1
0
mirror of https://github.com/arduino/Arduino.git synced 2025-01-17 06:52:18 +01:00

Updated robot examples and libraries

Merge branch 'master' into ide-1.5.x
This commit is contained in:
Cristian Maglie 2013-08-22 16:30:28 +02:00
commit a78761c9b7
34 changed files with 2984 additions and 243 deletions

View File

@ -36,6 +36,13 @@
#define RXLED0 PORTB |= (1<<0)
#define RXLED1 PORTB &= ~(1<<0)
#define D0 TKD0
#define D1 TKD1
#define D2 TKD2
#define D3 TKD3
#define D4 TKD4
#define D5 TKD5
static const uint8_t RX = 0;
static const uint8_t TX = 1;
static const uint8_t SDA = 2;

View File

@ -36,6 +36,11 @@
#define RXLED0 PORTB |= (1<<0)
#define RXLED1 PORTB &= ~(1<<0)
#define D10 TK1
#define D9 TK2
#define D8 TK4
#define D7 TK3
static const uint8_t RX = 0;
static const uint8_t TX = 1;
static const uint8_t SDA = 2;

View File

@ -0,0 +1,777 @@
/*
* IRremote
* Version 0.11 August, 2009
* Copyright 2009 Ken Shirriff
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
*
* Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
* Modified by Mitra Ardron <mitra@mitra.biz>
* Added Sanyo and Mitsubishi controllers
* Modified Sony to spot the repeat codes that some Sony's send
*
* Interrupt code based on NECIRrcv by Joe Knapp
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
*
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
*/
#include "IRremote.h"
#include "IRremoteInt.h"
// Provides ISR
#include <avr/interrupt.h>
volatile irparams_t irparams;
// These versions of MATCH, MATCH_MARK, and MATCH_SPACE are only for debugging.
// To use them, set DEBUG in IRremoteInt.h
// Normally macros are used for efficiency
#ifdef DEBUG
int MATCH(int measured, int desired) {
Serial.print("Testing: ");
Serial.print(TICKS_LOW(desired), DEC);
Serial.print(" <= ");
Serial.print(measured, DEC);
Serial.print(" <= ");
Serial.println(TICKS_HIGH(desired), DEC);
return measured >= TICKS_LOW(desired) && measured <= TICKS_HIGH(desired);
}
int MATCH_MARK(int measured_ticks, int desired_us) {
Serial.print("Testing mark ");
Serial.print(measured_ticks * USECPERTICK, DEC);
Serial.print(" vs ");
Serial.print(desired_us, DEC);
Serial.print(": ");
Serial.print(TICKS_LOW(desired_us + MARK_EXCESS), DEC);
Serial.print(" <= ");
Serial.print(measured_ticks, DEC);
Serial.print(" <= ");
Serial.println(TICKS_HIGH(desired_us + MARK_EXCESS), DEC);
return measured_ticks >= TICKS_LOW(desired_us + MARK_EXCESS) && measured_ticks <= TICKS_HIGH(desired_us + MARK_EXCESS);
}
int MATCH_SPACE(int measured_ticks, int desired_us) {
Serial.print("Testing space ");
Serial.print(measured_ticks * USECPERTICK, DEC);
Serial.print(" vs ");
Serial.print(desired_us, DEC);
Serial.print(": ");
Serial.print(TICKS_LOW(desired_us - MARK_EXCESS), DEC);
Serial.print(" <= ");
Serial.print(measured_ticks, DEC);
Serial.print(" <= ");
Serial.println(TICKS_HIGH(desired_us - MARK_EXCESS), DEC);
return measured_ticks >= TICKS_LOW(desired_us - MARK_EXCESS) && measured_ticks <= TICKS_HIGH(desired_us - MARK_EXCESS);
}
#else
int MATCH(int measured, int desired) {return measured >= TICKS_LOW(desired) && measured <= TICKS_HIGH(desired);}
int MATCH_MARK(int measured_ticks, int desired_us) {return MATCH(measured_ticks, (desired_us + MARK_EXCESS));}
int MATCH_SPACE(int measured_ticks, int desired_us) {return MATCH(measured_ticks, (desired_us - MARK_EXCESS));}
#endif
IRrecv::IRrecv(int recvpin)
{
irparams.recvpin = recvpin;
irparams.blinkflag = 0;
}
// initialization
void IRrecv::enableIRIn() {
cli();
// setup pulse clock timer interrupt
//Prescale /8 (16M/8 = 0.5 microseconds per tick)
// Therefore, the timer interval can range from 0.5 to 128 microseconds
// depending on the reset value (255 to 0)
TIMER_CONFIG_NORMAL();
//Timer2 Overflow Interrupt Enable
TIMER_ENABLE_INTR;
TIMER_RESET;
sei(); // enable interrupts
// initialize state machine variables
irparams.rcvstate = STATE_IDLE;
irparams.rawlen = 0;
// set pin modes
pinMode(irparams.recvpin, INPUT);
}
// enable/disable blinking of pin 13 on IR processing
void IRrecv::blink13(int blinkflag)
{
irparams.blinkflag = blinkflag;
if (blinkflag)
pinMode(BLINKLED, OUTPUT);
}
// TIMER2 interrupt code to collect raw data.
// Widths of alternating SPACE, MARK are recorded in rawbuf.
// Recorded in ticks of 50 microseconds.
// rawlen counts the number of entries recorded so far.
// First entry is the SPACE between transmissions.
// As soon as a SPACE gets long, ready is set, state switches to IDLE, timing of SPACE continues.
// As soon as first MARK arrives, gap width is recorded, ready is cleared, and new logging starts
ISR(TIMER_INTR_NAME)
{
TIMER_RESET;
uint8_t irdata = (uint8_t)digitalRead(irparams.recvpin);
irparams.timer++; // One more 50us tick
if (irparams.rawlen >= RAWBUF) {
// Buffer overflow
irparams.rcvstate = STATE_STOP;
}
switch(irparams.rcvstate) {
case STATE_IDLE: // In the middle of a gap
if (irdata == MARK) {
if (irparams.timer < GAP_TICKS) {
// Not big enough to be a gap.
irparams.timer = 0;
}
else {
// gap just ended, record duration and start recording transmission
irparams.rawlen = 0;
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
irparams.timer = 0;
irparams.rcvstate = STATE_MARK;
}
}
break;
case STATE_MARK: // timing MARK
if (irdata == SPACE) { // MARK ended, record time
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
irparams.timer = 0;
irparams.rcvstate = STATE_SPACE;
}
break;
case STATE_SPACE: // timing SPACE
if (irdata == MARK) { // SPACE just ended, record it
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
irparams.timer = 0;
irparams.rcvstate = STATE_MARK;
}
else { // SPACE
if (irparams.timer > GAP_TICKS) {
// big SPACE, indicates gap between codes
// Mark current code as ready for processing
// Switch to STOP
// Don't reset timer; keep counting space width
irparams.rcvstate = STATE_STOP;
}
}
break;
case STATE_STOP: // waiting, measuring gap
if (irdata == MARK) { // reset gap timer
irparams.timer = 0;
}
break;
}
if (irparams.blinkflag) {
if (irdata == MARK) {
BLINKLED_ON(); // turn pin 13 LED on
}
else {
BLINKLED_OFF(); // turn pin 13 LED off
}
}
}
void IRrecv::resume() {
irparams.rcvstate = STATE_IDLE;
irparams.rawlen = 0;
}
// Decodes the received IR message
// Returns 0 if no data ready, 1 if data ready.
// Results of decoding are stored in results
int IRrecv::decode(decode_results *results) {
results->rawbuf = irparams.rawbuf;
results->rawlen = irparams.rawlen;
if (irparams.rcvstate != STATE_STOP) {
return ERR;
}
#ifdef DEBUG
Serial.println("Attempting NEC decode");
#endif
if (decodeNEC(results)) {
return DECODED;
}
/*
#ifdef DEBUG
Serial.println("Attempting Sony decode");
#endif
if (decodeSony(results)) {
return DECODED;
}*/
/*
#ifdef DEBUG
Serial.println("Attempting Sanyo decode");
#endif
if (decodeSanyo(results)) {
return DECODED;
}
*/
/*
#ifdef DEBUG
Serial.println("Attempting Mitsubishi decode");
#endif
if (decodeMitsubishi(results)) {
return DECODED;
}*/
/*
#ifdef DEBUG
Serial.println("Attempting RC5 decode");
#endif
if (decodeRC5(results)) {
return DECODED;
}
*/
/*
#ifdef DEBUG
Serial.println("Attempting RC6 decode");
#endif
if (decodeRC6(results)) {
return DECODED;
}
*/
/*
#ifdef DEBUG
Serial.println("Attempting Panasonic decode");
#endif
if (decodePanasonic(results)) {
return DECODED;
}
*/
/*
#ifdef DEBUG
Serial.println("Attempting JVC decode");
#endif
if (decodeJVC(results)) {
return DECODED;
}*/
// decodeHash returns a hash on any input.
// Thus, it needs to be last in the list.
// If you add any decodes, add them before this.
if (decodeHash(results)) {
return DECODED;
}
// Throw away and start over
resume();
return ERR;
}
// NECs have a repeat only 4 items long
long IRrecv::decodeNEC(decode_results *results) {
long data = 0;
int offset = 1; // Skip first space
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], NEC_HDR_MARK)) {
return ERR;
}
offset++;
// Check for repeat
if (irparams.rawlen == 4 &&
MATCH_SPACE(results->rawbuf[offset], NEC_RPT_SPACE) &&
MATCH_MARK(results->rawbuf[offset+1], NEC_BIT_MARK)) {
results->bits = 0;
results->value = REPEAT;
results->decode_type = NEC;
return DECODED;
}
if (irparams.rawlen < 2 * NEC_BITS + 4) {
return ERR;
}
// Initial space
if (!MATCH_SPACE(results->rawbuf[offset], NEC_HDR_SPACE)) {
return ERR;
}
offset++;
for (int i = 0; i < NEC_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset], NEC_BIT_MARK)) {
return ERR;
}
offset++;
if (MATCH_SPACE(results->rawbuf[offset], NEC_ONE_SPACE)) {
data = (data << 1) | 1;
}
else if (MATCH_SPACE(results->rawbuf[offset], NEC_ZERO_SPACE)) {
data <<= 1;
}
else {
return ERR;
}
offset++;
}
// Success
results->bits = NEC_BITS;
results->value = data;
results->decode_type = NEC;
return DECODED;
}
/*
long IRrecv::decodeSony(decode_results *results) {
long data = 0;
if (irparams.rawlen < 2 * SONY_BITS + 2) {
return ERR;
}
int offset = 0; // Dont skip first space, check its size
// Some Sony's deliver repeats fast after first
// unfortunately can't spot difference from of repeat from two fast clicks
if (results->rawbuf[offset] < SONY_DOUBLE_SPACE_USECS) {
// Serial.print("IR Gap found: ");
results->bits = 0;
results->value = REPEAT;
results->decode_type = SANYO;
return DECODED;
}
offset++;
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], SONY_HDR_MARK)) {
return ERR;
}
offset++;
while (offset + 1 < irparams.rawlen) {
if (!MATCH_SPACE(results->rawbuf[offset], SONY_HDR_SPACE)) {
break;
}
offset++;
if (MATCH_MARK(results->rawbuf[offset], SONY_ONE_MARK)) {
data = (data << 1) | 1;
}
else if (MATCH_MARK(results->rawbuf[offset], SONY_ZERO_MARK)) {
data <<= 1;
}
else {
return ERR;
}
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < 12) {
results->bits = 0;
return ERR;
}
results->value = data;
results->decode_type = SONY;
return DECODED;
}*/
/*
// I think this is a Sanyo decoder - serial = SA 8650B
// Looks like Sony except for timings, 48 chars of data and time/space different
long IRrecv::decodeSanyo(decode_results *results) {
long data = 0;
if (irparams.rawlen < 2 * SANYO_BITS + 2) {
return ERR;
}
