND_MOTORS_STOP); messageOut.sendData(); } void RobotControl::motorsWrite(int speedLeft,int speedRight){ messageOut.writeByte(COMMAND_RUN); messageOut.writeInt(speedLeft); messageOut.writeInt(speedRight); messageOut.sendData(); } void RobotControl::motorsWritePct(int speedLeftPct, int speedRightPct){ int16_t speedLeft=255*speedLeftPct; int16_t speedRight=255*speedRightPct; motorsWrite(speedLeft,speedRight); } void RobotControl::pointTo(int angle){ int target=angle; uint8_t speed=80; target=target%360; if(target<0){ target+=360; } int direction=angle; while(1){ if(direction>0){ motorsWrite(speed,-speed);//right delay(10); }else{ motorsWrite(-speed,speed);//left delay(10); } int currentAngle=compassRead(); int diff=target-currentAngle; if(diff<-180) diff += 360; else if(diff> 180) diff -= 360; direction=-diff; if(abs(diff)<5){ motorsWrite(0,0); return; } } } void RobotControl::turn(int angle){ int originalAngle=compassRead(); int target=originalAngle+angle; pointTo(target); /*uint8_t speed=80; target=target%360; if(target<0){ target+=360; } int direction=angle; while(1){ if(direction>0){ motorsWrite(speed,speed);//right delay(10); }else{ motorsWrite(-speed,-speed);//left delay(10); } int currentAngle=compassRead(); int diff=target-currentAngle; if(diff<-180) diff += 360; else if(diff> 180) diff -= 360; direction=-diff; if(abs(diff)<5){ motorsWrite(0,0); return; } }*/ } void RobotControl::moveForward(int speed){ motorsWrite(speed,speed); } void RobotControl::moveBackward(int speed){ motorsWrite(speed,speed); } void RobotControl::turnLeft(int speed){ motorsWrite(speed,255); } void RobotControl::turnRight(int speed){ motorsWrite(255,speed); } /* int RobotControl::getIRrecvResult(){ messageOut.writeByte(COMMAND_GET_IRRECV); messageOut.sendData(); //delay(10); while(!messageIn.receiveData()); if(messageIn.readByte()==COMMAND_GET_IRRECV_RE){ return messageIn.readInt(); } return -1; } */

View File

@ -0,0 +1,37 @@
#include "Multiplexer.h"
void Multiplexer::begin(uint8_t* selectors, uint8_t Z, uint8_t length){
for(uint8_t i=0;i<length;i++){
this->selectors[i]=selectors[i];
pinMode(selectors[i],OUTPUT);
}
this->length=length;
this->pin_Z=Z;
pinMode(pin_Z,INPUT);
}
void Multiplexer::selectPin(uint8_t num){
for(uint8_t i=0;i<length;i++){
//Serial.print(bitRead(num,i));
digitalWrite(selectors[i],bitRead(num,i));
}
//Serial.println("");
}
int Multiplexer::getAnalogValue(){
return analogRead(pin_Z);
}
bool Multiplexer::getDigitalValue(){
return digitalRead(pin_Z);
}
int Multiplexer::getAnalogValueAt(uint8_t num){
selectPin(num);
return getAnalogValue();
}
bool Multiplexer::getDigitalValueAt(uint8_t num){
selectPin(num);
return getDigitalValue();
}

View File

@ -0,0 +1,24 @@
#ifndef Multiplexer_h
#define Multiplexer_h
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
class Multiplexer{
public:
void begin(uint8_t* selectors, uint8_t Z, uint8_t length);
void selectPin(uint8_t num);
int getAnalogValue();
int getAnalogValueAt(uint8_t num);
bool getDigitalValue();
bool getDigitalValueAt(uint8_t num);
private:
uint8_t selectors[4];
uint8_t pin_Z;
uint8_t length;
};
#endif

View File

@ -0,0 +1,22 @@
#include <ArduinoRobot.h>
void RobotControl::beginSD(){
card.init();
file.init(&card);
melody.init(&card);
}
void RobotControl::_enableSD(){
DDRB = DDRB & 0xDF; //pinMode(CS_LCD,INPUT);
DDRB = DDRB | 0x10; //pinMode(CS_SD,OUTPUT);
}
/*
void RobotControl::sdTest(){
file.open("Infor.txt",O_READ);
uint8_t buf[7];
char n;
while ((n = file.read(buf, sizeof(buf))) > 0) {
for (uint8_t i = 0; i < n; i++) Serial.write(buf[i]);
}
}*/

View File

@ -0,0 +1,66 @@
/*
* Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
* SPI Master library for arduino.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/
#include "pins_arduino.h"
#include "SPI.h"
SPIClass SPI;
void SPIClass::begin() {
// Set SS to high so a connected chip will be "deselected" by default
digitalWrite(SS, HIGH);
// When the SS pin is set as OUTPUT, it can be used as
// a general purpose output port (it doesn't influence
// SPI operations).
pinMode(SS, OUTPUT);
// Warning: if the SS pin ever becomes a LOW INPUT then SPI
// automatically switches to Slave, so the data direction of
// the SS pin MUST be kept as OUTPUT.
SPCR |= _BV(MSTR);
SPCR |= _BV(SPE);
// Set direction register for SCK and MOSI pin.
// MISO pin automatically overrides to INPUT.
// By doing this AFTER enabling SPI, we avoid accidentally
// clocking in a single bit since the lines go directly
// from "input" to SPI control.
// http://code.google.com/p/arduino/issues/detail?id=888
pinMode(SCK, OUTPUT);
pinMode(MOSI, OUTPUT);
}
void SPIClass::end() {
SPCR &= ~_BV(SPE);
}
void SPIClass::setBitOrder(uint8_t bitOrder)
{
if(bitOrder == LSBFIRST) {
SPCR |= _BV(DORD);
} else {
SPCR &= ~(_BV(DORD));
}
}
void SPIClass::setDataMode(uint8_t mode)
{
SPCR = (SPCR & ~SPI_MODE_MASK) | mode;
}
void SPIClass::setClockDivider(uint8_t rate)
{
SPCR = (SPCR & ~SPI_CLOCK_MASK) | (rate & SPI_CLOCK_MASK);
SPSR = (SPSR & ~SPI_2XCLOCK_MASK) | ((rate >> 2) & SPI_2XCLOCK_MASK);
}

View File

@ -0,0 +1,70 @@
/*
* Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
* SPI Master library for arduino.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/
#ifndef _SPI_H_INCLUDED
#define _SPI_H_INCLUDED
#include <stdio.h>
#include <Arduino.h>
#include <avr/pgmspace.h>
#define SPI_CLOCK_DIV4 0x00
#define SPI_CLOCK_DIV16 0x01
#define SPI_CLOCK_DIV64 0x02
#define SPI_CLOCK_DIV128 0x03
#define SPI_CLOCK_DIV2 0x04
#define SPI_CLOCK_DIV8 0x05
#define SPI_CLOCK_DIV32 0x06
//#define SPI_CLOCK_DIV64 0x07
#define SPI_MODE0 0x00
#define SPI_MODE1 0x04
#define SPI_MODE2 0x08
#define SPI_MODE3 0x0C
#define SPI_MODE_MASK 0x0C // CPOL = bit 3, CPHA = bit 2 on SPCR
#define SPI_CLOCK_MASK 0x03 // SPR1 = bit 1, SPR0 = bit 0 on SPCR
#define SPI_2XCLOCK_MASK 0x01 // SPI2X = bit 0 on SPSR
class SPIClass {
public:
inline static byte transfer(byte _data);
// SPI Configuration methods
inline static void attachInterrupt();
inline static void detachInterrupt(); // Default
static void begin(); // Default
static void end();
static void setBitOrder(uint8_t);
static void setDataMode(uint8_t);
static void setClockDivider(uint8_t);
};
extern SPIClass SPI;
byte SPIClass::transfer(byte _data) {
SPDR = _data;
while (!(SPSR & _BV(SPIF)))
;
return SPDR;
}
void SPIClass::attachInterrupt() {
SPCR |= _BV(SPIE);
}
void SPIClass::detachInterrupt() {
SPCR &= ~_BV(SPIE);
}
#endif

View File

@ -0,0 +1,279 @@
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include <avr/pgmspace.h>
#if ARDUINO < 100
#include <WProgram.h>
#else // ARDUINO
#include <Arduino.h>
#endif // ARDUINO
#include <Fat16Config.h>
#include <SdCard.h>
//------------------------------------------------------------------------------
// r1 status values
uint8_t const R1_READY_STATE = 0;
uint8_t const R1_IDLE_STATE = 1;
// start data token for read or write
uint8_t const DATA_START_BLOCK = 0XFE;
// data response tokens for write block
uint8_t const DATA_RES_MASK = 0X1F;
uint8_t const DATA_RES_ACCEPTED = 0X05;
uint8_t const DATA_RES_CRC_ERROR = 0X0B;
uint8_t const DATA_RES_WRITE_ERROR = 0X0D;
//
// stop compiler from inlining where speed optimization is not required
#define STATIC_NOINLINE static __attribute__((noinline))
//------------------------------------------------------------------------------
// SPI static functions
//
// clock byte in
STATIC_NOINLINE uint8_t spiRec(void) {
SPDR = 0xff;
while (!(SPSR & (1 << SPIF)));
return SPDR;
}
// clock byte out
STATIC_NOINLINE void spiSend(uint8_t b) {
SPDR = b;
while (!(SPSR & (1 << SPIF)));
}
//------------------------------------------------------------------------------
// wait for card to go not busy
// return false if timeout
static uint8_t waitForToken(uint8_t token, uint16_t timeoutMillis) {
uint16_t t0 = millis();
while (spiRec() != token) {
if (((uint16_t)millis() - t0) > timeoutMillis) return false;
}
return true;
}
//------------------------------------------------------------------------------
uint8_t SdCard::cardCommand(uint8_t cmd, uint32_t arg) {
uint8_t r1;
// select card
chipSelectLow();
// wait if busy
waitForToken(0XFF, SD_COMMAND_TIMEOUT);
// send command
spiSend(cmd | 0x40);
// send argument
for (int8_t s = 24; s >= 0; s -= 8) spiSend(arg >> s);
// send CRC - must send valid CRC for CMD0
spiSend(cmd == CMD0 ? 0x95 : 0XFF);
// wait for not busy
for (uint8_t retry = 0; (0X80 & (r1 = spiRec())) && retry != 0XFF; retry++);
return r1;
}
//------------------------------------------------------------------------------
uint8_t SdCard::cardAcmd(uint8_t cmd, uint32_t arg) {
cardCommand(CMD55, 0);
return cardCommand(cmd, arg);
}
//==============================================================================
// SdCard member functions
//------------------------------------------------------------------------------
/**
* Determine the size of a standard SD flash memory card
* \return The number of 512 byte data blocks in the card
*/
uint32_t SdCard::cardSize(void) {
uint16_t c_size;
csd_t csd;
if (!readReg(CMD9, &csd)) return 0;
uint8_t read_bl_len = csd.read_bl_len;
c_size = (csd.c_size_high << 10) | (csd.c_size_mid << 2) | csd.c_size_low;
uint8_t c_size_mult = (csd.c_size_mult_high << 1) | csd.c_size_mult_low;
return (uint32_t)(c_size+1) << (c_size_mult + read_bl_len - 7);
}
//------------------------------------------------------------------------------
void SdCard::chipSelectHigh(void) {
digitalWrite(chipSelectPin_, HIGH);
// make sure MISO goes high impedance
spiSend(0XFF);
}
//------------------------------------------------------------------------------
void SdCard::chipSelectLow(void) {
// Enable SPI, Master, clock rate F_CPU/4
SPCR = (1 << SPE) | (1 << MSTR);
// Doubled Clock Frequency to F_CPU/2 unless speed_ is nonzero
if (!speed_) SPSR |= (1 << SPI2X);
digitalWrite(chipSelectPin_, LOW);
}
//------------------------------------------------------------------------------
void SdCard::error(uint8_t code, uint8_t data) {
errorData = data;
error(code);
}
//------------------------------------------------------------------------------
void SdCard::error(uint8_t code) {
errorCode = code;
chipSelectHigh();
}
//------------------------------------------------------------------------------
/**
* Initialize a SD flash memory card.
*
* \param[in] speed Set SPI Frequency to F_CPU/2 if speed = 0 or F_CPU/4
* if speed = 1.
* \param[in] chipSelectPin SD chip select pin number.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*
*/
uint8_t SdCard::init(uint8_t speed, uint8_t chipSelectPin) {
if (speed > 1) {
error(SD_ERROR_SPI_SPEED);
return false;
}
speed_ = speed;
chipSelectPin_ = chipSelectPin;
errorCode = 0;
uint8_t r;
// 16-bit init start time allows over a minute
uint16_t t0 = (uint16_t)millis();
pinMode(chipSelectPin_, OUTPUT);
digitalWrite(chipSelectPin_, HIGH);
pinMode(SPI_MISO_PIN, INPUT);
pinMode(SPI_SS_PIN, OUTPUT);
pinMode(SPI_MOSI_PIN, OUTPUT);
pinMode(SPI_SCK_PIN, OUTPUT);
// Enable SPI, Master, clock rate F_CPU/128
SPCR = (1 << SPE) | (1 << MSTR) | (1 << SPR1) | (1 << SPR0);
// must supply min of 74 clock cycles with CS high.
for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);
digitalWrite(chipSelectPin_, LOW);
// command to go idle in SPI mode
while ((r = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
error(SD_ERROR_CMD0, r);
return false;
}
}
// start initialization and wait for completed initialization
while ((r = cardAcmd(ACMD41, 0)) != R1_READY_STATE) {
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
error(SD_ERROR_ACMD41, r);
return false;
}
}
chipSelectHigh();
return true;
}
//------------------------------------------------------------------------------
/**
* Reads a 512 byte block from a storage device.
*
* \param[in] blockNumber Logical block to be read.
* \param[out] dst Pointer to the location that will receive the data.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t SdCard::readBlock(uint32_t blockNumber, uint8_t* dst) {
if (cardCommand(CMD17, blockNumber << 9)) {
error(SD_ERROR_CMD17);
return false;
}
return readTransfer(dst, 512);
}
//------------------------------------------------------------------------------
uint8_t SdCard::readReg(uint8_t cmd, void* buf) {
uint8_t* dst = reinterpret_cast<uint8_t*>(buf);
if (cardCommand(cmd, 0)) {
chipSelectHigh();
return false;
}
return readTransfer(dst, 16);
}
//------------------------------------------------------------------------------
uint8_t SdCard::readTransfer(uint8_t* dst, uint16_t count) {
// wait for start of data
if (!waitForToken(DATA_START_BLOCK, SD_READ_TIMEOUT)) {
error(SD_ERROR_READ_TIMEOUT);
}
// start first spi transfer
SPDR = 0XFF;
for (uint16_t i = 0; i < count; i++) {
while (!(SPSR & (1 << SPIF)));
dst[i] = SPDR;
SPDR = 0XFF;
}
// wait for first CRC byte
while (!(SPSR & (1 << SPIF)));
spiRec(); // second CRC byte
chipSelectHigh();
return true;
}
//------------------------------------------------------------------------------
/**
* Writes a 512 byte block to a storage device.
*
* \param[in] blockNumber Logical block to be written.
* \param[in] src Pointer to the location of the data to be written.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t SdCard::writeBlock(uint32_t blockNumber, const uint8_t* src) {
uint32_t address = blockNumber << 9;
#if SD_PROTECT_BLOCK_ZERO
// don't allow write to first block
if (address == 0) {
error(SD_ERROR_BLOCK_ZERO_WRITE);
return false;
}
#endif // SD_PROTECT_BLOCK_ZERO
if (cardCommand(CMD24, address)) {
error(SD_ERROR_CMD24);
return false;
}
// optimize write loop
SPDR = DATA_START_BLOCK;
for (uint16_t i = 0; i < 512; i++) {
while (!(SPSR & (1 << SPIF)));
SPDR = src[i];
}
while (!(SPSR & (1 << SPIF))); // wait for last data byte
spiSend(0xFF); // dummy crc
spiSend(0xFF); // dummy crc
// get write response
uint8_t r1 = spiRec();
if ((r1 & DATA_RES_MASK) != DATA_RES_ACCEPTED) {
error(SD_ERROR_WRITE_RESPONSE, r1);
return false;
}
// wait for card to complete write programming
if (!waitForToken(0XFF, SD_WRITE_TIMEOUT)) {
error(SD_ERROR_WRITE_TIMEOUT);
}
chipSelectHigh();
return true;
}

