1
0
mirror of https://github.com/arduino/Arduino.git synced 2024-12-01 12:24:14 +01:00
David A. Mellis 2010-10-17 17:55:53 -04:00
parent b0888a34b5
commit b0bc52d7d5
4 changed files with 306 additions and 148 deletions

View File

@ -80,7 +80,14 @@ unsigned long micros() {
cli(); cli();
m = timer0_overflow_count; m = timer0_overflow_count;
#if defined(TCNT0)
t = TCNT0; t = TCNT0;
#elif defined(TCNT0L)
t = TCNT0L;
#else
#error TIMER 0 not defined
#endif
#ifdef TIFR0 #ifdef TIFR0
if ((TIFR0 & _BV(TOV0)) && (t < 255)) if ((TIFR0 & _BV(TOV0)) && (t < 255))
@ -166,62 +173,99 @@ void init()
// on the ATmega168, timer 0 is also used for fast hardware pwm // on the ATmega168, timer 0 is also used for fast hardware pwm
// (using phase-correct PWM would mean that timer 0 overflowed half as often // (using phase-correct PWM would mean that timer 0 overflowed half as often
// resulting in different millis() behavior on the ATmega8 and ATmega168) // resulting in different millis() behavior on the ATmega8 and ATmega168)
#if !defined(__AVR_ATmega8__) #if defined(TCCR0A) && defined(WGM01)
sbi(TCCR0A, WGM01); sbi(TCCR0A, WGM01);
sbi(TCCR0A, WGM00); sbi(TCCR0A, WGM00);
#endif #endif
// set timer 0 prescale factor to 64 // set timer 0 prescale factor to 64
#if defined(__AVR_ATmega8__) #if defined(__AVR_ATmega128__)
// CPU specific: different values for the ATmega128
sbi(TCCR0, CS02);
#elif defined(TCCR0) && defined(CS01) && defined(CS00)
// this combination is for the standard atmega8
sbi(TCCR0, CS01); sbi(TCCR0, CS01);
sbi(TCCR0, CS00); sbi(TCCR0, CS00);
#else #elif defined(TCCR0B) && defined(CS01) && defined(CS00)
// this combination is for the standard 168/328/1280/2560
sbi(TCCR0B, CS01); sbi(TCCR0B, CS01);
sbi(TCCR0B, CS00); sbi(TCCR0B, CS00);
#endif #elif defined(TCCR0A) && defined(CS01) && defined(CS00)
// enable timer 0 overflow interrupt // this combination is for the __AVR_ATmega645__ series
#if defined(__AVR_ATmega8__) sbi(TCCR0A, CS01);
sbi(TIMSK, TOIE0); sbi(TCCR0A, CS00);
#else #else
#error Timer 0 prescale factor 64 not set correctly
#endif
// enable timer 0 overflow interrupt
#if defined(TIMSK) && defined(TOIE0)
sbi(TIMSK, TOIE0);
#elif defined(TIMSK0) && defined(TOIE0)
sbi(TIMSK0, TOIE0); sbi(TIMSK0, TOIE0);
#else
#error Timer 0 overflow interrupt not set correctly
#endif #endif
// timers 1 and 2 are used for phase-correct hardware pwm // timers 1 and 2 are used for phase-correct hardware pwm
// this is better for motors as it ensures an even waveform // this is better for motors as it ensures an even waveform
// note, however, that fast pwm mode can achieve a frequency of up // note, however, that fast pwm mode can achieve a frequency of up
// 8 MHz (with a 16 MHz clock) at 50% duty cycle // 8 MHz (with a 16 MHz clock) at 50% duty cycle
TCCR1B = 0; TCCR1B = 0;
// set timer 1 prescale factor to 64 // set timer 1 prescale factor to 64
#if defined(TCCR1B) && defined(CS11) && defined(CS10)
sbi(TCCR1B, CS11); sbi(TCCR1B, CS11);
sbi(TCCR1B, CS10); sbi(TCCR1B, CS10);
#elif defined(TCCR1) && defined(CS11) && defined(CS10)
sbi(TCCR1, CS11);