int offset = 0; // Skip first space
// Initial space
// Put this back in for debugging - note can't use #DEBUG as if Debug on we don't see the repeat cos of the delay
//Serial.print("IR Gap: ");
//Serial.println( results->rawbuf[offset]);
//Serial.println( "test against:");
//Serial.println(results->rawbuf[offset]);
if (results->rawbuf[offset] < SANYO_DOUBLE_SPACE_USECS) {
// Serial.print("IR Gap found: ");
results->bits = 0;
results->value = REPEAT;
results->decode_type = SANYO;
return DECODED;
}
offset++;
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], SANYO_HDR_MARK)) {
return ERR;
}
offset++;
// Skip Second Mark
if (!MATCH_MARK(results->rawbuf[offset], SANYO_HDR_MARK)) {
return ERR;
}
offset++;
while (offset + 1 < irparams.rawlen) {
if (!MATCH_SPACE(results->rawbuf[offset], SANYO_HDR_SPACE)) {
break;
}
offset++;
if (MATCH_MARK(results->rawbuf[offset], SANYO_ONE_MARK)) {
data = (data << 1) | 1;
}
else if (MATCH_MARK(results->rawbuf[offset], SANYO_ZERO_MARK)) {
data <<= 1;
}
else {
return ERR;
}
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < 12) {
results->bits = 0;
return ERR;
}
results->value = data;
results->decode_type = SANYO;
return DECODED;
}
*/
/*
// Looks like Sony except for timings, 48 chars of data and time/space different
long IRrecv::decodeMitsubishi(decode_results *results) {
// Serial.print("?!? decoding Mitsubishi:");Serial.print(irparams.rawlen); Serial.print(" want "); Serial.println( 2 * MITSUBISHI_BITS + 2);
long data = 0;
if (irparams.rawlen < 2 * MITSUBISHI_BITS + 2) {
return ERR;
}
int offset = 0; // Skip first space
// Initial space
// Put this back in for debugging - note can't use #DEBUG as if Debug on we don't see the repeat cos of the delay
//Serial.print("IR Gap: ");
//Serial.println( results->rawbuf[offset]);
//Serial.println( "test against:");
//Serial.println(results->rawbuf[offset]);
// Not seeing double keys from Mitsubishi
//if (results->rawbuf[offset] < MITSUBISHI_DOUBLE_SPACE_USECS) {
// Serial.print("IR Gap found: ");
// results->bits = 0;
// results->value = REPEAT;
// results->decode_type = MITSUBISHI;
// return DECODED;
//}
offset++;
// Typical
// 14200 7 41 7 42 7 42 7 17 7 17 7 18 7 41 7 18 7 17 7 17 7 18 7 41 8 17 7 17 7 18 7 17 7
// Initial Space
if (!MATCH_MARK(results->rawbuf[offset], MITSUBISHI_HDR_SPACE)) {
return ERR;
}
offset++;
while (offset + 1 < irparams.rawlen) {
if (MATCH_MARK(results->rawbuf[offset], MITSUBISHI_ONE_MARK)) {
data = (data << 1) | 1;
}
else if (MATCH_MARK(results->rawbuf[offset], MITSUBISHI_ZERO_MARK)) {
data <<= 1;
}
else {
// Serial.println("A"); Serial.println(offset); Serial.println(results->rawbuf[offset]);
return ERR;
}
offset++;
if (!MATCH_SPACE(results->rawbuf[offset], MITSUBISHI_HDR_SPACE)) {
// Serial.println("B"); Serial.println(offset); Serial.println(results->rawbuf[offset]);
break;
}
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < MITSUBISHI_BITS) {
results->bits = 0;
return ERR;
}
results->value = data;
results->decode_type = MITSUBISHI;
return DECODED;
}*/
// Gets one undecoded level at a time from the raw buffer.
// The RC5/6 decoding is easier if the data is broken into time intervals.
// E.g. if the buffer has MARK for 2 time intervals and SPACE for 1,
// successive calls to getRClevel will return MARK, MARK, SPACE.
// offset and used are updated to keep track of the current position.
// t1 is the time interval for a single bit in microseconds.
// Returns -1 for error (measured time interval is not a multiple of t1).
int IRrecv::getRClevel(decode_results *results, int *offset, int *used, int t1) {
if (*offset >= results->rawlen) {
// After end of recorded buffer, assume SPACE.
return SPACE;
}
int width = results->rawbuf[*offset];
int val = ((*offset) % 2) ? MARK : SPACE;
int correction = (val == MARK) ? MARK_EXCESS : - MARK_EXCESS;
int avail;
if (MATCH(width, t1 + correction)) {
avail = 1;
}
else if (MATCH(width, 2*t1 + correction)) {
avail = 2;
}
else if (MATCH(width, 3*t1 + correction)) {
avail = 3;
}
else {
return -1;
}
(*used)++;
if (*used >= avail) {
*used = 0;
(*offset)++;
}
#ifdef DEBUG
if (val == MARK) {
Serial.println("MARK");
}
else {
Serial.println("SPACE");
}
#endif
return val;
}
/*
long IRrecv::decodeRC5(decode_results *results) {
if (irparams.rawlen < MIN_RC5_SAMPLES + 2) {
return ERR;
}
int offset = 1; // Skip gap space
long data = 0;
int used = 0;
// Get start bits
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return ERR;
if (getRClevel(results, &offset, &used, RC5_T1) != SPACE) return ERR;
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return ERR;
int nbits;
for (nbits = 0; offset < irparams.rawlen; nbits++) {
int levelA = getRClevel(results, &offset, &used, RC5_T1);
int levelB = getRClevel(results, &offset, &used, RC5_T1);
if (levelA == SPACE && levelB == MARK) {
// 1 bit
data = (data << 1) | 1;
}
else if (levelA == MARK && levelB == SPACE) {
// zero bit
data <<= 1;
}
else {
return ERR;
}
}
// Success
results->bits = nbits;
results->value = data;
results->decode_type = RC5;
return DECODED;
}*/
/*
long IRrecv::decodeRC6(decode_results *results) {
if (results->rawlen < MIN_RC6_SAMPLES) {
return ERR;
}
int offset = 1; // Skip first space
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], RC6_HDR_MARK)) {
return ERR;
}
offset++;
if (!MATCH_SPACE(results->rawbuf[offset], RC6_HDR_SPACE)) {
return ERR;
}
offset++;
long data = 0;
int used = 0;
// Get start bit (1)
if (getRClevel(results, &offset, &used, RC6_T1) != MARK) return ERR;
if (getRClevel(results, &offset, &used, RC6_T1) != SPACE) return ERR;
int nbits;
for (nbits = 0; offset < results->rawlen; nbits++) {
int levelA, levelB; // Next two levels
levelA = getRClevel(results, &offset, &used, RC6_T1);
if (nbits == 3) {
// T bit is double wide; make sure second half matches
if (levelA != getRClevel(results, &offset, &used, RC6_T1)) return ERR;
}
levelB = getRClevel(results, &offset, &used, RC6_T1);
if (nbits == 3) {
// T bit is double wide; make sure second half matches
if (levelB != getRClevel(results, &offset, &used, RC6_T1)) return ERR;
}
if (levelA == MARK && levelB == SPACE) { // reversed compared to RC5
// 1 bit
data = (data << 1) | 1;
}
else if (levelA == SPACE && levelB == MARK) {
// zero bit
data <<= 1;
}
else {
return ERR; // Error
}
}
// Success
results->bits = nbits;
results->value = data;
results->decode_type = RC6;
return DECODED;
}*/
/*
long IRrecv::decodePanasonic(decode_results *results) {
unsigned long long data = 0;
int offset = 1;
if (!MATCH_MARK(results->rawbuf[offset], PANASONIC_HDR_MARK)) {
return ERR;
}
offset++;
if (!MATCH_MARK(results->rawbuf[offset], PANASONIC_HDR_SPACE)) {
return ERR;
}
offset++;
// decode address
for (int i = 0; i < PANASONIC_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], PANASONIC_BIT_MARK)) {
return ERR;
}
if (MATCH_SPACE(results->rawbuf[offset],PANASONIC_ONE_SPACE)) {
data = (data << 1) | 1;
} else if (MATCH_SPACE(results->rawbuf[offset],PANASONIC_ZERO_SPACE)) {
data <<= 1;
} else {
return ERR;
}
offset++;
}
results->value = (unsigned long)data;
results->panasonicAddress = (unsigned int)(data >> 32);
results->decode_type = PANASONIC;
results->bits = PANASONIC_BITS;
return DECODED;
}*/
/*
long IRrecv::decodeJVC(decode_results *results) {
long data = 0;
int offset = 1; // Skip first space
// Check for repeat
if (irparams.rawlen - 1 == 33 &&
MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK) &&
MATCH_MARK(results->rawbuf[irparams.rawlen-1], JVC_BIT_MARK)) {
results->bits = 0;
results->value = REPEAT;
results->decode_type = JVC;
return DECODED;
}
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], JVC_HDR_MARK)) {
return ERR;
}
offset++;
if (irparams.rawlen < 2 * JVC_BITS + 1 ) {
return ERR;
}
// Initial space
if (!MATCH_SPACE(results->rawbuf[offset], JVC_HDR_SPACE)) {
return ERR;
}
offset++;
for (int i = 0; i < JVC_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK)) {
return ERR;
}
offset++;
if (MATCH_SPACE(results->rawbuf[offset], JVC_ONE_SPACE)) {
data = (data << 1) | 1;
}
else if (MATCH_SPACE(results->rawbuf[offset], JVC_ZERO_SPACE)) {
data <<= 1;
}
else {
return ERR;
}
offset++;
}
//Stop bit
if (!MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK)){
return ERR;
}
// Success
results->bits = JVC_BITS;
results->value = data;
results->decode_type = JVC;
return DECODED;
}*/
/* -----------------------------------------------------------------------
* hashdecode - decode an arbitrary IR code.
* Instead of decoding using a standard encoding scheme
* (e.g. Sony, NEC, RC5), the code is hashed to a 32-bit value.
*
* The algorithm: look at the sequence of MARK signals, and see if each one
* is shorter (0), the same length (1), or longer (2) than the previous.
* Do the same with the SPACE signals. Hszh the resulting sequence of 0's,
* 1's, and 2's to a 32-bit value. This will give a unique value for each
* different code (probably), for most code systems.
*
* http://arcfn.com/2010/01/using-arbitrary-remotes-with-arduino.html
*/
// Compare two tick values, returning 0 if newval is shorter,
// 1 if newval is equal, and 2 if newval is longer
// Use a tolerance of 20%
int IRrecv::compare(unsigned int oldval, unsigned int newval) {
if (newval < oldval * .8) {
return 0;
}
else if (oldval < newval * .8) {
return 2;
}
else {
return 1;
}
}
// Use FNV hash algorithm: http://isthe.com/chongo/tech/comp/fnv/#FNV-param
#define FNV_PRIME_32 16777619
#define FNV_BASIS_32 2166136261
/* Converts the raw code values into a 32-bit hash code.
* Hopefully this code is unique for each button.
* This isn't a "real" decoding, just an arbitrary value.
*/
long IRrecv::decodeHash(decode_results *results) {
// Require at least 6 samples to prevent triggering on noise
if (results->rawlen < 6) {
return ERR;
}
long hash = FNV_BASIS_32;
for (int i = 1; i+2 < results->rawlen; i++) {
int value = compare(results->rawbuf[i], results->rawbuf[i+2]);
// Add value into the hash
hash = (hash * FNV_PRIME_32) ^ value;
}
results->value = hash;
results->bits = 32;
results->decode_type = UNKNOWN;
return DECODED;
}