View File

@ -0,0 +1,192 @@
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef SdCard_h
#define SdCard_h
/**
* \file
* SdCard class
*/
#include <SdInfo.h>
//------------------------------------------------------------------------------
// Warning only SD_CHIP_SELECT_PIN, the SD card select pin, may be redefined.
// define hardware SPI pins
#if defined(__AVR_ATmega168__)\
||defined(__AVR_ATmega168P__)\
||defined(__AVR_ATmega328P__)
// 168 and 328 Arduinos
/** Slave Select pin */
uint8_t const SPI_SS_PIN = 10;
/** Master Out Slave In pin */
uint8_t const SPI_MOSI_PIN = 11;
/** Master In Slave Out pin */
uint8_t const SPI_MISO_PIN = 12;
/** Serial Clock */
uint8_t const SPI_SCK_PIN = 13;
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega1280__)\
|| defined(__AVR_ATmega2560__)
// pins for Arduino Mega
uint8_t const SPI_SS_PIN = 53;
uint8_t const SPI_MOSI_PIN = 51;
uint8_t const SPI_MISO_PIN = 50;
uint8_t const SPI_SCK_PIN = 52;
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega644P__)\
|| defined(__AVR_ATmega644__)\
|| defined(__AVR_ATmega1284P__)
// pins for Sanguino
uint8_t const SPI_SS_PIN = 4;
uint8_t const SPI_MOSI_PIN = 5;
uint8_t const SPI_MISO_PIN = 6;
uint8_t const SPI_SCK_PIN = 7;
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega32U4__)
// pins for Teensy 2.0
uint8_t const SPI_SS_PIN = 8;
uint8_t const SPI_MOSI_PIN = 16;
uint8_t const SPI_MISO_PIN = 14;
uint8_t const SPI_SCK_PIN = 15;
//------------------------------------------------------------------------------
#elif defined(__AVR_AT90USB646__)\
|| defined(__AVR_AT90USB1286__)
// pins for Teensy++ 1.0 & 2.0
uint8_t const SPI_SS_PIN = 20;
uint8_t const SPI_MOSI_PIN = 22;
uint8_t const SPI_MISO_PIN = 23;
uint8_t const SPI_SCK_PIN = 21;
//------------------------------------------------------------------------------
#else // SPI pins
#error unknown CPU
#endif // SPI pins
//------------------------------------------------------------------------------
/**
* SD Chip Select pin
*
* Warning if this pin is redefined the hardware SS pin will be enabled
* as an output by init(). An avr processor will not function as an SPI
* master unless SS is set to output mode.
*
* For example to set SD_CHIP_SELECT_PIN to 8 for the SparkFun microSD shield:
* uint8_t const SD_CHIP_SELECT_PIN = 8;
*
* The default chip select pin for the SD card is SS.
*/
uint8_t const SD_CHIP_SELECT_PIN = SPI_SS_PIN;
//------------------------------------------------------------------------------
/** command timeout ms */
uint16_t const SD_COMMAND_TIMEOUT = 300;
/** init timeout ms */
uint16_t const SD_INIT_TIMEOUT = 2000;
/** read timeout ms */
uint16_t const SD_READ_TIMEOUT = 300;
/** write timeout ms */
uint16_t const SD_WRITE_TIMEOUT = 600;
//------------------------------------------------------------------------------
// error codes
/** Card did not go into SPI mode */
uint8_t const SD_ERROR_CMD0 = 1;
/** Card did not go ready */
uint8_t const SD_ERROR_ACMD41 = 2;
/** Write command not accepted */
uint8_t const SD_ERROR_CMD24 = 3;
/** Read command not accepted */
uint8_t const SD_ERROR_CMD17 = 4;
/** timeout waiting for read data */
uint8_t const SD_ERROR_READ_TIMEOUT = 5;
/** write error occurred */
uint8_t const SD_ERROR_WRITE_RESPONSE = 6;
/** timeout waiting for write status */
uint8_t const SD_ERROR_WRITE_TIMEOUT = 7;
/** attempt to write block zero */
uint8_t const SD_ERROR_BLOCK_ZERO_WRITE = 8;
/** card returned an error to a CMD13 status check after a write */
uint8_t const SD_ERROR_WRITE_PROGRAMMING = 9;
/** invalid SPI speed in init() call */
uint8_t const SD_ERROR_SPI_SPEED = 10;
//------------------------------------------------------------------------------
// SD command codes
/** SEND OPERATING CONDITIONS */
uint8_t const ACMD41 = 0X29;
/** GO_IDLE_STATE - init card in spi mode if CS low */
uint8_t const CMD0 = 0X00;
/** SEND_CSD - Card Specific Data */
uint8_t const CMD9 = 0X09;
/** SEND_CID - Card IDentification */
uint8_t const CMD10 = 0X0A;
/** SEND_STATUS - read the card status register */
uint8_t const CMD13 = 0X0D;
/** READ_BLOCK */
uint8_t const CMD17 = 0X11;
/** WRITE_BLOCK */
uint8_t const CMD24 = 0X18;
/** APP_CMD - escape for application specific command */
uint8_t const CMD55 = 0X37;
//------------------------------------------------------------------------------
/**
* \class SdCard
* \brief Hardware access class for SD flash cards
*
* Supports raw access to a standard SD flash memory card.
*
*/
class SdCard {
public:
/** Code for a SD error. See SdCard.h for definitions. */
uint8_t errorCode;
/** Data that may be helpful in determining the cause of an error */
uint8_t errorData;
uint32_t cardSize(void);
/**
* Initialize an SD flash memory card with default clock rate and chip
* select pin. See SdCard::init(uint8_t sckRateID, uint8_t chipSelectPin).
*/
uint8_t init(void) {
return init(0, SD_CHIP_SELECT_PIN);
}
/**
* Initialize an SD flash memory card with the selected SPI clock rate
* and the default SD chip select pin.
* See SdCard::init(uint8_t slow, uint8_t chipSelectPin).
*/
uint8_t init(uint8_t speed) {
return init(speed, SD_CHIP_SELECT_PIN);
}
uint8_t init(uint8_t speed, uint8_t chipselectPin);
uint8_t readBlock(uint32_t block, uint8_t* dst);
/** Read the CID register which contains info about the card.
* This includes Manufacturer ID, OEM ID, product name, version,
* serial number, and manufacturing date. */
uint8_t readCID(cid_t* cid) {
return readReg(CMD10, cid);
}
uint8_t writeBlock(uint32_t block, const uint8_t* src);
private:
uint8_t cardAcmd(uint8_t cmd, uint32_t arg);
uint8_t cardCommand(uint8_t cmd, uint32_t arg);
uint8_t chipSelectPin_;
uint8_t speed_;
void chipSelectHigh(void);
void chipSelectLow(void);
void error(uint8_t code, uint8_t data);
void error(uint8_t code);
uint8_t readReg(uint8_t cmd, void* buf);
uint8_t readTransfer(uint8_t* dst, uint16_t count);
};
#endif // SdCard_h

View File

@ -0,0 +1,117 @@
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef SdInfo_h
#define SdInfo_h
#include <stdint.h>
// Based on the document:
//
// SD Specifications
// Part 1
// Physical Layer
// Simplified Specification
// Version 2.00
// September 25, 2006
//
// www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
//
// Card IDentification (CID) register
typedef struct CID {
// byte 0
uint8_t mid; // Manufacturer ID
// byte 1-2
char oid[2]; // OEM/Application ID
// byte 3-7
char pnm[5]; // Product name
// byte 8
unsigned prv_m : 4; // Product revision n.m
unsigned prv_n : 4;
// byte 9-12
uint32_t psn; // Product serial number
// byte 13
unsigned mdt_year_high : 4; // Manufacturing date
unsigned reserved : 4;
// byte 14
unsigned mdt_month : 4;
unsigned mdt_year_low :4;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
}cid_t;
// Card-Specific Data register
typedef struct CSD {
// byte 0
unsigned reserved1 : 6;
unsigned csd_ver : 2;
// byte 1
uint8_t taac;
// byte 2
uint8_t nsac;
// byte 3
uint8_t tran_speed;
// byte 4
uint8_t ccc_high;
// byte 5
unsigned read_bl_len : 4;
unsigned ccc_low : 4;
// byte 6
unsigned c_size_high : 2;
unsigned reserved2 : 2;
unsigned dsr_imp : 1;
unsigned read_blk_misalign :1;
unsigned write_blk_misalign : 1;
unsigned read_bl_partial : 1;
// byte 7
uint8_t c_size_mid;
// byte 8
unsigned vdd_r_curr_max : 3;
unsigned vdd_r_curr_min : 3;
unsigned c_size_low :2;
// byte 9
unsigned c_size_mult_high : 2;
unsigned vdd_w_cur_max : 3;
unsigned vdd_w_curr_min : 3;
// byte 10
unsigned sector_size_high : 6;
unsigned erase_blk_en : 1;
unsigned c_size_mult_low : 1;
// byte 11
unsigned wp_grp_size : 7;
unsigned sector_size_low : 1;
// byte 12
unsigned write_bl_len_high : 2;
unsigned r2w_factor : 3;
unsigned reserved3 : 2;
unsigned wp_grp_enable : 1;
// byte 13
unsigned reserved4 : 5;
unsigned write_partial : 1;
unsigned write_bl_len_low : 2;
// byte 14
unsigned reserved5: 2;
unsigned file_format : 2;
unsigned tmp_write_protect : 1;
unsigned perm_write_protect : 1;
unsigned copy : 1;
unsigned file_format_grp : 1;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
}csd_t;
#endif // SdInfo_h