sbi(TCCR1, CS10);
#endif
// put timer 1 in 8-bit phase correct pwm mode // put timer 1 in 8-bit phase correct pwm mode
#if defined(TCCR1A) && defined(WGM10)
sbi(TCCR1A, WGM10); sbi(TCCR1A, WGM10);
#elif defined(TCCR1)
#warning this needs to be finished
#endif
// set timer 2 prescale factor to 64 // set timer 2 prescale factor to 64
#if defined(__AVR_ATmega8__) #if defined(TCCR2) && defined(CS22)
sbi(TCCR2, CS22); sbi(TCCR2, CS22);
#else #elif defined(TCCR2B) && defined(CS22)
sbi(TCCR2B, CS22); sbi(TCCR2B, CS22);
#endif
// configure timer 2 for phase correct pwm (8-bit)
#if defined(__AVR_ATmega8__)
sbi(TCCR2, WGM20);
#else #else
#warning Timer 2 not finished (may not be present on this CPU)
#endif
// configure timer 2 for phase correct pwm (8-bit)
#if defined(TCCR2) && defined(WGM20)
sbi(TCCR2, WGM20);
#elif defined(TCCR2A) && defined(WGM20)
sbi(TCCR2A, WGM20); sbi(TCCR2A, WGM20);
#else
#warning Timer 2 not finished (may not be present on this CPU)
#endif #endif
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) #if defined(TCCR3B) && defined(CS31) && defined(WGM30)
// set timer 3, 4, 5 prescale factor to 64 sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64
sbi(TCCR3B, CS31); sbi(TCCR3B, CS30); sbi(TCCR3B, CS30);
sbi(TCCR4B, CS41); sbi(TCCR4B, CS40); sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
sbi(TCCR5B, CS51); sbi(TCCR5B, CS50); #endif
// put timer 3, 4, 5 in 8-bit phase correct pwm mode
sbi(TCCR3A, WGM30); #if defined(TCCR4B) && defined(CS41) && defined(WGM40)
sbi(TCCR4A, WGM40); sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64
sbi(TCCR5A, WGM50); sbi(TCCR4B, CS40);
sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode
#endif #endif
#if defined(TCCR5B) && defined(CS51) && defined(WGM50)
sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64
sbi(TCCR5B, CS50);
sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode
#endif
#if defined(ADCSRA)
// set a2d prescale factor to 128 // set a2d prescale factor to 128
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range. // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
// XXX: this will not work properly for other clock speeds, and // XXX: this will not work properly for other clock speeds, and
@ -232,13 +276,14 @@ void init()
// enable a2d conversions // enable a2d conversions
sbi(ADCSRA, ADEN); sbi(ADCSRA, ADEN);
#endif
// the bootloader connects pins 0 and 1 to the USART; disconnect them // the bootloader connects pins 0 and 1 to the USART; disconnect them
// here so they can be used as normal digital i/o; they will be // here so they can be used as normal digital i/o; they will be
// reconnected in Serial.begin() // reconnected in Serial.begin()
#if defined(__AVR_ATmega8__) #if defined(UCSRB)
UCSRB = 0; UCSRB = 0;
#else #elif defined(UCSR0B)
UCSR0B = 0; UCSR0B = 0;
#endif #endif
} }

View File

@ -85,8 +85,8 @@ extern "C"{
#define noInterrupts() cli() #define noInterrupts() cli()
#define clockCyclesPerMicrosecond() ( F_CPU / 1000000L ) #define clockCyclesPerMicrosecond() ( F_CPU / 1000000L )
