mirror of
https://github.com/arduino/Arduino.git
synced 2025-01-17 06:52:18 +01:00
Added Ethernet for ARM. Updated examples.
This commit is contained in:
parent
22e24fd5e0
commit
b2ded1f1a5
479
hardware/arduino/sam/libraries/Ethernet/Dhcp.cpp
Executable file
479
hardware/arduino/sam/libraries/Ethernet/Dhcp.cpp
Executable file
@ -0,0 +1,479 @@
|
||||
// DHCP Library v0.3 - April 25, 2009
|
||||
// Author: Jordan Terrell - blog.jordanterrell.com
|
||||
|
||||
#include "w5100.h"
|
||||
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include "Dhcp.h"
|
||||
#include "Arduino.h"
|
||||
#include "util.h"
|
||||
|
||||
int DhcpClass::beginWithDHCP(uint8_t *mac, unsigned long timeout, unsigned long responseTimeout)
|
||||
{
|
||||
_dhcpLeaseTime=0;
|
||||
_dhcpT1=0;
|
||||
_dhcpT2=0;
|
||||
_lastCheck=0;
|
||||
_timeout = timeout;
|
||||
_responseTimeout = responseTimeout;
|
||||
|
||||
// zero out _dhcpMacAddr
|
||||
memset(_dhcpMacAddr, 0, 6);
|
||||
reset_DHCP_lease();
|
||||
|
||||
memcpy((void*)_dhcpMacAddr, (void*)mac, 6);
|
||||
_dhcp_state = STATE_DHCP_START;
|
||||
return request_DHCP_lease();
|
||||
}
|
||||
|
||||
void DhcpClass::reset_DHCP_lease(){
|
||||
// zero out _dhcpSubnetMask, _dhcpGatewayIp, _dhcpLocalIp, _dhcpDhcpServerIp, _dhcpDnsServerIp
|
||||
memset(_dhcpLocalIp, 0, 20);
|
||||
}
|
||||
|
||||
//return:0 on error, 1 if request is sent and response is received
|
||||
int DhcpClass::request_DHCP_lease(){
|
||||
|
||||
uint8_t messageType = 0;
|
||||
|
||||
|
||||
|
||||
// Pick an initial transaction ID
|
||||
_dhcpTransactionId = random(1UL, 2000UL);
|
||||
_dhcpInitialTransactionId = _dhcpTransactionId;
|
||||
|
||||
if (_dhcpUdpSocket.begin(DHCP_CLIENT_PORT) == 0)
|
||||
{
|
||||
// Couldn't get a socket
|
||||
return 0;
|
||||
}
|
||||
|
||||
presend_DHCP();
|
||||
|
||||
int result = 0;
|
||||
|
||||
unsigned long startTime = millis();
|
||||
|
||||
while(_dhcp_state != STATE_DHCP_LEASED)
|
||||
{
|
||||
if(_dhcp_state == STATE_DHCP_START)
|
||||
{
|
||||
_dhcpTransactionId++;
|
||||
|
||||
send_DHCP_MESSAGE(DHCP_DISCOVER, ((millis() - startTime) / 1000));
|
||||
_dhcp_state = STATE_DHCP_DISCOVER;
|
||||
}
|
||||
else if(_dhcp_state == STATE_DHCP_REREQUEST){
|
||||
_dhcpTransactionId++;
|
||||
send_DHCP_MESSAGE(DHCP_REQUEST, ((millis() - startTime)/1000));
|
||||
_dhcp_state = STATE_DHCP_REQUEST;
|
||||
}
|
||||
else if(_dhcp_state == STATE_DHCP_DISCOVER)
|
||||
{
|
||||
uint32_t respId;
|
||||
messageType = parseDHCPResponse(_responseTimeout, respId);
|
||||
if(messageType == DHCP_OFFER)
|
||||
{
|
||||
// We'll use the transaction ID that the offer came with,
|
||||
// rather than the one we were up to
|
||||
_dhcpTransactionId = respId;
|
||||
send_DHCP_MESSAGE(DHCP_REQUEST, ((millis() - startTime) / 1000));
|
||||
_dhcp_state = STATE_DHCP_REQUEST;
|
||||
}
|
||||
}
|
||||
else if(_dhcp_state == STATE_DHCP_REQUEST)
|
||||
{
|
||||
uint32_t respId;
|
||||
messageType = parseDHCPResponse(_responseTimeout, respId);
|
||||
if(messageType == DHCP_ACK)
|
||||
{
|
||||
_dhcp_state = STATE_DHCP_LEASED;
|
||||
result = 1;
|
||||
//use default lease time if we didn't get it
|
||||
if(_dhcpLeaseTime == 0){
|
||||
_dhcpLeaseTime = DEFAULT_LEASE;
|
||||
}
|
||||
//calculate T1 & T2 if we didn't get it
|
||||
if(_dhcpT1 == 0){
|
||||
//T1 should be 50% of _dhcpLeaseTime
|
||||
_dhcpT1 = _dhcpLeaseTime >> 1;
|
||||
}
|
||||
if(_dhcpT2 == 0){
|
||||
//T2 should be 87.5% (7/8ths) of _dhcpLeaseTime
|
||||
_dhcpT2 = _dhcpT1 << 1;
|
||||
}
|
||||
_renewInSec = _dhcpT1;
|
||||
_rebindInSec = _dhcpT2;
|
||||
}
|
||||
else if(messageType == DHCP_NAK)
|
||||
_dhcp_state = STATE_DHCP_START;
|
||||
}
|
||||
|
||||
if(messageType == 255)
|
||||
{
|
||||
messageType = 0;
|
||||
_dhcp_state = STATE_DHCP_START;
|
||||
}
|
||||
|
||||
if(result != 1 && ((millis() - startTime) > _timeout))
|
||||
break;
|
||||
}
|
||||
|
||||
// We're done with the socket now
|
||||
_dhcpUdpSocket.stop();
|
||||
_dhcpTransactionId++;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
void DhcpClass::presend_DHCP()
|
||||
{
|
||||
}
|
||||
|
||||
void DhcpClass::send_DHCP_MESSAGE(uint8_t messageType, uint16_t secondsElapsed)
|
||||
{
|
||||
uint8_t buffer[32];
|
||||
memset(buffer, 0, 32);
|
||||
IPAddress dest_addr( 255, 255, 255, 255 ); // Broadcast address
|
||||
|
||||
if (-1 == _dhcpUdpSocket.beginPacket(dest_addr, DHCP_SERVER_PORT))
|
||||
{
|
||||
// FIXME Need to return errors
|
||||
return;
|
||||
}
|
||||
|
||||
buffer[0] = DHCP_BOOTREQUEST; // op
|
||||
buffer[1] = DHCP_HTYPE10MB; // htype
|
||||
buffer[2] = DHCP_HLENETHERNET; // hlen
|
||||
buffer[3] = DHCP_HOPS; // hops
|
||||
|
||||
// xid
|
||||
unsigned long xid = htonl(_dhcpTransactionId);
|
||||
memcpy(buffer + 4, &(xid), 4);
|
||||
|
||||
// 8, 9 - seconds elapsed
|
||||
buffer[8] = ((secondsElapsed & 0xff00) >> 8);
|
||||
buffer[9] = (secondsElapsed & 0x00ff);
|
||||
|
||||
// flags
|
||||
unsigned short flags = htons(DHCP_FLAGSBROADCAST);
|
||||
memcpy(buffer + 10, &(flags), 2);
|
||||
|
||||
// ciaddr: already zeroed
|
||||
// yiaddr: already zeroed
|
||||
// siaddr: already zeroed
|
||||
// giaddr: already zeroed
|
||||
|
||||
//put data in W5100 transmit buffer
|
||||
_dhcpUdpSocket.write(buffer, 28);
|
||||
|
||||
memset(buffer, 0, 32); // clear local buffer
|
||||
|
||||
memcpy(buffer, _dhcpMacAddr, 6); // chaddr
|
||||
|
||||
//put data in W5100 transmit buffer
|
||||
_dhcpUdpSocket.write(buffer, 16);
|
||||
|
||||
memset(buffer, 0, 32); // clear local buffer
|
||||
|
||||
// leave zeroed out for sname && file
|
||||
// put in W5100 transmit buffer x 6 (192 bytes)
|
||||
|
||||
for(int i = 0; i < 6; i++) {
|
||||
_dhcpUdpSocket.write(buffer, 32);
|
||||
}
|
||||
|
||||
// OPT - Magic Cookie
|
||||
buffer[0] = (uint8_t)((MAGIC_COOKIE >> 24)& 0xFF);
|
||||
buffer[1] = (uint8_t)((MAGIC_COOKIE >> 16)& 0xFF);
|
||||
buffer[2] = (uint8_t)((MAGIC_COOKIE >> 8)& 0xFF);
|
||||
buffer[3] = (uint8_t)(MAGIC_COOKIE& 0xFF);
|
||||
|
||||
// OPT - message type
|
||||
buffer[4] = dhcpMessageType;
|
||||
buffer[5] = 0x01;
|
||||
buffer[6] = messageType; //DHCP_REQUEST;
|
||||
|
||||
// OPT - client identifier
|
||||
buffer[7] = dhcpClientIdentifier;
|
||||
buffer[8] = 0x07;
|
||||
buffer[9] = 0x01;
|
||||
memcpy(buffer + 10, _dhcpMacAddr, 6);
|
||||
|
||||
// OPT - host name
|
||||
buffer[16] = hostName;
|
||||
buffer[17] = strlen(HOST_NAME) + 6; // length of hostname + last 3 bytes of mac address
|
||||
strcpy((char*)&(buffer[18]), HOST_NAME);
|
||||
|
||||
printByte((char*)&(buffer[24]), _dhcpMacAddr[3]);
|
||||
printByte((char*)&(buffer[26]), _dhcpMacAddr[4]);
|
||||
printByte((char*)&(buffer[28]), _dhcpMacAddr[5]);
|
||||
|
||||
//put data in W5100 transmit buffer
|
||||
_dhcpUdpSocket.write(buffer, 30);
|
||||
|
||||
if(messageType == DHCP_REQUEST)
|
||||
{
|
||||
buffer[0] = dhcpRequestedIPaddr;
|
||||
buffer[1] = 0x04;
|
||||
buffer[2] = _dhcpLocalIp[0];
|
||||
buffer[3] = _dhcpLocalIp[1];
|
||||
buffer[4] = _dhcpLocalIp[2];
|
||||
buffer[5] = _dhcpLocalIp[3];
|
||||
|
||||
buffer[6] = dhcpServerIdentifier;
|
||||
buffer[7] = 0x04;
|
||||
buffer[8] = _dhcpDhcpServerIp[0];
|
||||
buffer[9] = _dhcpDhcpServerIp[1];
|
||||
buffer[10] = _dhcpDhcpServerIp[2];
|
||||
buffer[11] = _dhcpDhcpServerIp[3];
|
||||
|
||||
//put data in W5100 transmit buffer
|
||||
_dhcpUdpSocket.write(buffer, 12);
|
||||
}
|
||||
|
||||
buffer[0] = dhcpParamRequest;
|
||||
buffer[1] = 0x06;
|
||||
buffer[2] = subnetMask;
|
||||
buffer[3] = routersOnSubnet;
|
||||
buffer[4] = dns;
|
||||
buffer[5] = domainName;
|
||||
buffer[6] = dhcpT1value;
|
||||
buffer[7] = dhcpT2value;
|
||||
buffer[8] = endOption;
|
||||
|
||||
//put data in W5100 transmit buffer
|
||||
_dhcpUdpSocket.write(buffer, 9);
|
||||
|
||||
_dhcpUdpSocket.endPacket();
|
||||
}
|
||||
|
||||
uint8_t DhcpClass::parseDHCPResponse(unsigned long responseTimeout, uint32_t& transactionId)
|
||||
{
|
||||
uint8_t type = 0;
|
||||
uint8_t opt_len = 0;
|
||||
|
||||
unsigned long startTime = millis();
|
||||
|
||||
while(_dhcpUdpSocket.parsePacket() <= 0)
|
||||
{
|
||||
if((millis() - startTime) > responseTimeout)
|
||||
{
|
||||
return 255;
|
||||
}
|
||||
delay(50);
|
||||
}
|
||||
// start reading in the packet
|
||||
RIP_MSG_FIXED fixedMsg;
|
||||
_dhcpUdpSocket.read((uint8_t*)&fixedMsg, sizeof(RIP_MSG_FIXED));
|
||||
|
||||
if(fixedMsg.op == DHCP_BOOTREPLY && _dhcpUdpSocket.remotePort() == DHCP_SERVER_PORT)
|
||||
{
|
||||
transactionId = ntohl(fixedMsg.xid);
|
||||
if(memcmp(fixedMsg.chaddr, _dhcpMacAddr, 6) != 0 || (transactionId < _dhcpInitialTransactionId) || (transactionId > _dhcpTransactionId))
|
||||
{
|
||||
// Need to read the rest of the packet here regardless
|
||||
_dhcpUdpSocket.flush();
|
||||
return 0;
|
||||
}
|
||||
|
||||
memcpy(_dhcpLocalIp, fixedMsg.yiaddr, 4);
|
||||
|
||||
// Skip to the option part
|
||||
// Doing this a byte at a time so we don't have to put a big buffer
|
||||
// on the stack (as we don't have lots of memory lying around)
|
||||
for (int i =0; i < (240 - (int)sizeof(RIP_MSG_FIXED)); i++)
|
||||
{
|
||||
_dhcpUdpSocket.read(); // we don't care about the returned byte
|
||||
}
|
||||
|
||||
while (_dhcpUdpSocket.available() > 0)
|
||||
{
|
||||
switch (_dhcpUdpSocket.read())
|
||||
{
|
||||
case endOption :
|
||||
break;
|
||||
|
||||
case padOption :
|
||||
break;
|
||||
|
||||
case dhcpMessageType :
|
||||
opt_len = _dhcpUdpSocket.read();
|
||||
type = _dhcpUdpSocket.read();
|
||||
break;
|
||||
|
||||
case subnetMask :
|
||||
opt_len = _dhcpUdpSocket.read();
|
||||
_dhcpUdpSocket.read(_dhcpSubnetMask, 4);
|
||||
break;
|
||||
|
||||
case routersOnSubnet :
|
||||
opt_len = _dhcpUdpSocket.read();
|
||||
_dhcpUdpSocket.read(_dhcpGatewayIp, 4);
|
||||
for (int i = 0; i < opt_len-4; i++)
|
||||
{
|
||||
_dhcpUdpSocket.read();
|
||||
}
|
||||
break;
|
||||
|
||||
case dns :
|
||||
opt_len = _dhcpUdpSocket.read();
|
||||
_dhcpUdpSocket.read(_dhcpDnsServerIp, 4);
|
||||
for (int i = 0; i < opt_len-4; i++)
|
||||
{
|
||||
_dhcpUdpSocket.read();
|
||||
}
|
||||
break;
|
||||
|
||||
case dhcpServerIdentifier :
|
||||
opt_len = _dhcpUdpSocket.read();
|
||||
if( *((uint32_t*)_dhcpDhcpServerIp) == 0 ||
|
||||
IPAddress(_dhcpDhcpServerIp) == _dhcpUdpSocket.remoteIP() )
|
||||
{
|
||||
_dhcpUdpSocket.read(_dhcpDhcpServerIp, sizeof(_dhcpDhcpServerIp));
|
||||
}
|
||||
else
|
||||
{
|
||||
// Skip over the rest of this option
|
||||
while (opt_len--)
|
||||
{
|
||||
_dhcpUdpSocket.read();
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case dhcpT1value :
|
||||
opt_len = _dhcpUdpSocket.read();
|
||||
_dhcpUdpSocket.read((uint8_t*)&_dhcpT1, sizeof(_dhcpT1));
|
||||
_dhcpT1 = ntohl(_dhcpT1);
|
||||
break;
|
||||
|
||||
case dhcpT2value :
|
||||
opt_len = _dhcpUdpSocket.read();
|
||||
_dhcpUdpSocket.read((uint8_t*)&_dhcpT2, sizeof(_dhcpT2));
|
||||
_dhcpT2 = ntohl(_dhcpT2);
|
||||
break;
|
||||
|
||||
case dhcpIPaddrLeaseTime :
|
||||
opt_len = _dhcpUdpSocket.read();
|
||||
_dhcpUdpSocket.read((uint8_t*)&_dhcpLeaseTime, sizeof(_dhcpLeaseTime));
|
||||