View File

@ -0,0 +1,274 @@
#include "ArduinoRobot.h"
#include "Multiplexer.h"
#include "Wire.h"
bool RobotControl::digitalRead(uint8_t port){
uint8_t type=_getTypeCode(port);
switch(type){
case TYPE_TOP_TK:
return _digitalReadTopMux(port);
break;
case TYPE_TOP_TKD:
return _digitalReadTopPin(port);
break;
case TYPE_BOTTOM_TK:
return _requestDigitalRead(port);
break;
}
}
int RobotControl::analogRead(uint8_t port){
uint8_t type=_getTypeCode(port);
switch(type){
case TYPE_TOP_TK:
return _analogReadTopMux(port);
break;
case TYPE_TOP_TKD:
return _analogReadTopPin(port);
break;
case TYPE_BOTTOM_TK:
return _requestAnalogRead(port);
break;
}
}
void RobotControl::digitalWrite(uint8_t port, bool value){
uint8_t type=_getTypeCode(port);
switch(type){
case TYPE_TOP_TK:
//Top TKs can't use digitalWrite?
break;
case TYPE_TOP_TKD:
_digitalWriteTopPin(port, value);
break;
case TYPE_BOTTOM_TK:
_requestDigitalWrite(port, value);
break;
}
}
void RobotControl::analogWrite(uint8_t port, uint8_t value){
if(port==TKD4)
::analogWrite(port,value);
}
uint8_t RobotControl::_getTypeCode(uint8_t port){
switch(port){
case TK0:
case TK1:
case TK2:
case TK3:
case TK4:
case TK5:
case TK6:
case TK7:
return TYPE_TOP_TK;
break;
case TKD0:
case TKD1:
case TKD2:
case TKD3:
case TKD4:
case TKD5:
case LED1:
return TYPE_TOP_TKD;
break;
case B_TK1:
case B_TK2:
case B_TK3:
case B_TK4:
return TYPE_BOTTOM_TK;
break;
}
}
uint8_t RobotControl::_portToTopMux(uint8_t port){
switch(port){
case TK0:
return 0;
case TK1:
return 1;
case TK2:
return 2;
case TK3:
return 3;
case TK4:
return 4;
case TK5:
return 5;
case TK6:
return 6;
case TK7:
return 7;
}
}
uint8_t RobotControl::_topDPortToAPort(uint8_t port){
switch(port){
case TKD0:
return A1;
case TKD1:
return A2;
case TKD2:
return A3;
case TKD3:
return A4;
case TKD4:
return A7;
case TKD5:
return A11;
}
}
int* RobotControl::parseMBDPort(uint8_t port){
//Serial.println(port);
switch(port){
case B_TK1:
return &motorBoardData._B_TK1;
case B_TK2:
return &motorBoardData._B_TK2;
case B_TK3:
return &motorBoardData._B_TK3;
case B_TK4:
return &motorBoardData._B_TK4;
/*
case B_IR0:
return &motorBoardData._B_IR0;
case B_IR1:
return &motorBoardData._B_IR1;
case B_IR2:
return &motorBoardData._B_IR2;
case B_IR3:
return &motorBoardData._B_IR3;
case B_IR4:
return &motorBoardData._B_IR4;*/
}
}
int RobotControl::get_motorBoardData(uint8_t port){
return *parseMBDPort(port);
}
void RobotControl::set_motorBoardData(uint8_t port, int data){
*parseMBDPort(port)=data;
}
bool RobotControl::_digitalReadTopMux(uint8_t port){
uint8_t num=_portToTopMux(port);
return Multiplexer::getDigitalValueAt(num);
}
int RobotControl::_analogReadTopMux(uint8_t port){
uint8_t num=_portToTopMux(port);
return Multiplexer::getAnalogValueAt(num);
}
bool RobotControl::_digitalReadTopPin(uint8_t port){
return ::digitalRead(port);
}
int RobotControl::_analogReadTopPin(uint8_t port){
uint8_t aPin=_topDPortToAPort(port);
return ::analogRead(aPin);
}
void RobotControl::_digitalWriteTopPin(uint8_t port, bool value){
::digitalWrite(port, value);
}
bool RobotControl::_requestDigitalRead(uint8_t port){
messageOut.writeByte(COMMAND_DIGITAL_READ);
messageOut.writeByte(port);//B_TK1 - B_TK4
messageOut.sendData();
delay(10);
if(messageIn.receiveData()){
//Serial.println("*************");
uint8_t cmd=messageIn.readByte();
//Serial.print("cmd: ");
//Serial.println(cmd);
if(!(cmd==COMMAND_DIGITAL_READ_RE))
return false;
uint8_t pt=messageIn.readByte(); //Bottom TK port codename
//Serial.print("pt: ");
//Serial.println(pt);
set_motorBoardData(pt,messageIn.readByte());
return get_motorBoardData(port);
}
}
int RobotControl::_requestAnalogRead(uint8_t port){
messageOut.writeByte(COMMAND_ANALOG_READ);
messageOut.writeByte(port);//B_TK1 - B_TK4
messageOut.sendData();
delay(10);
if(messageIn.receiveData()){
uint8_t cmd=messageIn.readByte();
//Serial.println("*************");
//Serial.print("cmd: ");
//Serial.println(cmd);
if(!(cmd==COMMAND_ANALOG_READ_RE))
return false;
uint8_t pt=messageIn.readByte();
//Serial.print("pt: ");
//Serial.println(pt);
set_motorBoardData(pt,messageIn.readInt());
return get_motorBoardData(port);
}
}
void RobotControl::_requestDigitalWrite(uint8_t selector, uint8_t value){
messageOut.writeByte(COMMAND_DIGITAL_WRITE);
messageOut.writeByte(selector);//B_TK1 - B_TK4
messageOut.writeByte(value);
messageOut.sendData();
}
void RobotControl::updateIR(){
messageOut.writeByte(COMMAND_READ_IR);
messageOut.sendData();
delay(10);
if(messageIn.receiveData()){
if(messageIn.readByte()==COMMAND_READ_IR_RE){
for(int i=0;i<5;i++){
IRarray[i]=messageIn.readInt();
}
}
}
}
int RobotControl::knobRead(){
return ::analogRead(POT);
}
int RobotControl::trimRead(){
messageOut.writeByte(COMMAND_READ_TRIM);
messageOut.sendData();
delay(10);
if(messageIn.receiveData()){
uint8_t cmd=messageIn.readByte();
if(!(cmd==COMMAND_READ_TRIM_RE))
return false;
uint16_t pt=messageIn.readInt();
return pt;
}
}
uint16_t RobotControl::compassRead(){
return Compass::getReading();
}
/*
void RobotControl::beginUR(uint8_t pinTrigger, uint8_t pinEcho){
pinTrigger_UR=pinTrigger;
pinEcho_UR=pinEcho;
pinMode(pinEcho_UR, INPUT);
pinMode(pinTrigger_UR, OUTPUT);
}
uint16_t RobotControl::getDistance(){
digitalWrite(pinTrigger_UR, LOW); // Set the trigger pin to low for 2uS
delayMicroseconds(2);
digitalWrite(pinTrigger_UR, HIGH); // Send a 10uS high to trigger ranging
delayMicroseconds(10);
digitalWrite(pinTrigger_UR, LOW); // Send pin low again
uint16_t distance = pulseIn(pinEcho_UR, HIGH); // Read in times pulse
distance= distance/58; // Calculate distance from time of pulse
return distance;
}*/