#define clockCyclesToMicroseconds(a) ( (a) / clockCyclesPerMicrosecond() ) #define clockCyclesToMicroseconds(a) ( ((a) * 1000L) / (F_CPU / 1000L) )
#define microsecondsToClockCycles(a) ( (a) * clockCyclesPerMicrosecond() ) #define microsecondsToClockCycles(a) ( ((a) * (F_CPU / 1000L)) / 1000L )
#define lowByte(w) ((uint8_t) ((w) & 0xff)) #define lowByte(w) ((uint8_t) ((w) & 0xff))
#define highByte(w) ((uint8_t) ((w) >> 8)) #define highByte(w) ((uint8_t) ((w) >> 8))

266
hardware/arduino/cores/arduino/wiring_analog.c Executable file → Normal file
View File

@ -19,6 +19,8 @@
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA Boston, MA 02111-1307 USA
Modified 28 September 2010 by Mark Sproul
$Id: wiring.c 248 2007-02-03 15:36:30Z mellis $ $Id: wiring.c 248 2007-02-03 15:36:30Z mellis $
*/ */
@ -41,22 +43,27 @@ int analogRead(uint8_t pin)
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
if (pin >= 54) pin -= 54; // allow for channel or pin numbers if (pin >= 54) pin -= 54; // allow for channel or pin numbers
#else
if (pin >= 14) pin -= 14; // allow for channel or pin numbers
#endif
#if defined(ADCSRB) && defined(MUX5)
// the MUX5 bit of ADCSRB selects whether we're reading from channels // the MUX5 bit of ADCSRB selects whether we're reading from channels
// 0 to 7 (MUX5 low) or 8 to 15 (MUX5 high). // 0 to 7 (MUX5 low) or 8 to 15 (MUX5 high).
ADCSRB = (ADCSRB & ~(1 << MUX5)) | (((pin >> 3) & 0x01) << MUX5); ADCSRB = (ADCSRB & ~(1 << MUX5)) | (((pin >> 3) & 0x01) << MUX5);
#else
if (pin >= 14) pin -= 14; // allow for channel or pin numbers
#endif #endif
// set the analog reference (high two bits of ADMUX) and select the // set the analog reference (high two bits of ADMUX) and select the
// channel (low 4 bits). this also sets ADLAR (left-adjust result) // channel (low 4 bits). this also sets ADLAR (left-adjust result)
// to 0 (the default). // to 0 (the default).
#if defined(ADMUX)
ADMUX = (analog_reference << 6) | (pin & 0x07); ADMUX = (analog_reference << 6) | (pin & 0x07);
#endif
// without a delay, we seem to read from the wrong channel // without a delay, we seem to read from the wrong channel
//delay(1); //delay(1);
#if defined(ADCSRA) && defined(ADCL)
// start the conversion // start the conversion
sbi(ADCSRA, ADSC); sbi(ADCSRA, ADSC);
@ -67,8 +74,13 @@ int analogRead(uint8_t pin)
// and ADCH until ADCH is read. reading ADCL second would // and ADCH until ADCH is read. reading ADCL second would
// cause the results of each conversion to be discarded, // cause the results of each conversion to be discarded,
// as ADCL and ADCH would be locked when it completed. // as ADCL and ADCH would be locked when it completed.
low = ADCL; low = ADCL;
high = ADCH; high = ADCH;
#else
// we dont have an ADC, return 0
low = 0;
high = 0;
#endif
// combine the two bytes // combine the two bytes
return (high << 8) | low; return (high << 8) | low;
@ -86,98 +98,162 @@ void analogWrite(uint8_t pin, int val)
// for consistenty with Wiring, which doesn't require a pinMode // for consistenty with Wiring, which doesn't require a pinMode
// call for the analog output pins. // call for the analog output pins.