_dhcpLeaseTime = ntohl(_dhcpLeaseTime);
|
||||
_renewInSec = _dhcpLeaseTime;
|
||||
break;
|
||||
|
||||
default :
|
||||
opt_len = _dhcpUdpSocket.read();
|
||||
// Skip over the rest of this option
|
||||
while (opt_len--)
|
||||
{
|
||||
_dhcpUdpSocket.read();
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Need to skip to end of the packet regardless here
|
||||
_dhcpUdpSocket.flush();
|
||||
|
||||
return type;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
returns:
|
||||
0/DHCP_CHECK_NONE: nothing happened
|
||||
1/DHCP_CHECK_RENEW_FAIL: renew failed
|
||||
2/DHCP_CHECK_RENEW_OK: renew success
|
||||
3/DHCP_CHECK_REBIND_FAIL: rebind fail
|
||||
4/DHCP_CHECK_REBIND_OK: rebind success
|
||||
*/
|
||||
int DhcpClass::checkLease(){
|
||||
//this uses a signed / unsigned trick to deal with millis overflow
|
||||
unsigned long now = millis();
|
||||
signed long snow = (long)now;
|
||||
int rc=DHCP_CHECK_NONE;
|
||||
if (_lastCheck != 0){
|
||||
signed long factor;
|
||||
//calc how many ms past the timeout we are
|
||||
factor = snow - (long)_secTimeout;
|
||||
//if on or passed the timeout, reduce the counters
|
||||
if ( factor >= 0 ){
|
||||
//next timeout should be now plus 1000 ms minus parts of second in factor
|
||||
_secTimeout = snow + 1000 - factor % 1000;
|
||||
//how many seconds late are we, minimum 1
|
||||
factor = factor / 1000 +1;
|
||||
|
||||
//reduce the counters by that mouch
|
||||
//if we can assume that the cycle time (factor) is fairly constant
|
||||
//and if the remainder is less than cycle time * 2
|
||||
//do it early instead of late
|
||||
if(_renewInSec < factor*2 )
|
||||
_renewInSec = 0;
|
||||
else
|
||||
_renewInSec -= factor;
|
||||
|
||||
if(_rebindInSec < factor*2 )
|
||||
_rebindInSec = 0;
|
||||
else
|
||||
_rebindInSec -= factor;
|
||||
}
|
||||
|
||||
//if we have a lease but should renew, do it
|
||||
if (_dhcp_state == STATE_DHCP_LEASED && _renewInSec <=0){
|
||||
_dhcp_state = STATE_DHCP_REREQUEST;
|
||||
rc = 1 + request_DHCP_lease();
|
||||
}
|
||||
|
||||
//if we have a lease or is renewing but should bind, do it
|
||||
if( (_dhcp_state == STATE_DHCP_LEASED || _dhcp_state == STATE_DHCP_START) && _rebindInSec <=0){
|
||||
//this should basically restart completely
|
||||
_dhcp_state = STATE_DHCP_START;
|
||||
reset_DHCP_lease();
|
||||
rc = 3 + request_DHCP_lease();
|
||||
}
|
||||
}
|
||||
else{
|
||||
_secTimeout = snow + 1000;
|
||||
}
|
||||
|
||||
_lastCheck = now;
|
||||
return rc;
|
||||
}
|
||||
|
||||
IPAddress DhcpClass::getLocalIp()
|
||||
{
|
||||
return IPAddress(_dhcpLocalIp);
|
||||
}
|
||||
|
||||
IPAddress DhcpClass::getSubnetMask()
|
||||
{
|
||||
return IPAddress(_dhcpSubnetMask);
|
||||
}
|
||||
|
||||
IPAddress DhcpClass::getGatewayIp()
|
||||
{
|
||||
return IPAddress(_dhcpGatewayIp);
|
||||
}
|
||||
|
||||
IPAddress DhcpClass::getDhcpServerIp()
|
||||
{
|
||||
return IPAddress(_dhcpDhcpServerIp);
|
||||
}
|
||||
|
||||
IPAddress DhcpClass::getDnsServerIp()
|
||||
{
|
||||
return IPAddress(_dhcpDnsServerIp);
|
||||
}
|
||||
|
||||
void DhcpClass::printByte(char * buf, uint8_t n ) {
|
||||
char *str = &buf[1];
|
||||
buf[0]='0';
|
||||
do {
|
||||
unsigned long m = n;
|
||||
n /= 16;
|
||||
char c = m - 16 * n;
|
||||
*str-- = c < 10 ? c + '0' : c + 'A' - 10;
|
||||
} while(n);
|
||||
}
|
178
hardware/arduino/sam/libraries/Ethernet/Dhcp.h
Executable file
178
hardware/arduino/sam/libraries/Ethernet/Dhcp.h
Executable file
@ -0,0 +1,178 @@
|
||||
// DHCP Library v0.3 - April 25, 2009
|
||||
// Author: Jordan Terrell - blog.jordanterrell.com
|
||||
|
||||
#ifndef Dhcp_h
|
||||
#define Dhcp_h
|
||||
|
||||
#include "EthernetUdp.h"
|
||||
|
||||
/* DHCP state machine. */
|
||||
#define STATE_DHCP_START 0
|
||||
#define STATE_DHCP_DISCOVER 1
|
||||
#define STATE_DHCP_REQUEST 2
|
||||
#define STATE_DHCP_LEASED 3
|
||||
#define STATE_DHCP_REREQUEST 4
|
||||
#define STATE_DHCP_RELEASE 5
|
||||
|
||||
#define DHCP_FLAGSBROADCAST 0x8000
|
||||
|
||||
/* UDP port numbers for DHCP */
|
||||
#define DHCP_SERVER_PORT 67 /* from server to client */
|
||||
#define DHCP_CLIENT_PORT 68 /* from client to server */
|
||||
|
||||
/* DHCP message OP code */
|
||||
#define DHCP_BOOTREQUEST 1
|
||||
#define DHCP_BOOTREPLY 2
|
||||
|
||||
/* DHCP message type */
|
||||
#define DHCP_DISCOVER 1
|
||||
#define DHCP_OFFER 2
|
||||
#define DHCP_REQUEST 3
|
||||
#define DHCP_DECLINE 4
|
||||
#define DHCP_ACK 5
|
||||
#define DHCP_NAK 6
|
||||
#define DHCP_RELEASE 7
|
||||
#define DHCP_INFORM 8
|
||||
|
||||
#define DHCP_HTYPE10MB 1
|
||||
#define DHCP_HTYPE100MB 2
|
||||
|
||||
#define DHCP_HLENETHERNET 6
|
||||
#define DHCP_HOPS 0
|
||||
#define DHCP_SECS 0
|
||||
|
||||
#define MAGIC_COOKIE 0x63825363
|
||||
#define MAX_DHCP_OPT 16
|
||||
|
||||
#define HOST_NAME "WIZnet"
|
||||
#define DEFAULT_LEASE (900) //default lease time in seconds
|
||||
|
||||
#define DHCP_CHECK_NONE (0)
|
||||
#define DHCP_CHECK_RENEW_FAIL (1)
|
||||
#define DHCP_CHECK_RENEW_OK (2)
|
||||
#define DHCP_CHECK_REBIND_FAIL (3)
|
||||
#define DHCP_CHECK_REBIND_OK (4)
|
||||
|
||||
enum
|
||||
{
|
||||
padOption = 0,
|
||||
subnetMask = 1,
|
||||
timerOffset = 2,
|
||||
routersOnSubnet = 3,
|
||||
/* timeServer = 4,
|
||||
nameServer = 5,*/
|
||||
dns = 6,
|
||||
/*logServer = 7,
|
||||
cookieServer = 8,
|
||||
lprServer = 9,
|
||||
impressServer = 10,
|
||||
resourceLocationServer = 11,*/
|
||||
hostName = 12,
|
||||
/*bootFileSize = 13,
|
||||
meritDumpFile = 14,*/
|
||||
domainName = 15,
|
||||
/*swapServer = 16,
|
||||
rootPath = 17,
|
||||
extentionsPath = 18,
|
||||
IPforwarding = 19,
|
||||
nonLocalSourceRouting = 20,
|
||||
policyFilter = 21,
|
||||
maxDgramReasmSize = 22,
|
||||
defaultIPTTL = 23,
|
||||
pathMTUagingTimeout = 24,
|
||||
pathMTUplateauTable = 25,
|
||||
ifMTU = 26,
|
||||
allSubnetsLocal = 27,
|
||||
broadcastAddr = 28,
|
||||
performMaskDiscovery = 29,
|
||||
maskSupplier = 30,
|
||||
performRouterDiscovery = 31,
|
||||
routerSolicitationAddr = 32,
|
||||
staticRoute = 33,
|
||||
trailerEncapsulation = 34,
|
||||
arpCacheTimeout = 35,
|
||||
ethernetEncapsulation = 36,
|
||||
tcpDefaultTTL = 37,
|
||||
tcpKeepaliveInterval = 38,
|
||||
tcpKeepaliveGarbage = 39,
|
||||
nisDomainName = 40,
|
||||
nisServers = 41,
|
||||
ntpServers = 42,
|
||||
vendorSpecificInfo = 43,
|
||||
netBIOSnameServer = 44,
|
||||
netBIOSdgramDistServer = 45,
|
||||
netBIOSnodeType = 46,
|
||||
netBIOSscope = 47,
|
||||
xFontServer = 48,
|
||||
xDisplayManager = 49,*/
|
||||
dhcpRequestedIPaddr = 50,
|
||||
dhcpIPaddrLeaseTime = 51,
|
||||
/*dhcpOptionOverload = 52,*/
|
||||
dhcpMessageType = 53,
|
||||
dhcpServerIdentifier = 54,
|
||||
dhcpParamRequest = 55,
|
||||
/*dhcpMsg = 56,
|
||||
dhcpMaxMsgSize = 57,*/
|
||||
dhcpT1value = 58,
|
||||
dhcpT2value = 59,
|
||||
/*dhcpClassIdentifier = 60,*/
|
||||
dhcpClientIdentifier = 61,
|
||||
endOption = 255
|
||||
};
|
||||
|
||||
typedef struct _RIP_MSG_FIXED
|
||||
{
|
||||
uint8_t op;
|
||||
uint8_t htype;
|
||||
uint8_t hlen;
|
||||
uint8_t hops;
|
||||
uint32_t xid;
|
||||
uint16_t secs;
|
||||
uint16_t flags;
|
||||
uint8_t ciaddr[4];
|
||||
uint8_t yiaddr[4];
|
||||
uint8_t siaddr[4];
|
||||
uint8_t giaddr[4];
|
||||
uint8_t chaddr[6];
|
||||
}RIP_MSG_FIXED;
|
||||
|
||||
class DhcpClass {
|
||||
private:
|
||||
uint32_t _dhcpInitialTransactionId;
|
||||
uint32_t _dhcpTransactionId;
|
||||
uint8_t _dhcpMacAddr[6];
|
||||
uint8_t _dhcpLocalIp[4];
|
||||
uint8_t _dhcpSubnetMask[4];
|
||||
uint8_t _dhcpGatewayIp[4];
|
||||
uint8_t _dhcpDhcpServerIp[4];
|
||||
uint8_t _dhcpDnsServerIp[4];
|
||||
uint32_t _dhcpLeaseTime;
|
||||
uint32_t _dhcpT1, _dhcpT2;
|
||||
signed long _renewInSec;
|
||||
signed long _rebindInSec;
|
||||
signed long _lastCheck;
|
||||
unsigned long _timeout;
|
||||
unsigned long _responseTimeout;
|
||||
unsigned long _secTimeout;
|
||||
uint8_t _dhcp_state;
|
||||
EthernetUDP _dhcpUdpSocket;
|
||||
|
||||
int request_DHCP_lease();
|
||||
void reset_DHCP_lease();
|
||||
void presend_DHCP();
|
||||
void send_DHCP_MESSAGE(uint8_t, uint16_t);
|
||||
void printByte(char *, uint8_t);
|
||||
|
||||
uint8_t parseDHCPResponse(unsigned long responseTimeout, uint32_t& transactionId);
|
||||
public:
|
||||
IPAddress getLocalIp();
|
||||
IPAddress getSubnetMask();
|
||||
IPAddress getGatewayIp();
|
||||
IPAddress getDhcpServerIp();
|
||||
IPAddress getDnsServerIp();
|
||||
|
||||
int beginWithDHCP(uint8_t *, unsigned long timeout = 60000, unsigned long responseTimeout = 4000);
|
||||
int checkLease();
|
||||
};
|
||||
|
||||
#endif
|
423
hardware/arduino/sam/libraries/Ethernet/Dns.cpp
Normal file
423
hardware/arduino/sam/libraries/Ethernet/Dns.cpp
Normal file
@ -0,0 +1,423 @@
|
||||
// Arduino DNS client for WizNet5100-based Ethernet shield
|
||||
// (c) Copyright 2009-2010 MCQN Ltd.
|
||||
// Released under Apache License, version 2.0
|
||||
|
||||
#include "w5100.h"
|
||||
#include "EthernetUdp.h"
|
||||
#include "util.h"
|
||||
|
||||
#include "Dns.h"
|
||||
#include <string.h>
|
||||
//#include <stdlib.h>
|
||||
#include "Arduino.h"
|
||||
|
||||
|
||||
#define SOCKET_NONE 255
|
||||
// Various flags and header field values for a DNS message
|
||||
#define UDP_HEADER_SIZE 8
|
||||
#define DNS_HEADER_SIZE 12
|
||||
#define TTL_SIZE 4
|
||||
#define QUERY_FLAG (0)
|
||||
#define RESPONSE_FLAG (1<<15)
|
||||
#define QUERY_RESPONSE_MASK (1<<15)
|
||||
#define OPCODE_STANDARD_QUERY (0)
|
||||
#define OPCODE_INVERSE_QUERY (1<<11)
|
||||
#define OPCODE_STATUS_REQUEST (2<<11)
|
||||
#define OPCODE_MASK (15<<11)
|
||||
#define AUTHORITATIVE_FLAG (1<<10)
|
||||
#define TRUNCATION_FLAG (1<<9)
|
||||
#define RECURSION_DESIRED_FLAG (1<<8)
|
||||
#define RECURSION_AVAILABLE_FLAG (1<<7)
|
||||
#define RESP_NO_ERROR (0)
|
||||
#define RESP_FORMAT_ERROR (1)
|
||||
#define RESP_SERVER_FAILURE (2)
|
||||
#define RESP_NAME_ERROR (3)
|
||||
#define RESP_NOT_IMPLEMENTED (4)
|
||||
#define RESP_REFUSED (5)
|
||||
#define RESP_MASK (15)
|
||||
#define TYPE_A (0x0001)
|
||||
#define CLASS_IN (0x0001)
|
||||
#define LABEL_COMPRESSION_MASK (0xC0)
|
||||
// Port number that DNS servers listen on
|
||||
#define DNS_PORT 53
|
||||
|
||||
// Possible return codes from ProcessResponse
|
||||
#define SUCCESS 1
|
||||
#define TIMED_OUT -1
|
||||
#define INVALID_SERVER -2
|
||||
#define TRUNCATED -3
|
||||
#define INVALID_RESPONSE -4
|
||||
|
||||
void DNSClient::begin(const IPAddress& aDNSServer)
|
||||
{
|
||||
iDNSServer = aDNSServer;
|
||||
iRequestId = 0;
|
||||
}
|
||||
|
||||
|
||||
int DNSClient::inet_aton(const char* aIPAddrString, IPAddress& aResult)
|
||||
{
|
||||
// See if we've been given a valid IP address
|
||||
const char* p =aIPAddrString;
|
||||
while (*p &&
|
||||
( (*p == '.') || (*p >= '0') || (*p <= '9') ))
|
||||
{
|
||||
p++;
|
||||
}
|
||||
|
||||
if (*p == '\0')
|
||||
{
|
||||
// It's looking promising, we haven't found any invalid characters
|
||||
p = aIPAddrString;
|
||||
int segment =0;
|
||||
int segmentValue =0;
|
||||
while (*p && (segment < 4))
|
||||
{
|
||||
if (*p == '.')