View File

@ -0,0 +1,601 @@
// Squawk Soft-Synthesizer Library for Arduino
//
// Davey Taylor 2013
// d.taylor@arduino.cc
#include "Squawk.h"
// Period range, used for clamping
#define PERIOD_MIN 28
#define PERIOD_MAX 3424
// Convenience macros
#define LO4(V) ((V) & 0x0F)
#define HI4(V) (((V) & 0xF0) >> 4)
#define MIN(A, B) ((A) < (B) ? (A) : (B))
#define MAX(A, B) ((A) > (B) ? (A) : (B))
#define FREQ(PERIOD) (tuning_long / (PERIOD))
// SquawkStream class for PROGMEM data
class StreamROM : public SquawkStream {
private:
uint8_t *p_start;
uint8_t *p_cursor;
public:
StreamROM(const uint8_t *p_rom = NULL) { p_start = p_cursor = (uint8_t*)p_rom; }
uint8_t read() { return pgm_read_byte(p_cursor++); }
void seek(size_t offset) { p_cursor = p_start + offset; }
};
// Oscillator memory
typedef struct {
uint8_t fxp;
uint8_t offset;
uint8_t mode;
} pto_t;
// Deconstructed cell
typedef struct {
uint8_t fxc, fxp, ixp;
} cel_t;
// Effect memory
typedef struct {
int8_t volume;
uint8_t port_speed;
uint16_t port_target;
bool glissando;
pto_t vibr;
pto_t trem;
uint16_t period;
uint8_t param;
} fxm_t;
// Locals
static uint8_t order_count;
static uint8_t order[64];
static uint8_t speed;
static uint8_t tick;
static uint8_t ix_row;
static uint8_t ix_order;
static uint8_t ix_nextrow;
static uint8_t ix_nextorder;
static uint8_t row_delay;
static fxm_t fxm[4];
static cel_t cel[4];
static uint32_t tuning_long;
static uint16_t sample_rate;
static float tuning = 1.0;
static uint16_t tick_rate = 50;
static SquawkStream *stream;
static uint16_t stream_base;
static StreamROM rom;
// Imports
extern intptr_t squawk_register;
extern uint16_t cia;
// Exports
osc_t osc[4];
uint8_t pcm = 128;
// ProTracker period tables
uint16_t period_tbl[84] PROGMEM = {
3424, 3232, 3048, 2880, 2712, 2560, 2416, 2280, 2152, 2032, 1920, 1814,
1712, 1616, 1524, 1440, 1356, 1280, 1208, 1140, 1076, 1016, 960, 907,
856, 808, 762, 720, 678, 640, 604, 570, 538, 508, 480, 453,
428, 404, 381, 360, 339, 320, 302, 285, 269, 254, 240, 226,
214, 202, 190, 180, 170, 160, 151, 143, 135, 127, 120, 113,
107, 101, 95, 90, 85, 80, 75, 71, 67, 63, 60, 56,
53, 50, 47, 45, 42, 40, 37, 35, 33, 31, 30, 28,
};
// ProTracker sine table
int8_t sine_tbl[32] PROGMEM = {
0x00, 0x0C, 0x18, 0x25, 0x30, 0x3C, 0x47, 0x51, 0x5A, 0x62, 0x6A, 0x70, 0x76, 0x7A, 0x7D, 0x7F,
0x7F, 0x7F, 0x7D, 0x7A, 0x76, 0x70, 0x6A, 0x62, 0x5A, 0x51, 0x47, 0x3C, 0x30, 0x25, 0x18, 0x0C,
};
// Squawk object
SquawkSynth Squawk;
// Look up or generate waveform for ProTracker vibrato/tremolo oscillator
static int8_t do_osc(pto_t *p_osc) {
int8_t sample = 0;
int16_t mul;
switch(p_osc->mode & 0x03) {
case 0: // Sine
sample = pgm_read_byte(&sine_tbl[(p_osc->offset) & 0x1F]);
if(p_osc->offset & 0x20) sample = -sample;
break;
case 1: // Square
sample = (p_osc->offset & 0x20) ? 127 : -128;
break;
case 2: // Saw
sample = -(p_osc->offset << 2);
break;
case 3: // Noise (random)
sample = rand();
break;
}
mul = sample * LO4(p_osc->fxp);
p_osc->offset = (p_osc->offset + HI4(p_osc->fxp));
return mul >> 6;
}
// Calculates and returns arpeggio period
// Essentially finds period of current note + halftones
static inline uint16_t arpeggio(uint8_t ch, uint8_t halftones) {
uint8_t n;
for(n = 0; n != 47; n++) {
if(fxm[ch].period >= pgm_read_word(&period_tbl[n])) break;
}
return pgm_read_word(&period_tbl[MIN(n + halftones, 47)]);
}
// Calculates and returns glissando period
// Essentially snaps a sliding frequency to the closest note
static inline uint16_t glissando(uint8_t ch) {
uint8_t n;
uint16_t period_h, period_l;
for(n = 0; n != 47; n++) {
period_l = pgm_read_word(&period_tbl[n]);
period_h = pgm_read_word(&period_tbl[n + 1]);
if(fxm[ch].period < period_l && fxm[ch].period >= period_h) {
if(period_l - fxm[ch].period <= fxm[ch].period - period_h) {
period_h = period_l;
}
break;
}
}
return period_h;
}
// Tunes Squawk to a different frequency
void SquawkSynth::tune(float new_tuning) {
tuning = new_tuning;
tuning_long = (long)(((double)3669213184.0 / (double)sample_rate) * (double)tuning);
}
// Sets tempo
void SquawkSynth::tempo(uint16_t new_tempo) {
tick_rate = new_tempo;
cia = sample_rate / tick_rate; // not atomic?
}
// Initializes Squawk
// Sets up the selected port, and the sample grinding ISR
void SquawkSynth::begin(uint16_t hz) {
word isr_rr;
sample_rate = hz;
tuning_long = (long)(((double)3669213184.0 / (double)sample_rate) * (double)tuning);
cia = sample_rate / tick_rate;
if(squawk_register == (intptr_t)&OCR0A) {
// Squawk uses PWM on OCR0A/PD5(ATMega328/168)/PB7(ATMega32U4)
#ifdef __AVR_ATmega32U4__
DDRB |= 0b10000000; // TODO: FAIL on 32U4
#else
DDRD |= 0b01000000;
#endif
TCCR0A = 0b10000011; // Fast-PWM 8-bit
TCCR0B = 0b00000001; // 62500Hz
OCR0A = 0x7F;
} else if(squawk_register == (intptr_t)&OCR0B) {
// Squawk uses PWM on OCR0B/PC5(ATMega328/168)/PD0(ATMega32U4)
#ifdef __AVR_ATmega32U4__
DDRD |= 0b00000001;
#else
DDRD |= 0b00100000;
#endif // Set timer mode to
TCCR0A = 0b00100011; // Fast-PWM 8-bit
TCCR0B = 0b00000001; // 62500Hz
OCR0B = 0x7F;
#ifdef OCR2A
} else if(squawk_register == (intptr_t)&OCR2A) {
// Squawk uses PWM on OCR2A/PB3
DDRB |= 0b00001000; // Set timer mode to
TCCR2A = 0b10000011; // Fast-PWM 8-bit
TCCR2B = 0b00000001; // 62500Hz
OCR2A = 0x7F;
#endif
#ifdef OCR2B
} else if(squawk_register == (intptr_t)&OCR2B) {
// Squawk uses PWM on OCR2B/PD3
DDRD |= 0b00001000; // Set timer mode to
TCCR2A = 0b00100011; // Fast-PWM 8-bit
TCCR2B = 0b00000001; // 62500Hz
OCR2B = 0x7F;
#endif
#ifdef OCR3AL
} else if(squawk_register == (intptr_t)&OCR3AL) {
// Squawk uses PWM on OCR3AL/PC6
DDRC |= 0b01000000; // Set timer mode to
TCCR3A = 0b10000001; // Fast-PWM 8-bit
TCCR3B = 0b00001001; // 62500Hz
OCR3AH = 0x00;
OCR3AL = 0x7F;
#endif
} else if(squawk_register == (intptr_t)&SPDR) {
// NOT YET SUPPORTED
// Squawk uses external DAC via SPI
// TODO: Configure SPI
// TODO: Needs SS toggle in sample grinder
} else if(squawk_register == (intptr_t)&PORTB) {
// NOT YET SUPPORTED
// Squawk uses resistor ladder on PORTB
// TODO: Needs shift right in sample grinder
DDRB = 0b11111111;
} else if(squawk_register == (intptr_t)&PORTC) {
// NOT YET SUPPORTED
// Squawk uses resistor ladder on PORTC
// TODO: Needs shift right in sample grinder
DDRC = 0b11111111;
}
// Seed LFSR (needed for noise)
osc[3].freq = 0x2000;
// Set up ISR to run at sample_rate (may not be exact)
isr_rr = F_CPU / sample_rate;
TCCR1A = 0b00000000; // Set timer mode
TCCR1B = 0b00001001;
OCR1AH = isr_rr >> 8; // Set freq
OCR1AL = isr_rr & 0xFF;
}
// Decrunches a 9 byte row into a useful data
static void decrunch_row() {
uint8_t data;
// Initial decrunch
stream->seek(stream_base + ((order[ix_order] << 6) + ix_row) * 9);
data = stream->read(); cel[0].fxc = data << 0x04;
cel[1].fxc = data & 0xF0;
data = stream->read(); cel[0].fxp = data;
data = stream->read(); cel[1].fxp = data;
data = stream->read(); cel[2].fxc = data << 0x04;
cel[3].fxc = data >> 0x04;
data = stream->read(); cel[2].fxp = data;
data = stream->read(); cel[3].fxp = data;
data = stream->read(); cel[0].ixp = data;
data = stream->read(); cel[1].ixp = data;
data = stream->read(); cel[2].ixp = data;
// Decrunch extended effects
if(cel[0].fxc == 0xE0) { cel[0].fxc |= cel[0].fxp >> 4; cel[0].fxp &= 0x0F; }
if(cel[1].fxc == 0xE0) { cel[1].fxc |= cel[1].fxp >> 4; cel[1].fxp &= 0x0F; }
if(cel[2].fxc == 0xE0) { cel[2].fxc |= cel[2].fxp >> 4; cel[2].fxp &= 0x0F; }
// Decrunch cell 3 ghetto-style
cel[3].ixp = ((cel[3].fxp & 0x80) ? 0x00 : 0x7F) | ((cel[3].fxp & 0x40) ? 0x80 : 0x00);
cel[3].fxp &= 0x3F;
switch(cel[3].fxc) {
case 0x02:
case 0x03: if(cel[3].fxc & 0x01) cel[3].fxp |= 0x40; cel[3].fxp = (cel[3].fxp >> 4) | (cel[3].fxp << 4); cel[3].fxc = 0x70; break;
case 0x01: if(cel[3].fxp & 0x08) cel[3].fxp = (cel[3].fxp & 0x07) << 4; cel[3].fxc = 0xA0; break;
case 0x04: cel[3].fxc = 0xC0; break;
case 0x05: cel[3].fxc = 0xB0; break;
case 0x06: cel[3].fxc = 0xD0; break;
case 0x07: cel[3].fxc = 0xF0; break;
case 0x08: cel[3].fxc = 0xE7; break;
case 0x09: cel[3].fxc = 0xE9; break;
case 0x0A: cel[3].fxc = (cel[3].fxp & 0x08) ? 0xEA : 0xEB; cel[3].fxp &= 0x07; break;
case 0x0B: cel[3].fxc = (cel[3].fxp & 0x10) ? 0xED : 0xEC; cel[3].fxp &= 0x0F; break;
case 0x0C: cel[3].fxc = 0xEE; break;
}
// Apply generic effect parameter memory
uint8_t ch;
cel_t *p_cel = cel;
fxm_t *p_fxm = fxm;
for(ch = 0; ch != 4; ch++) {
uint8_t fx = p_cel->fxc;
if(fx == 0x10 || fx == 0x20 || fx == 0xE1 || fx == 0xE2 || fx == 0x50 || fx == 0x60 || fx == 0xA0) {
if(p_cel->fxp) {
p_fxm->param = p_cel->fxp;
} else {
p_cel->fxp = p_fxm->param;
}
}
p_cel++; p_fxm++;
}
}
// Resets playback
static void playroutine_reset() {
memset(fxm, 0, sizeof(fxm));
tick = 0;
ix_row = 0;
ix_order = 0;
ix_nextrow = 0xFF;
ix_nextorder = 0xFF;
row_delay = 0;
speed = 6;
decrunch_row();
}
// Start grinding samples
void SquawkSynth::play() {
TIMSK1 = 1 << OCIE1A; // Enable interrupt
}
// Load a melody stream and start grinding samples
void SquawkSynth::play(SquawkStream *melody) {
uint8_t n;
pause();
stream = melody;
stream->seek(0);
n = stream->read();
if(n == 'S') {
// Squawk SD file
stream->seek(4);
stream_base = stream->read() << 8;
stream_base |= stream->read();
stream_base += 6;
} else {
// Squawk ROM array
stream_base = 1;
}
stream->seek(stream_base);
order_count = stream->read();
if(order_count <= 64) {
stream_base += order_count + 1;
for(n = 0; n < order_count; n++) order[n] = stream->read();
playroutine_reset();
play();
} else {
order_count = 0;
}
}
// Load a melody in PROGMEM and start grinding samples
void SquawkSynth::play(const uint8_t *melody) {
pause();
rom = StreamROM(melody);
play(&rom);
}
// Pause playback
void SquawkSynth::pause() {
TIMSK1 = 0; // Disable interrupt
}
// Stop playing, unload melody
void SquawkSynth::stop() {
pause();
order_count = 0; // Unload melody
}
// Progress module by one tick
void squawk_playroutine() {
static bool lockout = false;
if(!order_count) return;
// Protect from re-entry via ISR
cli();
if(lockout) {
sei();
return;
}
lockout = true;
sei();
// Handle row delay
if(row_delay) {
if(tick == 0) row_delay--;
// Advance tick
if(++tick == speed) tick = 0;
} else {
// Quick pointer access
fxm_t *p_fxm = fxm;
osc_t *p_osc = osc;
cel_t *p_cel = cel;
// Temps
uint8_t ch, fx, fxp;
bool pattern_jump = false;
uint8_t ix_period;
for(ch = 0; ch != 4; ch++) {
uint8_t temp;
// Local register copy
fx = p_cel->fxc;
fxp = p_cel->fxp;
ix_period = p_cel->ixp;
// If first tick
if(tick == (fx == 0xED ? fxp : 0)) {
// Reset volume
if(ix_period & 0x80) p_osc->vol = p_fxm->volume = 0x20;
if((ix_period & 0x7F) != 0x7F) {
// Reset oscillators (unless continous flag set)
if((p_fxm->vibr.mode & 0x4) == 0x0) p_fxm->vibr.offset = 0;
if((p_fxm->trem.mode & 0x4) == 0x0) p_fxm->trem.offset = 0;
// Cell has note
if(fx == 0x30 || fx == 0x50) {
// Tone-portamento effect setup
p_fxm->port_target = pgm_read_word(&period_tbl[ix_period & 0x7F]);
} else {
// Set required effect memory parameters
p_fxm->period = pgm_read_word(&period_tbl[ix_period & 0x7F]);
// Start note
if(ch != 3) p_osc->freq = FREQ(p_fxm->period);
}
}
// Effects processed when tick = 0
switch(fx) {
case 0x30: // Portamento
if(fxp) p_fxm->port_speed = fxp;
break;
case 0xB0: // Jump to pattern
ix_nextorder = (fxp >= order_count ? 0x00 : fxp);
ix_nextrow = 0;
pattern_jump = true;
break;
case 0xC0: // Set volume
p_osc->vol = p_fxm->volume = MIN(fxp, 0x20);
break;
case 0xD0: // Jump to row
if(!pattern_jump) ix_nextorder = ((ix_order + 1) >= order_count ? 0x00 : ix_order + 1);
pattern_jump = true;
ix_nextrow = (fxp > 63 ? 0 : fxp);
break;
case 0xF0: // Set speed, BPM(CIA) not supported
if(fxp <= 0x20) speed = fxp;
break;
case 0x40: // Vibrato
if(fxp) p_fxm->vibr.fxp = fxp;
break;
case 0x70: // Tremolo
if(fxp) p_fxm->trem.fxp = fxp;
break;
case 0xE1: // Fine slide up
if(ch != 3) {
p_fxm->period = MAX(p_fxm->period - fxp, PERIOD_MIN);
p_osc->freq = FREQ(p_fxm->period);
}
break;
case 0xE2: // Fine slide down
if(ch != 3) {
p_fxm->period = MIN(p_fxm->period + fxp, PERIOD_MAX);
p_osc->freq = FREQ(p_fxm->period);
}
break;
case 0xE3: // Glissando control
p_fxm->glissando = (fxp != 0);
break;
case 0xE4: // Set vibrato waveform
p_fxm->vibr.mode = fxp;
break;
case 0xE7: // Set tremolo waveform
p_fxm->trem.mode = fxp;
break;
case 0xEA: // Fine volume slide up
p_osc->vol = p_fxm->volume = MIN(p_fxm->volume + fxp, 0x20);
break;
case 0xEB: // Fine volume slide down
p_osc->vol = p_fxm->volume = MAX(p_fxm->volume - fxp, 0);
break;
case 0xEE: // Delay
row_delay = fxp;
break;
}
} else {
// Effects processed when tick > 0
switch(fx) {
case 0x10: // Slide up
if(ch != 3) {
p_fxm->period = MAX(p_fxm->period - fxp, PERIOD_MIN);
p_osc->freq = FREQ(p_fxm->period);
}
break;
case 0x20: // Slide down
if(ch != 3) {
p_fxm->period = MIN(p_fxm->period + fxp, PERIOD_MAX);
p_osc->freq = FREQ(p_fxm->period);
}
break;
/*
// Just feels... ugly
case 0xE9: // Retrigger note
temp = tick; while(temp >= fxp) temp -= fxp;
if(!temp) {
if(ch == 3) {
p_osc->freq = p_osc->phase = 0x2000;
} else {
p_osc->phase = 0;
}
}
break;
*/
case 0xEC: // Note cut
if(fxp == tick) p_osc->vol = 0x00;
break;
default: // Multi-effect processing
// Portamento
if(ch != 3 && (fx == 0x30 || fx == 0x50)) {
if(p_fxm->period < p_fxm->port_target) p_fxm->period = MIN(p_fxm->period + p_fxm->port_speed, p_fxm->port_target);
else p_fxm->period = MAX(p_fxm->period - p_fxm->port_speed, p_fxm->port_target);
if(p_fxm->glissando) p_osc->freq = FREQ(glissando(ch));
else p_osc->freq = FREQ(p_fxm->period);
}
// Volume slide
if(fx == 0x50 || fx == 0x60 || fx == 0xA0) {
if((fxp & 0xF0) == 0) p_fxm->volume -= (LO4(fxp));
if((fxp & 0x0F) == 0) p_fxm->volume += (HI4(fxp));
p_osc->vol = p_fxm->volume = MAX(MIN(p_fxm->volume, 0x20), 0);
}
}
}
// Normal play and arpeggio
if(fx == 0x00) {
if(ch != 3) {
temp = tick; while(temp > 2) temp -= 2;
if(temp == 0) {
// Reset
p_osc->freq = FREQ(p_fxm->period);
} else if(fxp) {
// Arpeggio
p_osc->freq = FREQ(arpeggio(ch, (temp == 1 ? HI4(fxp) : LO4(fxp))));
}
}
} else if(fx == 0x40 || fx == 0x60) {
// Vibrato
if(ch != 3) p_osc->freq = FREQ((p_fxm->period + do_osc(&p_fxm->vibr)));
} else if(fx == 0x70) {
int8_t trem = p_fxm->volume + do_osc(&p_fxm->trem);
p_osc->vol = MAX(MIN(trem, 0x20), 0);
}
// Next channel
p_fxm++; p_cel++; p_osc++;
}
// Advance tick
if(++tick == speed) tick = 0;
// Advance playback
if(tick == 0) {
if(++ix_row == 64) {
ix_row = 0;
if(++ix_order >= order_count) ix_order = 0;
}
// Forced order/row
if( ix_nextorder != 0xFF ) {
ix_order = ix_nextorder;
ix_nextorder = 0xFF;
}
if( ix_nextrow != 0xFF ) {
ix_row = ix_nextrow;
ix_nextrow = 0xFF;
}
decrunch_row();
}
}
lockout = false;
}