View File

@ -0,0 +1,94 @@
/*
* IRremote
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.htm http://arcfn.com
* Edited by Mitra to add new controller SANYO
*
* Interrupt code based on NECIRrcv by Joe Knapp
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
*
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
*/
#ifndef IRremote_h
#define IRremote_h
// The following are compile-time library options.
// If you change them, recompile the library.
// If DEBUG is defined, a lot of debugging output will be printed during decoding.
// TEST must be defined for the IRtest unittests to work. It will make some
// methods virtual, which will be slightly slower, which is why it is optional.
// #define DEBUG
// #define TEST
// Results returned from the decoder
class decode_results {
public:
int decode_type; // NEC, SONY, RC5, UNKNOWN
unsigned int panasonicAddress; // This is only used for decoding Panasonic data
unsigned long value; // Decoded value
int bits; // Number of bits in decoded value
volatile unsigned int *rawbuf; // Raw intervals in .5 us ticks
int rawlen; // Number of records in rawbuf.
};
// Values for decode_type
#define NEC 1
#define SONY 2
#define RC5 3
#define RC6 4
#define DISH 5
#define SHARP 6
#define PANASONIC 7
#define JVC 8
#define SANYO 9
#define MITSUBISHI 10
#define UNKNOWN -1
// Decoded value for NEC when a repeat code is received
#define REPEAT 0xffffffff
// main class for receiving IR
class IRrecv
{
public:
IRrecv(int recvpin);
void blink13(int blinkflag);
int decode(decode_results *results);
void enableIRIn();
void resume();
private:
// These are called by decode
int getRClevel(decode_results *results, int *offset, int *used, int t1);
long decodeNEC(decode_results *results);
//long decodeSony(decode_results *results);
//long decodeSanyo(decode_results *results);
//long decodeMitsubishi(decode_results *results);
//long decodeRC5(decode_results *results);
//long decodeRC6(decode_results *results);
//long decodePanasonic(decode_results *results);
//long decodeJVC(decode_results *results);
long decodeHash(decode_results *results);
int compare(unsigned int oldval, unsigned int newval);
}
;
// Only used for testing; can remove virtual for shorter code
#ifdef TEST
#define VIRTUAL virtual
#else
#define VIRTUAL
#endif
// Some useful constants
#define USECPERTICK 50 // microseconds per clock interrupt tick
#define RAWBUF 100 // Length of raw duration buffer
// Marks tend to be 100us too long, and spaces 100us too short
// when received due to sensor lag.
#define MARK_EXCESS 100
#endif