|
||||
{
|
||||
// We've reached the end of a segment
|
||||
if (segmentValue > 255)
|
||||
{
|
||||
// You can't have IP address segments that don't fit in a byte
|
||||
return 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
aResult[segment] = (byte)segmentValue;
|
||||
segment++;
|
||||
segmentValue = 0;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// Next digit
|
||||
segmentValue = (segmentValue*10)+(*p - '0');
|
||||
}
|
||||
p++;
|
||||
}
|
||||
// We've reached the end of address, but there'll still be the last
|
||||
// segment to deal with
|
||||
if ((segmentValue > 255) || (segment > 3))
|
||||
{
|
||||
// You can't have IP address segments that don't fit in a byte,
|
||||
// or more than four segments
|
||||
return 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
aResult[segment] = (byte)segmentValue;
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
int DNSClient::getHostByName(const char* aHostname, IPAddress& aResult)
|
||||
{
|
||||
int ret =0;
|
||||
|
||||
// See if it's a numeric IP address
|
||||
if (inet_aton(aHostname, aResult))
|
||||
{
|
||||
// It is, our work here is done
|
||||
return 1;
|
||||
}
|
||||
|
||||
// Check we've got a valid DNS server to use
|
||||
if (iDNSServer == INADDR_NONE)
|
||||
{
|
||||
return INVALID_SERVER;
|
||||
}
|
||||
|
||||
// Find a socket to use
|
||||
if (iUdp.begin(1024+(millis() & 0xF)) == 1)
|
||||
{
|
||||
// Try up to three times
|
||||
int retries = 0;
|
||||
// while ((retries < 3) && (ret <= 0))
|
||||
{
|
||||
// Send DNS request
|
||||
ret = iUdp.beginPacket(iDNSServer, DNS_PORT);
|
||||
if (ret != 0)
|
||||
{
|
||||
// Now output the request data
|
||||
ret = BuildRequest(aHostname);
|
||||
if (ret != 0)
|
||||
{
|
||||
// And finally send the request
|
||||
ret = iUdp.endPacket();
|
||||
if (ret != 0)
|
||||
{
|
||||
// Now wait for a response
|
||||
int wait_retries = 0;
|
||||
ret = TIMED_OUT;
|
||||
while ((wait_retries < 3) && (ret == TIMED_OUT))
|
||||
{
|
||||
ret = ProcessResponse(5000, aResult);
|
||||
wait_retries++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
retries++;
|
||||
}
|
||||
|
||||
// We're done with the socket now
|
||||
iUdp.stop();
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
uint16_t DNSClient::BuildRequest(const char* aName)
|
||||
{
|
||||
// Build header
|
||||
// 1 1 1 1 1 1
|
||||
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
|
||||
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||||
// | ID |
|
||||
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||||
// |QR| Opcode |AA|TC|RD|RA| Z | RCODE |
|
||||
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||||
// | QDCOUNT |
|
||||
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||||
// | ANCOUNT |
|
||||
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||||
// | NSCOUNT |
|
||||
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||||
// | ARCOUNT |
|
||||
// +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||||
// As we only support one request at a time at present, we can simplify
|
||||
// some of this header
|
||||
iRequestId = millis(); // generate a random ID
|
||||
uint16_t twoByteBuffer;
|
||||
|
||||
// FIXME We should also check that there's enough space available to write to, rather
|
||||
// FIXME than assume there's enough space (as the code does at present)
|
||||
iUdp.write((uint8_t*)&iRequestId, sizeof(iRequestId));
|
||||
|
||||
twoByteBuffer = htons(QUERY_FLAG | OPCODE_STANDARD_QUERY | RECURSION_DESIRED_FLAG);
|
||||
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
|
||||
|
||||
twoByteBuffer = htons(1); // One question record
|
||||
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
|
||||
|
||||
twoByteBuffer = 0; // Zero answer records
|
||||
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
|
||||
|
||||
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
|
||||
// and zero additional records
|
||||
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
|
||||
|
||||
// Build question
|
||||
const char* start =aName;
|
||||
const char* end =start;
|
||||
uint8_t len;
|
||||
// Run through the name being requested
|
||||
while (*end)
|
||||
{
|
||||
// Find out how long this section of the name is
|
||||
end = start;
|
||||
while (*end && (*end != '.') )
|
||||
{
|
||||
end++;
|
||||
}
|
||||
|
||||
if (end-start > 0)
|
||||
{
|
||||
// Write out the size of this section
|
||||
len = end-start;
|
||||
iUdp.write(&len, sizeof(len));
|
||||
// And then write out the section
|
||||
iUdp.write((uint8_t*)start, end-start);
|
||||
}
|
||||
start = end+1;
|
||||
}
|
||||
|
||||
// We've got to the end of the question name, so
|
||||
// terminate it with a zero-length section
|
||||
len = 0;
|
||||
iUdp.write(&len, sizeof(len));
|
||||
// Finally the type and class of question
|
||||
twoByteBuffer = htons(TYPE_A);
|
||||
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
|
||||
|
||||
twoByteBuffer = htons(CLASS_IN); // Internet class of question
|
||||
iUdp.write((uint8_t*)&twoByteBuffer, sizeof(twoByteBuffer));
|
||||
// Success! Everything buffered okay
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
uint16_t DNSClient::ProcessResponse(uint16_t aTimeout, IPAddress& aAddress)
|
||||
{
|
||||
uint32_t startTime = millis();
|
||||
|
||||
// Wait for a response packet
|
||||
while(iUdp.parsePacket() <= 0)
|
||||
{
|
||||
if((millis() - startTime) > aTimeout)
|
||||
return TIMED_OUT;
|
||||
delay(50);
|
||||
}
|
||||
|
||||
// We've had a reply!
|
||||
// Read the UDP header
|
||||
uint8_t header[DNS_HEADER_SIZE]; // Enough space to reuse for the DNS header
|
||||
// Check that it's a response from the right server and the right port
|
||||
if ( (iDNSServer != iUdp.remoteIP()) ||
|
||||
(iUdp.remotePort() != DNS_PORT) )
|
||||
{
|
||||
// It's not from who we expected
|
||||
return INVALID_SERVER;
|
||||
}
|
||||
|
||||
// Read through the rest of the response
|
||||
if (iUdp.available() < DNS_HEADER_SIZE)
|
||||
{
|
||||
return TRUNCATED;
|
||||
}
|
||||
iUdp.read(header, DNS_HEADER_SIZE);
|
||||
|
||||
uint16_t header_flags = htons(*((uint16_t*)&header[2]));
|
||||
// Check that it's a response to this request
|
||||
if ( ( iRequestId != (*((uint16_t*)&header[0])) ) ||
|
||||
((header_flags & QUERY_RESPONSE_MASK) != (uint16_t)RESPONSE_FLAG) )
|
||||
{
|
||||
// Mark the entire packet as read
|
||||
iUdp.flush();
|
||||
return INVALID_RESPONSE;
|
||||
}
|
||||
// Check for any errors in the response (or in our request)
|
||||
// although we don't do anything to get round these
|
||||
if ( (header_flags & TRUNCATION_FLAG) || (header_flags & RESP_MASK) )
|
||||
{
|
||||
// Mark the entire packet as read
|
||||
iUdp.flush();
|
||||
return -5; //INVALID_RESPONSE;
|
||||
}
|
||||
|
||||
// And make sure we've got (at least) one answer
|
||||
uint16_t answerCount = htons(*((uint16_t*)&header[6]));
|
||||
if (answerCount == 0 )
|
||||
{
|
||||
// Mark the entire packet as read
|
||||
iUdp.flush();
|
||||
return -6; //INVALID_RESPONSE;
|
||||
}
|
||||
|
||||
// Skip over any questions
|
||||
for (uint16_t i =0; i < htons(*((uint16_t*)&header[4])); i++)
|
||||
{
|
||||
// Skip over the name
|
||||
uint8_t len;
|
||||
do
|
||||
{
|
||||
iUdp.read(&len, sizeof(len));
|
||||
if (len > 0)
|
||||
{
|
||||
// Don't need to actually read the data out for the string, just
|
||||
// advance ptr to beyond it
|
||||
while(len--)
|
||||
{
|
||||
iUdp.read(); // we don't care about the returned byte
|
||||
}
|
||||
}
|
||||
} while (len != 0);
|
||||
|
||||
// Now jump over the type and class
|
||||
for (int i =0; i < 4; i++)
|
||||
{
|
||||
iUdp.read(); // we don't care about the returned byte
|
||||
}
|
||||
}
|
||||
|
||||
// Now we're up to the bit we're interested in, the answer
|
||||
// There might be more than one answer (although we'll just use the first
|
||||
// type A answer) and some authority and additional resource records but
|
||||
// we're going to ignore all of them.
|
||||
|
||||
for (uint16_t i =0; i < answerCount; i++)
|
||||
{
|
||||
// Skip the name
|
||||
uint8_t len;
|
||||
do
|
||||
{
|
||||
iUdp.read(&len, sizeof(len));
|
||||
if ((len & LABEL_COMPRESSION_MASK) == 0)
|
||||
{
|
||||
// It's just a normal label
|
||||
if (len > 0)
|
||||
{
|
||||
// And it's got a length
|
||||
// Don't need to actually read the data out for the string,
|
||||
// just advance ptr to beyond it
|
||||
while(len--)
|
||||
{
|
||||
iUdp.read(); // we don't care about the returned byte
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// This is a pointer to a somewhere else in the message for the
|
||||
// rest of the name. We don't care about the name, and RFC1035
|
||||
// says that a name is either a sequence of labels ended with a
|
||||
// 0 length octet or a pointer or a sequence of labels ending in
|
||||
// a pointer. Either way, when we get here we're at the end of
|
||||
// the name
|
||||
// Skip over the pointer
|
||||
iUdp.read(); // we don't care about the returned byte
|
||||
// And set len so that we drop out of the name loop
|
||||
len = 0;
|
||||
}
|
||||
} while (len != 0);
|
||||
|
||||
// Check the type and class
|
||||
uint16_t answerType;
|
||||
uint16_t answerClass;
|
||||
iUdp.read((uint8_t*)&answerType, sizeof(answerType));
|
||||
iUdp.read((uint8_t*)&answerClass, sizeof(answerClass));
|
||||
|
||||
// Ignore the Time-To-Live as we don't do any caching
|
||||
for (int i =0; i < TTL_SIZE; i++)
|
||||
{
|
||||
iUdp.read(); // we don't care about the returned byte
|
||||
}
|
||||
|
||||
// And read out the length of this answer
|
||||
// Don't need header_flags anymore, so we can reuse it here
|
||||
iUdp.read((uint8_t*)&header_flags, sizeof(header_flags));
|
||||
|
||||
if ( (htons(answerType) == TYPE_A) && (htons(answerClass) == CLASS_IN) )
|
||||
{
|
||||
if (htons(header_flags) != 4)
|
||||
{
|
||||
// It's a weird size
|
||||
// Mark the entire packet as read
|
||||
iUdp.flush();
|
||||
return -9;//INVALID_RESPONSE;
|
||||
}
|
||||
iUdp.read(aAddress.raw_address(), 4);
|
||||
return SUCCESS;
|
||||
}
|
||||
else
|
||||
{
|
||||
// This isn't an answer type we're after, move onto the next one
|
||||
for (uint16_t i =0; i < htons(header_flags); i++)
|
||||
{
|
||||
iUdp.read(); // we don't care about the returned byte
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Mark the entire packet as read
|
||||
iUdp.flush();
|
||||
|
||||
// If we get here then we haven't found an answer
|
||||
return -10;//INVALID_RESPONSE;
|
||||
}
|
||||
|
41
hardware/arduino/sam/libraries/Ethernet/Dns.h
Normal file
41
hardware/arduino/sam/libraries/Ethernet/Dns.h
Normal file
@ -0,0 +1,41 @@
|
||||
// Arduino DNS client for WizNet5100-based Ethernet shield
|
||||
// (c) Copyright 2009-2010 MCQN Ltd.
|
||||
// Released under Apache License, version 2.0
|
||||
|
||||
#ifndef DNSClient_h
|
||||
#define DNSClient_h
|
||||
|
||||
#include <EthernetUdp.h>
|
||||
|
||||
class DNSClient
|
||||
{
|
||||
public:
|
||||
// ctor
|
||||
void begin(const IPAddress& aDNSServer);
|
||||
|
||||
/** Convert a numeric IP address string into a four-byte IP address.
|
||||
@param aIPAddrString IP address to convert
|
||||
@param aResult IPAddress structure to store the returned IP address
|
||||
@result 1 if aIPAddrString was successfully converted to an IP address,
|
||||
else error code
|
||||
*/
|
||||
int inet_aton(const char *aIPAddrString, IPAddress& aResult);
|
||||
|
||||
/** Resolve the given hostname to an IP address.
|
||||
@param aHostname Name to be resolved
|
||||
@param aResult IPAddress structure to store the returned IP address
|
||||
@result 1 if aIPAddrString was successfully converted to an IP address,
|
||||
else error code
|
||||
*/
|
||||
int getHostByName(const char* aHostname, IPAddress& aResult);
|
||||
|
||||
protected:
|
||||
uint16_t BuildRequest(const char* aName);
|
||||
uint16_t ProcessResponse(uint16_t aTimeout, IPAddress& aAddress);
|
||||
|
||||
IPAddress iDNSServer;
|
||||
uint16_t iRequestId;
|
||||
EthernetUDP iUdp;
|
||||
};
|
||||
|
||||
#endif
|
121
hardware/arduino/sam/libraries/Ethernet/Ethernet.cpp
Normal file
121
hardware/arduino/sam/libraries/Ethernet/Ethernet.cpp
Normal file
@ -0,0 +1,121 @@
|
||||
#include "w5100.h"
|
||||
#include "Ethernet.h"
|
||||
#include "Dhcp.h"
|
||||
|
||||
// XXX: don't make assumptions about the value of MAX_SOCK_NUM.
|
||||
uint8_t EthernetClass::_state[MAX_SOCK_NUM] = {
|
||||
0, 0, 0, 0 };
|
||||
uint16_t EthernetClass::_server_port[MAX_SOCK_NUM] = {
|
||||
0, 0, 0, 0 };
|
||||
|
||||
int EthernetClass::begin(uint8_t *mac_address)
|
||||
{
|
||||
_dhcp = new DhcpClass();
|
||||
|
||||
// Initialise the basic info
|
||||
W5100.init();
|
||||
W5100.setMACAddress(mac_address);
|
||||
W5100.setIPAddress(IPAddress(0,0,0,0).raw_address());
|
||||
|
||||
// Now try to get our config info from a DHCP server
|
||||
int ret = _dhcp->beginWithDHCP(mac_address);
|
||||
if(ret == 1)
|
||||
{
|
||||
// We've successfully found a DHCP server and got our configuration info, so set things
|
||||
// accordingly
|
||||
W5100.setIPAddress(_dhcp->getLocalIp().raw_address());
|
||||
W5100.setGatewayIp(_dhcp->getGatewayIp().raw_address());
|
||||
W5100.setSubnetMask(_dhcp->getSubnetMask().raw_address());
|
||||
_dnsServerAddress = _dhcp->getDnsServerIp();
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void EthernetClass::begin(uint8_t *mac_address, IPAddress local_ip)
|
||||
{
|
||||
// Assume the DNS server will be the machine on the same network as the local IP
|
||||
// but with last octet being '1'
|
||||
IPAddress dns_server = local_ip;
|
||||
dns_server[3] = 1;
|
||||
begin(mac_address, local_ip, dns_server);
|
||||
}
|
||||
|
||||
void EthernetClass::begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server)
|
||||
{
|
||||
// Assume the gateway will be the machine on the same network as the local IP
|
||||
// but with last octet being '1'
|
||||
IPAddress gateway = local_ip;
|
||||
gateway[3] = 1;
|
||||
begin(mac_address, local_ip, dns_server, gateway);
|
||||
}
|
||||
|
||||
void EthernetClass::begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway)
|
||||
{
|
||||
IPAddress subnet(255, 255, 255, 0);
|
||||
begin(mac_address, local_ip, dns_server, gateway, subnet);
|
||||
}
|
||||
|
||||
void EthernetClass::begin(uint8_t *mac, IPAddress local_ip, IPAddress dns_server, IPAddress gateway, IPAddress subnet)
|
||||
{
|
||||
W5100.init();
|
||||
|
||||
W5100.setMACAddress(mac);
|
||||
W5100.setIPAddress(local_ip._address);
|
||||
W5100.setGatewayIp(gateway._address);
|
||||
W5100.setSubnetMask(subnet._address);
|
||||
_dnsServerAddress = dns_server;
|
||||
}
|
||||
|
||||
int EthernetClass::maintain(){
|
||||
int rc = DHCP_CHECK_NONE;
|
||||
if(_dhcp != NULL){
|
||||
//we have a pointer to dhcp, use it
|
||||
rc = _dhcp->checkLease();
|
||||
switch ( rc ){
|
||||
case DHCP_CHECK_NONE:
|
||||
//nothing done
|
||||
break;
|
||||
case DHCP_CHECK_RENEW_OK:
|
||||
case DHCP_CHECK_REBIND_OK:
|
||||
//we might have got a new IP.
|
||||
W5100.setIPAddress(_dhcp->getLocalIp().raw_address());
|
||||
W5100.setGatewayIp(_dhcp->getGatewayIp().raw_address());
|
||||
W5100.setSubnetMask(_dhcp->getSubnetMask().raw_address());
|
||||
_dnsServerAddress = _dhcp->getDnsServerIp();
|
||||
break;
|
||||
default:
|
||||
//this is actually a error, it will retry though
|
||||
break;
|
||||
}
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
IPAddress EthernetClass::localIP()
|
||||
{
|
||||
IPAddress ret;
|
||||
W5100.getIPAddress(ret.raw_address());
|
||||
return ret;
|
||||
}
|
||||
|
||||
IPAddress EthernetClass::subnetMask()
|
||||
{
|
||||
IPAddress ret;
|
||||
W5100.getSubnetMask(ret.raw_address());
|
||||
return ret;
|
||||
}
|
||||
|
||||
IPAddress EthernetClass::gatewayIP()
|
||||
{
|
||||
IPAddress ret;
|
||||
W5100.getGatewayIp(ret.raw_address());
|
||||
return ret;
|
||||
}
|
||||
|
||||
IPAddress EthernetClass::dnsServerIP()
|
||||
{
|
||||
return _dnsServerAddress;
|
||||
}
|
||||
|
||||
EthernetClass Ethernet;
|
41
hardware/arduino/sam/libraries/Ethernet/Ethernet.h
Normal file
41
hardware/arduino/sam/libraries/Ethernet/Ethernet.h
Normal file
@ -0,0 +1,41 @@
|
||||
#ifndef ethernet_h
|
||||
#define ethernet_h
|
||||
|
||||
#include <inttypes.h>
|
||||
//#include "w5100.h"
|
||||
#include "IPAddress.h"
|
||||
#include "EthernetClient.h"
|
||||
#include "EthernetServer.h"
|
||||
#include "Dhcp.h"
|
||||
|
||||
#define MAX_SOCK_NUM 4
|
||||
|
||||
class EthernetClass {
|
||||
private:
|
||||
IPAddress _dnsServerAddress;
|
||||
DhcpClass* _dhcp;
|
||||
public:
|
||||
static uint8_t _state[MAX_SOCK_NUM];
|
||||
static uint16_t _server_port[MAX_SOCK_NUM];
|
||||
// Initialise the Ethernet shield to use the provided MAC address and gain the rest of the
|
||||
// configuration through DHCP.