View File

@ -0,0 +1,265 @@
// Squawk Soft-Synthesizer Library for Arduino
//
// Davey Taylor 2013
// d.taylor@arduino.cc
#ifndef _SQUAWK_H_
#define _SQUAWK_H_
#include <stddef.h>
#include <inttypes.h>
#include "Arduino.h"
#define Melody const uint8_t PROGMEM
class SquawkStream {
public:
virtual ~SquawkStream() = 0;
virtual uint8_t read() = 0;
virtual void seek(size_t offset) = 0;
};
inline SquawkStream::~SquawkStream() { }
class SquawkSynth {
protected:
// Load and play specified melody
void play(SquawkStream *melody);
public:
SquawkSynth() {};
// Initialize Squawk to generate samples at sample_rate Hz
void begin(uint16_t sample_rate);
// Load and play specified melody
// melody needs to point to PROGMEM data
void play(const uint8_t *melody);
// Resume currently loaded melody (or enable direct osc manipulation by sketch)
void play();
// Pause playback
void pause();
// Stop playback (unloads song)
void stop();
// Tune Squawk to a different frequency - default is 1.0
void tune(float tuning);
// Change the tempo - default is 50
void tempo(uint16_t tempo);
};
extern SquawkSynth Squawk;
// oscillator structure
typedef struct {
uint8_t vol;
uint16_t freq;
uint16_t phase;
} osc_t;
typedef osc_t Oscillator;
// oscillator memory
extern osc_t osc[4];
extern uint8_t pcm;
// channel 0 is pulse wave @ 25% duty
// channel 1 is square wave
// channel 2 is triangle wave
// channel 3 is noise
// For channel 3, freq is used as part of its LFSR and should not be changed.
// LFSR: Linear feedback shift register, a method of producing a
// pseudo-random bit sequence, used to generate nasty noise.
#ifdef __AVR_ATmega32U4__
// Supported configurations for ATmega32U4
#define SQUAWK_PWM_PIN5 OCR3AL
#define SQUAWK_PWM_PIN11 OCR0A
#define SQUAWK_PWM_PIN3 OCR0B
/*
// NOT SUPPORTED YET
#define SQUAWK_PWM_PIN6 OCR4D
#define SQUAWK_PWM_PIN9 OCR4B
#define SQUAWK_PWM_PIN10 OCR4B
*/
#endif
#ifdef __AVR_ATmega168__
// Supported configurations for ATmega168
#define SQUAWK_PWM_PIN6 OCR0A
#define SQUAWK_PWM_PIN5 OCR0B
#define SQUAWK_PWM_PIN11 OCR2A
#define SQUAWK_PWM_PIN3 OCR2B
#endif
#ifdef __AVR_ATmega328P__
// Supported configurations for ATmega328P
#define SQUAWK_PWM_PIN6 OCR0A
#define SQUAWK_PWM_PIN5 OCR0B
#define SQUAWK_PWM_PIN11 OCR2A
#define SQUAWK_PWM_PIN3 OCR2B
#endif
/*
// NOT SUPPORTED YET
#define SQUAWK_SPI SPDR
#define SQUAWK_RLD_PORTB PORTB
#define SQUAWK_RLD_PORTC PORTC
*/
extern void squawk_playroutine() asm("squawk_playroutine");
// SAMPLE GRINDER
// generates samples and updates oscillators
// uses 132 cycles (not counting playroutine)
// ~1/3 CPU @ 44kHz on 16MHz
#define SQUAWK_CONSTRUCT_ISR(TARGET_REGISTER) \
uint16_t cia, cia_count; \
intptr_t squawk_register = (intptr_t)&TARGET_REGISTER; \
ISR(TIMER1_COMPA_vect, ISR_NAKED) { \
asm volatile( \
"push r2 " "\n\t" \
"in r2, __SREG__ " "\n\t" \
"push r18 " "\n\t" \
"push r27 " "\n\t" \
"push r26 " "\n\t" \
"push r0 " "\n\t" \
"push r1 " "\n\t" \
\
"lds r18, osc+2*%[mul]+%[fre] " "\n\t" \
"lds r0, osc+2*%[mul]+%[pha] " "\n\t" \
"add r0, r18 " "\n\t" \
"sts osc+2*%[mul]+%[pha], r0 " "\n\t" \
"lds r18, osc+2*%[mul]+%[fre]+1" "\n\t" \
"lds r1, osc+2*%[mul]+%[pha]+1" "\n\t" \
"adc r1, r18 " "\n\t" \
"sts osc+2*%[mul]+%[pha]+1, r1 " "\n\t" \
\
"mov r27, r1 " "\n\t" \
"sbrc r27, 7 " "\n\t" \
"com r27 " "\n\t" \
"lsl r27 " "\n\t" \
"lds r26, osc+2*%[mul]+%[vol] " "\n\t" \
"subi r27, 128 " "\n\t" \
"muls r27, r26 " "\n\t" \
"lsl r1 " "\n\t" \
"mov r26, r1 " "\n\t" \
\
"lds r18, osc+0*%[mul]+%[fre] " "\n\t" \
"lds r0, osc+0*%[mul]+%[pha] " "\n\t" \
"add r0, r18 " "\n\t" \
"sts osc+0*%[mul]+%[pha], r0 " "\n\t" \
"lds r18, osc+0*%[mul]+%[fre]+1" "\n\t" \
"lds r1, osc+0*%[mul]+%[pha]+1" "\n\t" \
"adc r1, r18 " "\n\t" \
"sts osc+0*%[mul]+%[pha]+1, r1 " "\n\t" \
\
"mov r18, r1 " "\n\t" \
"lsl r18 " "\n\t" \
"and r18, r1 " "\n\t" \
"lds r27, osc+0*%[mul]+%[vol] " "\n\t" \
"sbrc r18, 7 " "\n\t" \
"neg r27 " "\n\t" \
"add r26, r27 " "\n\t" \
\
"lds r18, osc+1*%[mul]+%[fre] " "\n\t" \
"lds r0, osc+1*%[mul]+%[pha] " "\n\t" \
"add r0, r18 " "\n\t" \
"sts osc+1*%[mul]+%[pha], r0 " "\n\t" \
"lds r18, osc+1*%[mul]+%[fre]+1" "\n\t" \
"lds r1, osc+1*%[mul]+%[pha]+1" "\n\t" \
"adc r1, r18 " "\n\t" \
"sts osc+1*%[mul]+%[pha]+1, r1 " "\n\t" \
\
"lds r27, osc+1*%[mul]+%[vol] " "\n\t" \
"sbrc r1, 7 " "\n\t" \
"neg r27 " "\n\t" \
"add r26, r27 " "\n\t" \
\
"ldi r27, 1 " "\n\t" \
"lds r0, osc+3*%[mul]+%[fre] " "\n\t" \
"lds r1, osc+3*%[mul]+%[fre]+1" "\n\t" \
"add r0, r0 " "\n\t" \
"adc r1, r1 " "\n\t" \
"sbrc r1, 7 " "\n\t" \
"eor r0, r27 " "\n\t" \
"sbrc r1, 6 " "\n\t" \
"eor r0, r27 " "\n\t" \
"sts osc+3*%[mul]+%[fre], r0 " "\n\t" \
"sts osc+3*%[mul]+%[fre]+1, r1 " "\n\t" \
\
"lds r27, osc+3*%[mul]+%[vol] " "\n\t" \
"sbrc r1, 7 " "\n\t" \
"neg r27 " "\n\t" \
"add r26, r27 " "\n\t" \
\
"lds r27, pcm " "\n\t" \
"add r26, r27 " "\n\t" \
"sts %[reg], r26 " "\n\t" \
\
"lds r27, cia_count+1 " "\n\t" \
"lds r26, cia_count " "\n\t" \
"sbiw r26, 1 " "\n\t" \
"breq call_playroutine " "\n\t" \
"sts cia_count+1, r27 " "\n\t" \
"sts cia_count, r26 " "\n\t" \
"pop r1 " "\n\t" \
"pop r0 " "\n\t" \
"pop r26 " "\n\t" \
"pop r27 " "\n\t" \
"pop r18 " "\n\t" \
"out __SREG__, r2 " "\n\t" \
"pop r2 " "\n\t" \
"reti " "\n\t" \
"call_playroutine: " "\n\t" \
\
"lds r27, cia+1 " "\n\t" \
"lds r26, cia " "\n\t" \
"sts cia_count+1, r27 " "\n\t" \
"sts cia_count, r26 " "\n\t" \
\
"sei " "\n\t" \
"push r19 " "\n\t" \
"push r20 " "\n\t" \
"push r21 " "\n\t" \
"push r22 " "\n\t" \
"push r23 " "\n\t" \
"push r24 " "\n\t" \
"push r25 " "\n\t" \
"push r30 " "\n\t" \
"push r31 " "\n\t" \
\
"clr r1 " "\n\t" \
"call squawk_playroutine " "\n\t" \
\
"pop r31 " "\n\t" \
"pop r30 " "\n\t" \
"pop r25 " "\n\t" \
"pop r24 " "\n\t" \
"pop r23 " "\n\t" \
"pop r22 " "\n\t" \
"pop r21 " "\n\t" \
"pop r20 " "\n\t" \
"pop r19 " "\n\t" \
\
"pop r1 " "\n\t" \
"pop r0 " "\n\t" \
"pop r26 " "\n\t" \
"pop r27 " "\n\t" \
"pop r18 " "\n\t" \
"out __SREG__, r2 " "\n\t" \
"pop r2 " "\n\t" \
"reti " "\n\t" \
: \
: [reg] "M" _SFR_MEM_ADDR(TARGET_REGISTER), \
[mul] "M" (sizeof(Oscillator)), \
[pha] "M" (offsetof(Oscillator, phase)), \
[fre] "M" (offsetof(Oscillator, freq)), \
[vol] "M" (offsetof(Oscillator, vol)) \
); \
}
#endif

View File

@ -0,0 +1,182 @@
#include <SquawkSD.h>
SquawkSynthSD SquawkSD;
class StreamFile : public SquawkStream {
private:
Fat16 f;
public:
StreamFile(Fat16 file = Fat16()) { f = file; }
uint8_t read() { return f.read(); }
void seek(size_t offset) { f.seekSet(offset); }
};
static StreamFile file;
extern uint16_t period_tbl[84] PROGMEM;
void SquawkSynthSD::play(Fat16 melody) {
SquawkSynth::pause();
file = StreamFile(melody);
SquawkSynth::play(&file);
}
/*
void SquawkSynthSD::convert(Fat16 in, Fat16 out) {
unsigned int n;
uint8_t patterns = 0, order_count;
unsigned int ptn, row, chn;
uint8_t temp;
uint8_t fxc[4], fxp[4], note[4], sample[4];
uint16_t period;
out.write('S'); // ID
out.write('Q');
out.write('M');
out.write('1');
out.write((uint8_t)0); // No meta data
out.write((uint8_t)0);
// Write order list, count patterns
in.seek(0x3B6);
order_count = in.read();
out.write(order_count);
in.seek(0x3B8);
for(n = 0; n < order_count; n++) {
temp = in.read();
if(temp >= patterns) patterns = temp + 1;
out.write(temp);
}
// Write patterns
in.seek(0x43C);
for(ptn = 0; ptn < patterns; ptn++) {
for(row = 0; row < 64; row++) {
for(chn = 0; chn < 4; chn++) {
// Basic extraction
temp = in.read(); // sample.msb and period.msb
period = (temp & 0x0F) << 8;
sample[chn] = temp & 0xF0;
period |= in.read(); // period.lsb
temp = in.read(); // sample.lsb and effect
sample[chn] |= temp >> 4;
fxc[chn] = (temp & 0x0F) << 4;
fxp[chn] = in.read(); // parameters
if(fxc[chn] == 0xE0) {
fxc[chn] |= fxp[chn] >> 4; // extended parameters
fxp[chn] &= 0x0F;
}
#define DIF(A, B) ((A) > (B) ? ((int32_t)(A) - (int32_t)(B)) : ((int32_t)(B) - (int32_t)(A)))
// Find closest matching period
if(period == 0) {
note[chn] = 0x7F;
} else {
int16_t best = DIF(period, pgm_read_word(&period_tbl[0]));
note[chn] = 0;
for(n = 0; n < sizeof(period_tbl) / sizeof(uint16_t); n++) {
if(DIF(period, pgm_read_word(&period_tbl[n])) < best) {
note[chn] = n;
best = DIF(period, pgm_read_word(&period_tbl[n]));
}
}
}
// Crunch volume/decimal commands
if(fxc[chn] == 0x50 || fxc[chn] == 0x60 || fxc[chn] == 0xA0) {
fxp[chn] = (fxp[chn] >> 1) & 0x77;
} else if(fxc[chn] == 0x70) {
fxp[chn] = (fxp[chn] & 0xF0) | ((fxp[chn] & 0x0F) >> 1);
} else if(fxc[chn] == 0xC0 || fxc[chn] == 0xEA || fxc[chn] == 0xEB) {
fxp[chn] >>= 1;
} else if(fxc[chn] == 0xD0) {
fxp[chn] = ((fxp[chn] >> 4) * 10) | (fxp[chn] & 0x0F);
}
// Re-nibblify - it's a word!
if(chn != 3) {
if((fxc[chn] & 0xF0) == 0xE0) fxp[chn] |= fxc[chn] << 4;
fxc[chn] >>= 4;
}
}
// Ghetto crunch the last channel to save a byte
switch(fxc[3]) {
case 0x50: case 0x60: case 0xA0:
fxc[3] = 0x1;
if((fxp[3] >> 4) >= (fxp[3] & 0x0F)) {
fxp[3] = 0x80 + ((fxp[3] >> 4) - (fxp[3] & 0x0F));
} else {
fxp[3] = ((fxp[3] & 0x0F) - (fxp[3] >> 4));
}
break;
case 0x70:
fxc[3] = (fxp[3] & 0x4) ? 0x3 : 0x2;
fxp[3] = (fxp[3] >> 4) | ((fxp[3] & 0x03) << 4);
break;
case 0xC0:
fxc[3] = 0x4;
fxp[3] &= 0x1F;
break;
case 0xB0:
fxc[3] = 0x5;
fxp[3] &= 0x1F;
break;
case 0xD0:
fxc[3] = 0x6;
if(fxp[3] > 63) fxp[3] = 0;
break;
case 0xF0:
if(fxp[3] > 0x20) {
fxc[3] = 0x0;
fxp[3] = 0x00;
} else {
fxc[3] = 0x7;
}
break;
case 0xE7:
fxc[3] = 0x8;
break;
case 0xE9:
fxc[3] = 0x9;
break;
case 0xEA:
fxc[3] = 0xA;
fxp[3] |= 0x08;
break;
case 0xEB:
fxc[3] = 0xA;
break;
case 0xEC:
fxc[3] = 0xB;
break;
case 0xED:
fxc[3] = 0xB;
fxp[3] |= 0x10;
break;
case 0xEE:
fxc[3] = 0xC;
break;
default:
fxc[3] = 0;
fxp[3] = 0;
}
if(note[3] != 0x7F) fxp[3] |= 0x80;
if(sample[3]) fxp[3] |= 0x40;
// Write out
out.write((fxc[0]) | fxc[1] << 4);
out.write(fxp[0]);
out.write(fxp[1]);
out.write((fxc[2]) | fxc[3] << 4);
out.write(fxp[2]);
out.write(fxp[3]);
out.write(note[0] | (sample[0] == 0 ? 0x00 : 0x80));
out.write(note[1] | (sample[1] == 0 ? 0x00 : 0x80));
out.write(note[2] | (sample[2] == 0 ? 0x00 : 0x80));
}
}
}*/

View File

@ -0,0 +1,17 @@
#ifndef _SQUAWKSD_H_
#define _SQUAWKSD_H_
#include <Squawk.h>
#include "Fat16.h"
class SquawkSynthSD : public SquawkSynth {
private:
Fat16 f;
public:
inline void play() { Squawk.play(); };
void play(Fat16 file);
//void convert(Fat16 in, Fat16 out);
};
extern SquawkSynthSD SquawkSD;
#endif