View File

@ -0,0 +1,446 @@
/*
* IRremote
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
*
* Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
*
* Interrupt code based on NECIRrcv by Joe Knapp
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
*
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
*/
#ifndef IRremoteint_h
#define IRremoteint_h
#if defined(ARDUINO) && ARDUINO >= 100
#include <Arduino.h>
#else
#include <WProgram.h>
#endif
// define which timer to use
//
// Uncomment the timer you wish to use on your board. If you
// are using another library which uses timer2, you have options
// to switch IRremote to use a different timer.
// Arduino Mega
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
//#define IR_USE_TIMER1 // tx = pin 11
#define IR_USE_TIMER2 // tx = pin 9
//#define IR_USE_TIMER3 // tx = pin 5
//#define IR_USE_TIMER4 // tx = pin 6
//#define IR_USE_TIMER5 // tx = pin 46
// Teensy 1.0
#elif defined(__AVR_AT90USB162__)
#define IR_USE_TIMER1 // tx = pin 17
// Teensy 2.0
#elif defined(__AVR_ATmega32U4__)
//#define IR_USE_TIMER1 // tx = pin 14
//#define IR_USE_TIMER3 // tx = pin 9
#define IR_USE_TIMER4_HS // tx = pin 10
// Teensy++ 1.0 & 2.0
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
//#define IR_USE_TIMER1 // tx = pin 25
#define IR_USE_TIMER2 // tx = pin 1
//#define IR_USE_TIMER3 // tx = pin 16
// Sanguino
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
//#define IR_USE_TIMER1 // tx = pin 13
#define IR_USE_TIMER2 // tx = pin 14
// Atmega8
#elif defined(__AVR_ATmega8P__) || defined(__AVR_ATmega8__)
#define IR_USE_TIMER1 // tx = pin 9
// Arduino Duemilanove, Diecimila, LilyPad, Mini, Fio, etc
#else
//#define IR_USE_TIMER1 // tx = pin 9
#define IR_USE_TIMER2 // tx = pin 3
#endif
#ifdef F_CPU
#define SYSCLOCK F_CPU // main Arduino clock
#else
#define SYSCLOCK 16000000 // main Arduino clock
#endif
#define ERR 0
#define DECODED 1
// defines for setting and clearing register bits
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
// Pulse parms are *50-100 for the Mark and *50+100 for the space
// First MARK is the one after the long gap
// pulse parameters in usec
#define NEC_HDR_MARK 9000
#define NEC_HDR_SPACE 4500
#define NEC_BIT_MARK 560
#define NEC_ONE_SPACE 1600
#define NEC_ZERO_SPACE 560
#define NEC_RPT_SPACE 2250
#define SONY_HDR_MARK 2400
#define SONY_HDR_SPACE 600
#define SONY_ONE_MARK 1200
#define SONY_ZERO_MARK 600
#define SONY_RPT_LENGTH 45000
#define SONY_DOUBLE_SPACE_USECS 500 // usually ssee 713 - not using ticks as get number wrapround
// SA 8650B
#define SANYO_HDR_MARK 3500 // seen range 3500
#define SANYO_HDR_SPACE 950 // seen 950
#define SANYO_ONE_MARK 2400 // seen 2400
#define SANYO_ZERO_MARK 700 // seen 700
#define SANYO_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
#define SANYO_RPT_LENGTH 45000
// Mitsubishi RM 75501
// 14200 7 41 7 42 7 42 7 17 7 17 7 18 7 41 7 18 7 17 7 17 7 18 7 41 8 17 7 17 7 18 7 17 7
// #define MITSUBISHI_HDR_MARK 250 // seen range 3500
#define MITSUBISHI_HDR_SPACE 350 // 7*50+100
#define MITSUBISHI_ONE_MARK 1950 // 41*50-100
#define MITSUBISHI_ZERO_MARK 750 // 17*50-100
// #define MITSUBISHI_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
// #define MITSUBISHI_RPT_LENGTH 45000
#define RC5_T1 889
#define RC5_RPT_LENGTH 46000
#define RC6_HDR_MARK 2666
#define RC6_HDR_SPACE 889
#define RC6_T1 444
#define RC6_RPT_LENGTH 46000
#define SHARP_BIT_MARK 245
#define SHARP_ONE_SPACE 1805
#define SHARP_ZERO_SPACE 795
#define SHARP_GAP 600000
#define SHARP_TOGGLE_MASK 0x3FF
#define SHARP_RPT_SPACE 3000
#define DISH_HDR_MARK 400
#define DISH_HDR_SPACE 6100
#define DISH_BIT_MARK 400
#define DISH_ONE_SPACE 1700
#define DISH_ZERO_SPACE 2800
#define DISH_RPT_SPACE 6200
#define DISH_TOP_BIT 0x8000
#define PANASONIC_HDR_MARK 3502
#define PANASONIC_HDR_SPACE 1750
#define PANASONIC_BIT_MARK 502
#define PANASONIC_ONE_SPACE 1244
#define PANASONIC_ZERO_SPACE 400
#define JVC_HDR_MARK 8000
#define JVC_HDR_SPACE 4000
#define JVC_BIT_MARK 600
#define JVC_ONE_SPACE 1600
#define JVC_ZERO_SPACE 550
#define JVC_RPT_LENGTH 60000
#define SHARP_BITS 15
#define DISH_BITS 16
#define TOLERANCE 25 // percent tolerance in measurements
#define LTOL (1.0 - TOLERANCE/100.)
#define UTOL (1.0 + TOLERANCE/100.)
#define _GAP 5000 // Minimum map between transmissions
#define GAP_TICKS (_GAP/USECPERTICK)
#define TICKS_LOW(us) (int) (((us)*LTOL/USECPERTICK))
#define TICKS_HIGH(us) (int) (((us)*UTOL/USECPERTICK + 1))
// receiver states
#define STATE_IDLE 2
#define STATE_MARK 3
#define STATE_SPACE 4
#define STATE_STOP 5
// information for the interrupt handler
typedef struct {
uint8_t recvpin; // pin for IR data from detector
uint8_t rcvstate; // state machine
uint8_t blinkflag; // TRUE to enable blinking of pin 13 on IR processing
unsigned int timer; // state timer, counts 50uS ticks.
unsigned int rawbuf[RAWBUF]; // raw data
uint8_t rawlen; // counter of entries in rawbuf
}
irparams_t;
// Defined in IRremote.cpp
extern volatile irparams_t irparams;
// IR detector output is active low
#define MARK 0
#define SPACE 1
#define TOPBIT 0x80000000
#define NEC_BITS 32
#define SONY_BITS 12
#define SANYO_BITS 12
#define MITSUBISHI_BITS 16
#define MIN_RC5_SAMPLES 11
#define MIN_RC6_SAMPLES 1
#define PANASONIC_BITS 48
#define JVC_BITS 16
// defines for timer2 (8 bits)
#if defined(IR_USE_TIMER2)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR2A |= _BV(COM2B1))
#define TIMER_DISABLE_PWM (TCCR2A &= ~(_BV(COM2B1)))
#define TIMER_ENABLE_INTR (TIMSK2 = _BV(OCIE2A))
#define TIMER_DISABLE_INTR (TIMSK2 = 0)
#define TIMER_INTR_NAME TIMER2_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint8_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR2A = _BV(WGM20); \
TCCR2B = _BV(WGM22) | _BV(CS20); \
OCR2A = pwmval; \
OCR2B = pwmval / 3; \
})
#define TIMER_COUNT_TOP (SYSCLOCK * USECPERTICK / 1000000)
#if (TIMER_COUNT_TOP < 256)
#define TIMER_CONFIG_NORMAL() ({ \
TCCR2A = _BV(WGM21); \
TCCR2B = _BV(CS20); \
OCR2A = TIMER_COUNT_TOP; \
TCNT2 = 0; \
})
#else
#define TIMER_CONFIG_NORMAL() ({ \
TCCR2A = _BV(WGM21); \
TCCR2B = _BV(CS21); \
OCR2A = TIMER_COUNT_TOP / 8; \
TCNT2 = 0; \
})
#endif
#if defined(CORE_OC2B_PIN)
#define TIMER_PWM_PIN CORE_OC2B_PIN /* Teensy */
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define TIMER_PWM_PIN 9 /* Arduino Mega */
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
#define TIMER_PWM_PIN 14 /* Sanguino */
#else
#define TIMER_PWM_PIN 3 /* Arduino Duemilanove, Diecimila, LilyPad, etc */
#endif
// defines for timer1 (16 bits)
#elif defined(IR_USE_TIMER1)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR1A |= _BV(COM1A1))
#define TIMER_DISABLE_PWM (TCCR1A &= ~(_BV(COM1A1)))
#if defined(__AVR_ATmega8P__) || defined(__AVR_ATmega8__)
#define TIMER_ENABLE_INTR (TIMSK = _BV(OCIE1A))
#define TIMER_DISABLE_INTR (TIMSK = 0)
#else
#define TIMER_ENABLE_INTR (TIMSK1 = _BV(OCIE1A))
#define TIMER_DISABLE_INTR (TIMSK1 = 0)
#endif
#define TIMER_INTR_NAME TIMER1_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR1A = _BV(WGM11); \
TCCR1B = _BV(WGM13) | _BV(CS10); \
ICR1 = pwmval; \
OCR1A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR1A = 0; \
TCCR1B = _BV(WGM12) | _BV(CS10); \
OCR1A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT1 = 0; \
})
#if defined(CORE_OC1A_PIN)
#define TIMER_PWM_PIN CORE_OC1A_PIN /* Teensy */
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define TIMER_PWM_PIN 11 /* Arduino Mega */
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
#define TIMER_PWM_PIN 13 /* Sanguino */
#else
#define TIMER_PWM_PIN 9 /* Arduino Duemilanove, Diecimila, LilyPad, etc */
#endif
// defines for timer3 (16 bits)
#elif defined(IR_USE_TIMER3)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR3A |= _BV(COM3A1))
#define TIMER_DISABLE_PWM (TCCR3A &= ~(_BV(COM3A1)))
#define TIMER_ENABLE_INTR (TIMSK3 = _BV(OCIE3A))
#define TIMER_DISABLE_INTR (TIMSK3 = 0)
#define TIMER_INTR_NAME TIMER3_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR3A = _BV(WGM31); \
TCCR3B = _BV(WGM33) | _BV(CS30); \
ICR3 = pwmval; \
OCR3A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR3A = 0; \
TCCR3B = _BV(WGM32) | _BV(CS30); \
OCR3A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT3 = 0; \
})
#if defined(CORE_OC3A_PIN)
#define TIMER_PWM_PIN CORE_OC3A_PIN /* Teensy */
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define TIMER_PWM_PIN 5 /* Arduino Mega */
#else
#error "Please add OC3A pin number here\n"
#endif
// defines for timer4 (10 bits, high speed option)
#elif defined(IR_USE_TIMER4_HS)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(TOIE4))
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
#define TIMER_INTR_NAME TIMER4_OVF_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR4A = (1<<PWM4A); \
TCCR4B = _BV(CS40); \
TCCR4C = 0; \
TCCR4D = (1<<WGM40); \
TCCR4E = 0; \
TC4H = pwmval >> 8; \
OCR4C = pwmval; \
TC4H = (pwmval / 3) >> 8; \
OCR4A = (pwmval / 3) & 255; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR4A = 0; \
TCCR4B = _BV(CS40); \
TCCR4C = 0; \
TCCR4D = 0; \
TCCR4E = 0; \
TC4H = (SYSCLOCK * USECPERTICK / 1000000) >> 8; \
OCR4C = (SYSCLOCK * USECPERTICK / 1000000) & 255; \
TC4H = 0; \
TCNT4 = 0; \
})
#if defined(CORE_OC4A_PIN)
#define TIMER_PWM_PIN CORE_OC4A_PIN /* Teensy */
#elif defined(__AVR_ATmega32U4__)
#define TIMER_PWM_PIN 13 /* Leonardo */
#else
#error "Please add OC4A pin number here\n"
#endif
// defines for timer4 (16 bits)
#elif defined(IR_USE_TIMER4)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(OCIE4A))
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
#define TIMER_INTR_NAME TIMER4_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR4A = _BV(WGM41); \
TCCR4B = _BV(WGM43) | _BV(CS40); \
ICR4 = pwmval; \
OCR4A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR4A = 0; \
TCCR4B = _BV(WGM42) | _BV(CS40); \
OCR4A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT4 = 0; \
})
#if defined(CORE_OC4A_PIN)
#define TIMER_PWM_PIN CORE_OC4A_PIN
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define TIMER_PWM_PIN 6 /* Arduino Mega */
#else
#error "Please add OC4A pin number here\n"
#endif
// defines for timer5 (16 bits)
#elif defined(IR_USE_TIMER5)
#define TIMER_RESET
#define TIMER_ENABLE_PWM (TCCR5A |= _BV(COM5A1))
#define TIMER_DISABLE_PWM (TCCR5A &= ~(_BV(COM5A1)))
#define TIMER_ENABLE_INTR (TIMSK5 = _BV(OCIE5A))
#define TIMER_DISABLE_INTR (TIMSK5 = 0)
#define TIMER_INTR_NAME TIMER5_COMPA_vect
#define TIMER_CONFIG_KHZ(val) ({ \
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
TCCR5A = _BV(WGM51); \
TCCR5B = _BV(WGM53) | _BV(CS50); \
ICR5 = pwmval; \
OCR5A = pwmval / 3; \
})
#define TIMER_CONFIG_NORMAL() ({ \
TCCR5A = 0; \
TCCR5B = _BV(WGM52) | _BV(CS50); \
OCR5A = SYSCLOCK * USECPERTICK / 1000000; \
TCNT5 = 0; \
})
#if defined(CORE_OC5A_PIN)
#define TIMER_PWM_PIN CORE_OC5A_PIN
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define TIMER_PWM_PIN 46 /* Arduino Mega */
#else
#error "Please add OC5A pin number here\n"
#endif
#else // unknown timer
#error "Internal code configuration error, no known IR_USE_TIMER# defined\n"
#endif
// defines for blinking the LED
#if defined(CORE_LED0_PIN)
#define BLINKLED CORE_LED0_PIN
#define BLINKLED_ON() (digitalWrite(CORE_LED0_PIN, HIGH))
#define BLINKLED_OFF() (digitalWrite(CORE_LED0_PIN, LOW))
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define BLINKLED 13
#define BLINKLED_ON() (PORTB |= B10000000)
#define BLINKLED_OFF() (PORTB &= B01111111)
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
#define BLINKLED 0
#define BLINKLED_ON() (PORTD |= B00000001)
#define BLINKLED_OFF() (PORTD &= B11111110)
#else
#define BLINKLED 13
#define BLINKLED_ON() (PORTB |= B00100000)
#define BLINKLED_OFF() (PORTB &= B11011111)
#endif
#endif

View File

@ -0,0 +1,23 @@
#include "IRremote.h"
#include "IRremoteTools.h"
#include <Arduino.h>
int RECV_PIN = TKD2; // the pin the IR receiver is connected to
IRrecv irrecv(RECV_PIN); // an instance of the IR receiver object
decode_results results; // container for received IR codes
void beginIRremote(){
irrecv.enableIRIn(); // Start the receiver
}
bool IRrecived(){
return irrecv.decode(&results);
}
void resumeIRremote(){
irrecv.resume(); // resume receiver
}
unsigned long getIRresult(){
return results.value;
}

View File

@ -0,0 +1,12 @@
#ifndef IRREMOTETOOLS_H
#define IRREMOTETOOLS_H
extern void beginIRremote();
extern bool IRrecived();
extern void resumeIRremote();
extern unsigned long getIRresult();
#endif