|
||||
// Returns 0 if the DHCP configuration failed, and 1 if it succeeded
|
||||
int begin(uint8_t *mac_address);
|
||||
void begin(uint8_t *mac_address, IPAddress local_ip);
|
||||
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server);
|
||||
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway);
|
||||
void begin(uint8_t *mac_address, IPAddress local_ip, IPAddress dns_server, IPAddress gateway, IPAddress subnet);
|
||||
int maintain();
|
||||
|
||||
IPAddress localIP();
|
||||
IPAddress subnetMask();
|
||||
IPAddress gatewayIP();
|
||||
IPAddress dnsServerIP();
|
||||
|
||||
friend class EthernetClient;
|
||||
friend class EthernetServer;
|
||||
};
|
||||
|
||||
extern EthernetClass Ethernet;
|
||||
|
||||
#endif
|
165
hardware/arduino/sam/libraries/Ethernet/EthernetClient.cpp
Normal file
165
hardware/arduino/sam/libraries/Ethernet/EthernetClient.cpp
Normal file
@ -0,0 +1,165 @@
|
||||
#include "w5100.h"
|
||||
#include "socket.h"
|
||||
|
||||
extern "C" {
|
||||
#include "string.h"
|
||||
}
|
||||
|
||||
#include "Arduino.h"
|
||||
|
||||
#include "Ethernet.h"
|
||||
#include "EthernetClient.h"
|
||||
#include "EthernetServer.h"
|
||||
#include "Dns.h"
|
||||
|
||||
uint16_t EthernetClient::_srcport = 1024;
|
||||
|
||||
EthernetClient::EthernetClient() : _sock(MAX_SOCK_NUM) {
|
||||
}
|
||||
|
||||
EthernetClient::EthernetClient(uint8_t sock) : _sock(sock) {
|
||||
}
|
||||
|
||||
int EthernetClient::connect(const char* host, uint16_t port) {
|
||||
// Look up the host first
|
||||
int ret = 0;
|
||||
DNSClient dns;
|
||||
IPAddress remote_addr;
|
||||
|
||||
dns.begin(Ethernet.dnsServerIP());
|
||||
ret = dns.getHostByName(host, remote_addr);
|
||||
if (ret == 1) {
|
||||
return connect(remote_addr, port);
|
||||
} else {
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
int EthernetClient::connect(IPAddress ip, uint16_t port) {
|
||||
if (_sock != MAX_SOCK_NUM)
|
||||
return 0;
|
||||
|
||||
for (int i = 0; i < MAX_SOCK_NUM; i++) {
|
||||
uint8_t s = W5100.readSnSR(i);
|
||||
if (s == SnSR::CLOSED || s == SnSR::FIN_WAIT || s == SnSR::CLOSE_WAIT) {
|
||||
_sock = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (_sock == MAX_SOCK_NUM)
|
||||
return 0;
|
||||
|
||||
_srcport++;
|
||||
if (_srcport == 0) _srcport = 1024;
|
||||
socket(_sock, SnMR::TCP, _srcport, 0);
|
||||
|
||||
if (!::connect(_sock, rawIPAddress(ip), port)) {
|
||||
_sock = MAX_SOCK_NUM;
|
||||
return 0;
|
||||
}
|
||||
|
||||
while (status() != SnSR::ESTABLISHED) {
|
||||
delay(1);
|
||||
if (status() == SnSR::CLOSED) {
|
||||
_sock = MAX_SOCK_NUM;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
size_t EthernetClient::write(uint8_t b) {
|
||||
return write(&b, 1);
|
||||
}
|
||||
|
||||
size_t EthernetClient::write(const uint8_t *buf, size_t size) {
|
||||
if (_sock == MAX_SOCK_NUM) {
|
||||
setWriteError();
|
||||
return 0;
|
||||
}
|
||||
if (!send(_sock, buf, size)) {
|
||||
setWriteError();
|
||||
return 0;
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
int EthernetClient::available() {
|
||||
if (_sock != MAX_SOCK_NUM)
|
||||
return W5100.getRXReceivedSize(_sock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int EthernetClient::read() {
|
||||
uint8_t b;
|
||||
if ( recv(_sock, &b, 1) > 0 )
|
||||
{
|
||||
// recv worked
|
||||
return b;
|
||||
}
|
||||
else
|
||||
{
|
||||
// No data available
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
int EthernetClient::read(uint8_t *buf, size_t size) {
|
||||
return recv(_sock, buf, size);
|
||||
}
|
||||
|
||||
int EthernetClient::peek() {
|
||||
uint8_t b;
|
||||
// Unlike recv, peek doesn't check to see if there's any data available, so we must
|
||||
if (!available())
|
||||
return -1;
|
||||
::peek(_sock, &b);
|
||||
return b;
|
||||
}
|
||||
|
||||
void EthernetClient::flush() {
|
||||
while (available())
|
||||
read();
|
||||
}
|
||||
|
||||
void EthernetClient::stop() {
|
||||
if (_sock == MAX_SOCK_NUM)
|
||||
return;
|
||||
|
||||
// attempt to close the connection gracefully (send a FIN to other side)
|
||||
disconnect(_sock);
|
||||
unsigned long start = millis();
|
||||
|
||||
// wait a second for the connection to close
|
||||
while (status() != SnSR::CLOSED && millis() - start < 1000)
|
||||
delay(1);
|
||||
|
||||
// if it hasn't closed, close it forcefully
|
||||
if (status() != SnSR::CLOSED)
|
||||
close(_sock);
|
||||
|
||||
EthernetClass::_server_port[_sock] = 0;
|
||||
_sock = MAX_SOCK_NUM;
|
||||
}
|
||||
|
||||
uint8_t EthernetClient::connected() {
|
||||
if (_sock == MAX_SOCK_NUM) return 0;
|
||||
|
||||
uint8_t s = status();
|
||||
return !(s == SnSR::LISTEN || s == SnSR::CLOSED || s == SnSR::FIN_WAIT ||
|
||||
(s == SnSR::CLOSE_WAIT && !available()));
|
||||
}
|
||||
|
||||
uint8_t EthernetClient::status() {
|
||||
if (_sock == MAX_SOCK_NUM) return SnSR::CLOSED;
|
||||
return W5100.readSnSR(_sock);
|
||||
}
|
||||
|
||||
// the next function allows us to use the client returned by
|
||||
// EthernetServer::available() as the condition in an if-statement.
|
||||
|
||||
EthernetClient::operator bool() {
|
||||
return _sock != MAX_SOCK_NUM;
|
||||
}
|
37
hardware/arduino/sam/libraries/Ethernet/EthernetClient.h
Normal file
37
hardware/arduino/sam/libraries/Ethernet/EthernetClient.h
Normal file
@ -0,0 +1,37 @@
|
||||
#ifndef ethernetclient_h
|
||||
#define ethernetclient_h
|
||||
#include "Arduino.h"
|
||||
#include "Print.h"
|
||||
#include "Client.h"
|
||||
#include "IPAddress.h"
|
||||
|
||||
class EthernetClient : public Client {
|
||||
|
||||
public:
|
||||
EthernetClient();
|
||||
EthernetClient(uint8_t sock);
|
||||
|
||||
uint8_t status();
|
||||
virtual int connect(IPAddress ip, uint16_t port);
|
||||
virtual int connect(const char *host, uint16_t port);
|
||||
virtual size_t write(uint8_t);
|
||||
virtual size_t write(const uint8_t *buf, size_t size);
|
||||
virtual int available();
|
||||
virtual int read();
|
||||
virtual int read(uint8_t *buf, size_t size);
|
||||
virtual int peek();
|
||||
virtual void flush();
|
||||
virtual void stop();
|
||||
virtual uint8_t connected();
|
||||
virtual operator bool();
|
||||
|
||||
friend class EthernetServer;
|
||||
|
||||
using Print::write;
|
||||
|
||||
private:
|
||||
static uint16_t _srcport;
|
||||
uint8_t _sock;
|
||||
};
|
||||
|
||||
#endif
|
91
hardware/arduino/sam/libraries/Ethernet/EthernetServer.cpp
Normal file
91
hardware/arduino/sam/libraries/Ethernet/EthernetServer.cpp
Normal file
@ -0,0 +1,91 @@
|
||||
#include "w5100.h"
|
||||
#include "socket.h"
|
||||
extern "C" {
|
||||
#include "string.h"
|
||||
}
|
||||
|
||||
#include "Ethernet.h"
|
||||
#include "EthernetClient.h"
|
||||
#include "EthernetServer.h"
|
||||
|
||||
EthernetServer::EthernetServer(uint16_t port)
|
||||
{
|
||||
_port = port;
|
||||
}
|
||||
|
||||
void EthernetServer::begin()
|
||||
{
|
||||
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
|
||||
EthernetClient client(sock);
|
||||
if (client.status() == SnSR::CLOSED) {
|
||||
socket(sock, SnMR::TCP, _port, 0);
|
||||
listen(sock);
|
||||
EthernetClass::_server_port[sock] = _port;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void EthernetServer::accept()
|
||||
{
|
||||
int listening = 0;
|
||||
|
||||
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
|
||||
EthernetClient client(sock);
|
||||
|
||||
if (EthernetClass::_server_port[sock] == _port) {
|
||||
if (client.status() == SnSR::LISTEN) {
|
||||
listening = 1;
|
||||
}
|
||||
else if (client.status() == SnSR::CLOSE_WAIT && !client.available()) {
|
||||
client.stop();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!listening) {
|
||||
begin();
|
||||
}
|
||||
}
|
||||
|
||||
EthernetClient EthernetServer::available()
|
||||
{
|
||||
accept();
|
||||
|
||||
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
|
||||
EthernetClient client(sock);
|
||||
if (EthernetClass::_server_port[sock] == _port &&
|
||||
(client.status() == SnSR::ESTABLISHED ||
|
||||
client.status() == SnSR::CLOSE_WAIT)) {
|
||||
if (client.available()) {
|
||||
// XXX: don't always pick the lowest numbered socket.
|
||||
return client;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return EthernetClient(MAX_SOCK_NUM);
|
||||
}
|
||||
|
||||
size_t EthernetServer::write(uint8_t b)
|
||||
{
|
||||
return write(&b, 1);
|
||||
}
|
||||
|
||||
size_t EthernetServer::write(const uint8_t *buffer, size_t size)
|
||||
{
|
||||
size_t n = 0;
|
||||
|
||||
accept();
|
||||
|
||||
for (int sock = 0; sock < MAX_SOCK_NUM; sock++) {
|
||||
EthernetClient client(sock);
|
||||
|
||||
if (EthernetClass::_server_port[sock] == _port &&
|
||||
client.status() == SnSR::ESTABLISHED) {
|
||||
n += client.write(buffer, size);
|
||||
}
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
22
hardware/arduino/sam/libraries/Ethernet/EthernetServer.h
Normal file
22
hardware/arduino/sam/libraries/Ethernet/EthernetServer.h
Normal file
@ -0,0 +1,22 @@
|
||||
#ifndef ethernetserver_h
|
||||
#define ethernetserver_h
|
||||
|
||||
#include "Server.h"
|
||||
|
||||
class EthernetClient;
|
||||
|
||||
class EthernetServer :
|
||||
public Server {
|
||||
private:
|
||||
uint16_t _port;
|
||||
void accept();
|
||||
public:
|
||||
EthernetServer(uint16_t);
|
||||
EthernetClient available();
|
||||
virtual void begin();
|
||||
virtual size_t write(uint8_t);
|
||||
virtual size_t write(const uint8_t *buf, size_t size);
|
||||
using Print::write;
|
||||
};
|
||||
|
||||
#endif
|
218
hardware/arduino/sam/libraries/Ethernet/EthernetUdp.cpp
Normal file
218
hardware/arduino/sam/libraries/Ethernet/EthernetUdp.cpp
Normal file
@ -0,0 +1,218 @@
|
||||
/*
|
||||
* Udp.cpp: Library to send/receive UDP packets with the Arduino ethernet shield.
|
||||
* This version only offers minimal wrapping of socket.c/socket.h
|
||||
* Drop Udp.h/.cpp into the Ethernet library directory at hardware/libraries/Ethernet/
|
||||
*
|
||||
* MIT License:
|
||||
* Copyright (c) 2008 Bjoern Hartmann
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*
|
||||
* bjoern@cs.stanford.edu 12/30/2008
|
||||
*/
|
||||
|
||||
#include "w5100.h"
|
||||
#include "socket.h"
|
||||
#include "Ethernet.h"
|
||||
#include "Udp.h"
|
||||
#include "Dns.h"
|
||||
|
||||
/* Constructor */
|
||||
EthernetUDP::EthernetUDP() : _sock(MAX_SOCK_NUM) {}
|
||||
|
||||
/* Start EthernetUDP socket, listening at local port PORT */
|
||||
uint8_t EthernetUDP::begin(uint16_t port) {
|
||||
if (_sock != MAX_SOCK_NUM)
|
||||
return 0;
|
||||
|
||||
for (int i = 0; i < MAX_SOCK_NUM; i++) {
|
||||
uint8_t s = W5100.readSnSR(i);
|
||||
if (s == SnSR::CLOSED || s == SnSR::FIN_WAIT) {
|
||||
_sock = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (_sock == MAX_SOCK_NUM)
|
||||
return 0;
|
||||
|
||||
_port = port;
|
||||
_remaining = 0;
|
||||
socket(_sock, SnMR::UDP, _port, 0);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* return number of bytes available in the current packet,
|
||||
will return zero if parsePacket hasn't been called yet */
|
||||
int EthernetUDP::available() {
|
||||
return _remaining;
|
||||
}
|
||||
|
||||
/* Release any resources being used by this EthernetUDP instance */
|
||||
void EthernetUDP::stop()
|
||||
{
|
||||
if (_sock == MAX_SOCK_NUM)
|
||||
return;
|
||||
|
||||
close(_sock);
|
||||
|
||||
EthernetClass::_server_port[_sock] = 0;
|
||||
_sock = MAX_SOCK_NUM;
|
||||
}
|
||||
|
||||
int EthernetUDP::beginPacket(const char *host, uint16_t port)
|
||||
{
|
||||
// Look up the host first
|
||||
int ret = 0;
|
||||
DNSClient dns;
|
||||
IPAddress remote_addr;
|
||||
|
||||
dns.begin(Ethernet.dnsServerIP());
|
||||
ret = dns.getHostByName(host, remote_addr);
|
||||
if (ret == 1) {
|
||||
return beginPacket(remote_addr, port);
|
||||
} else {
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
int EthernetUDP::beginPacket(IPAddress ip, uint16_t port)
|
||||
{
|
||||
_offset = 0;
|
||||
return startUDP(_sock, rawIPAddress(ip), port);
|
||||
}
|
||||
|
||||
int EthernetUDP::endPacket()
|
||||
{
|
||||
return sendUDP(_sock);
|
||||
}
|
||||
|
||||
size_t EthernetUDP::write(uint8_t byte)
|
||||
{
|
||||
return write(&byte, 1);
|
||||
}
|
||||
|
||||
size_t EthernetUDP::write(const uint8_t *buffer, size_t size)
|
||||
{
|
||||
uint16_t bytes_written = bufferData(_sock, _offset, buffer, size);
|
||||
_offset += bytes_written;
|
||||
return bytes_written;
|
||||
}
|
||||
|
||||
int EthernetUDP::parsePacket()
|
||||
{
|
||||
// discard any remaining bytes in the last packet
|
||||
flush();
|
||||
|
||||
if (W5100.getRXReceivedSize(_sock) > 0)
|
||||
{
|
||||
//HACK - hand-parse the UDP packet using TCP recv method
|
||||
uint8_t tmpBuf[8];
|
||||
int ret =0;
|
||||
//read 8 header bytes and get IP and port from it
|
||||
ret = recv(_sock,tmpBuf,8);
|
||||
if (ret > 0)
|
||||
{
|
||||
_remoteIP = tmpBuf;
|
||||
_remotePort = tmpBuf[4];
|
||||
_remotePort = (_remotePort << 8) + tmpBuf[5];
|
||||
_remaining = tmpBuf[6];
|
||||
_remaining = (_remaining << 8) + tmpBuf[7];
|
||||
|
||||
// When we get here, any remaining bytes are the data
|
||||
ret = _remaining;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
// There aren't any packets available
|
||||
return 0;
|
||||
}
|
||||
|
||||
int EthernetUDP::read()
|
||||
{
|
||||
uint8_t byte;
|
||||
|
||||
if ((_remaining > 0) && (recv(_sock, &byte, 1) > 0))
|
||||
{
|
||||
// We read things without any problems
|
||||
_remaining--;
|
||||
return byte;
|
||||
}
|
||||
|
||||
// If we get here, there's no data available
|
||||
return -1;
|
||||
}
|
||||
|
||||
int EthernetUDP::read(unsigned char* buffer, size_t len)
|
||||
{
|
||||
|
||||
if (_remaining > 0)
|
||||
{
|
||||
|
||||
int got;
|
||||
|
||||
if (_remaining <= len)
|
||||
{
|
||||
// data should fit in the buffer
|
||||
got = recv(_sock, buffer, _remaining);
|
||||
}
|
||||
else
|
||||
{
|
||||
// too much data for the buffer,
|
||||
// grab as much as will fit
|
||||
got = recv(_sock, buffer, len);
|
||||
}
|
||||
|
||||
if (got > 0)
|
||||
{
|
||||
_remaining -= got;
|
||||
return got;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// If we get here, there's no data available or recv failed
|
||||
return -1;
|
||||
|
||||
}
|
||||
|
||||
int EthernetUDP::peek()
|
||||
{
|
||||
uint8_t b;
|
||||
// Unlike recv, peek doesn't check to see if there's any data available, so we must.