View File

@ -0,0 +1,298 @@
/*
TwoWire.cpp - TWI/I2C library for Wiring & Arduino
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts
*/
extern "C" {
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "twi.h"
}
#include "Wire.h"
// Initialize Class Variables //////////////////////////////////////////////////
uint8_t TwoWire::rxBuffer[BUFFER_LENGTH];
uint8_t TwoWire::rxBufferIndex = 0;
uint8_t TwoWire::rxBufferLength = 0;
uint8_t TwoWire::txAddress = 0;
uint8_t TwoWire::txBuffer[BUFFER_LENGTH];
uint8_t TwoWire::txBufferIndex = 0;
uint8_t TwoWire::txBufferLength = 0;
uint8_t TwoWire::transmitting = 0;
void (*TwoWire::user_onRequest)(void);
void (*TwoWire::user_onReceive)(int);
// Constructors ////////////////////////////////////////////////////////////////
TwoWire::TwoWire()
{
}
// Public Methods //////////////////////////////////////////////////////////////
void TwoWire::begin(void)
{
rxBufferIndex = 0;
rxBufferLength = 0;
txBufferIndex = 0;
txBufferLength = 0;
twi_init();
}
void TwoWire::begin(uint8_t address)
{
twi_setAddress(address);
twi_attachSlaveTxEvent(onRequestService);
twi_attachSlaveRxEvent(onReceiveService);
begin();
}
void TwoWire::begin(int address)
{
begin((uint8_t)address);
}
uint8_t TwoWire::requestFrom(uint8_t address, uint8_t quantity, uint8_t sendStop)
{
// clamp to buffer length
if(quantity > BUFFER_LENGTH){
quantity = BUFFER_LENGTH;
}
// perform blocking read into buffer
uint8_t read = twi_readFrom(address, rxBuffer, quantity, sendStop);
// set rx buffer iterator vars
rxBufferIndex = 0;
rxBufferLength = read;
return read;
}
uint8_t TwoWire::requestFrom(uint8_t address, uint8_t quantity)
{
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)true);
}
uint8_t TwoWire::requestFrom(int address, int quantity)
{
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)true);
}
uint8_t TwoWire::requestFrom(int address, int quantity, int sendStop)
{
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)sendStop);
}
void TwoWire::beginTransmission(uint8_t address)
{
// indicate that we are transmitting
transmitting = 1;
// set address of targeted slave
txAddress = address;
// reset tx buffer iterator vars
txBufferIndex = 0;
txBufferLength = 0;
}
void TwoWire::beginTransmission(int address)
{
beginTransmission((uint8_t)address);
}
//
// Originally, 'endTransmission' was an f(void) function.
// It has been modified to take one parameter indicating
// whether or not a STOP should be performed on the bus.
// Calling endTransmission(false) allows a sketch to
// perform a repeated start.
//
// WARNING: Nothing in the library keeps track of whether
// the bus tenure has been properly ended with a STOP. It
// is very possible to leave the bus in a hung state if
// no call to endTransmission(true) is made. Some I2C
// devices will behave oddly if they do not see a STOP.
//
uint8_t TwoWire::endTransmission(uint8_t sendStop)
{
// transmit buffer (blocking)
int8_t ret = twi_writeTo(txAddress, txBuffer, txBufferLength, 1, sendStop);
// reset tx buffer iterator vars
txBufferIndex = 0;
txBufferLength = 0;
// indicate that we are done transmitting
transmitting = 0;
return ret;
}
// This provides backwards compatibility with the original
// definition, and expected behaviour, of endTransmission
//
uint8_t TwoWire::endTransmission(void)
{
return endTransmission(true);
}
// must be called in:
// slave tx event callback
// or after beginTransmission(address)
size_t TwoWire::write(uint8_t data)
{
if(transmitting){
// in master transmitter mode
// don't bother if buffer is full
if(txBufferLength >= BUFFER_LENGTH){
setWriteError();
return 0;
}
// put byte in tx buffer
txBuffer[txBufferIndex] = data;
++txBufferIndex;
// update amount in buffer
txBufferLength = txBufferIndex;
}else{
// in slave send mode
// reply to master
twi_transmit(&data, 1);
}
return 1;
}
// must be called in:
// slave tx event callback
// or after beginTransmission(address)
size_t TwoWire::write(const uint8_t *data, size_t quantity)
{
if(transmitting){
// in master transmitter mode
for(size_t i = 0; i < quantity; ++i){
write(data[i]);
}
}else{
// in slave send mode
// reply to master
twi_transmit(data, quantity);
}
return quantity;
}
// must be called in:
// slave rx event callback
// or after requestFrom(address, numBytes)
int TwoWire::available(void)
{
return rxBufferLength - rxBufferIndex;
}
// must be called in:
// slave rx event callback
// or after requestFrom(address, numBytes)
int TwoWire::read(void)
{
int value = -1;
// get each successive byte on each call
if(rxBufferIndex < rxBufferLength){
value = rxBuffer[rxBufferIndex];
++rxBufferIndex;
}
return value;
}
// must be called in:
// slave rx event callback
// or after requestFrom(address, numBytes)
int TwoWire::peek(void)
{
int value = -1;
if(rxBufferIndex < rxBufferLength){
value = rxBuffer[rxBufferIndex];
}
return value;
}
void TwoWire::flush(void)
{
// XXX: to be implemented.
}
// behind the scenes function that is called when data is received
void TwoWire::onReceiveService(uint8_t* inBytes, int numBytes)
{
// don't bother if user hasn't registered a callback
if(!user_onReceive){
return;
}
// don't bother if rx buffer is in use by a master requestFrom() op
// i know this drops data, but it allows for slight stupidity
// meaning, they may not have read all the master requestFrom() data yet
if(rxBufferIndex < rxBufferLength){
return;
}
// copy twi rx buffer into local read buffer
// this enables new reads to happen in parallel
for(uint8_t i = 0; i < numBytes; ++i){
rxBuffer[i] = inBytes[i];
}
// set rx iterator vars
rxBufferIndex = 0;
rxBufferLength = numBytes;
// alert user program
user_onReceive(numBytes);
}
// behind the scenes function that is called when data is requested
void TwoWire::onRequestService(void)
{
// don't bother if user hasn't registered a callback
if(!user_onRequest){
return;
}
// reset tx buffer iterator vars
// !!! this will kill any pending pre-master sendTo() activity
txBufferIndex = 0;
txBufferLength = 0;
// alert user program
user_onRequest();
}
// sets function called on slave write
void TwoWire::onReceive( void (*function)(int) )
{
user_onReceive = function;
}
// sets function called on slave read
void TwoWire::onRequest( void (*function)(void) )
{
user_onRequest = function;
}
// Preinstantiate Objects //////////////////////////////////////////////////////
TwoWire Wire = TwoWire();

View File

@ -0,0 +1,79 @@
/*
TwoWire.h - TWI/I2C library for Arduino & Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts
*/
#ifndef TwoWire_h
#define TwoWire_h
#include <inttypes.h>
#include "Stream.h"
#define BUFFER_LENGTH 32
class TwoWire : public Stream
{
private:
static uint8_t rxBuffer[];
static uint8_t rxBufferIndex;
static uint8_t rxBufferLength;
static uint8_t txAddress;
static uint8_t txBuffer[];
static uint8_t txBufferIndex;
static uint8_t txBufferLength;
static uint8_t transmitting;
static void (*user_onRequest)(void);
static void (*user_onReceive)(int);
static void onRequestService(void);
static void onReceiveService(uint8_t*, int);
public:
TwoWire();
void begin();
void begin(uint8_t);
void begin(int);
void beginTransmission(uint8_t);
void beginTransmission(int);
uint8_t endTransmission(void);
uint8_t endTransmission(uint8_t);
uint8_t requestFrom(uint8_t, uint8_t);
uint8_t requestFrom(uint8_t, uint8_t, uint8_t);
uint8_t requestFrom(int, int);
uint8_t requestFrom(int, int, int);
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *, size_t);
virtual int available(void);
virtual int read(void);
virtual int peek(void);
virtual void flush(void);
void onReceive( void (*)(int) );
void onRequest( void (*)(void) );
inline size_t write(unsigned long n) { return write((uint8_t)n); }
inline size_t write(long n) { return write((uint8_t)n); }
inline size_t write(unsigned int n) { return write((uint8_t)n); }
inline size_t write(int n) { return write((uint8_t)n); }
using Print::write;
};
extern TwoWire Wire;
#endif

View File

@ -0,0 +1 @@
#include <ArduinoRobot.h> bool RobotControl::isActionDone(){ if(messageIn.receiveData()){ if(messageIn.readByte()==COMMAND_ACTION_DONE){ return true; } } return false; } void RobotControl::pauseMode(uint8_t onOff){ messageOut.writeByte(COMMAND_PAUSE_MODE); if(onOff){ messageOut.writeByte(true); }else{ messageOut.writeByte(false); } messageOut.sendData(); } void RobotControl::lineFollowConfig(uint8_t KP, uint8_t KD, uint8_t robotSpeed, uint8_t intergrationTime){ messageOut.writeByte(COMMAND_LINE_FOLLOW_CONFIG); messageOut.writeByte(KP); messageOut.writeByte(KD); messageOut.writeByte(robotSpeed); messageOut.writeByte(intergrationTime); messageOut.sendData(); }

View File

@ -0,0 +1,134 @@
/* Robot Logo
This sketch demonstrates basic movement of the Robot.
When the sketch starts, press the on-board buttons to tell
the robot how to move. Pressing the middle button will
save the pattern, and the robot will follow accordingly.
You can record up to 20 commands. The robot will move for
one second per command.
This example uses images on an SD card. It looks for
files named "lg0.bmp" and "lg1.bmp" and draws them on the
screen.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h> // include the robot library
int commands[20]; // array for storing commands
void setup() {
// initialize the Robot, SD card, and display
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
// draw "lg0.bmp" and "lg1.bmp" on the screen
Robot.displayLogos();
}
void loop() {
Robot.drawBMP("intro.bmp", 0, 0); //display background image
iniCommands(); // remove commands from the array
addCommands(); // add commands to the array
delay(1000); // wait for a second
executeCommands(); // follow orders
Robot.stroke(0,0,0);
Robot.text("Done!", 5, 103); // write some text to the display
delay(1500); // wait for a moment
}
// empty the commands array
void iniCommands() {
for(int i=0; i<20; i++)
commands[i]=-1;
}
// add commands to the array
void addCommands() {
Robot.stroke(0,0,0);
// display text on the screen
Robot.text("1. Press buttons to\n add commands.\n\n 2. Middle to finish.", 5, 5);
// read the buttons' state
for(int i=0; i<20;) { //max 20 commands
int key = Robot.keyboardRead();
if(key == BUTTON_MIDDLE) { //finish input
break;
}else if(key == BUTTON_NONE) { //if no button is pressed
continue;
}
commands[i] = key; // save the button to the array
PrintCommandI(i, 46); // print the command on the screen
delay(100);
i++;
}
}
// run through the array and move the robot
void executeCommands() {
// print status to the screen
Robot.text("Excuting...",5,70);
// read through the array and move accordingly
for(int i=0; i<20; i++) {
switch(commands[i]) {
case BUTTON_LEFT:
Robot.turn(-90);
break;
case BUTTON_RIGHT:
Robot.turn(90);
break;
case BUTTON_UP:
Robot.motorsWrite(255, 255);
break;
case BUTTON_DOWN:
Robot.motorsWrite(-255, -255);
break;
case BUTTON_NONE:
return;
}
// print the current command to the screen
Robot.stroke(255,0,0);
PrintCommandI(i, 86);
delay(1000);
// stop moving for a second
Robot.motorsStop();
delay(1000);
}
}
// convert the button press to a single character
char keyToChar(int key) {
switch(key) {
case BUTTON_LEFT:
return '<';
case BUTTON_RIGHT:
return '>';
case BUTTON_UP:
return '^';
case BUTTON_DOWN:
return 'v';
}
}
// display a command
void PrintCommandI(int i, int originY) {
Robot.text(keyToChar(commands[i]), i%14*8+5, i/14*10+originY);
}

View File

@ -0,0 +1,73 @@
/* Robot Line Follow
This sketch demonstrates the line following capabilities
of the Arduino Robot. On the floor, place some black
electrical tape along the path you wish the robot to follow.
To indicate a stopping point, place another piece of tape
perpendicular to the path.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h> // include the robot library
long timerOrigin; // used for counting elapsed time
void setup() {
// initialize the Robot, SD card, display, and speaker
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
Robot.beginSpeaker();
// show the logots on the TFT screen
Robot.displayLogos();
Robot.drawBMP("lf.bmp", 0, 0); // display background image
Robot.playFile("chase.sqm"); // play a song from the SD card
// add the instructions
Robot.text("Line Following\n\n place the robot on\n the track and \n see it run", 5, 5);
Robot.text("Press the middle\n button to start...", 5, 61);
Robot.waitContinue();
// These are some general values that work for line following
// uncomment one or the other to see the different behaviors of the robot
// Robot.lineFollowConfig(11, 5, 50, 10);
Robot.lineFollowConfig(14, 9, 50, 10);
//set the motor board into line-follow mode
Robot.setMode(MODE_LINE_FOLLOW);
// start
Robot.fill(255, 255, 255);
Robot.stroke(255, 255, 255);
Robot.rect(0, 0, 128, 80); // erase the previous text
Robot.stroke(0, 0, 0);
Robot.text("Start", 5, 5);
Robot.stroke(0, 0, 0); // choose color for the text
Robot.text("Time passed:", 5, 21); // write some text to the screen
timerOrigin=millis(); // keep track of the elapsed time
while(!Robot.isActionDone()) { //wait for the finish signal
Robot.debugPrint(millis()-timerOrigin, 5, 29); // show how much time has passed
}
Robot.stroke(0, 0, 0);
Robot.text("Done!", 5, 45);
}
void loop() {
//nothing here, the program only runs once. Reset the robot
//to do it again!
}

View File

@ -0,0 +1,179 @@
/* Disco Bot
This sketch shows you how to use the melody playing
feature of the robot, with some really cool 8-bit music.
Music will play when the robot is turned on, and it
will show you some dance moves.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h> // include the robot library
/* Dancing steps:
S: stop
L: turn left
R: turn right
F: go forward
B: go backwards
The number after each command determines how long
each step lasts. Each number is 1/2 second long.
The "\0" indicates end of string
*/
char danceScript[] = "S4L1R1S2F1B1S1\0";
int currentScript = 0; // what step are we at
int currentSong = 0; // keep track of the current song
static const int SONGS_COUNT = 3; // number of songs
// an array to hold the songs
char musics[][11] = {
"melody.sqm",
"menu.sqm",
"chase.sqm",
};
// variables for non-blocking delay
long waitFrom;
long waitTime = 0;
void setup() {
// initialize the Robot, SD card, display, and speaker
Robot.begin();
Robot.beginSpeaker();
Robot.beginSD();
Robot.beginTFT();
// draw "lg0.bmp" and "lg1.bmp" on the screen
Robot.displayLogos();
// Print instructions to the screen
Robot.text("1. Use left and\n right key to switch\n song", 5, 5);
Robot.text("2. Put robot on the\n ground to dance", 5, 33);
// wait for a few soconds
delay(3000);
setInterface(); // display the current song
play(0); //play the first song in the array
resetWait(); //Initialize non-blocking delay
}
void loop() {
// read the butttons on the robot
int key = Robot.keyboardRead();
// Right/left buttons play next/previous song
switch(key) {
case BUTTON_UP:
case BUTTON_LEFT:
play(-1); //play previous song
break;
case BUTTON_DOWN:
case BUTTON_RIGHT:
play(1); //play next song
break;
}
// dance!
runScript();
}
// Dancing function
void runScript() {
if(!waiting()) { // if the previous instructions have finished
// get the next 2 commands (direction and duration)
parseCommand(danceScript[currentScript], danceScript[currentScript+1]);
currentScript += 2;
if(danceScript[currentScript] == '\0') // at the end of the array
currentScript = 0; // start again at the beginning
}
}
// instead of delay, use this timer
boolean waiting() {
if(millis()-waitFrom >= waitTime)
return false;
else
return true;
}
// how long to wait
void wait(long t) {
resetWait();
waitTime = t;
}
// reset the timer
void resetWait() {
waitFrom = millis();
}
// read the direction and dirstion of the steps
void parseCommand(char dir, char duration) {
//convert the scripts to action
switch(dir) {
case 'L':
Robot.motorsWrite(-255, 255);
break;
case 'R':
Robot.motorsWrite(255, -255);
break;
case 'F':
Robot.motorsWrite(255, 255);
break;
case 'B':
Robot.motorsWrite(-255, -255);
break;
case 'S':
Robot.motorsStop();
break;
}
//You can change "500" to change the pace of dancing
wait(500*(duration-'0'));
}
// display the song
void setInterface() {
Robot.clearScreen();
Robot.stroke(0, 0, 0);
Robot.text(musics[0], 0, 0);
}
// display the next song
void select(int seq, boolean onOff) {
if(onOff){//select
Robot.stroke(0, 0, 0);
Robot.text(musics[seq], 0, 0);
}else{//deselect
Robot.stroke(255, 255, 255);
Robot.text(musics[seq], 0, 0);
}
}
// play the slected song
void play(int seq) {
select(currentSong, false);
if(currentSong <= 0 && seq == -1) { //previous of 1st song?
currentSong = SONGS_COUNT-1; //go to last song
} else if(currentSong >= SONGS_COUNT-1 && seq == 1) { //next of last?
currentSong = 0; //go to 1st song
} else {
currentSong += seq; //next song
}
Robot.stopPlayFile();
Robot.playFile(musics[currentSong]);
select(currentSong, true); //display the current song
}