pinMode(pin, OUTPUT); pinMode(pin, OUTPUT);
if (val == 0)
if (digitalPinToTimer(pin) == TIMER1A) { {
// connect pwm to pin on timer 1, channel A
sbi(TCCR1A, COM1A1);
// set pwm duty
OCR1A = val;
} else if (digitalPinToTimer(pin) == TIMER1B) {
// connect pwm to pin on timer 1, channel B
sbi(TCCR1A, COM1B1);
// set pwm duty
OCR1B = val;
#if defined(__AVR_ATmega8__)
} else if (digitalPinToTimer(pin) == TIMER2) {
// connect pwm to pin on timer 2, channel B
sbi(TCCR2, COM21);
// set pwm duty
OCR2 = val;
#else
} else if (digitalPinToTimer(pin) == TIMER0A) {
if (val == 0) {
digitalWrite(pin, LOW);
} else {
// connect pwm to pin on timer 0, channel A
sbi(TCCR0A, COM0A1);
// set pwm duty
OCR0A = val;
}
} else if (digitalPinToTimer(pin) == TIMER0B) {
if (val == 0) {
digitalWrite(pin, LOW);
} else {
// connect pwm to pin on timer 0, channel B
sbi(TCCR0A, COM0B1);
// set pwm duty
OCR0B = val;
}
} else if (digitalPinToTimer(pin) == TIMER2A) {
// connect pwm to pin on timer 2, channel A
sbi(TCCR2A, COM2A1);
// set pwm duty
OCR2A = val;
} else if (digitalPinToTimer(pin) == TIMER2B) {
// connect pwm to pin on timer 2, channel B
sbi(TCCR2A, COM2B1);
// set pwm duty
OCR2B = val;
#endif
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// XXX: need to handle other timers here
} else if (digitalPinToTimer(pin) == TIMER3A) {
// connect pwm to pin on timer 3, channel A
sbi(TCCR3A, COM3A1);
// set pwm duty
OCR3A = val;
} else if (digitalPinToTimer(pin) == TIMER3B) {
// connect pwm to pin on timer 3, channel B
sbi(TCCR3A, COM3B1);
// set pwm duty
OCR3B = val;
} else if (digitalPinToTimer(pin) == TIMER3C) {
// connect pwm to pin on timer 3, channel C
sbi(TCCR3A, COM3C1);
// set pwm duty
OCR3C = val;
} else if (digitalPinToTimer(pin) == TIMER4A) {
// connect pwm to pin on timer 4, channel A
sbi(TCCR4A, COM4A1);
// set pwm duty
OCR4A = val;
} else if (digitalPinToTimer(pin) == TIMER4B) {
// connect pwm to pin on timer 4, channel B
sbi(TCCR4A, COM4B1);
// set pwm duty
OCR4B = val;
} else if (digitalPinToTimer(pin) == TIMER4C) {
// connect pwm to pin on timer 4, channel C
sbi(TCCR4A, COM4C1);
// set pwm duty
OCR4C = val;
} else if (digitalPinToTimer(pin) == TIMER5A) {
// connect pwm to pin on timer 5, channel A
sbi(TCCR5A, COM5A1);
// set pwm duty
OCR5A = val;
} else if (digitalPinToTimer(pin) == TIMER5B) {
// connect pwm to pin on timer 5, channel B
sbi(TCCR5A, COM5B1);
// set pwm duty
OCR5B = val;
#endif
} else if (val < 128)
digitalWrite(pin, LOW); digitalWrite(pin, LOW);
else }
else if (val == 255)
{
digitalWrite(pin, HIGH); digitalWrite(pin, HIGH);
}
else
{
switch(digitalPinToTimer(pin))
{
// XXX fix needed for atmega8
#if defined(TCCR0) && defined(COM00) && !defined(__AVR_ATmega8__)
case TIMER0A:
// connect pwm to pin on timer 0
sbi(TCCR0, COM00);
OCR0 = val; // set pwm duty
break;
#endif
#if defined(TCCR0A) && defined(COM0A1)
case TIMER0A:
// connect pwm to pin on timer 0, channel A
sbi(TCCR0A, COM0A1);
OCR0A = val; // set pwm duty
break;
#endif
#if defined(TCCR0A) && defined(COM0B1)