|
||||
// If the user hasn't called parsePacket yet then return nothing otherwise they
|
||||
// may get the UDP header
|
||||
if (!_remaining)
|
||||
return -1;
|
||||
::peek(_sock, &b);
|
||||
return b;
|
||||
}
|
||||
|
||||
void EthernetUDP::flush()
|
||||
{
|
||||
// could this fail (loop endlessly) if _remaining > 0 and recv in read fails?
|
||||
// should only occur if recv fails after telling us the data is there, lets
|
||||
// hope the w5100 always behaves :)
|
||||
|
||||
while (_remaining)
|
||||
{
|
||||
read();
|
||||
}
|
||||
}
|
||||
|
99
hardware/arduino/sam/libraries/Ethernet/EthernetUdp.h
Normal file
99
hardware/arduino/sam/libraries/Ethernet/EthernetUdp.h
Normal file
@ -0,0 +1,99 @@
|
||||
/*
|
||||
* Udp.cpp: Library to send/receive UDP packets with the Arduino ethernet shield.
|
||||
* This version only offers minimal wrapping of socket.c/socket.h
|
||||
* Drop Udp.h/.cpp into the Ethernet library directory at hardware/libraries/Ethernet/
|
||||
*
|
||||
* NOTE: UDP is fast, but has some important limitations (thanks to Warren Gray for mentioning these)
|
||||
* 1) UDP does not guarantee the order in which assembled UDP packets are received. This
|
||||
* might not happen often in practice, but in larger network topologies, a UDP
|
||||
* packet can be received out of sequence.
|
||||
* 2) UDP does not guard against lost packets - so packets *can* disappear without the sender being
|
||||
* aware of it. Again, this may not be a concern in practice on small local networks.
|
||||
* For more information, see http://www.cafeaulait.org/course/week12/35.html
|
||||
*
|
||||
* MIT License:
|
||||
* Copyright (c) 2008 Bjoern Hartmann
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
* THE SOFTWARE.
|
||||
*
|
||||
* bjoern@cs.stanford.edu 12/30/2008
|
||||
*/
|
||||
|
||||
#ifndef ethernetudp_h
|
||||
#define ethernetudp_h
|
||||
|
||||
#include <Udp.h>
|
||||
|
||||
#define UDP_TX_PACKET_MAX_SIZE 24
|
||||
|
||||
class EthernetUDP : public UDP {
|
||||
private:
|
||||
uint8_t _sock; // socket ID for Wiz5100
|
||||
uint16_t _port; // local port to listen on
|
||||
IPAddress _remoteIP; // remote IP address for the incoming packet whilst it's being processed
|
||||
uint16_t _remotePort; // remote port for the incoming packet whilst it's being processed
|
||||
uint16_t _offset; // offset into the packet being sent
|
||||
uint16_t _remaining; // remaining bytes of incoming packet yet to be processed
|
||||
|
||||
public:
|
||||
EthernetUDP(); // Constructor
|
||||
virtual uint8_t begin(uint16_t); // initialize, start listening on specified port. Returns 1 if successful, 0 if there are no sockets available to use
|
||||
virtual void stop(); // Finish with the UDP socket
|
||||
|
||||
// Sending UDP packets
|
||||
|
||||
// Start building up a packet to send to the remote host specific in ip and port
|
||||
// Returns 1 if successful, 0 if there was a problem with the supplied IP address or port
|
||||
virtual int beginPacket(IPAddress ip, uint16_t port);
|
||||
// Start building up a packet to send to the remote host specific in host and port
|
||||
// Returns 1 if successful, 0 if there was a problem resolving the hostname or port
|
||||
virtual int beginPacket(const char *host, uint16_t port);
|
||||
// Finish off this packet and send it
|
||||
// Returns 1 if the packet was sent successfully, 0 if there was an error
|
||||
virtual int endPacket();
|
||||
// Write a single byte into the packet
|
||||
virtual size_t write(uint8_t);
|
||||
// Write size bytes from buffer into the packet
|
||||
virtual size_t write(const uint8_t *buffer, size_t size);
|
||||
|
||||
using Print::write;
|
||||
|
||||
// Start processing the next available incoming packet
|
||||
// Returns the size of the packet in bytes, or 0 if no packets are available
|
||||
virtual int parsePacket();
|
||||
// Number of bytes remaining in the current packet
|
||||
virtual int available();
|
||||
// Read a single byte from the current packet
|
||||
virtual int read();
|
||||
// Read up to len bytes from the current packet and place them into buffer
|
||||
// Returns the number of bytes read, or 0 if none are available
|
||||
virtual int read(unsigned char* buffer, size_t len);
|
||||
// Read up to len characters from the current packet and place them into buffer
|
||||
// Returns the number of characters read, or 0 if none are available
|
||||
virtual int read(char* buffer, size_t len) { return read((unsigned char*)buffer, len); };
|
||||
// Return the next byte from the current packet without moving on to the next byte
|
||||
virtual int peek();
|
||||
virtual void flush(); // Finish reading the current packet
|
||||
|
||||
// Return the IP address of the host who sent the current incoming packet
|
||||
virtual IPAddress remoteIP() { return _remoteIP; };
|
||||
// Return the port of the host who sent the current incoming packet
|
||||
virtual uint16_t remotePort() { return _remotePort; };
|
||||
};
|
||||
|
||||
#endif
|
@ -0,0 +1,222 @@
|
||||
/*
|
||||
SCP1000 Barometric Pressure Sensor Display
|
||||
|
||||
Serves the output of a Barometric Pressure Sensor as a web page.
|
||||
Uses the SPI library. For details on the sensor, see:
|
||||
http://www.sparkfun.com/commerce/product_info.php?products_id=8161
|
||||
http://www.vti.fi/en/support/obsolete_products/pressure_sensors/
|
||||
|
||||
This sketch adapted from Nathan Seidle's SCP1000 example for PIC:
|
||||
http://www.sparkfun.com/datasheets/Sensors/SCP1000-Testing.zip
|
||||
|
||||
Circuit:
|
||||
SCP1000 sensor attached to pins 6,7, and 11 - 13:
|
||||
DRDY: pin 6
|
||||
CSB: pin 7
|
||||
MOSI: pin 11
|
||||
MISO: pin 12
|
||||
SCK: pin 13
|
||||
|
||||
created 31 July 2010
|
||||
by Tom Igoe
|
||||
*/
|
||||
|
||||
#include <Ethernet.h>
|
||||
// the sensor communicates using SPI, so include the library:
|
||||
#include <SPI.h>
|
||||
|
||||
|
||||
// assign a MAC address for the ethernet controller.
|
||||
// fill in your address here:
|
||||
byte mac[] = {
|
||||
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
|
||||
// assign an IP address for the controller:
|
||||
IPAddress ip(192,168,1,20);
|
||||
IPAddress gateway(192,168,1,1);
|
||||
IPAddress subnet(255, 255, 255, 0);
|
||||
|
||||
|
||||
// Initialize the Ethernet server library
|
||||
// with the IP address and port you want to use
|
||||
// (port 80 is default for HTTP):
|
||||
EthernetServer server(80);
|
||||
|
||||
|
||||
//Sensor's memory register addresses:
|
||||
const int PRESSURE = 0x1F; //3 most significant bits of pressure
|
||||
const int PRESSURE_LSB = 0x20; //16 least significant bits of pressure
|
||||
const int TEMPERATURE = 0x21; //16 bit temperature reading
|
||||
|
||||
// pins used for the connection with the sensor
|
||||
// the others you need are controlled by the SPI library):
|
||||
const int dataReadyPin = 6;
|
||||
const int chipSelectPin = 7;
|
||||
|
||||
float temperature = 0.0;
|
||||
long pressure = 0;
|
||||
long lastReadingTime = 0;
|
||||
|
||||
void setup() {
|
||||
// start the SPI library:
|
||||
SPI.begin();
|
||||
|
||||
// start the Ethernet connection and the server:
|
||||
Ethernet.begin(mac, ip);
|
||||
server.begin();
|
||||
|
||||
// initalize the data ready and chip select pins:
|
||||
pinMode(dataReadyPin, INPUT);
|
||||
pinMode(chipSelectPin, OUTPUT);
|
||||
|
||||
Serial.begin(9600);
|
||||
|
||||
//Configure SCP1000 for low noise configuration:
|
||||
writeRegister(0x02, 0x2D);
|
||||
writeRegister(0x01, 0x03);
|
||||
writeRegister(0x03, 0x02);
|
||||
|
||||
// give the sensor and Ethernet shield time to set up:
|
||||
delay(1000);
|
||||
|
||||
//Set the sensor to high resolution mode tp start readings:
|
||||
writeRegister(0x03, 0x0A);
|
||||
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// check for a reading no more than once a second.
|
||||
if (millis() - lastReadingTime > 1000){
|
||||
// if there's a reading ready, read it:
|
||||
// don't do anything until the data ready pin is high:
|
||||
if (digitalRead(dataReadyPin) == HIGH) {
|
||||
getData();
|
||||
// timestamp the last time you got a reading:
|
||||
lastReadingTime = millis();
|
||||
}
|
||||
}
|
||||
|
||||
// listen for incoming Ethernet connections:
|
||||
listenForEthernetClients();
|
||||
}
|
||||
|
||||
|
||||
void getData() {
|
||||
Serial.println("Getting reading");
|
||||
//Read the temperature data
|
||||
int tempData = readRegister(0x21, 2);
|
||||
|
||||
// convert the temperature to celsius and display it:
|
||||
temperature = (float)tempData / 20.0;
|
||||
|
||||
//Read the pressure data highest 3 bits:
|
||||
byte pressureDataHigh = readRegister(0x1F, 1);
|
||||
pressureDataHigh &= 0b00000111; //you only needs bits 2 to 0
|
||||
|
||||
//Read the pressure data lower 16 bits:
|
||||
unsigned int pressureDataLow = readRegister(0x20, 2);
|
||||
//combine the two parts into one 19-bit number:
|
||||
pressure = ((pressureDataHigh << 16) | pressureDataLow)/4;
|
||||
|
||||
Serial.print("Temperature: ");
|
||||
Serial.print(temperature);
|
||||
Serial.println(" degrees C");
|
||||
Serial.print("Pressure: " + String(pressure));
|
||||
Serial.println(" Pa");
|
||||
}
|
||||
|
||||
void listenForEthernetClients() {
|
||||
// listen for incoming clients
|
||||
EthernetClient client = server.available();
|
||||
if (client) {
|
||||
Serial.println("Got a client");
|
||||
// an http request ends with a blank line
|
||||
boolean currentLineIsBlank = true;
|
||||
while (client.connected()) {
|
||||
if (client.available()) {
|
||||
char c = client.read();
|
||||
// if you've gotten to the end of the line (received a newline
|
||||
// character) and the line is blank, the http request has ended,
|
||||
// so you can send a reply
|
||||
if (c == '\n' && currentLineIsBlank) {
|
||||
// send a standard http response header
|
||||
client.println("HTTP/1.1 200 OK");
|
||||
client.println("Content-Type: text/html");
|
||||
client.println();
|
||||
// print the current readings, in HTML format:
|
||||
client.print("Temperature: ");
|
||||
client.print(temperature);
|
||||
client.print(" degrees C");
|
||||
client.println("<br />");
|
||||
client.print("Pressure: " + String(pressure));
|
||||
client.print(" Pa");
|
||||
client.println("<br />");
|
||||
break;
|
||||
}
|
||||
if (c == '\n') {
|
||||
// you're starting a new line
|
||||
currentLineIsBlank = true;
|
||||
}
|
||||
else if (c != '\r') {
|
||||
// you've gotten a character on the current line
|
||||
currentLineIsBlank = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
// give the web browser time to receive the data
|
||||
delay(1);
|
||||
// close the connection:
|
||||
client.stop();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Send a write command to SCP1000
|
||||
void writeRegister(byte registerName, byte registerValue) {
|
||||
// SCP1000 expects the register name in the upper 6 bits
|
||||
// of the byte:
|
||||
registerName <<= 2;
|
||||
// command (read or write) goes in the lower two bits:
|
||||
registerName |= 0b00000010; //Write command
|
||||
|
||||
// take the chip select low to select the device:
|
||||
digitalWrite(chipSelectPin, LOW);
|
||||
|
||||
SPI.transfer(registerName); //Send register location
|
||||
SPI.transfer(registerValue); //Send value to record into register
|
||||
|
||||
// take the chip select high to de-select:
|
||||
digitalWrite(chipSelectPin, HIGH);
|
||||
}
|
||||
|
||||
|
||||
//Read register from the SCP1000:
|
||||
unsigned int readRegister(byte registerName, int numBytes) {
|
||||
byte inByte = 0; // incoming from the SPI read
|
||||
unsigned int result = 0; // result to return
|
||||
|
||||
// SCP1000 expects the register name in the upper 6 bits
|
||||
// of the byte:
|
||||
registerName <<= 2;
|
||||
// command (read or write) goes in the lower two bits:
|
||||
registerName &= 0b11111100; //Read command
|
||||
|
||||
// take the chip select low to select the device:
|
||||
digitalWrite(chipSelectPin, LOW);
|
||||
// send the device the register you want to read:
|
||||
int command = SPI.transfer(registerName);
|
||||
// send a value of 0 to read the first byte returned:
|
||||
inByte = SPI.transfer(0x00);
|
||||
|
||||
result = inByte;
|
||||
// if there's more than one byte returned,
|
||||
// shift the first byte then get the second byte:
|
||||
if (numBytes > 1){
|
||||
result = inByte << 8;
|
||||
inByte = SPI.transfer(0x00);
|
||||
result = result |inByte;
|
||||
}
|
||||
// take the chip select high to de-select:
|
||||
digitalWrite(chipSelectPin, HIGH);
|
||||
// return the result:
|
||||
return(result);
|
||||
}
|
@ -0,0 +1,79 @@
|
||||
/*
|
||||
Chat Server
|
||||
|
||||
A simple server that distributes any incoming messages to all
|
||||
connected clients. To use telnet to your device's IP address and type.
|
||||
You can see the client's input in the serial monitor as well.
|
||||
Using an Arduino Wiznet Ethernet shield.
|
||||
|
||||
Circuit:
|
||||
* Ethernet shield attached to pins 10, 11, 12, 13
|
||||
* Analog inputs attached to pins A0 through A5 (optional)
|
||||
|
||||
created 18 Dec 2009
|
||||
by David A. Mellis
|
||||
modified 9 Apr 2012
|
||||
by Tom Igoe
|
||||
|
||||
*/
|
||||
|
||||
#include <SPI.h>
|
||||
#include <Ethernet.h>
|
||||
|
||||
// Enter a MAC address and IP address for your controller below.
|
||||
// The IP address will be dependent on your local network.
|
||||
// gateway and subnet are optional:
|
||||
byte mac[] = {
|
||||
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
|
||||
IPAddress ip(192,168,1, 177);
|
||||
IPAddress gateway(192,168,1, 1);
|
||||
IPAddress subnet(255, 255, 0, 0);
|
||||
|
||||
|
||||
// telnet defaults to port 23
|
||||
EthernetServer server(23);
|
||||
boolean alreadyConnected = false; // whether or not the client was connected previously
|
||||
|
||||
void setup() {
|
||||
// initialize the ethernet device
|
||||
Ethernet.begin(mac, ip, gateway, subnet);
|
||||
// start listening for clients
|
||||
server.begin();
|
||||
// Open serial communications and wait for port to open:
|
||||
Serial.begin(9600);
|
||||
while (!Serial) {
|
||||
; // wait for serial port to connect. Needed for Leonardo only
|
||||
}
|
||||
|
||||
|
||||
Serial.print("Chat server address:");
|
||||
Serial.println(Ethernet.localIP());
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// wait for a new client:
|
||||
EthernetClient client = server.available();
|
||||
|
||||
// when the client sends the first byte, say hello:
|
||||
if (client) {
|
||||
if (!alreadyConnected) {
|
||||
// clead out the input buffer:
|
||||
client.flush();
|
||||
Serial.println("We have a new client");
|
||||
client.println("Hello, client!");
|
||||
alreadyConnected = true;
|
||||
}
|
||||
|
||||
if (client.available() > 0) {
|
||||
// read the bytes incoming from the client:
|
||||
char thisChar = client.read();
|
||||
// echo the bytes back to the client:
|
||||
server.write(thisChar);
|
||||
// echo the bytes to the server as well:
|
||||
Serial.write(thisChar);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -0,0 +1,159 @@
|
||||
/*
|
||||
Cosm sensor client
|
||||
|
||||
This sketch connects an analog sensor to Cosm (http://www.cosm.com)
|
||||
using a Wiznet Ethernet shield. You can use the Arduino Ethernet shield, or
|
||||
the Adafruit Ethernet shield, either one will work, as long as it's got
|
||||
a Wiznet Ethernet module on board.
|
||||
|
||||
This example has been updated to use version 2.0 of the cosm.com API.
|
||||
To make it work, create a feed with a datastream, and give it the ID
|
||||
sensor1. Or change the code below to match your feed.