View File

@ -0,0 +1,458 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

View File

@ -0,0 +1,167 @@
/*
* IRrecord: record and play back IR signals as a minimal
* An IR detector/demodulator must be connected to the input RECV_PIN.
* An IR LED must be connected to the output PWM pin 3.
* A button must be connected to the input BUTTON_PIN; this is the
* send button.
* A visible LED can be connected to STATUS_PIN to provide status.
*
* The logic is:
* If the button is pressed, send the IR code.
* If an IR code is received, record it.
*
* Version 0.11 September, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
int RECV_PIN = 11;
int BUTTON_PIN = 12;
int STATUS_PIN = 13;
IRrecv irrecv(RECV_PIN);
IRsend irsend;
decode_results results;
void setup()
{
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
pinMode(BUTTON_PIN, INPUT);
pinMode(STATUS_PIN, OUTPUT);
}
// Storage for the recorded code
int codeType = -1; // The type of code
unsigned long codeValue; // The code value if not raw
unsigned int rawCodes[RAWBUF]; // The durations if raw
int codeLen; // The length of the code
int toggle = 0; // The RC5/6 toggle state
// Stores the code for later playback
// Most of this code is just logging
void storeCode(decode_results *results) {
codeType = results->decode_type;
int count = results->rawlen;
if (codeType == UNKNOWN) {
Serial.println("Received unknown code, saving as raw");
codeLen = results->rawlen - 1;
// To store raw codes:
// Drop first value (gap)
// Convert from ticks to microseconds
// Tweak marks shorter, and spaces longer to cancel out IR receiver distortion
for (int i = 1; i <= codeLen; i++) {
if (i % 2) {
// Mark
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK - MARK_EXCESS;
Serial.print(" m");
}
else {
// Space
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK + MARK_EXCESS;
Serial.print(" s");
}
Serial.print(rawCodes[i - 1], DEC);
}
Serial.println("");
}
else {
if (codeType == NEC) {
Serial.print("Received NEC: ");
if (results->value == REPEAT) {
// Don't record a NEC repeat value as that's useless.
Serial.println("repeat; ignoring.");
return;
}
}
else if (codeType == SONY) {
Serial.print("Received SONY: ");
}
else if (codeType == RC5) {
Serial.print("Received RC5: ");
}
else if (codeType == RC6) {
Serial.print("Received RC6: ");
}
else {
Serial.print("Unexpected codeType ");
Serial.print(codeType, DEC);
Serial.println("");
}
Serial.println(results->value, HEX);
codeValue = results->value;
codeLen = results->bits;
}
}
void sendCode(int repeat) {
if (codeType == NEC) {
if (repeat) {
irsend.sendNEC(REPEAT, codeLen);
Serial.println("Sent NEC repeat");
}
else {
irsend.sendNEC(codeValue, codeLen);
Serial.print("Sent NEC ");
Serial.println(codeValue, HEX);
}
}
else if (codeType == SONY) {
irsend.sendSony(codeValue, codeLen);
Serial.print("Sent Sony ");
Serial.println(codeValue, HEX);
}
else if (codeType == RC5 || codeType == RC6) {
if (!repeat) {
// Flip the toggle bit for a new button press
toggle = 1 - toggle;
}
// Put the toggle bit into the code to send
codeValue = codeValue & ~(1 << (codeLen - 1));
codeValue = codeValue | (toggle << (codeLen - 1));
if (codeType == RC5) {
Serial.print("Sent RC5 ");
Serial.println(codeValue, HEX);
irsend.sendRC5(codeValue, codeLen);
}
else {
irsend.sendRC6(codeValue, codeLen);
Serial.print("Sent RC6 ");
Serial.println(codeValue, HEX);
}
}
else if (codeType == UNKNOWN /* i.e. raw */) {
// Assume 38 KHz
irsend.sendRaw(rawCodes, codeLen, 38);
Serial.println("Sent raw");
}
}
int lastButtonState;
void loop() {
// If button pressed, send the code.
int buttonState = digitalRead(BUTTON_PIN);
if (lastButtonState == HIGH && buttonState == LOW) {
Serial.println("Released");
irrecv.enableIRIn(); // Re-enable receiver
}
if (buttonState) {
Serial.println("Pressed, sending");
digitalWrite(STATUS_PIN, HIGH);
sendCode(lastButtonState == buttonState);
digitalWrite(STATUS_PIN, LOW);
delay(50); // Wait a bit between retransmissions
}
else if (irrecv.decode(&results)) {
digitalWrite(STATUS_PIN, HIGH);
storeCode(&results);
irrecv.resume(); // resume receiver
digitalWrite(STATUS_PIN, LOW);
}
lastButtonState = buttonState;
}

View File

@ -0,0 +1,28 @@
/*
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
* An IR detector/demodulator must be connected to the input RECV_PIN.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
int RECV_PIN = 11;
IRrecv irrecv(RECV_PIN);
decode_results results;
void setup()
{
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
}
void loop() {
if (irrecv.decode(&results)) {
Serial.println(results.value, HEX);
irrecv.resume(); // Receive the next value
}
}

View File

@ -0,0 +1,81 @@
/*
* IRremote: IRrecvDump - dump details of IR codes with IRrecv
* An IR detector/demodulator must be connected to the input RECV_PIN.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
*/
#include <IRremote.h>
int RECV_PIN = 11;
IRrecv irrecv(RECV_PIN);
decode_results results;
void setup()
{
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
}
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
// void * to work around compiler issue
//void dump(void *v) {
// decode_results *results = (decode_results *)v
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.print("Unknown encoding: ");
}
else if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
else if (results->decode_type == PANASONIC) {
Serial.print("Decoded PANASONIC - Address: ");
Serial.print(results->panasonicAddress,HEX);
Serial.print(" Value: ");
}
else if (results->decode_type == JVC) {
Serial.print("Decoded JVC: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}
void loop() {
if (irrecv.decode(&results)) {
Serial.println(results.value, HEX);
dump(&results);
irrecv.resume(); // Receive the next value
}
}

View File

@ -0,0 +1,85 @@
/*
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
* An IR detector/demodulator must be connected to the input RECV_PIN.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
int RECV_PIN = 11;
int RELAY_PIN = 4;
IRrecv irrecv(RECV_PIN);
decode_results results;
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
// void * to work around compiler issue
//void dump(void *v) {
// decode_results *results = (decode_results *)v
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.println("Could not decode message");
}
else {
if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}
void setup()
{
pinMode(RELAY_PIN, OUTPUT);
pinMode(13, OUTPUT);
Serial.begin(9600);
irrecv.enableIRIn(); // Start the receiver
}
int on = 0;
unsigned long last = millis();
void loop() {
if (irrecv.decode(&results)) {
// If it's been at least 1/4 second since the last
// IR received, toggle the relay
if (millis() - last > 250) {
on = !on;
digitalWrite(RELAY_PIN, on ? HIGH : LOW);
digitalWrite(13, on ? HIGH : LOW);
dump(&results);
}
last = millis();
irrecv.resume(); // Receive the next value
}
}

View File

@ -0,0 +1,25 @@
/*
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
* An IR LED must be connected to Arduino PWM pin 3.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
IRsend irsend;
void setup()
{
Serial.begin(9600);
}
void loop() {
if (Serial.read() != -1) {
for (int i = 0; i < 3; i++) {
irsend.sendSony(0xa90, 12); // Sony TV power code
delay(40);
}
}
}

View File

@ -0,0 +1,190 @@
/*
* IRremote: IRtest unittest
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
*
* Note: to run these tests, edit IRremote/IRremote.h to add "#define TEST"
* You must then recompile the library by removing IRremote.o and restarting
* the arduino IDE.
*/
#include <IRremote.h>
#include <IRremoteInt.h>
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
// void * to work around compiler issue
//void dump(void *v) {
// decode_results *results = (decode_results *)v
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.println("Could not decode message");
}
else {
if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}
IRrecv irrecv(0);
decode_results results;
class IRsendDummy :
public IRsend
{
public:
// For testing, just log the marks/spaces
#define SENDLOG_LEN 128
int sendlog[SENDLOG_LEN];
int sendlogcnt;
IRsendDummy() :
IRsend() {
}
void reset() {
sendlogcnt = 0;
}
void mark(int time) {
sendlog[sendlogcnt] = time;
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
}
void space(int time) {
sendlog[sendlogcnt] = -time;
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
}
// Copies the dummy buf into the interrupt buf
void useDummyBuf() {
int last = SPACE;
irparams.rcvstate = STATE_STOP;
irparams.rawlen = 1; // Skip the gap
for (int i = 0 ; i < sendlogcnt; i++) {
if (sendlog[i] < 0) {
if (last == MARK) {
// New space
irparams.rawbuf[irparams.rawlen++] = (-sendlog[i] - MARK_EXCESS) / USECPERTICK;
last = SPACE;
}
else {
// More space
irparams.rawbuf[irparams.rawlen - 1] += -sendlog[i] / USECPERTICK;
}
}
else if (sendlog[i] > 0) {
if (last == SPACE) {
// New mark
irparams.rawbuf[irparams.rawlen++] = (sendlog[i] + MARK_EXCESS) / USECPERTICK;
last = MARK;
}
else {
// More mark
irparams.rawbuf[irparams.rawlen - 1] += sendlog[i] / USECPERTICK;
}
}
}
if (irparams.rawlen % 2) {
irparams.rawlen--; // Remove trailing space
}
}
};
IRsendDummy irsenddummy;
void verify(unsigned long val, int bits, int type) {
irsenddummy.useDummyBuf();
irrecv.decode(&results);
Serial.print("Testing ");
Serial.print(val, HEX);
if (results.value == val && results.bits == bits && results.decode_type == type) {
Serial.println(": OK");
}
else {
Serial.println(": Error");
dump(&results);
}
}
void testNEC(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendNEC(val, bits);
verify(val, bits, NEC);
}
void testSony(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendSony(val, bits);
verify(val, bits, SONY);
}
void testRC5(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendRC5(val, bits);
verify(val, bits, RC5);
}
void testRC6(unsigned long val, int bits) {
irsenddummy.reset();
irsenddummy.sendRC6(val, bits);
verify(val, bits, RC6);
}
void test() {
Serial.println("NEC tests");
testNEC(0x00000000, 32);
testNEC(0xffffffff, 32);
testNEC(0xaaaaaaaa, 32);
testNEC(0x55555555, 32);
testNEC(0x12345678, 32);
Serial.println("Sony tests");
testSony(0xfff, 12);
testSony(0x000, 12);
testSony(0xaaa, 12);
testSony(0x555, 12);
testSony(0x123, 12);
Serial.println("RC5 tests");
testRC5(0xfff, 12);
testRC5(0x000, 12);
testRC5(0xaaa, 12);
testRC5(0x555, 12);
testRC5(0x123, 12);
Serial.println("RC6 tests");
testRC6(0xfffff, 20);
testRC6(0x00000, 20);
testRC6(0xaaaaa, 20);
testRC6(0x55555, 20);
testRC6(0x12345, 20);
}
void setup()
{
Serial.begin(9600);
test();
}
void loop() {
}