case TIMER0B:
// connect pwm to pin on timer 0, channel B
sbi(TCCR0A, COM0B1);
OCR0B = val; // set pwm duty
break;
#endif
#if defined(TCCR1A) && defined(COM1A1)
case TIMER1A:
// connect pwm to pin on timer 1, channel A
sbi(TCCR1A, COM1A1);
OCR1A = val; // set pwm duty
break;
#endif
#if defined(TCCR1A) && defined(COM1B1)
case TIMER1B:
// connect pwm to pin on timer 1, channel B
sbi(TCCR1A, COM1B1);
OCR1B = val; // set pwm duty
break;
#endif
#if defined(TCCR2) && defined(COM21)
case TIMER2:
// connect pwm to pin on timer 2
sbi(TCCR2, COM21);
OCR2 = val; // set pwm duty
break;
#endif
#if defined(TCCR2A) && defined(COM2A1)
case TIMER2A:
// connect pwm to pin on timer 2, channel A
sbi(TCCR2A, COM2A1);
OCR2A = val; // set pwm duty
break;
#endif
#if defined(TCCR2A) && defined(COM2B1)
case TIMER2B:
// connect pwm to pin on timer 2, channel B
sbi(TCCR2A, COM2B1);
OCR2B = val; // set pwm duty
break;
#endif
#if defined(TCCR3A) && defined(COM3A1)
case TIMER3A:
// connect pwm to pin on timer 3, channel A
sbi(TCCR3A, COM3A1);
OCR3A = val; // set pwm duty
break;
#endif
#if defined(TCCR3A) && defined(COM3B1)
case TIMER3B:
// connect pwm to pin on timer 3, channel B
sbi(TCCR3A, COM3B1);
OCR3B = val; // set pwm duty
break;
#endif
#if defined(TCCR3A) && defined(COM3C1)
case TIMER3C:
// connect pwm to pin on timer 3, channel C
sbi(TCCR3A, COM3C1);
OCR3C = val; // set pwm duty
break;
#endif
#if defined(TCCR4A) && defined(COM4A1)
case TIMER4A:
// connect pwm to pin on timer 4, channel A
sbi(TCCR4A, COM4A1);
OCR4A = val; // set pwm duty
break;
#endif
#if defined(TCCR4A) && defined(COM4B1)
case TIMER4B:
// connect pwm to pin on timer 4, channel B
sbi(TCCR4A, COM4B1);
OCR4B = val; // set pwm duty
break;
#endif
#if defined(TCCR4A) && defined(COM4C1)
case TIMER4C:
// connect pwm to pin on timer 4, channel C
sbi(TCCR4A, COM4C1);
OCR4C = val; // set pwm duty
break;
#endif
#if defined(TCCR5A) && defined(COM5A1)
case TIMER5A:
// connect pwm to pin on timer 5, channel A
sbi(TCCR5A, COM5A1);
OCR5A = val; // set pwm duty
break;
#endif
#if defined(TCCR5A) && defined(COM5B1)
case TIMER5B:
// connect pwm to pin on timer 5, channel B
sbi(TCCR5A, COM5B1);
OCR5B = val; // set pwm duty
break;
#endif
#if defined(TCCR5A) && defined(COM5C1)
case TIMER5C:
// connect pwm to pin on timer 5, channel C
sbi(TCCR5A, COM5C1);
OCR5C = val; // set pwm duty
break;
#endif
case NOT_ON_TIMER:
default:
if (val < 128) {
digitalWrite(pin, LOW);
} else {
digitalWrite(pin, HIGH);
}
}
}
} }

View File

@ -19,6 +19,8 @@
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA Boston, MA 02111-1307 USA
Modified 28 September 2010 by Mark Sproul
$Id: wiring.c 248 2007-02-03 15:36:30Z mellis $ $Id: wiring.c 248 2007-02-03 15:36:30Z mellis $
*/ */
@ -56,32 +58,67 @@ void pinMode(uint8_t pin, uint8_t mode)
// But shouldn't this be moved into pinMode? Seems silly to check and do on // But shouldn't this be moved into pinMode? Seems silly to check and do on
// each digitalread or write. // each digitalread or write.