|
||||
|
||||
|
||||
Circuit:
|
||||
* Analog sensor attached to analog in 0
|
||||
* Ethernet shield attached to pins 10, 11, 12, 13
|
||||
|
||||
created 15 March 2010
|
||||
updated 14 May 2012
|
||||
by Tom Igoe with input from Usman Haque and Joe Saavedra
|
||||
|
||||
http://arduino.cc/en/Tutorial/CosmClient
|
||||
This code is in the public domain.
|
||||
|
||||
*/
|
||||
|
||||
#include <SPI.h>
|
||||
#include <Ethernet.h>
|
||||
|
||||
#define APIKEY "YOUR API KEY GOES HERE" // replace your Cosm api key here
|
||||
#define FEEDID 00000 // replace your feed ID
|
||||
#define USERAGENT "My Project" // user agent is the project name
|
||||
|
||||
// assign a MAC address for the ethernet controller.
|
||||
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
|
||||
// fill in your address here:
|
||||
byte mac[] = {
|
||||
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
|
||||
|
||||
// fill in an available IP address on your network here,
|
||||
// for manual configuration:
|
||||
IPAddress ip(10,0,1,20);
|
||||
|
||||
// initialize the library instance:
|
||||
EthernetClient client;
|
||||
|
||||
// if you don't want to use DNS (and reduce your sketch size)
|
||||
// use the numeric IP instead of the name for the server:
|
||||
//IPAddress server(216,52,233,121); // numeric IP for api.cosm.com
|
||||
char server[] = "api.cosm.com"; // name address for cosm API
|
||||
|
||||
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
|
||||
boolean lastConnected = false; // state of the connection last time through the main loop
|
||||
const unsigned long postingInterval = 10*1000; //delay between updates to cosm.com
|
||||
|
||||
void setup() {
|
||||
// start serial port:
|
||||
Serial.begin(9600);
|
||||
// start the Ethernet connection:
|
||||
if (Ethernet.begin(mac) == 0) {
|
||||
Serial.println("Failed to configure Ethernet using DHCP");
|
||||
// DHCP failed, so use a fixed IP address:
|
||||
Ethernet.begin(mac, ip);
|
||||
}
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// read the analog sensor:
|
||||
int sensorReading = analogRead(A0);
|
||||
|
||||
// if there's incoming data from the net connection.
|
||||
// send it out the serial port. This is for debugging
|
||||
// purposes only:
|
||||
if (client.available()) {
|
||||
char c = client.read();
|
||||
Serial.print(c);
|
||||
}
|
||||
|
||||
// if there's no net connection, but there was one last time
|
||||
// through the loop, then stop the client:
|
||||
if (!client.connected() && lastConnected) {
|
||||
Serial.println();
|
||||
Serial.println("disconnecting.");
|
||||
client.stop();
|
||||
}
|
||||
|
||||
// if you're not connected, and ten seconds have passed since
|
||||
// your last connection, then connect again and send data:
|
||||
if(!client.connected() && (millis() - lastConnectionTime > postingInterval)) {
|
||||
sendData(sensorReading);
|
||||
}
|
||||
// store the state of the connection for next time through
|
||||
// the loop:
|
||||
lastConnected = client.connected();
|
||||
}
|
||||
|
||||
// this method makes a HTTP connection to the server:
|
||||
void sendData(int thisData) {
|
||||
// if there's a successful connection:
|
||||
if (client.connect(server, 80)) {
|
||||
Serial.println("connecting...");
|
||||
// send the HTTP PUT request:
|
||||
client.print("PUT /v2/feeds/");
|
||||
client.print(FEEDID);
|
||||
client.println(".csv HTTP/1.1");
|
||||
client.println("Host: api.cosm.com");
|
||||
client.print("X-ApiKey: ");
|
||||
client.println(APIKEY);
|
||||
client.print("User-Agent: ");
|
||||
client.println(USERAGENT);
|
||||
client.print("Content-Length: ");
|
||||
|
||||
// calculate the length of the sensor reading in bytes:
|
||||
// 8 bytes for "sensor1," + number of digits of the data:
|
||||
int thisLength = 8 + getLength(thisData);
|
||||
client.println(thisLength);
|
||||
|
||||
// last pieces of the HTTP PUT request:
|
||||
client.println("Content-Type: text/csv");
|
||||
client.println("Connection: close");
|
||||
client.println();
|
||||
|
||||
// here's the actual content of the PUT request:
|
||||
client.print("sensor1,");
|
||||
client.println(thisData);
|
||||
|
||||
}
|
||||
else {
|
||||
// if you couldn't make a connection:
|
||||
Serial.println("connection failed");
|
||||
Serial.println();
|
||||
Serial.println("disconnecting.");
|
||||
client.stop();
|
||||
}
|
||||
// note the time that the connection was made or attempted:
|
||||
lastConnectionTime = millis();
|
||||
}
|
||||
|
||||
|
||||
// This method calculates the number of digits in the
|
||||
// sensor reading. Since each digit of the ASCII decimal
|
||||
// representation is a byte, the number of digits equals
|
||||
// the number of bytes:
|
||||
|
||||
int getLength(int someValue) {
|
||||
// there's at least one byte:
|
||||
int digits = 1;
|
||||
// continually divide the value by ten,
|
||||
// adding one to the digit count for each
|
||||
// time you divide, until you're at 0:
|
||||
int dividend = someValue /10;
|
||||
while (dividend > 0) {
|
||||
dividend = dividend /10;
|
||||
digits++;
|
||||
}
|
||||
// return the number of digits:
|
||||
return digits;
|
||||
}
|
||||
|
@ -0,0 +1,146 @@
|
||||
/*
|
||||
Cosm sensor client with Strings
|
||||
|
||||
This sketch connects an analog sensor to Cosm (http://www.cosm.com)
|
||||
using a Wiznet Ethernet shield. You can use the Arduino Ethernet shield, or
|
||||
the Adafruit Ethernet shield, either one will work, as long as it's got
|
||||
a Wiznet Ethernet module on board.
|
||||
|
||||
This example has been updated to use version 2.0 of the Cosm.com API.
|
||||
To make it work, create a feed with two datastreams, and give them the IDs
|
||||
sensor1 and sensor2. Or change the code below to match your feed.
|
||||
|
||||
This example uses the String library, which is part of the Arduino core from
|
||||
version 0019.
|
||||
|
||||
Circuit:
|
||||
* Analog sensor attached to analog in 0
|
||||
* Ethernet shield attached to pins 10, 11, 12, 13
|
||||
|
||||
created 15 March 2010
|
||||
updated 14 May 2012
|
||||
by Tom Igoe with input from Usman Haque and Joe Saavedra
|
||||
|
||||
http://arduino.cc/en/Tutorial/CosmClientString
|
||||
This code is in the public domain.
|
||||
|
||||
*/
|
||||
|
||||
#include <SPI.h>
|
||||
#include <Ethernet.h>
|
||||
|
||||
|
||||
#define APIKEY "YOUR API KEY GOES HERE" // replace your Cosm api key here
|
||||
#define FEEDID 00000 // replace your feed ID
|
||||
#define USERAGENT "My Project" // user agent is the project name
|
||||
|
||||
// assign a MAC address for the ethernet controller.
|
||||
// fill in your address here:
|
||||
byte mac[] = {
|
||||
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
|
||||
|
||||
// fill in an available IP address on your network here,
|
||||
// for manual configuration:
|
||||
IPAddress ip(10,0,1,20);
|
||||
|
||||
// initialize the library instance:
|
||||
EthernetClient client;
|
||||
|
||||
// if you don't want to use DNS (and reduce your sketch size)
|
||||
// use the numeric IP instead of the name for the server:
|
||||
//IPAddress server(216,52,233,121); // numeric IP for api.cosm.com
|
||||
char server[] = "api.cosm.com"; // name address for Cosm API
|
||||
|
||||
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
|
||||
boolean lastConnected = false; // state of the connection last time through the main loop
|
||||
const unsigned long postingInterval = 10*1000; //delay between updates to Cosm.com
|
||||
|
||||
void setup() {
|
||||
// start serial port:
|
||||
Serial.begin(9600);
|
||||
// give the ethernet module time to boot up:
|
||||
delay(1000);
|
||||
// start the Ethernet connection:
|
||||
if (Ethernet.begin(mac) == 0) {
|
||||
Serial.println("Failed to configure Ethernet using DHCP");
|
||||
// DHCP failed, so use a fixed IP address:
|
||||
Ethernet.begin(mac, ip);
|
||||
}
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// read the analog sensor:
|
||||
int sensorReading = analogRead(A0);
|
||||
// convert the data to a String to send it:
|
||||
|
||||
String dataString = "sensor1,";
|
||||
dataString += sensorReading;
|
||||
|
||||
// you can append multiple readings to this String if your
|
||||
// Cosm feed is set up to handle multiple values:
|
||||
int otherSensorReading = analogRead(A1);
|
||||
dataString += "\nsensor2,";
|
||||
dataString += otherSensorReading;
|
||||
|
||||
// if there's incoming data from the net connection.
|
||||
// send it out the serial port. This is for debugging
|
||||
// purposes only:
|
||||
if (client.available()) {
|
||||
char c = client.read();
|
||||
Serial.print(c);
|
||||
}
|
||||
|
||||
// if there's no net connection, but there was one last time
|
||||
// through the loop, then stop the client:
|
||||
if (!client.connected() && lastConnected) {
|
||||
Serial.println();
|
||||
Serial.println("disconnecting.");
|
||||
client.stop();
|
||||
}
|
||||
|
||||
// if you're not connected, and ten seconds have passed since
|
||||
// your last connection, then connect again and send data:
|
||||
if(!client.connected() && (millis() - lastConnectionTime > postingInterval)) {
|
||||
sendData(dataString);
|
||||
}
|
||||
// store the state of the connection for next time through
|
||||
// the loop:
|
||||
lastConnected = client.connected();
|
||||
}
|
||||
|
||||
// this method makes a HTTP connection to the server:
|
||||
void sendData(String thisData) {
|
||||
// if there's a successful connection:
|
||||
if (client.connect(server, 80)) {
|
||||
Serial.println("connecting...");
|
||||
// send the HTTP PUT request:
|
||||
client.print("PUT /v2/feeds/");
|
||||
client.print(FEEDID);
|
||||
client.println(".csv HTTP/1.1");
|
||||
client.println("Host: api.cosm.com");
|
||||
client.print("X-ApiKey: ");
|
||||
client.println(APIKEY);
|
||||
client.print("User-Agent: ");
|
||||
client.println(USERAGENT);
|
||||
client.print("Content-Length: ");
|
||||
client.println(thisData.length());
|
||||
|
||||
// last pieces of the HTTP PUT request:
|
||||
client.println("Content-Type: text/csv");
|
||||
client.println("Connection: close");
|
||||
client.println();
|
||||
|
||||
// here's the actual content of the PUT request:
|
||||
client.println(thisData);
|
||||
}
|
||||
else {
|
||||
// if you couldn't make a connection:
|
||||
Serial.println("connection failed");
|
||||
Serial.println();
|
||||
Serial.println("disconnecting.");
|
||||
client.stop();
|
||||
}
|
||||
// note the time that the connection was made or attempted:
|
||||
lastConnectionTime = millis();
|
||||
}
|
||||
|
@ -0,0 +1,59 @@
|
||||
/*
|
||||
DHCP-based IP printer
|
||||
|
||||
This sketch uses the DHCP extensions to the Ethernet library
|
||||
to get an IP address via DHCP and print the address obtained.
|
||||
using an Arduino Wiznet Ethernet shield.
|
||||
|
||||
Circuit:
|
||||
* Ethernet shield attached to pins 10, 11, 12, 13
|
||||
|
||||
created 12 April 2011
|
||||
modified 9 Apr 2012
|
||||
by Tom Igoe
|
||||
|
||||
*/
|
||||
|
||||
#include <SPI.h>
|
||||
#include <Ethernet.h>
|
||||
|
||||
// Enter a MAC address for your controller below.
|
||||
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
|
||||
byte mac[] = {
|
||||
0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02 };
|
||||
|
||||
// Initialize the Ethernet client library
|
||||
// with the IP address and port of the server
|
||||
// that you want to connect to (port 80 is default for HTTP):
|
||||
EthernetClient client;
|
||||
|
||||
void setup() {
|
||||
// Open serial communications and wait for port to open:
|
||||
Serial.begin(9600);
|
||||
// this check is only needed on the Leonardo:
|
||||
while (!Serial) {
|
||||
; // wait for serial port to connect. Needed for Leonardo only
|
||||
}
|
||||
|
||||
// start the Ethernet connection:
|
||||
if (Ethernet.begin(mac) == 0) {
|
||||
Serial.println("Failed to configure Ethernet using DHCP");
|
||||
// no point in carrying on, so do nothing forevermore:
|
||||
for(;;)
|
||||
;
|
||||
}
|
||||
// print your local IP address:
|
||||
Serial.print("My IP address: ");
|
||||
for (byte thisByte = 0; thisByte < 4; thisByte++) {
|
||||
// print the value of each byte of the IP address:
|
||||
Serial.print(Ethernet.localIP()[thisByte], DEC);
|
||||
Serial.print(".");
|
||||
}
|
||||
Serial.println();
|
||||
}
|
||||
|
||||
void loop() {
|
||||
|
||||
}
|
||||
|
||||
|
@ -0,0 +1,87 @@
|
||||
/*
|
||||
DHCP Chat Server
|
||||
|
||||
A simple server that distributes any incoming messages to all
|
||||
connected clients. To use telnet to your device's IP address and type.
|
||||
You can see the client's input in the serial monitor as well.
|
||||
Using an Arduino Wiznet Ethernet shield.
|
||||
|
||||
THis version attempts to get an IP address using DHCP
|
||||
|
||||
Circuit:
|
||||
* Ethernet shield attached to pins 10, 11, 12, 13
|
||||
|
||||
created 21 May 2011
|
||||
modified 9 Apr 2012
|
||||
by Tom Igoe
|
||||
Based on ChatServer example by David A. Mellis
|
||||
|
||||
*/
|
||||
|
||||
#include <SPI.h>
|
||||
#include <Ethernet.h>
|
||||
|
||||
// Enter a MAC address and IP address for your controller below.
|
||||
// The IP address will be dependent on your local network.
|
||||
// gateway and subnet are optional:
|
||||
byte mac[] = {
|
||||
0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02 };
|
||||
IPAddress ip(192,168,1, 177);
|
||||
IPAddress gateway(192,168,1, 1);
|
||||
IPAddress subnet(255, 255, 0, 0);
|
||||
|
||||
// telnet defaults to port 23
|
||||
EthernetServer server(23);
|
||||
boolean gotAMessage = false; // whether or not you got a message from the client yet
|
||||
|
||||
void setup() {
|
||||
// Open serial communications and wait for port to open:
|
||||
Serial.begin(9600);
|
||||
// this check is only needed on the Leonardo:
|
||||
while (!Serial) {
|
||||
; // wait for serial port to connect. Needed for Leonardo only
|
||||
}
|
||||
|
||||
|
||||
// start the Ethernet connection:
|
||||
Serial.println("Trying to get an IP address using DHCP");
|
||||
if (Ethernet.begin(mac) == 0) {
|
||||
Serial.println("Failed to configure Ethernet using DHCP");
|
||||
// initialize the ethernet device not using DHCP:
|
||||
Ethernet.begin(mac, ip, gateway, subnet);
|
||||
}
|
||||
// print your local IP address:
|
||||
Serial.print("My IP address: ");
|
||||
ip = Ethernet.localIP();
|
||||
for (byte thisByte = 0; thisByte < 4; thisByte++) {
|
||||
// print the value of each byte of the IP address:
|
||||
Serial.print(ip[thisByte], DEC);
|
||||
Serial.print(".");
|
||||
}
|
||||
Serial.println();
|
||||
// start listening for clients
|
||||
server.begin();
|
||||
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// wait for a new client:
|
||||
EthernetClient client = server.available();
|
||||
|
||||
// when the client sends the first byte, say hello:
|
||||
if (client) {
|
||||
if (!gotAMessage) {
|
||||
Serial.println("We have a new client");
|
||||
client.println("Hello, client!");
|
||||
gotAMessage = true;
|
||||
}
|
||||
|
||||
// read the bytes incoming from the client:
|
||||
char thisChar = client.read();
|
||||
// echo the bytes back to the client:
|
||||
server.write(thisChar);
|
||||
// echo the bytes to the server as well:
|
||||
Serial.print(thisChar);
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,81 @@
|
||||
/*
|
||||
DNS and DHCP-based Web client
|
||||
|
||||
This sketch connects to a website (http://www.google.com)
|
||||
using an Arduino Wiznet Ethernet shield.
|
||||
|
||||
Circuit:
|
||||
* Ethernet shield attached to pins 10, 11, 12, 13
|
||||
|
||||
created 18 Dec 2009
|
||||
by David A. Mellis
|
||||
modified 9 Apr 2012
|
||||
by Tom Igoe, based on work by Adrian McEwen
|
||||
|
||||
*/
|
||||
|
||||
#include <SPI.h>
|
||||
#include <Ethernet.h>
|
||||
|
||||
// Enter a MAC address for your controller below.