View File

@ -0,0 +1,290 @@
/*
* Test send/receive functions of IRremote, using a pair of Arduinos.
*
* Arduino #1 should have an IR LED connected to the send pin (3).
* Arduino #2 should have an IR detector/demodulator connected to the
* receive pin (11) and a visible LED connected to pin 3.
*
* The cycle:
* Arduino #1 will wait 2 seconds, then run through the tests.
* It repeats this forever.
* Arduino #2 will wait for at least one second of no signal
* (to synchronize with #1). It will then wait for the same test
* signals. It will log all the status to the serial port. It will
* also indicate status through the LED, which will flash each time a test
* is completed. If there is an error, it will light up for 5 seconds.
*
* The test passes if the LED flashes 19 times, pauses, and then repeats.
* The test fails if the LED lights for 5 seconds.
*
* The test software automatically decides which board is the sender and which is
* the receiver by looking for an input on the send pin, which will indicate
* the sender. You should hook the serial port to the receiver for debugging.
*
* Copyright 2010 Ken Shirriff
* http://arcfn.com
*/
#include <IRremote.h>
int RECV_PIN = 11;
int LED_PIN = 3;
IRrecv irrecv(RECV_PIN);
IRsend irsend;
decode_results results;
#define RECEIVER 1
#define SENDER 2
#define ERROR 3
int mode;
void setup()
{
Serial.begin(9600);
// Check RECV_PIN to decide if we're RECEIVER or SENDER
if (digitalRead(RECV_PIN) == HIGH) {
mode = RECEIVER;
irrecv.enableIRIn();
pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, LOW);
Serial.println("Receiver mode");
}
else {
mode = SENDER;
Serial.println("Sender mode");
}
}
// Wait for the gap between tests, to synchronize with
// the sender.
// Specifically, wait for a signal followed by a gap of at last gap ms.
void waitForGap(int gap) {
Serial.println("Waiting for gap");
while (1) {
while (digitalRead(RECV_PIN) == LOW) {
}
unsigned long time = millis();
while (digitalRead(RECV_PIN) == HIGH) {
if (millis() - time > gap) {
return;
}
}
}
}
// Dumps out the decode_results structure.
// Call this after IRrecv::decode()
void dump(decode_results *results) {
int count = results->rawlen;
if (results->decode_type == UNKNOWN) {
Serial.println("Could not decode message");
}
else {
if (results->decode_type == NEC) {
Serial.print("Decoded NEC: ");
}
else if (results->decode_type == SONY) {
Serial.print("Decoded SONY: ");
}
else if (results->decode_type == RC5) {
Serial.print("Decoded RC5: ");
}
else if (results->decode_type == RC6) {
Serial.print("Decoded RC6: ");
}
Serial.print(results->value, HEX);
Serial.print(" (");
Serial.print(results->bits, DEC);
Serial.println(" bits)");
}
Serial.print("Raw (");
Serial.print(count, DEC);
Serial.print("): ");
for (int i = 0; i < count; i++) {
if ((i % 2) == 1) {
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
}
else {
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
}
Serial.print(" ");
}
Serial.println("");
}
// Test send or receive.
// If mode is SENDER, send a code of the specified type, value, and bits
// If mode is RECEIVER, receive a code and verify that it is of the
// specified type, value, and bits. For success, the LED is flashed;
// for failure, the mode is set to ERROR.
// The motivation behind this method is that the sender and the receiver
// can do the same test calls, and the mode variable indicates whether
// to send or receive.
void test(char *label, int type, unsigned long value, int bits) {
if (mode == SENDER) {
Serial.println(label);
if (type == NEC) {
irsend.sendNEC(value, bits);
}
else if (type == SONY) {
irsend.sendSony(value, bits);
}
else if (type == RC5) {
irsend.sendRC5(value, bits);
}
else if (type == RC6) {
irsend.sendRC6(value, bits);
}
else {
Serial.print(label);
Serial.println("Bad type!");
}
delay(200);
}
else if (mode == RECEIVER) {
irrecv.resume(); // Receive the next value
unsigned long max_time = millis() + 30000;
Serial.print(label);
// Wait for decode or timeout
while (!irrecv.decode(&results)) {
if (millis() > max_time) {
Serial.println("Timeout receiving data");
mode = ERROR;
return;
}
}
if (type == results.decode_type && value == results.value && bits == results.bits) {
Serial.println (": OK");
digitalWrite(LED_PIN, HIGH);
delay(20);
digitalWrite(LED_PIN, LOW);
}
else {
Serial.println(": BAD");
dump(&results);
mode = ERROR;
}
}
}
// Test raw send or receive. This is similar to the test method,
// except it send/receives raw data.
void testRaw(char *label, unsigned int *rawbuf, int rawlen) {
if (mode == SENDER) {
Serial.println(label);
irsend.sendRaw(rawbuf, rawlen, 38 /* kHz */);
delay(200);
}
else if (mode == RECEIVER ) {
irrecv.resume(); // Receive the next value
unsigned long max_time = millis() + 30000;
Serial.print(label);
// Wait for decode or timeout
while (!irrecv.decode(&results)) {
if (millis() > max_time) {
Serial.println("Timeout receiving data");
mode = ERROR;
return;
}
}
// Received length has extra first element for gap
if (rawlen != results.rawlen - 1) {
Serial.print("Bad raw length ");
Serial.println(results.rawlen, DEC);
mode = ERROR;
return;
}
for (int i = 0; i < rawlen; i++) {
long got = results.rawbuf[i+1] * USECPERTICK;
// Adjust for extra duration of marks
if (i % 2 == 0) {
got -= MARK_EXCESS;
}
else {
got += MARK_EXCESS;
}
// See if close enough, within 25%
if (rawbuf[i] * 1.25 < got || got * 1.25 < rawbuf[i]) {
Serial.println(": BAD");
dump(&results);
mode = ERROR;
return;
}
}
Serial.println (": OK");
digitalWrite(LED_PIN, HIGH);
delay(20);
digitalWrite(LED_PIN, LOW);
}
}
// This is the raw data corresponding to NEC 0x12345678
unsigned int sendbuf[] = { /* NEC format */
9000, 4500,
560, 560, 560, 560, 560, 560, 560, 1690, /* 1 */
560, 560, 560, 560, 560, 1690, 560, 560, /* 2 */
560, 560, 560, 560, 560, 1690, 560, 1690, /* 3 */
560, 560, 560, 1690, 560, 560, 560, 560, /* 4 */
560, 560, 560, 1690, 560, 560, 560, 1690, /* 5 */
560, 560, 560, 1690, 560, 1690, 560, 560, /* 6 */
560, 560, 560, 1690, 560, 1690, 560, 1690, /* 7 */
560, 1690, 560, 560, 560, 560, 560, 560, /* 8 */
560};
void loop() {
if (mode == SENDER) {
delay(2000); // Delay for more than gap to give receiver a better chance to sync.
}
else if (mode == RECEIVER) {
waitForGap(1000);
}
else if (mode == ERROR) {
// Light up for 5 seconds for error
digitalWrite(LED_PIN, HIGH);
delay(5000);
digitalWrite(LED_PIN, LOW);
mode = RECEIVER; // Try again
return;
}
// The test suite.
test("SONY1", SONY, 0x123, 12);
test("SONY2", SONY, 0x000, 12);
test("SONY3", SONY, 0xfff, 12);
test("SONY4", SONY, 0x12345, 20);
test("SONY5", SONY, 0x00000, 20);
test("SONY6", SONY, 0xfffff, 20);
test("NEC1", NEC, 0x12345678, 32);
test("NEC2", NEC, 0x00000000, 32);
test("NEC3", NEC, 0xffffffff, 32);
test("NEC4", NEC, REPEAT, 32);
test("RC51", RC5, 0x12345678, 32);
test("RC52", RC5, 0x0, 32);
test("RC53", RC5, 0xffffffff, 32);
test("RC61", RC6, 0x12345678, 32);
test("RC62", RC6, 0x0, 32);
test("RC63", RC6, 0xffffffff, 32);
// Tests of raw sending and receiving.
// First test sending raw and receiving raw.
// Then test sending raw and receiving decoded NEC
// Then test sending NEC and receiving raw
testRaw("RAW1", sendbuf, 67);
if (mode == SENDER) {
testRaw("RAW2", sendbuf, 67);
test("RAW3", NEC, 0x12345678, 32);
}
else {
test("RAW2", NEC, 0x12345678, 32);
testRaw("RAW3", sendbuf, 67);
}
}

View File

@ -0,0 +1,29 @@
/*
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
* An IR LED must be connected to Arduino PWM pin 3.
* Version 0.1 July, 2009
* Copyright 2009 Ken Shirriff
* http://arcfn.com
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
*/
#include <IRremote.h>
#define PanasonicAddress 0x4004 // Panasonic address (Pre data)
#define PanasonicPower 0x100BCBD // Panasonic Power button
#define JVCPower 0xC5E8
IRsend irsend;
void setup()
{
}
void loop() {
irsend.sendPanasonic(PanasonicAddress,PanasonicPower); // This should turn your TV on and off
irsend.sendJVC(JVCPower, 16,0); // hex value, 16 bits, no repeat
delayMicroseconds(50); // see http://www.sbprojects.com/knowledge/ir/jvc.php for information
irsend.sendJVC(JVCPower, 16,1); // hex value, 16 bits, repeat
delayMicroseconds(50);
}

View File

@ -0,0 +1,50 @@
#######################################
# Syntax Coloring Map For IRremote
#######################################
#######################################
# Datatypes (KEYWORD1)
#######################################
decode_results KEYWORD1
IRrecv KEYWORD1
IRsend KEYWORD1
#######################################
# Methods and Functions (KEYWORD2)
#######################################
blink13 KEYWORD2
decode KEYWORD2
enableIRIn KEYWORD2
resume KEYWORD2
enableIROut KEYWORD2
sendNEC KEYWORD2
sendSony KEYWORD2
sendSanyo KEYWORD2
sendMitsubishi KEYWORD2
sendRaw KEYWORD2
sendRC5 KEYWORD2
sendRC6 KEYWORD2
sendDISH KEYWORD2
sendSharp KEYWORD2
sendPanasonic KEYWORD2
sendJVC KEYWORD2
#
#######################################
# Constants (LITERAL1)
#######################################
NEC LITERAL1
SONY LITERAL1
SANYO LITERAL1
MITSUBISHI LITERAL1
RC5 LITERAL1
RC6 LITERAL1
DISH LITERAL1
SHARP LITERAL1
PANASONIC LITERAL1
JVC LITERAL1
UNKNOWN LITERAL1
REPEAT LITERAL1

View File

@ -0,0 +1,14 @@
This is the IRremote library for the Arduino.
To download from github (http://github.com/shirriff/Arduino-IRremote), click on the "Downloads" link in the upper right, click "Download as zip", and get a zip file. Unzip it and rename the directory shirriff-Arduino-IRremote-nnn to IRremote
To install, move the downloaded IRremote directory to:
arduino-1.x/libraries/IRremote
where arduino-1.x is your Arduino installation directory
After installation you should have files such as:
arduino-1.x/libraries/IRremote/IRremote.cpp
For details on the library see the Wiki on github or the blog post http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
Copyright 2009-2012 Ken Shirriff

View File

@ -85,12 +85,26 @@
#define TK6 106
#define TK7 107
#define M0 TK0
#define M1 TK1
#define M2 TK2
#define M3 TK3
#define M4 TK4
#define M5 TK5
#define M6 TK6
#define M7 TK7
//bottom TKs, just for communication purpose
#define B_TK1 201
#define B_TK2 202
#define B_TK3 203
#define B_TK4 204
#define D10 B_TK1
#define D9 B_TK2
#define D8 B_TK4
#define D7 B_TK3
//bottom IRs, for communication purpose
#define B_IR0 210
#define B_IR1 211