View File

@ -0,0 +1,70 @@
/* Robot Compass
The robot has an on-board compass module, with
which it can tell the direction the robot is
facing. This sketch will make sure the robot
goes towards a certain direction.
Beware, magnets will interfere with the compass
readings.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
// include the robot library
#include <ArduinoRobot.h>
int speedLeft;
int speedRight;
int compassValue;
int direc = 180; //Direction the robot is heading
void setup() {
// initialize the modules
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
Robot.displayLogos();
}
void loop() {
// read the compass orientation
compassValue = Robot.compassRead();
// how many degrees are we off
int diff = compassValue-direc;
// modify degress
if(diff > 180)
diff = -360+diff;
else if(diff < -180)
diff = 360+diff;
// Make the robot turn to its proper orientation
diff = map(diff, -180, 180, -255, 255);
if(diff > 0) {
// keep the right wheel spinning,
// change the speed of the left wheel
speedLeft = 255-diff;
speedRight = 255;
} else {
// keep the right left spinning,
// change the speed of the left wheel
speedLeft = 255;
speedRight = 255+diff;
}
// write out to the motors
Robot.motorsWrite(speedLeft, speedRight);
// draw the orientation on the screen
Robot.drawCompass(compassValue);
}

View File

@ -0,0 +1,166 @@
/* Robot Inputs
This sketch shows you how to use the on-board
potentiometer and buttons as inputs.
Turning the potentiometer draws a clock-shaped
circle. The up and down buttons change the pitch,
while the left and right buttons change the tempo.
The middle button resets tempo and pitch.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
// default tempo and pitch of the music
int tempo = 60;
int pitch = 1000;
void setup() {
// initialize the Robot, SD card, speaker, and display
Robot.begin();
Robot.beginTFT();
Robot.beginSpeaker();
Robot.beginSD();
// draw "lg0.bmp" and "lg1.bmp" on the screen
Robot.displayLogos();
// play a sound file
Robot.playFile("Melody.sqm");
}
void loop() {
// check the value of the buttons
keyDown(Robot.keyboardRead());
// check the value of the pot
drawKnob(Robot.knobRead());
}
// Draw the basic interface
void renderUI() {
//fill the buttons blank
Robot.fill(255, 255, 255);
Robot.rect(53, 58, 13, 13); // left
Robot.rect(93, 58, 13, 13); // right
Robot.rect(73, 38, 13, 13); // up
Robot.circle(79, 64, 6); // middle
Robot.rect(73, 78, 13, 13); // down
Robot.circle(26, 116, 18); // knob
//draw the vertical bargraph
int fullPart=map(pitch, 200, 2000, 0, 58); //length of filled bargraph
Robot.fill(255, 255, 255);
Robot.rect(21, 30, 13, 58-fullPart);
Robot.fill(0, 0, 255);
Robot.rect(21, 88-fullPart, 13, fullPart); //58-fullPart+30
//draw the horizontal bargraph
fullPart = map(tempo, 20, 100, 0, 58); // length of filled bargraph
Robot.fill(255, 190, 0);
Robot.rect(53, 110, fullPart, 13);
Robot.fill(255, 255, 255);
Robot.rect(53+fullPart, 110, 58-fullPart, 13);
}
void keyDown(int keyCode) {
// use a static int so it is persistent over time
static int oldKey;
switch(keyCode) {
case BUTTON_LEFT:
//left button pressed, reduces tempo
tempo -= 5;
if(tempo < 20) tempo = 20; //lowest tempo 20
Robot.fill(255,190,0);
Robot.rect(53, 58, 13, 13);
break;
case BUTTON_RIGHT:
//right button pressed, increases tempo
tempo += 5;
if(tempo > 100) tempo = 100; //highest tempo 100
Robot.fill(255,190,0);
Robot.rect(93, 58, 13, 13);
break;
case BUTTON_UP:
//up button pressed, increases pitch
pitch += 120;
if(pitch > 2000) pitch = 2000;
Robot.fill(0, 0, 255);
Robot.rect(73, 38, 13, 13);
break;
case BUTTON_DOWN:
//down button pressed, reduces pitch
pitch -= 120;
if(pitch < 200){
pitch = 200;
}
Robot.fill(0, 0, 255);
Robot.rect(73, 78, 13, 13);
break;
case BUTTON_MIDDLE:
//middle button pressed, resets tempo and pitch
tempo = 60;
pitch = 1000;
Robot.fill(160,160,160);
Robot.circle(79, 64, 6);
break;
case BUTTON_NONE:
//Only when the keys are released(thus BUTTON_NONE is
//encountered the first time), the interface will be
//re-drawn.
if(oldKey != BUTTON_NONE){
renderUI();
}
break;
}
if(oldKey != keyCode) {
// change the song's tempo
Robot.tempoWrite(tempo);
// change the song's pitch
Robot.tuneWrite(float(pitch/1000.0));
}
oldKey = keyCode;
}
void drawKnob(int val) {
static int x = 0, y = 0, val_old = 0;
// radian number, -3.14 to 3.14
float ang = map(val, 0, 1023, -PI*1000, PI*1000) / 1000.0;
// erase the old line
if (val_old != val) {
Robot.stroke(255, 255, 255);
Robot.line(26, 116, x, y);
}
// the following lines avoid a glitch in the TFT library
// that seems to appear when drawing a vertical line
if (val < 1011 && val > 265 || val < 253) {
//a bit math for drawing the hand inside the clock
x = 16*sin(ang)+26;
y = 16*cos(ang)+116;
}
if (val > 265 && val < 253) {
x = 10; y = 116;
}
if (val >= 1011) {
x = 27; y = 100;
}
Robot.stroke(0, 0, 0);
Robot.line(26, 116, x, y);
val_old = val;
}

View File

@ -0,0 +1,103 @@
/* 6 Wheel Calibration
Use this sketch to calibrate the wheels in your robot.
Your robot should drive as straight as possible when
putting both motors at the same speed.
Run the software and follow the on-screen instructions.
Use the trimmer on the motor board to make sure the
robot is working at its best!
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h> // inport the robot librsry
// import the utility library
// a description of its funtionality is below
#include <utility/RobotTextManager.h>
// arrays to hold the text for instructions
char script1[] ="Wheel Calibration";
char script2[] ="1. Put Robot on a\n flat surface";
char script3[] ="2. Adjust speed with the knob on top";
char script4[] ="3. If robot goes\n straight, it's done";
char script5[] ="4. Use screwdriver\n on the bottom trim";
char script6[] ="- Robot turns left,\n screw it clockwise;";
char script7[] ="- Turns right, screw it ct-colockwise;";
char script8[] ="5. Repeat 4 until\n going straight";
int speedRobot; //robot speed
int calibrationValue; //value for calibrate difference between wheels
void setup(){
//necessary initialization sequence
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
// left and top margin for displaying text
// see below for a description of this
textManager.setMargin(5,5);
// write all instructions at once
writeAllscript();
}
void loop(){
//Control the robot's speed with knob on top
int speedRobot=map(Robot.knobRead(),0,1023,-255,255);
Robot.motorsWrite(speedRobot,speedRobot);
//read value of the pot on motor baord,to clibrate the wheels
int calibrationValue=map(Robot.trimRead(),0,1023,-30,30);
// print the values to the screen
Robot.debugPrint(calibrationValue,110,145);
delay(40);
}
void writeAllscript(){
//prints 8 scripts one after another
textManager.writeText(0,0,script1);
textManager.writeText(1,0,script2);
textManager.writeText(3,0,script3);
textManager.writeText(5,0,script4);
textManager.writeText(7,0,script5);
textManager.writeText(9,0,script6);
textManager.writeText(11,0,script7);
textManager.writeText(13,0,script8);
}
/**
textManager mostly contains helper functions for
R06_Wheel_Calibration and R01_Hello_User.
textManager.setMargin(margin_left, margin_top):
Configure the left and top margin for text
display. The margins will be used by
textManager.writeText().
Parameters:
margin_left, margin_top: int, the margin values
from the top and left side of the screen.
Returns:
none
textManager.writeText(line,column,text):
Display text on the specific line and column.
It's different from Robot.text() which
uses pixels for positioning the text.
Parameters:
line:int, which line is the text displayed. Each line
is 10px high.
column:int, which column is the text displayed. Each
column is 8px wide.
text:a char array(string) of the text to be displayed.
Returns:
none
*/

View File

@ -0,0 +1,78 @@
/* Runaway Robot
Play tag with your robot! With an ultrasonic
distance sensor, it's capable of detecting and avoiding
obstacles, never bumping into walls again!
You'll need to attach an untrasonic range finder to TK1.
Circuit:
* Arduino Robot
* US range finder like Maxbotix EZ10, with analog output
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
// include the robot library
#include <ArduinoRobot.h>
int sensorPin = TK1; // pin is used by the sensor
void setup() {
// initialize the Robot, SD card, and display
Serial.begin(9600);
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
Robot.displayLogos();
// draw a face on the LCD screen
setFace(true);
}
void loop() {
// If the robot is blocked, turn until free
while(getDistance() < 40) { // If an obstacle is less than 20cm away
setFace(false); //shows an unhappy face
Robot.motorsStop(); // stop the motors
delay(1000); // wait for a moment
Robot.turn(90); // turn to the right and try again
setFace(true); // happy face
}
// if there are no objects in the way, keep moving
Robot.motorsWrite(255, 255);
delay(100);
}
// return the distance in cm
float getDistance() {
// read the value from the sensor
int sensorValue = Robot.analogRead(sensorPin);
//Convert the sensor input to cm.
float distance_cm = sensorValue*1.27;
return distance_cm;
}
// make a happy or sad face
void setFace(boolean onOff) {
if(onOff) {
// if true show a happy face
Robot.background(0, 0, 255);
Robot.setCursor(44, 60);
Robot.stroke(0, 255, 0);
Robot.setTextSize(4);
Robot.print(":)");
}else{
// if false show an upset face
Robot.background(255, 0, 0);
Robot.setCursor(44, 60);
Robot.stroke(0, 255, 0);
Robot.setTextSize(4);
Robot.print("X(");
}
}

View File

@ -0,0 +1,123 @@
/* 08 Remote Control
*******************
***
***This example code is in an experimental state.
***You are welcome to try this with your robot,
***and no harm will come to it. We will provide a
***detailed description of an updated version of this
***in a future update
***
*** For this example to work you need:
***
*** - download and install the IR-Remote library by Ken Shirriff
*** to be found at https://github.com/shirriff/Arduino-IRremote
*** - get a Sony remote control
***
*** This example will be updated soon, come back to the Robot
*** page on the Arduino server for updates!!
***
*******************
If you connect a IR receiver to the robot,
you can control it like you control a TV set.
Using a Sony compatiable remote control,
map some buttons to different actions.
You can make the robot move around without
even touching it!
Circuit:
* Arduino Robot
* Connect the IRreceiver to TDK2
* Sony compatible remote control
based on the IRremote library
by Ken Shirriff
http://arcfn.com
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
// include the necessary libraries
#include <IRremote.h>
#include <ArduinoRobot.h>
// Define a few commands from your remote control
#define IR_CODE_FORWARD 0x2C9B
#define IR_CODE_BACKWARDS 0x6C9B
#define IR_CODE_TURN_LEFT 0xD4B8F
#define IR_CODE_TURN_RIGHT 0x34B8F
int RECV_PIN = TKD2; // the pin the IR receiver is connected to
IRrecv irrecv(RECV_PIN); // an instance of the IR receiver object
decode_results results; // container for received IR codes
void setup() {
// initialize the Robot, SD card, display, and speaker
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
// print some text to the screen
Robot.stroke(0, 0, 0);
Robot.text("Remote Control code:", 5, 5);
Robot.text("Command:", 5, 26);
irrecv.enableIRIn(); // Start the receiver
}
void loop() {
// if there is an IR command, process it
if (irrecv.decode(&results)) {
processResult();
irrecv.resume(); // resume receiver
}
}
void processResult() {
unsigned long res = results.value;
// print the value to the screen
Robot.debugPrint(res, 5, 15);
if(res == IR_CODE_FORWARD || res == IR_CODE_BACKWARDS || res == IR_CODE_TURN_LEFT || res == IR_CODE_TURN_RIGHT) {
Robot.fill(255, 255, 255);
Robot.stroke(255, 255, 255);
Robot.rect(5, 36, 55, 10);
}
switch(results.value){
case IR_CODE_FORWARD:
Robot.stroke(0, 0, 0);
Robot.text("Forward", 5, 36);
Robot.motorsWrite(255, 255);
delay(300);
Robot.motorsStop();
break;
case IR_CODE_BACKWARDS:
Robot.stroke(0, 0, 0);
Robot.text("Backwards", 5, 36);
Robot.motorsWrite(-255, -255);
delay(300);
Robot.motorsStop();
break;
case IR_CODE_TURN_LEFT:
Robot.stroke(0, 0, 0);
Robot.text("Left", 5, 36);
Robot.motorsWrite(-255, 255);
delay(100);
Robot.motorsStop();
break;
case IR_CODE_TURN_RIGHT:
Robot.stroke(0, 0, 0);
Robot.text("Right", 5, 36);
Robot.motorsWrite(255, -255);
delay(100);
Robot.motorsStop();
break;
}
}