|
||||
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
|
||||
byte mac[] = { 0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x02 };
|
||||
char serverName[] = "www.google.com";
|
||||
|
||||
// Initialize the Ethernet client library
|
||||
// with the IP address and port of the server
|
||||
// that you want to connect to (port 80 is default for HTTP):
|
||||
EthernetClient client;
|
||||
|
||||
void setup() {
|
||||
// Open serial communications and wait for port to open:
|
||||
Serial.begin(9600);
|
||||
while (!Serial) {
|
||||
; // wait for serial port to connect. Needed for Leonardo only
|
||||
}
|
||||
|
||||
|
||||
// start the Ethernet connection:
|
||||
if (Ethernet.begin(mac) == 0) {
|
||||
Serial.println("Failed to configure Ethernet using DHCP");
|
||||
// no point in carrying on, so do nothing forevermore:
|
||||
while(true);
|
||||
}
|
||||
// give the Ethernet shield a second to initialize:
|
||||
delay(1000);
|
||||
Serial.println("connecting...");
|
||||
|
||||
// if you get a connection, report back via serial:
|
||||
|
||||
if (client.connect(serverName, 80)) {
|
||||
Serial.println("connected");
|
||||
// Make a HTTP request:
|
||||
client.println("GET /search?q=arduino HTTP/1.0");
|
||||
client.println();
|
||||
}
|
||||
else {
|
||||
// kf you didn't get a connection to the server:
|
||||
Serial.println("connection failed");
|
||||
}
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
// if there are incoming bytes available
|
||||
// from the server, read them and print them:
|
||||
if (client.available()) {
|
||||
char c = client.read();
|
||||
Serial.print(c);
|
||||
}
|
||||
|
||||
// if the server's disconnected, stop the client:
|
||||
if (!client.connected()) {
|
||||
Serial.println();
|
||||
Serial.println("disconnecting.");
|
||||
client.stop();
|
||||
|
||||
// do nothing forevermore:
|
||||
while(true);
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,163 @@
|
||||
/*
|
||||
Pachube sensor client
|
||||
|
||||
This sketch connects an analog sensor to Pachube (http://www.pachube.com)
|
||||
using a Wiznet Ethernet shield. You can use the Arduino Ethernet shield, or
|
||||
the Adafruit Ethernet shield, either one will work, as long as it's got
|
||||
a Wiznet Ethernet module on board.
|
||||
|
||||
This example has been updated to use version 2.0 of the Pachube.com API.
|
||||
To make it work, create a feed with a datastream, and give it the ID
|
||||
sensor1. Or change the code below to match your feed.
|
||||
|
||||
|
||||
Circuit:
|
||||
* Analog sensor attached to analog in 0
|
||||
* Ethernet shield attached to pins 10, 11, 12, 13
|
||||
|
||||
created 15 March 2010
|
||||
modified 9 Apr 2012
|
||||
by Tom Igoe with input from Usman Haque and Joe Saavedra
|
||||
|
||||
http://arduino.cc/en/Tutorial/PachubeClient
|
||||
This code is in the public domain.
|
||||
|
||||
*/
|
||||
|
||||
#include <SPI.h>
|
||||
#include <Ethernet.h>
|
||||
|
||||
#define APIKEY "YOUR API KEY GOES HERE" // replace your pachube api key here
|
||||
#define FEEDID 00000 // replace your feed ID
|
||||
#define USERAGENT "My Project" // user agent is the project name
|
||||
|
||||
// assign a MAC address for the ethernet controller.
|
||||
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
|
||||
// fill in your address here:
|
||||
byte mac[] = {
|
||||
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
|
||||
|
||||
// fill in an available IP address on your network here,
|
||||
// for manual configuration:
|
||||
IPAddress ip(10,0,1,20);
|
||||
// initialize the library instance:
|
||||
EthernetClient client;
|
||||
|
||||
// if you don't want to use DNS (and reduce your sketch size)
|
||||
// use the numeric IP instead of the name for the server:
|
||||
IPAddress server(216,52,233,122); // numeric IP for api.pachube.com
|
||||
//char server[] = "api.pachube.com"; // name address for pachube API
|
||||
|
||||
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
|
||||
boolean lastConnected = false; // state of the connection last time through the main loop
|
||||
const unsigned long postingInterval = 10*1000; //delay between updates to Pachube.com
|
||||
|
||||
void setup() {
|
||||
// Open serial communications and wait for port to open:
|
||||
Serial.begin(9600);
|
||||
while (!Serial) {
|
||||
; // wait for serial port to connect. Needed for Leonardo only
|
||||
}
|
||||
|
||||
|
||||
// start the Ethernet connection:
|
||||
if (Ethernet.begin(mac) == 0) {
|
||||
Serial.println("Failed to configure Ethernet using DHCP");
|
||||
// DHCP failed, so use a fixed IP address:
|
||||
Ethernet.begin(mac, ip);
|
||||
}
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// read the analog sensor:
|
||||
int sensorReading = analogRead(A0);
|
||||
|
||||
// if there's incoming data from the net connection.
|
||||
// send it out the serial port. This is for debugging
|
||||
// purposes only:
|
||||
if (client.available()) {
|
||||
char c = client.read();
|
||||
Serial.print(c);
|
||||
}
|
||||
|
||||
// if there's no net connection, but there was one last time
|
||||
// through the loop, then stop the client:
|
||||
if (!client.connected() && lastConnected) {
|
||||
Serial.println();
|
||||
Serial.println("disconnecting.");
|
||||
client.stop();
|
||||
}
|
||||
|
||||
// if you're not connected, and ten seconds have passed since
|
||||
// your last connection, then connect again and send data:
|
||||
if(!client.connected() && (millis() - lastConnectionTime > postingInterval)) {
|
||||
sendData(sensorReading);
|
||||
}
|
||||
// store the state of the connection for next time through
|
||||
// the loop:
|
||||
lastConnected = client.connected();
|
||||
}
|
||||
|
||||
// this method makes a HTTP connection to the server:
|
||||
void sendData(int thisData) {
|
||||
// if there's a successful connection:
|
||||
if (client.connect(server, 80)) {
|
||||
Serial.println("connecting...");
|
||||
// send the HTTP PUT request:
|
||||
client.print("PUT /v2/feeds/");
|
||||
client.print(FEEDID);
|
||||
client.println(".csv HTTP/1.1");
|
||||
client.println("Host: api.pachube.com");
|
||||
client.print("X-PachubeApiKey: ");
|
||||
client.println(APIKEY);
|
||||
client.print("User-Agent: ");
|
||||
client.println(USERAGENT);
|
||||
client.print("Content-Length: ");
|
||||
|
||||
// calculate the length of the sensor reading in bytes:
|
||||
// 8 bytes for "sensor1," + number of digits of the data:
|
||||
int thisLength = 8 + getLength(thisData);
|
||||
client.println(thisLength);
|
||||
|
||||
// last pieces of the HTTP PUT request:
|
||||
client.println("Content-Type: text/csv");
|
||||
client.println("Connection: close");
|
||||
client.println();
|
||||
|
||||
// here's the actual content of the PUT request:
|
||||
client.print("sensor1,");
|
||||
client.println(thisData);
|
||||
|
||||
}
|
||||
else {
|
||||
// if you couldn't make a connection:
|
||||
Serial.println("connection failed");
|
||||
Serial.println();
|
||||
Serial.println("disconnecting.");
|
||||
client.stop();
|
||||
}
|
||||
// note the time that the connection was made or attempted:
|
||||
lastConnectionTime = millis();
|
||||
}
|
||||
|
||||
|
||||
// This method calculates the number of digits in the
|
||||
// sensor reading. Since each digit of the ASCII decimal
|
||||
// representation is a byte, the number of digits equals
|
||||
// the number of bytes:
|
||||
|
||||
int getLength(int someValue) {
|
||||
// there's at least one byte:
|
||||
int digits = 1;
|
||||
// continually divide the value by ten,
|
||||
// adding one to the digit count for each
|
||||
// time you divide, until you're at 0:
|
||||
int dividend = someValue /10;
|
||||
while (dividend > 0) {
|
||||
dividend = dividend /10;
|
||||
digits++;
|
||||
}
|
||||
// return the number of digits:
|
||||
return digits;
|
||||
}
|
||||
|
@ -0,0 +1,152 @@
|
||||
/*
|
||||
Cosm sensor client with Strings
|
||||
|
||||
This sketch connects an analog sensor to Cosm (http://www.cosm.com)
|
||||
using a Wiznet Ethernet shield. You can use the Arduino Ethernet shield, or
|
||||
the Adafruit Ethernet shield, either one will work, as long as it's got
|
||||
a Wiznet Ethernet module on board.
|
||||
|
||||
This example has been updated to use version 2.0 of the Cosm.com API.
|
||||
To make it work, create a feed with two datastreams, and give them the IDs
|
||||
sensor1 and sensor2. Or change the code below to match your feed.
|
||||
|
||||
This example uses the String library, which is part of the Arduino core from
|
||||
version 0019.
|
||||
|
||||
Circuit:
|
||||
* Analog sensor attached to analog in 0
|
||||
* Ethernet shield attached to pins 10, 11, 12, 13
|
||||
|
||||
created 15 March 2010
|
||||
modified 9 Apr 2012
|
||||
by Tom Igoe with input from Usman Haque and Joe Saavedra
|
||||
|
||||
http://arduino.cc/en/Tutorial/CosmClientString
|
||||
This code is in the public domain.
|
||||
|
||||
*/
|
||||
|
||||
#include <SPI.h>
|
||||
#include <Ethernet.h>
|
||||
|
||||
|
||||
/#define APIKEY "YOUR API KEY GOES HERE" // replace your Cosm api key here
|
||||
#define FEEDID 00000 // replace your feed ID
|
||||
#define USERAGENT "My Project" // user agent is the project name
|
||||
|
||||
|
||||
// assign a MAC address for the ethernet controller.
|
||||
// fill in your address here:
|
||||
byte mac[] = {
|
||||
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
|
||||
|
||||
// fill in an available IP address on your network here,
|
||||
// for manual configuration:
|
||||
IPAddress ip(10,0,1,20);
|
||||
|
||||
// initialize the library instance:
|
||||
EthernetClient client;
|
||||
|
||||
// if you don't want to use DNS (and reduce your sketch size)
|
||||
// use the numeric IP instead of the name for the server:
|
||||
IPAddress server(216,52,233,121); // numeric IP for api.cosm.com
|
||||
//char server[] = "api.cosm.com"; // name address for Cosm API
|
||||
|
||||
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
|
||||
boolean lastConnected = false; // state of the connection last time through the main loop
|
||||
const unsigned long postingInterval = 10*1000; //delay between updates to Cosm.com
|
||||
|
||||
void setup() {
|
||||
// Open serial communications and wait for port to open:
|
||||
Serial.begin(9600);
|
||||
while (!Serial) {
|
||||
; // wait for serial port to connect. Needed for Leonardo only
|
||||
}
|
||||
|
||||
|
||||
// give the ethernet module time to boot up:
|
||||
delay(1000);
|
||||
// start the Ethernet connection:
|
||||
if (Ethernet.begin(mac) == 0) {
|
||||
Serial.println("Failed to configure Ethernet using DHCP");
|
||||
// DHCP failed, so use a fixed IP address:
|
||||
Ethernet.begin(mac, ip);
|
||||
}
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// read the analog sensor:
|
||||
int sensorReading = analogRead(A0);
|
||||
// convert the data to a String to send it:
|
||||
|
||||
String dataString = "sensor1,";
|
||||
dataString += sensorReading;
|
||||
|
||||
// you can append multiple readings to this String if your
|
||||
// Cosm feed is set up to handle multiple values:
|
||||
int otherSensorReading = analogRead(A1);
|
||||
dataString += "\nsensor2,";
|
||||
dataString += otherSensorReading;
|
||||
|
||||
// if there's incoming data from the net connection.
|
||||
// send it out the serial port. This is for debugging
|
||||
// purposes only:
|
||||
if (client.available()) {
|
||||
char c = client.read();
|
||||
Serial.print(c);
|
||||
}
|
||||
|
||||
// if there's no net connection, but there was one last time
|
||||
// through the loop, then stop the client:
|
||||
if (!client.connected() && lastConnected) {
|
||||
Serial.println();
|
||||
Serial.println("disconnecting.");
|
||||
client.stop();
|
||||
}
|
||||
|
||||
// if you're not connected, and ten seconds have passed since
|
||||
// your last connection, then connect again and send data:
|
||||
if(!client.connected() && (millis() - lastConnectionTime > postingInterval)) {
|
||||
sendData(dataString);
|
||||
}
|
||||
// store the state of the connection for next time through
|
||||
// the loop:
|
||||
lastConnected = client.connected();
|
||||
}
|
||||
|
||||
// this method makes a HTTP connection to the server:
|
||||
void sendData(String thisData) {
|
||||
// if there's a successful connection:
|
||||
if (client.connect(server, 80)) {
|
||||
Serial.println("connecting...");
|
||||
// send the HTTP PUT request:
|
||||
client.print("PUT /v2/feeds/");
|
||||
client.print(FEEDID);
|
||||
client.println(".csv HTTP/1.1");
|
||||
client.println("Host: api.cosm.com");
|
||||
client.print("X-CosmApiKey: ");
|
||||
client.println(APIKEY);
|
||||
client.print("User-Agent: ");
|
||||
client.println(USERAGENT);
|
||||
client.print("Content-Length: ");
|
||||
client.println(thisData.length());
|
||||
|
||||
// last pieces of the HTTP PUT request:
|
||||
client.println("Content-Type: text/csv");
|
||||
client.println("Connection: close");
|
||||
client.println();
|
||||
|
||||
// here's the actual content of the PUT request:
|
||||
client.println(thisData);
|
||||
}
|
||||
else {
|
||||
// if you couldn't make a connection:
|
||||
Serial.println("connection failed");
|
||||
Serial.println();
|
||||
Serial.println("disconnecting.");
|
||||
client.stop();
|
||||
}
|
||||
// note the time that the connection was made or attempted:
|
||||
lastConnectionTime = millis();
|
||||
}
|
||||
|
@ -0,0 +1,93 @@
|
||||
/*
|
||||
Telnet client
|
||||
|
||||
This sketch connects to a a telnet server (http://www.google.com)
|
||||
using an Arduino Wiznet Ethernet shield. You'll need a telnet server
|
||||
to test this with.
|
||||
Processing's ChatServer example (part of the network library) works well,
|
||||
running on port 10002. It can be found as part of the examples
|
||||
in the Processing application, available at
|
||||
http://processing.org/
|
||||
|
||||
Circuit:
|
||||
* Ethernet shield attached to pins 10, 11, 12, 13
|
||||
|
||||
created 14 Sep 2010
|
||||
modified 9 Apr 2012
|
||||
by Tom Igoe
|
||||
|
||||
*/
|
||||
|
||||
#include <SPI.h>
|
||||
#include <Ethernet.h>
|
||||
|
||||
// Enter a MAC address and IP address for your controller below.
|
||||
// The IP address will be dependent on your local network:
|
||||
byte mac[] = {
|
||||
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
|
||||
IPAddress ip(192,168,1,177);
|
||||
|
||||
// Enter the IP address of the server you're connecting to:
|
||||
IPAddress server(1,1,1,1);
|
||||
|
||||
// Initialize the Ethernet client library
|
||||
// with the IP address and port of the server
|
||||
// that you want to connect to (port 23 is default for telnet;
|
||||
// if you're using Processing's ChatServer, use port 10002):
|
||||
EthernetClient client;
|
||||
|
||||
void setup() {
|
||||
// start the Ethernet connection:
|
||||
Ethernet.begin(mac, ip);
|
||||
// Open serial communications and wait for port to open:
|
||||
Serial.begin(9600);
|
||||
while (!Serial) {
|
||||
; // wait for serial port to connect. Needed for Leonardo only
|
||||
}
|
||||
|
||||
|
||||
// give the Ethernet shield a second to initialize:
|
||||
delay(1000);
|
||||
Serial.println("connecting...");
|
||||
|
||||
// if you get a connection, report back via serial:
|
||||
if (client.connect(server, 10002)) {
|
||||
Serial.println("connected");
|
||||
}
|
||||
else {
|
||||
// if you didn't get a connection to the server:
|
||||
Serial.println("connection failed");
|
||||
}
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
// if there are incoming bytes available
|
||||
// from the server, read them and print them:
|
||||
if (client.available()) {
|
||||
char c = client.read();
|
||||
Serial.print(c);
|
||||
}
|
||||
|
||||
// as long as there are bytes in the serial queue,
|
||||
// read them and send them out the socket if it's open:
|
||||
while (Serial.available() > 0) {
|
||||
char inChar = Serial.read();
|
||||
if (client.connected()) {
|
||||
client.print(inChar);
|
||||
}
|
||||
}
|
||||
|
||||
// if the server's disconnected, stop the client:
|
||||
if (!client.connected()) {
|
||||
Serial.println();
|
||||
Serial.println("disconnecting.");
|
||||
client.stop();
|
||||
// do nothing:
|
||||
while(true);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,135 @@
|
||||
/*
|
||||
Twitter Client with Strings
|
||||
|
||||
This sketch connects to Twitter using an Ethernet shield. It parses the XML
|
||||
returned, and looks for <text>this is a tweet</text>
|
||||
|
||||
You can use the Arduino Ethernet shield, or the Adafruit Ethernet shield,
|
||||
either one will work, as long as it's got a Wiznet Ethernet module on board.