View File

@ -43,7 +43,7 @@ void setup() {
// These are some general values that work for line following
// uncomment one or the other to see the different behaviors of the robot
// Robot.lineFollowConfig(11, 5, 50, 10);
Robot.lineFollowConfig(14, 9, 50, 10);
Robot.lineFollowConfig(11, 7, 60, 5);
//set the motor board into line-follow mode
Robot.setMode(MODE_LINE_FOLLOW);

View File

@ -56,7 +56,10 @@ void renderUI() {
Robot.rect(73, 38, 13, 13); // up
Robot.circle(79, 64, 6); // middle
Robot.rect(73, 78, 13, 13); // down
Robot.circle(26, 116, 18); // knob
//draw the knob
Robot.noFill();
Robot.circle(26, 116, 17); // knob
//draw the vertical bargraph
int fullPart=map(pitch, 200, 2000, 0, 58); //length of filled bargraph
@ -136,31 +139,27 @@ void keyDown(int keyCode) {
oldKey = keyCode;
}
//Draw a circle according to value
//of the knob.
void drawKnob(int val) {
static int x = 0, y = 0, val_old = 0;
// radian number, -3.14 to 3.14
float ang = map(val, 0, 1023, -PI*1000, PI*1000) / 1000.0;
// erase the old line
if (val_old != val) {
Robot.stroke(255, 255, 255);
Robot.line(26, 116, x, y);
}
static int val_old;
int r=map(val,0,1023,1,15);
// the following lines avoid a glitch in the TFT library
// that seems to appear when drawing a vertical line
if (val < 1011 && val > 265 || val < 253) {
//a bit math for drawing the hand inside the clock
x = 16*sin(ang)+26;
y = 16*cos(ang)+116;
}
if (val > 265 && val < 253) {
x = 10; y = 116;
}
if (val >= 1011) {
x = 27; y = 100;
}
Robot.stroke(0, 0, 0);
Robot.line(26, 116, x, y);
val_old = val;
//Only updates when the
//value changes.
if(val_old!=r){
Robot.noFill();
//erase the old circle
Robot.stroke(255, 255, 255);
Robot.circle(26,116,r+1);
//draw the new circle
Robot.stroke(255, 0, 255);
Robot.circle(26,116,r);
Robot.stroke(0, 0, 0);
val_old=r;
}
}

View File

@ -1,103 +1,38 @@
/* 6 Wheel Calibration
*
* Use this sketch to calibrate the wheels in your robot.
* Your robot should drive as straight as possible when
* putting both motors at the same speed.
*
* Run the software and follow the on-screen instructions.
* Use the trimmer on the bottom board to make sure the
* robot is working at its best!
*
* (c) 2013 X. Yang
*/
#include "scripts_library.h"
Use this sketch to calibrate the wheels in your robot.
Your robot should drive as straight as possible when
putting both motors at the same speed.
Run the software and follow the on-screen instructions.
Use the trimmer on the motor board to make sure the
robot is working at its best!
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h> // inport the robot librsry
// import the utility library
// a description of its funtionality is below
#include <utility/RobotTextManager.h>
// arrays to hold the text for instructions
char script1[] ="Wheel Calibration";
char script2[] ="1. Put Robot on a\n flat surface";
char script3[] ="2. Adjust speed with the knob on top";
char script4[] ="3. If robot goes\n straight, it's done";
char script5[] ="4. Use screwdriver\n on the bottom trim";
char script6[] ="- Robot turns left,\n screw it clockwise;";
char script7[] ="- Turns right, screw it ct-colockwise;";
char script8[] ="5. Repeat 4 until\n going straight";
int speedRobot; //robot speed
int calibrationValue; //value for calibrate difference between wheels
#include <ArduinoRobot.h>
void setup(){
//necessary initialization sequence
Serial.begin(9600);
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
Robot.setTextWrap(false);
Robot.displayLogos();
// left and top margin for displaying text
// see below for a description of this
textManager.setMargin(5,5);
// write all instructions at once
writeAllscript();
writeAllScripts();
}
void loop(){
//Control the robot's speed with knob on top
int speedRobot=map(Robot.knobRead(),0,1023,-255,255);
Robot.motorsWrite(speedRobot,speedRobot);
int val=map(Robot.knobRead(),0,1023,-255,255);
Serial.println(val);
Robot.motorsWrite(val,val);
//read value of the pot on motor baord,to clibrate the wheels
int calibrationValue=map(Robot.trimRead(),0,1023,-30,30);
// print the values to the screen
Robot.debugPrint(calibrationValue,110,145);
int WC=map(Robot.trimRead(),0,1023,-20,20);
Robot.debugPrint(WC,108,149);
delay(40);
}
void writeAllscript(){
//prints 8 scripts one after another
textManager.writeText(0,0,script1);
textManager.writeText(1,0,script2);
textManager.writeText(3,0,script3);
textManager.writeText(5,0,script4);
textManager.writeText(7,0,script5);
textManager.writeText(9,0,script6);
textManager.writeText(11,0,script7);
textManager.writeText(13,0,script8);
}
/**
textManager mostly contains helper functions for
R06_Wheel_Calibration and R01_Hello_User.
textManager.setMargin(margin_left, margin_top):
Configure the left and top margin for text
display. The margins will be used by
textManager.writeText().
Parameters:
margin_left, margin_top: int, the margin values
from the top and left side of the screen.
Returns:
none
textManager.writeText(line,column,text):
Display text on the specific line and column.
It's different from Robot.text() which
uses pixels for positioning the text.
Parameters:
line:int, which line is the text displayed. Each line
is 10px high.
column:int, which column is the text displayed. Each
column is 8px wide.
text:a char array(string) of the text to be displayed.
Returns:
none
*/

View File

@ -0,0 +1,43 @@
#include <avr/pgmspace.h>
#include <ArduinoRobot.h>
prog_char script1[] PROGMEM="Wheel Calibration\n";
prog_char script2[] PROGMEM="1. Put Robot on a flat surface\n";
prog_char script3[] PROGMEM="2. Adjust speed with the knob on top\n";
prog_char script4[] PROGMEM="3. If robot goes straight, it's done\n";
prog_char script5[] PROGMEM="4. Use screwdriver on the trim on bottom\n";
prog_char script6[] PROGMEM="Robot turns left, screw it clockwise;\n";
prog_char script7[] PROGMEM="Turns right, screw it ct-colockwise;\n";
prog_char script8[] PROGMEM="5. Repeat 4 until going straight\n";
char buffer[42];//must be longer than text
PROGMEM const char *scripts[]={
script1,
script2,
script3,
script4,
script5,
script6,
script7,
script8,
};
void getPGMtext(int seq){
strcpy_P(buffer,(char*)pgm_read_word(&(scripts[seq])));
}
void writePGMtext(int seq){
getPGMtext(seq);
Robot.print(buffer);
}
void writeScript(int seq){
writePGMtext(seq);
}
void writeAllScripts(){
for(int i=0;i<8;i++){
writeScript(i);
}
}

View File

@ -4,7 +4,7 @@
distance sensor, it's capable of detecting and avoiding
obstacles, never bumping into walls again!
You'll need to attach an untrasonic range finder to TK1.
You'll need to attach an untrasonic range finder to M1.
Circuit:
* Arduino Robot
@ -21,7 +21,7 @@
// include the robot library
#include <ArduinoRobot.h>
int sensorPin = TK1; // pin is used by the sensor
int sensorPin = M1; // pin is used by the sensor
void setup() {
// initialize the Robot, SD card, and display

View File

@ -1,35 +1,15 @@
/* 08 Remote Control
*******************
***
***This example code is in an experimental state.
***You are welcome to try this with your robot,
***and no harm will come to it. We will provide a
***detailed description of an updated version of this
***in a future update
***
*** For this example to work you need:
***
*** - download and install the IR-Remote library by Ken Shirriff
*** to be found at https://github.com/shirriff/Arduino-IRremote
*** - get a Sony remote control
***
*** This example will be updated soon, come back to the Robot
*** page on the Arduino server for updates!!
***
*******************
If you connect a IR receiver to the robot,
you can control it like you control a TV set.
Using a Sony compatiable remote control,
map some buttons to different actions.
You can make the robot move around without
even touching it!
you can control it like a RC car.
Using the remote control comes with sensor
pack, You can make the robot move around
without even touching it!
Circuit:
* Arduino Robot
* Connect the IRreceiver to TDK2
* Sony compatible remote control
* Connect the IRreceiver to D2
* Remote control from Robot sensor pack
based on the IRremote library
by Ken Shirriff
@ -45,79 +25,67 @@
// include the necessary libraries
#include <IRremote.h>
#include <IRremoteTools.h>
#include <ArduinoRobot.h>
// Define a few commands from your remote control
#define IR_CODE_FORWARD 0x2C9B
#define IR_CODE_BACKWARDS 0x6C9B
#define IR_CODE_TURN_LEFT 0xD4B8F
#define IR_CODE_TURN_RIGHT 0x34B8F
#define IR_CODE_FORWARD 284154405
#define IR_CODE_BACKWARDS 284113605
#define IR_CODE_TURN_LEFT 284129925
#define IR_CODE_TURN_RIGHT 284127885
#define IR_CODE_CONTINUE -1
int RECV_PIN = TKD2; // the pin the IR receiver is connected to
IRrecv irrecv(RECV_PIN); // an instance of the IR receiver object
decode_results results; // container for received IR codes
boolean isActing=false; //If the robot is executing command from remote
long timer;
const long TIME_OUT=150;
void setup() {
// initialize the Robot, SD card, display, and speaker
Serial.begin(9600);
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
// print some text to the screen
Robot.stroke(0, 0, 0);
Robot.text("Remote Control code:", 5, 5);
Robot.text("Command:", 5, 26);
irrecv.enableIRIn(); // Start the receiver
beginIRremote(); // Start the receiver
}
void loop() {
// if there is an IR command, process it
if (irrecv.decode(&results)) {
if (IRrecived()) {
processResult();
irrecv.resume(); // resume receiver
resumeIRremote(); // resume receiver
}
//If the robot does not receive any command, stop it
if(isActing && (millis()-timer>=TIME_OUT)){
Robot.motorsStop();
isActing=false;
}
}
void processResult() {
unsigned long res = results.value;
// print the value to the screen
Robot.debugPrint(res, 5, 15);
if(res == IR_CODE_FORWARD || res == IR_CODE_BACKWARDS || res == IR_CODE_TURN_LEFT || res == IR_CODE_TURN_RIGHT) {
Robot.fill(255, 255, 255);
Robot.stroke(255, 255, 255);
Robot.rect(5, 36, 55, 10);
}
switch(results.value){
unsigned long res = getIRresult();
switch(res){
case IR_CODE_FORWARD:
Robot.stroke(0, 0, 0);
Robot.text("Forward", 5, 36);
Robot.motorsWrite(255, 255);
delay(300);
Robot.motorsStop();
changeAction(1,1); //Move the robot forward
break;
case IR_CODE_BACKWARDS:
Robot.stroke(0, 0, 0);
Robot.text("Backwards", 5, 36);
Robot.motorsWrite(-255, -255);
delay(300);
Robot.motorsStop();
changeAction(-1,-1); //Move the robot backwards
break;
case IR_CODE_TURN_LEFT:
Robot.stroke(0, 0, 0);
Robot.text("Left", 5, 36);
Robot.motorsWrite(-255, 255);
delay(100);
Robot.motorsStop();
changeAction(-0.5,0.5); //Turn the robot left
break;
case IR_CODE_TURN_RIGHT:
Robot.stroke(0, 0, 0);
Robot.text("Right", 5, 36);
Robot.motorsWrite(255, -255);
delay(100);
Robot.motorsStop();
changeAction(0.5,-0.5); //Turn the robot Right
break;
case IR_CODE_CONTINUE:
timer=millis(); //Continue the last action, reset timer
break;
}
}
void changeAction(float directionLeft, float directionRight){
Robot.motorsWrite(255*directionLeft, 255*directionRight);
timer=millis();
isActing=true;
}