// //
static inline void turnOffPWM(uint8_t timer) __attribute__ ((always_inline)); // Mark Sproul:
static inline void turnOffPWM(uint8_t timer) // - Removed inline. Save 170 bytes on atmega1280
// - changed to a switch statment; added 32 bytes but much easier to read and maintain.
// - Added more #ifdefs, now compiles for atmega645
//
//static inline void turnOffPWM(uint8_t timer) __attribute__ ((always_inline));
//static inline void turnOffPWM(uint8_t timer)
static void turnOffPWM(uint8_t timer)
{ {
if (timer == TIMER1A) cbi(TCCR1A, COM1A1); switch (timer)
if (timer == TIMER1B) cbi(TCCR1A, COM1B1); {
#if defined(TCCR1A) && defined(COM1A1)
case TIMER1A: cbi(TCCR1A, COM1A1); break;
#endif
#if defined(TCCR1A) && defined(COM1B1)
case TIMER1B: cbi(TCCR1A, COM1B1); break;
#endif
#if defined(TCCR2) && defined(COM21)
case TIMER2: cbi(TCCR2, COM21); break;
#endif
#if defined(TCCR0A) && defined(COM0A1)
case TIMER0A: cbi(TCCR0A, COM0A1); break;
#endif
#if defined(TIMER0B) && defined(COM0B1)
case TIMER0B: cbi(TCCR0A, COM0B1); break;
#endif
#if defined(TCCR2A) && defined(COM2A1)
case TIMER2A: cbi(TCCR2A, COM2A1); break;
#endif
#if defined(TCCR2A) && defined(COM2B1)
case TIMER2B: cbi(TCCR2A, COM2B1); break;
#endif
#if defined(TCCR3A) && defined(COM3A1)
case TIMER3A: cbi(TCCR3A, COM3A1); break;
#endif
#if defined(TCCR3A) && defined(COM3B1)
case TIMER3B: cbi(TCCR3A, COM3B1); break;
#endif
#if defined(TCCR3A) && defined(COM3C1)
case TIMER3C: cbi(TCCR3A, COM3C1); break;
#endif
#if defined(__AVR_ATmega8__) #if defined(TCCR4A) && defined(COM4A1)
if (timer == TIMER2) cbi(TCCR2, COM21); case TIMER4A: cbi(TCCR4A, COM4A1); break;
#else #endif
if (timer == TIMER0A) cbi(TCCR0A, COM0A1); #if defined(TCCR4A) && defined(COM4B1)
if (timer == TIMER0B) cbi(TCCR0A, COM0B1); case TIMER4B: cbi(TCCR4A, COM4B1); break;
if (timer == TIMER2A) cbi(TCCR2A, COM2A1); #endif
if (timer == TIMER2B) cbi(TCCR2A, COM2B1); #if defined(TCCR4A) && defined(COM4C1)
#endif case TIMER4C: cbi(TCCR4A, COM4C1); break;
#endif
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) #if defined(TCCR5A)
if (timer == TIMER3A) cbi(TCCR3A, COM3A1); case TIMER5A: cbi(TCCR5A, COM5A1); break;
if (timer == TIMER3B) cbi(TCCR3A, COM3B1); case TIMER5B: cbi(TCCR5A, COM5B1); break;
if (timer == TIMER3C) cbi(TCCR3A, COM3C1); case TIMER5C: cbi(TCCR5A, COM5C1); break;
if (timer == TIMER4A) cbi(TCCR4A, COM4A1); #endif
if (timer == TIMER4B) cbi(TCCR4A, COM4B1); }
if (timer == TIMER4C) cbi(TCCR4A, COM4C1);
if (timer == TIMER5A) cbi(TCCR5A, COM5A1);
if (timer == TIMER5B) cbi(TCCR5A, COM5B1);
if (timer == TIMER5C) cbi(TCCR5A, COM5C1);
#endif
} }
void digitalWrite(uint8_t pin, uint8_t val) void digitalWrite(uint8_t pin, uint8_t val)