View File

@ -0,0 +1,159 @@
/* Picture Browser
You can make your own gallery/picture show with the
Robot. Put some pictures on the SD card, start the
sketch, they will diplay on the screen.
Use the left/right buttons to navigate through the
previous and next images.
Press up or down to enter a mode where you change
the pictures by rotating the robot.
You can add your own pictures onto the SD card, and
view them in the Robot's gallery!
Pictures must be uncompressed BMP, 24-bit color depth,
160 pixels wide, and 128 pixels tall.
They should be named as "picN.bmp". Replace 'N' with a
number between 0 and 9.
The current code only supports 10 pictures. How would you
improve it to handle more?
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h> // include the robot library
const int NUM_PICS = 4; //Total number of pictures in Gallery
// name the modes
const int CONTROL_MODE_KEY = 0;
const int CONTROL_MODE_COMPASS = 1;
char buffer[] = "pic1.bmp"; // current file name
int i = 1; // Current gallery sequence counter
int mode = 0; // Current mode
// text to display on screen
char modeNames[][9] = { "keyboard", "tilt " };
void setup() {
// initialize the Robot, SD card, display, and speaker
Robot.beginSD();
Robot.beginTFT();
Robot.begin();
// draw "lg0.bmp" and "lg1.bmp" on the screen
Robot.displayLogos();
// draw init3.bmp from the SD card on the screen
Robot.drawBMP("init3.bmp", 0, 0);
// display instructions
Robot.stroke(0, 0, 0);
Robot.text("The gallery\n\n has 2 modes, in\n keyboard mode, L/R\n key for switching\n pictures, U/D key\n for changing modes", 5, 5);
delay(6000);
Robot.clearScreen();
Robot.drawBMP("pb.bmp", 0, 0);
Robot.text("In tilt mode,\n quickly tilt the\n robot to switch\n pictures", 5, 5);
delay(4000);
}
void loop() {
buffer[3] = '0'+i;// change filename of the img to be displayed
Robot.drawBMP(buffer, 0, 0); // draw the file on the screen
// change control modes
switch(mode) {
case CONTROL_MODE_COMPASS:
compassControl(3);
break;
case CONTROL_MODE_KEY:
keyboardControl();
break;
}
delay(200);
}
void keyboardControl() {
//Use buttons to control the gallery
while(true) {
int keyPressed = Robot.keyboardRead(); // read the button values
switch(keyPressed) {
case BUTTON_LEFT: // display previous picture
if(--i < 1) i = NUM_PICS;
return;
case BUTTON_MIDDLE: // do nothing
case BUTTON_RIGHT: // display next picture
if(++i > NUM_PICS) i = 1;
return;
case BUTTON_UP: // change mode
changeMode(-1);
return;
case BUTTON_DOWN: // change mode
changeMode(1);
return;
}
}
}
// if controlling by the compass
void compassControl(int change) {
// Rotate the robot to change the pictures
while(true) {
// read the value of the compass
int oldV = Robot.compassRead();
//get the change of angle
int diff = Robot.compassRead()-oldV;
if(diff > 180) diff -= 360;
else if(diff < -180) diff += 360;
if(abs(diff) > change) {
if(++i > NUM_PICS) i = 1;
return;
}
// chage modes, if buttons are pressed
int keyPressed = Robot.keyboardRead();
switch(keyPressed) {
case BUTTON_UP:
changeMode(-1);
return;
case BUTTON_DOWN:
changeMode(1);
return;
}
delay(10);
}
}
// Change the control mode and display it on the LCD
void changeMode(int changeDir) {
// alternate modes
mode += changeDir;
if(mode < 0) {
mode = 1;
} else if(mode > 1)
mode=0;
// display the mode on screen
Robot.fill(255, 255, 255);
Robot.stroke(255, 255, 255);
Robot.rect(0, 0, 128, 12);
Robot.stroke(0, 0, 0);
Robot.text("Control:", 2, 2);
Robot.text(modeNames[mode], 52, 2);
delay(1000);
}

View File

@ -0,0 +1,124 @@
/* Robot Rescue
In this example, the robot enters the line following mode and
plays some music until it reaches its target. Once it finds the
target, it pushes it out of the track. It then returns to the
track and looks for a second target.
You can make the robot push as many objects as you want to, just
add more to calls to the rescue function or even move that code
into the loop.
Circuit:
* Arduino Robot
* some objects for the robot to push
* a line-following circuit
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h> // include the robot library
void setup(){
// initialize the Robot, SD card, display, and speaker
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
Robot.beginSpeaker();
// draw "lg0.bmp" and "lg1.bmp" on the screen
Robot.displayLogos();
// display the line following instructional image from the SD card
Robot.drawBMP("lf.bmp", 0, 0);
// play the chase music file
Robot.playFile("chase.sqm");
// add the instructions
Robot.text("Rescue\n\n place the robot on\n the rescue track\n pushing the\n obstacles away", 5, 5);
Robot.text("Press the middle\n button to start...", 5, 61);
Robot.waitContinue();
// start
Robot.fill(255, 255, 255);
Robot.stroke(255, 255, 255);
Robot.rect(0, 0, 128, 80); // erase the previous text
Robot.stroke(0, 0, 0);
Robot.text("Start", 5, 5);
// use this to calibrate the line following algorithm
// uncomment one or the other to see the different behaviors of the robot
// Robot.lineFollowConfig(11, 5, 50, 10);
Robot.lineFollowConfig(14, 9, 50, 10);
// run the rescue sequence
rescueSequence();
Robot.text("Found obstacle", 5, 12);
// find the track again
goToNext();
Robot.text("Found track", 5, 19);
// run the rescue sequence a second time
rescueSequence();
Robot.text("Found obstacle", 5, 26);
// here you could go on ...
// write status on the screen
Robot.stroke(0, 0, 0);
Robot.text("Done!", 5, 25);
}
void loop(){
//nothing here, the program only runs once.
}
// run the sequence
void rescueSequence(){
//set the motor board into line-follow mode
Robot.setMode(MODE_LINE_FOLLOW);
while(!Robot.isActionDone()){ // wait until it is no longer following the line
}
delay(1000);
// do the rescue operation
doRescue();
delay(1000);
}
void doRescue(){
// Reached the endline, engage the target
Robot.motorsWrite(200,200);
delay(250);
Robot.motorsStop();
delay(1000);
// Turn the robot
Robot.turn(90);
Robot.motorsStop();
delay(1000);
// Move forward
Robot.motorsWrite(200,200);
delay(500);
Robot.motorsStop();
delay(1000);
// move backwards, leave the target
Robot.motorsWrite(-200,-200);
delay(500);
Robot.motorsStop();
}
void goToNext(){
// Turn the robot
Robot.turn(-90);
Robot.motorsStop();
delay(1000);
}

View File

@ -0,0 +1,181 @@
/* Hello User
Hello User! This sketch is the first thing you see
when starting this robot. It gives you a warm welcome,
showing you some of the really amazing abilities of
the robot, and make itself really personal to you.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h> // include the robot library
// include the utility function for ths sketch
// see the details below
#include <utility/RobotTextManager.h>
char buffer[20];//for storing user name
void setup(){
//necessary initialization sequence
Robot.begin();
Robot.beginTFT();
Robot.beginSpeaker(32000);
Robot.beginSD();
// show the logos from the SD card
Robot.displayLogos();
// play the music file
Robot.playFile("menu.sqm");
// clear the screen
Robot.clearScreen();
// From now on, display different slides of
// text/pictures in sequence. The so-called
// scripts are strings of text stored in the
// robot's memory
// these functions are explained below
//Script 6
textManager.writeScript(5, 4, 0);
textManager.writeScript(9, 10, 0);
Robot.waitContinue();
delay(500);
Robot.clearScreen();
//Script 7
textManager.writeScript(6, 4, 0);
textManager.writeScript(9, 10, 0);
Robot.waitContinue();
delay(500);
Robot.clearScreen();
//Script 8
// this function enables sound and images at once
textManager.showPicture("init2.bmp", 0, 0);
textManager.writeScript(7, 2, 0);
textManager.writeScript(9, 7, 0);
Robot.waitContinue();
delay(500);
Robot.clearScreen();
//Script 9
textManager.showPicture("init3.bmp", 0, 0);
textManager.writeScript(8, 2, 0);
textManager.writeScript(9, 7, 0);
Robot.waitContinue();
delay(500);
Robot.clearScreen();
//Script 11
textManager.writeScript(10, 4, 0);
textManager.writeScript(9, 10, 0);
Robot.waitContinue();
delay(500);
Robot.clearScreen();
//Input screen
textManager.writeScript(0, 1, 1);
textManager.input(3, 1, USERNAME);
textManager.writeScript(1, 5, 1);
textManager.input(7, 1, ROBOTNAME);
delay(1000);
Robot.clearScreen();
//last screen
textManager.showPicture("init4.bmp", 0, 0);
textManager.writeText(1, 2, "Hello");
Robot.userNameRead(buffer);
textManager.writeText(3, 2, buffer);
textManager.writeScript(4,10,0);
Robot.waitContinue(BUTTON_LEFT);
Robot.waitContinue(BUTTON_RIGHT);
textManager.showPicture("kt1.bmp", 0, 0);
}
void loop(){
// do nothing here
}
/**
textManager mostly contains helper functions for
R06_Wheel_Calibration and R01_Hello_User.
The ones used in this example:
textManager.setMargin(margin_left, margin_top):
Configure the left and top margin for text
display. The margins will be used for
textManager.writeText().
Parameters:
margin_left, margin_top: the margin values
from the top and left side of the screen.
Returns:
none
textManager.writeScript(script_number,line,column):
Display a script of Hello User example.
Parameters:
script_number: an int value representing the
script to be displayed.
line, column: in which line,column is the script
displayed. Same as writeText().
Returns:
none
textManager.input(line,column,codename):
Print an input indicator(">") in the line and column,
dispaly and receive input from a virtual keyboard,
and save the value into EEPROM represented by codename
Parameters:
line,column: int values represents where the input
starts. Same as wirteText().
codename: either USERNAME,ROBOTNAME,CITYNAME or
COUNTRYNAME. You can call Robot.userNameRead(),
robotNameRead(),cityNameRead() or countryNameRead()
to access the values later.
Returns:
none;
textManager.writeText(line,column,text):
Display text on the specific line and column.
It's different from Robot.text() as the later
uses pixels for positioning the text.
Parameters:
line:in which line is the text displayed. Each line
is 10px high.
column:in which column is the text displayed. Each
column is 8px wide.
text:a char array(string) of the text to be displayed.
Returns:
none
textManager.showPicture(filename, x, y):
It has the same functionality as Robot.drawPicture(),
while fixing the conflict between drawPicture() and
sound playing. Using Robot.drawPicture(), it'll have
glitches when playing sound at the same time. Using
showPicture(), it'll stop sound when displaying
picture, so preventing the problem.
Parameters:
filename:string, name of the bmp file in sd
x,y: int values, position of the picture
Returns:
none
*/

View File

@ -0,0 +1,149 @@
/*
All IO Ports
This example goes through all the IO ports on your robot and
reads/writes from/to them. Uncomment the different lines inside
the loop to test the different possibilities.
The TK inputs on the Control Board are multiplexed and therefore
it is not recommended to use them as outputs. The TKD pins on the
Control Board as well as the TK pins on the Motor Board go directly
to the microcontroller and therefore can be used both as inputs
and outputs.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
// use arrays to store the names of the pins to be read
uint8_t arr[] = { TK0, TK1, TK2, TK3, TK4, TK5, TK6, TK7 };
uint8_t arr2[] = { TKD0, TKD1, TKD2, TKD3, TKD4, TKD5 };
uint8_t arr3[] = { B_TK1, B_TK2, B_TK3, B_TK4 };
void setup(){
// initialize the robot
Robot.begin();
// open the serial port to send the information of what you are reading
Serial.begin(9600);
}
void loop(){
// read all the TK inputs at the Motor Board as analog
analogReadB_TKs();
// read all the TK inputs at the Motor Board as digital
//digitalReadB_TKs();
// read all the TK inputs at the Control Board as analog
//analogReadTKs();
// read all the TK inputs at the Control Board as digital
//digitalReadTKs();
// read all the TKD inputs at the Control Board as analog
//analogReadTKDs();
// read all the TKD inputs at the Control Board as digital
//digitalReadTKDs();
// write all the TK outputs at the Motor Board as digital
//digitalWriteB_TKs();
// write all the TKD outputs at the Control Board as digital
//digitalWriteTKDs();
delay(5);
}
// read all TK inputs on the Control Board as analog inputs
void analogReadTKs() {
for(int i=0;i<8;i++) {
Serial.print(Robot.analogRead(arr[i]));
Serial.print(",");
}
Serial.println("");
}
// read all TK inputs on the Control Board as digital inputs
void digitalReadTKs() {
for(int i=0;i<8;i++) {
Serial.print(Robot.digitalRead(arr[i]));
Serial.print(",");
}
Serial.println("");
}
// read all TKD inputs on the Control Board as analog inputs
void analogReadTKDs() {
for(int i=0; i<6; i++) {
Serial.print(Robot.analogRead(arr2[i]));
Serial.print(",");
}
Serial.println("");
}
// read all TKD inputs on the Control Board as digital inputs
void digitalReadTKDs() {
for(int i=0; i<6; i++) {
Serial.print(Robot.digitalRead(arr2[i]));
Serial.print(",");
}
Serial.println("");
}
// write all TKD outputs on the Control Board as digital outputs
void digitalWriteTKDs() {
// turn all the pins on
for(int i=0; i<6; i++) {
Robot.digitalWrite(arr2[i], HIGH);
}
delay(500);
// turn all the pins off
for(int i=0; i<6; i++){
Robot.digitalWrite(arr2[i], LOW);
}
delay(500);
}
// write all TK outputs on the Motor Board as digital outputs
void digitalWriteB_TKs() {
// turn all the pins on
for(int i=0; i<4; i++) {
Robot.digitalWrite(arr3[i], HIGH);
}
delay(500);
// turn all the pins off
for(int i=0; i<4; i++) {
Robot.digitalWrite(arr3[i], LOW);
}
delay(500);
}
// read all TK inputs on the Motor Board as analog inputs
void analogReadB_TKs() {
for(int i=0; i<4; i++) {
Serial.print(Robot.analogRead(arr3[i]));
Serial.print(",");
}
Serial.println("");
}
// read all TKD inputs on the Motor Board as digital inputs
void digitalReadB_TKs() {
for(int i=0; i<4; i++) {
Serial.print(Robot.digitalRead(arr3[i]));
Serial.print(",");
}
Serial.println("");
}

Some files were not shown because too many files have changed in this diff Show More