View File

@ -55,7 +55,7 @@ void setup(){
// use this to calibrate the line following algorithm
// uncomment one or the other to see the different behaviors of the robot
// Robot.lineFollowConfig(11, 5, 50, 10);
Robot.lineFollowConfig(14, 9, 50, 10);
Robot.lineFollowConfig(11, 7, 60, 5);
// run the rescue sequence
rescueSequence();

View File

@ -27,15 +27,11 @@ void setup(){
//necessary initialization sequence
Robot.begin();
Robot.beginTFT();
Robot.beginSpeaker(32000);
Robot.beginSD();
// show the logos from the SD card
Robot.displayLogos();
// play the music file
Robot.playFile("menu.sqm");
// clear the screen
Robot.clearScreen();

View File

@ -5,9 +5,9 @@
reads/writes from/to them. Uncomment the different lines inside
the loop to test the different possibilities.
The TK inputs on the Control Board are multiplexed and therefore
it is not recommended to use them as outputs. The TKD pins on the
Control Board as well as the TK pins on the Motor Board go directly
The M inputs on the Control Board are multiplexed and therefore
it is not recommended to use them as outputs. The D pins on the
Control Board as well as the D pins on the Motor Board go directly
to the microcontroller and therefore can be used both as inputs
and outputs.
@ -25,9 +25,9 @@
#include <ArduinoRobot.h>
// use arrays to store the names of the pins to be read
uint8_t arr[] = { TK0, TK1, TK2, TK3, TK4, TK5, TK6, TK7 };
uint8_t arr2[] = { TKD0, TKD1, TKD2, TKD3, TKD4, TKD5 };
uint8_t arr3[] = { B_TK1, B_TK2, B_TK3, B_TK4 };
uint8_t arr[] = { M0, M1, M2, M3, M4, M5, M6, M7 };
uint8_t arr2[] = { D0, D1, D2, D3, D4, D5 };
uint8_t arr3[] = { D7, D8, D9, D10 };
void setup(){
// initialize the robot
@ -38,34 +38,34 @@ void setup(){
}
void loop(){
// read all the TK inputs at the Motor Board as analog
analogReadB_TKs();
// read all the D inputs at the Motor Board as analog
//analogReadB_Ds();
// read all the TK inputs at the Motor Board as digital
//digitalReadB_TKs();
// read all the D inputs at the Motor Board as digital
//digitalReadB_Ds();
// read all the TK inputs at the Control Board as analog
//analogReadTKs();
// read all the M inputs at the Control Board as analog
//analogReadMs();
// read all the TK inputs at the Control Board as digital
//digitalReadTKs();
// read all the M inputs at the Control Board as digital
//digitalReadMs();
// read all the TKD inputs at the Control Board as analog
//analogReadTKDs();
// read all the D inputs at the Control Board as analog
analogReadT_Ds();
// read all the TKD inputs at the Control Board as digital
//digitalReadTKDs();
// read all the D inputs at the Control Board as digital
//digitalReadT_Ds();
// write all the TK outputs at the Motor Board as digital
//digitalWriteB_TKs();
// write all the D outputs at the Motor Board as digital
//digitalWriteB_Ds();
// write all the TKD outputs at the Control Board as digital
//digitalWriteTKDs();
delay(5);
// write all the D outputs at the Control Board as digital
//digitalWriteT_Ds();
delay(40);
}
// read all TK inputs on the Control Board as analog inputs
void analogReadTKs() {
// read all M inputs on the Control Board as analog inputs
void analogReadMs() {
for(int i=0;i<8;i++) {
Serial.print(Robot.analogRead(arr[i]));
Serial.print(",");
@ -73,8 +73,8 @@ void analogReadTKs() {
Serial.println("");
}
// read all TK inputs on the Control Board as digital inputs
void digitalReadTKs() {
// read all M inputs on the Control Board as digital inputs
void digitalReadMs() {
for(int i=0;i<8;i++) {
Serial.print(Robot.digitalRead(arr[i]));
Serial.print(",");
@ -82,8 +82,8 @@ void digitalReadTKs() {
Serial.println("");
}
// read all TKD inputs on the Control Board as analog inputs
void analogReadTKDs() {
// read all D inputs on the Control Board as analog inputs
void analogReadT_Ds() {
for(int i=0; i<6; i++) {
Serial.print(Robot.analogRead(arr2[i]));
Serial.print(",");
@ -91,8 +91,8 @@ void analogReadTKDs() {
Serial.println("");
}
// read all TKD inputs on the Control Board as digital inputs
void digitalReadTKDs() {
// read all D inputs on the Control Board as digital inputs
void digitalReadT_Ds() {
for(int i=0; i<6; i++) {
Serial.print(Robot.digitalRead(arr2[i]));
Serial.print(",");
@ -100,8 +100,8 @@ void digitalReadTKDs() {
Serial.println("");
}
// write all TKD outputs on the Control Board as digital outputs
void digitalWriteTKDs() {
// write all D outputs on the Control Board as digital outputs
void digitalWriteT_Ds() {
// turn all the pins on
for(int i=0; i<6; i++) {
Robot.digitalWrite(arr2[i], HIGH);
@ -115,8 +115,8 @@ void digitalWriteTKDs() {
delay(500);
}
// write all TK outputs on the Motor Board as digital outputs
void digitalWriteB_TKs() {
// write all D outputs on the Motor Board as digital outputs
void digitalWriteB_Ds() {
// turn all the pins on
for(int i=0; i<4; i++) {
Robot.digitalWrite(arr3[i], HIGH);
@ -130,8 +130,8 @@ void digitalWriteB_TKs() {
delay(500);
}
// read all TK inputs on the Motor Board as analog inputs
void analogReadB_TKs() {
// read all D inputs on the Motor Board as analog inputs
void analogReadB_Ds() {
for(int i=0; i<4; i++) {
Serial.print(Robot.analogRead(arr3[i]));
Serial.print(",");
@ -139,8 +139,8 @@ void analogReadB_TKs() {
Serial.println("");
}
// read all TKD inputs on the Motor Board as digital inputs
void digitalReadB_TKs() {
// read all D inputs on the Motor Board as digital inputs
void digitalReadB_Ds() {
for(int i=0; i<4; i++) {
Serial.print(Robot.digitalRead(arr3[i]));
Serial.print(",");

View File

@ -23,7 +23,7 @@ void setup() {
Robot.begin();
// initialize the robot's screen
Robot.beginLCD();
Robot.beginTFT();
}
void loop() {
@ -31,14 +31,14 @@ void loop() {
value=Robot.analogRead(TK4);
// write the sensor value on the screen
Robot.fill(0, 255, 0);
Robot.stroke(0, 255, 0);
Robot.textSize(1);
Robot.text(value, 0, 0);
delay(500);
// erase the previous text on the screen
Robot.fill(255, 255, 255);
Robot.stroke(255, 255, 255);
Robot.textSize(1);
Robot.text(value, 0, 0);
}

View File

@ -230,16 +230,20 @@ void RobotMotorBoard::_analogRead(uint8_t codename){
messageOut.sendData();
}
int RobotMotorBoard::IRread(uint8_t num){
IRs.selectPin(num-1); //To make consistant with the pins labeled on the board
return _IRread(num-1); //To make consistant with the pins labeled on the board
}
int RobotMotorBoard::_IRread(uint8_t num){
IRs.selectPin(num);
return IRs.getAnalogValue();
}
void RobotMotorBoard::_readIR(){
//Serial.println("readIR");
int value;
messageOut.writeByte(COMMAND_READ_IR_RE);
for(int i=1;i<6;i++){
value=IRread(i);
for(int i=0;i<5;i++){
value=_IRread(i);
messageOut.writeInt(value);
}
messageOut.sendData();

View File

@ -105,6 +105,7 @@ class RobotMotorBoard:public LineFollow{
void _digitalWrite(uint8_t codename, bool value);
void _analogRead(uint8_t codename);
void _digitalRead(uint8_t codename);
int _IRread(uint8_t num);
void _readIR();
void _readTrim();

View File

@ -19,7 +19,7 @@ class LineFollow{
//virtual void motorsWrite(int speedL, int speedR)=0;
virtual void motorsWritePct(int speedLpct, int speedRpct)=0;
virtual void motorsStop()=0;
virtual int IRread(uint8_t num)=0;
virtual int _IRread(uint8_t num)=0;
protected:
virtual void reportActionDone()=0;

View File

@ -19,7 +19,7 @@ void setup(){
void loop(){
bar=String(""); // empty the string
// read the sensors and add them to the string
bar=bar+RobotMotor.readIR(0)+' '+RobotMotor.readIR(1)+' '+RobotMotor.readIR(2)+' '+RobotMotor.readIR(3)+' '+RobotMotor.readIR(4);
bar=bar+RobotMotor.IRread(1)+' '+RobotMotor.IRread(2)+' '+RobotMotor.IRread(3)+' '+RobotMotor.IRread(4)+' '+RobotMotor.IRread(5);
// print out the values
Serial.println(bar);
delay(100);

View File

@ -79,7 +79,7 @@ void LineFollow::calibIRs(){
void LineFollow::runLineFollow(){
for(int count=0; count<5; count++)
{
lectura_sensor[count]=map(IRread(count),sensor_negro[count],sensor_blanco[count],0,127);
lectura_sensor[count]=map(_IRread(count),sensor_negro[count],sensor_blanco[count],0,127);
acu+=lectura_sensor[count];
}
@ -135,7 +135,7 @@ void LineFollow::ajusta_niveles()
int lectura=0;
for(int count=0; count<5; count++){
lectura=IRread(count);
lectura=_IRread(count);
if (lectura > sensor_blanco[count])
sensor_blanco[count]=lectura;