|
||||
|
||||
This example uses the DHCP routines in the Ethernet library which is part of the
|
||||
Arduino core from version 1.0 beta 1
|
||||
|
||||
This example uses the String library, which is part of the Arduino core from
|
||||
version 0019.
|
||||
|
||||
Circuit:
|
||||
* Ethernet shield attached to pins 10, 11, 12, 13
|
||||
|
||||
created 21 May 2011
|
||||
modified 9 Apr 2012
|
||||
by Tom Igoe
|
||||
|
||||
This code is in the public domain.
|
||||
|
||||
*/
|
||||
#include <SPI.h>
|
||||
#include <Ethernet.h>
|
||||
|
||||
|
||||
// Enter a MAC address and IP address for your controller below.
|
||||
// The IP address will be dependent on your local network:
|
||||
byte mac[] = {
|
||||
0x00, 0xAA, 0xBB, 0xCC, 0xDE, 0x01 };
|
||||
IPAddress ip(192,168,1,20);
|
||||
|
||||
// initialize the library instance:
|
||||
EthernetClient client;
|
||||
|
||||
const unsigned long requestInterval = 60000; // delay between requests
|
||||
|
||||
char serverName[] = "api.twitter.com"; // twitter URL
|
||||
|
||||
boolean requested; // whether you've made a request since connecting
|
||||
unsigned long lastAttemptTime = 0; // last time you connected to the server, in milliseconds
|
||||
|
||||
String currentLine = ""; // string to hold the text from server
|
||||
String tweet = ""; // string to hold the tweet
|
||||
boolean readingTweet = false; // if you're currently reading the tweet
|
||||
|
||||
void setup() {
|
||||
// reserve space for the strings:
|
||||
currentLine.reserve(256);
|
||||
tweet.reserve(150);
|
||||
|
||||
// Open serial communications and wait for port to open:
|
||||
Serial.begin(9600);
|
||||
while (!Serial) {
|
||||
; // wait for serial port to connect. Needed for Leonardo only
|
||||
}
|
||||
|
||||
|
||||
// attempt a DHCP connection:
|
||||
Serial.println("Attempting to get an IP address using DHCP:");
|
||||
if (!Ethernet.begin(mac)) {
|
||||
// if DHCP fails, start with a hard-coded address:
|
||||
Serial.println("failed to get an IP address using DHCP, trying manually");
|
||||
Ethernet.begin(mac, ip);
|
||||
}
|
||||
Serial.print("My address:");
|
||||
Serial.println(Ethernet.localIP());
|
||||
// connect to Twitter:
|
||||
connectToServer();
|
||||
}
|
||||
|
||||
|
||||
|
||||
void loop()
|
||||
{
|
||||
if (client.connected()) {
|
||||
if (client.available()) {
|
||||
// read incoming bytes:
|
||||
char inChar = client.read();
|
||||
|
||||
// add incoming byte to end of line:
|
||||
currentLine += inChar;
|
||||
|
||||
// if you get a newline, clear the line:
|
||||
if (inChar == '\n') {
|
||||
currentLine = "";
|
||||
}
|
||||
// if the current line ends with <text>, it will
|
||||
// be followed by the tweet:
|
||||
if ( currentLine.endsWith("<text>")) {
|
||||
// tweet is beginning. Clear the tweet string:
|
||||
readingTweet = true;
|
||||
tweet = "";
|
||||
}
|
||||
// if you're currently reading the bytes of a tweet,
|
||||
// add them to the tweet String:
|
||||
if (readingTweet) {
|
||||
if (inChar != '<') {
|
||||
tweet += inChar;
|
||||
}
|
||||
else {
|
||||
// if you got a "<" character,
|
||||
// you've reached the end of the tweet:
|
||||
readingTweet = false;
|
||||
Serial.println(tweet);
|
||||
// close the connection to the server:
|
||||
client.stop();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (millis() - lastAttemptTime > requestInterval) {
|
||||
// if you're not connected, and two minutes have passed since
|
||||
// your last connection, then attempt to connect again:
|
||||
connectToServer();
|
||||
}
|
||||
}
|
||||
|
||||
void connectToServer() {
|
||||
// attempt to connect, and wait a millisecond:
|
||||
Serial.println("connecting to server...");
|
||||
if (client.connect(serverName, 80)) {
|
||||
Serial.println("making HTTP request...");
|
||||
// make HTTP GET request to twitter:
|
||||
client.println("GET /1/statuses/user_timeline.xml?screen_name=arduino&count=1 HTTP/1.1");
|
||||
client.println("HOST: api.twitter.com");
|
||||
client.println();
|
||||
}
|
||||
// note the time of this connect attempt:
|
||||
lastAttemptTime = millis();
|
||||
}
|
||||
|
@ -0,0 +1,118 @@
|
||||
/*
|
||||
UDPSendReceive.pde:
|
||||
This sketch receives UDP message strings, prints them to the serial port
|
||||
and sends an "acknowledge" string back to the sender
|
||||
|
||||
A Processing sketch is included at the end of file that can be used to send
|
||||
and received messages for testing with a computer.
|
||||
|
||||
created 21 Aug 2010
|
||||
by Michael Margolis
|
||||
|
||||
This code is in the public domain.
|
||||
*/
|
||||
|
||||
|
||||
#include <SPI.h> // needed for Arduino versions later than 0018
|
||||
#include <Ethernet.h>
|
||||
#include <EthernetUdp.h> // UDP library from: bjoern@cs.stanford.edu 12/30/2008
|
||||
|
||||
|
||||
// Enter a MAC address and IP address for your controller below.
|
||||
// The IP address will be dependent on your local network:
|
||||
byte mac[] = {
|
||||
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
|
||||
IPAddress ip(192, 168, 1, 177);
|
||||
|
||||
unsigned int localPort = 8888; // local port to listen on
|
||||
|
||||
// buffers for receiving and sending data
|
||||
char packetBuffer[UDP_TX_PACKET_MAX_SIZE]; //buffer to hold incoming packet,
|
||||
char ReplyBuffer[] = "acknowledged"; // a string to send back
|
||||
|
||||
// An EthernetUDP instance to let us send and receive packets over UDP
|
||||
EthernetUDP Udp;
|
||||
|
||||
void setup() {
|
||||
// start the Ethernet and UDP:
|
||||
Ethernet.begin(mac,ip);
|
||||
Udp.begin(localPort);
|
||||
|
||||
Serial.begin(9600);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// if there's data available, read a packet
|
||||
int packetSize = Udp.parsePacket();
|
||||
if(packetSize)
|
||||
{
|
||||
Serial.print("Received packet of size ");
|
||||
Serial.println(packetSize);
|
||||
Serial.print("From ");
|
||||
IPAddress remote = Udp.remoteIP();
|
||||
for (int i =0; i < 4; i++)
|
||||
{
|
||||
Serial.print(remote[i], DEC);
|
||||
if (i < 3)
|
||||
{
|
||||
Serial.print(".");
|
||||
}
|
||||
}
|
||||
Serial.print(", port ");
|
||||
Serial.println(Udp.remotePort());
|
||||
|
||||
// read the packet into packetBufffer
|
||||
Udp.read(packetBuffer,UDP_TX_PACKET_MAX_SIZE);
|
||||
Serial.println("Contents:");
|
||||
Serial.println(packetBuffer);
|
||||
|
||||
// send a reply, to the IP address and port that sent us the packet we received
|
||||
Udp.beginPacket(Udp.remoteIP(), Udp.remotePort());
|
||||
Udp.write(ReplyBuffer);
|
||||
Udp.endPacket();
|
||||
}
|
||||
delay(10);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Processing sketch to run with this example
|
||||
=====================================================
|
||||
|
||||
// Processing UDP example to send and receive string data from Arduino
|
||||
// press any key to send the "Hello Arduino" message
|
||||
|
||||
|
||||
import hypermedia.net.*;
|
||||
|
||||
UDP udp; // define the UDP object
|
||||
|
||||
|
||||
void setup() {
|
||||
udp = new UDP( this, 6000 ); // create a new datagram connection on port 6000
|
||||
//udp.log( true ); // <-- printout the connection activity
|
||||
udp.listen( true ); // and wait for incoming message
|
||||
}
|
||||
|
||||
void draw()
|
||||
{
|
||||
}
|
||||
|
||||
void keyPressed() {
|
||||
String ip = "192.168.1.177"; // the remote IP address
|
||||
int port = 8888; // the destination port
|
||||
|
||||
udp.send("Hello World", ip, port ); // the message to send
|
||||
|
||||
}
|
||||
|
||||
void receive( byte[] data ) { // <-- default handler
|
||||
//void receive( byte[] data, String ip, int port ) { // <-- extended handler
|
||||
|
||||
for(int i=0; i < data.length; i++)
|
||||
print(char(data[i]));
|
||||
println();
|
||||
}
|
||||
*/
|
||||
|
||||
|
@ -0,0 +1,141 @@
|
||||
/*
|
||||
|
||||
Udp NTP Client
|
||||
|
||||
Get the time from a Network Time Protocol (NTP) time server
|
||||
Demonstrates use of UDP sendPacket and ReceivePacket
|
||||
For more on NTP time servers and the messages needed to communicate with them,
|
||||
see http://en.wikipedia.org/wiki/Network_Time_Protocol
|
||||
|
||||
created 4 Sep 2010
|
||||
by Michael Margolis
|
||||
modified 9 Apr 2012
|
||||
by Tom Igoe
|
||||
|
||||
This code is in the public domain.
|
||||
|
||||
*/
|
||||
|
||||
#include <SPI.h>
|
||||
#include <Ethernet.h>
|
||||
#include <EthernetUdp.h>
|
||||
|
||||
// Enter a MAC address for your controller below.
|
||||
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
|
||||
byte mac[] = {
|
||||
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
|
||||
|
||||
unsigned int localPort = 8888; // local port to listen for UDP packets
|
||||
|
||||
IPAddress timeServer(192, 43, 244, 18); // time.nist.gov NTP server
|
||||
|
||||
const int NTP_PACKET_SIZE= 48; // NTP time stamp is in the first 48 bytes of the message
|
||||
|
||||
byte packetBuffer[ NTP_PACKET_SIZE]; //buffer to hold incoming and outgoing packets
|
||||
|
||||
// A UDP instance to let us send and receive packets over UDP
|
||||
EthernetUDP Udp;
|
||||
|
||||
void setup()
|
||||
{
|
||||
// Open serial communications and wait for port to open:
|
||||
Serial.begin(9600);
|
||||
while (!Serial) {
|
||||
; // wait for serial port to connect. Needed for Leonardo only
|
||||
}
|
||||
|
||||
|
||||
// start Ethernet and UDP
|
||||
if (Ethernet.begin(mac) == 0) {
|
||||
Serial.println("Failed to configure Ethernet using DHCP");
|
||||
// no point in carrying on, so do nothing forevermore:
|
||||
for(;;)
|
||||
;
|
||||
}
|
||||
Udp.begin(localPort);
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
sendNTPpacket(timeServer); // send an NTP packet to a time server
|
||||
|
||||
// wait to see if a reply is available
|
||||
delay(1000);
|
||||
if ( Udp.parsePacket() ) {
|
||||
// We've received a packet, read the data from it
|
||||
Udp.read(packetBuffer,NTP_PACKET_SIZE); // read the packet into the buffer
|
||||
|
||||
//the timestamp starts at byte 40 of the received packet and is four bytes,
|
||||
// or two words, long. First, esxtract the two words:
|
||||
|
||||
unsigned long highWord = word(packetBuffer[40], packetBuffer[41]);
|
||||
unsigned long lowWord = word(packetBuffer[42], packetBuffer[43]);
|
||||
// combine the four bytes (two words) into a long integer
|
||||
// this is NTP time (seconds since Jan 1 1900):
|
||||
unsigned long secsSince1900 = highWord << 16 | lowWord;
|
||||
Serial.print("Seconds since Jan 1 1900 = " );
|
||||
Serial.println(secsSince1900);
|
||||
|
||||
// now convert NTP time into everyday time:
|
||||
Serial.print("Unix time = ");
|
||||
// Unix time starts on Jan 1 1970. In seconds, that's 2208988800:
|
||||
const unsigned long seventyYears = 2208988800UL;
|
||||
// subtract seventy years:
|
||||
unsigned long epoch = secsSince1900 - seventyYears;
|
||||
// print Unix time:
|
||||
Serial.println(epoch);
|
||||
|
||||
|
||||
// print the hour, minute and second:
|
||||
Serial.print("The UTC time is "); // UTC is the time at Greenwich Meridian (GMT)
|
||||
Serial.print((epoch % 86400L) / 3600); // print the hour (86400 equals secs per day)
|
||||
Serial.print(':');
|
||||
if ( ((epoch % 3600) / 60) < 10 ) {
|
||||
// In the first 10 minutes of each hour, we'll want a leading '0'
|
||||
Serial.print('0');
|
||||
}
|
||||
Serial.print((epoch % 3600) / 60); // print the minute (3600 equals secs per minute)
|
||||
Serial.print(':');
|
||||
if ( (epoch % 60) < 10 ) {
|
||||
// In the first 10 seconds of each minute, we'll want a leading '0'
|
||||
Serial.print('0');
|
||||
}
|
||||
Serial.println(epoch %60); // print the second
|
||||
}
|
||||
// wait ten seconds before asking for the time again
|
||||
delay(10000);
|
||||
}
|
||||
|
||||
// send an NTP request to the time server at the given address
|
||||
unsigned long sendNTPpacket(IPAddress& address)
|
||||
{
|
||||
// set all bytes in the buffer to 0
|
||||
memset(packetBuffer, 0, NTP_PACKET_SIZE);
|
||||
// Initialize values needed to form NTP request
|
||||
// (see URL above for details on the packets)
|
||||
packetBuffer[0] = 0b11100011; // LI, Version, Mode
|
||||
packetBuffer[1] = 0; // Stratum, or type of clock
|
||||
packetBuffer[2] = 6; // Polling Interval
|
||||
packetBuffer[3] = 0xEC; // Peer Clock Precision
|
||||
// 8 bytes of zero for Root Delay & Root Dispersion
|
||||
packetBuffer[12] = 49;
|
||||
packetBuffer[13] = 0x4E;
|
||||
packetBuffer[14] = 49;
|
||||
packetBuffer[15] = 52;
|
||||
|
||||
// all NTP fields have been given values, now
|
||||
// you can send a packet requesting a timestamp:
|
||||
Udp.beginPacket(address, 123); //NTP requests are to port 123
|
||||
Udp.write(packetBuffer,NTP_PACKET_SIZE);
|
||||
Udp.endPacket();
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,80 @@
|
||||
/*
|
||||
Web client
|
||||
|
||||
This sketch connects to a website (http://www.google.com)
|
||||
using an Arduino Wiznet Ethernet shield.
|
||||
|
||||
Circuit:
|
||||
* Ethernet shield attached to pins 10, 11, 12, 13
|
||||
|
||||
created 18 Dec 2009
|
||||
modified 9 Apr 2012
|
||||
by David A. Mellis
|
||||
|
||||
*/
|
||||
|
||||
#include <SPI.h>
|
||||
#include <Ethernet.h>
|
||||
|
||||
// Enter a MAC address for your controller below.
|
||||
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
|
||||
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
|
||||
IPAddress server(173,194,33,104); // Google
|
||||
|
||||
// Initialize the Ethernet client library
|
||||
// with the IP address and port of the server
|
||||
// that you want to connect to (port 80 is default for HTTP):
|
||||
EthernetClient client;
|
||||
|
||||
void setup() {
|
||||
// Open serial communications and wait for port to open:
|
||||
Serial.begin(9600);
|
||||
while (!Serial) {
|
||||
; // wait for serial port to connect. Needed for Leonardo only
|
||||
}
|
||||
|
||||
// start the Ethernet connection:
|
||||
if (Ethernet.begin(mac) == 0) {
|
||||
Serial.println("Failed to configure Ethernet using DHCP");
|
||||
// no point in carrying on, so do nothing forevermore:
|
||||
for(;;)
|
||||
;
|
||||
}
|
||||
// give the Ethernet shield a second to initialize:
|
||||
delay(1000);
|
||||
Serial.println("connecting...");
|
||||
|
||||
// if you get a connection, report back via serial:
|
||||
if (client.connect(server, 80)) {
|
||||
Serial.println("connected");
|
||||
// Make a HTTP request:
|
||||
client.println("GET /search?q=arduino HTTP/1.0");
|
||||
client.println();
|
||||
}
|
||||
else {
|
||||
// kf you didn't get a connection to the server:
|
||||
Serial.println("connection failed");
|
||||
}
|
||||
}
|
||||
|
||||
void loop()
|
||||
{
|
||||
// if there are incoming bytes available
|
||||
// from the server, read them and print them:
|
||||
if (client.available()) {
|
||||
char c = client.read();
|
||||
Serial.print(c);
|
||||
}
|
||||
|
||||
// if the server's disconnected, stop the client:
|
||||
if (!client.connected()) {
|
||||
Serial.println();
|
||||
Serial.println("disconnecting.");
|
||||
client.stop();
|
||||
|
||||
// do nothing forevermore:
|
||||
for(;;)
|
||||
;
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,110 @@
|
||||
/*
|
||||
Repeating Web client
|
||||
|
||||
This sketch connects to a a web server and makes a request
|
||||
using a Wiznet Ethernet shield. You can use the Arduino Ethernet shield, or
|
||||
the Adafruit Ethernet shield, either one will work, as long as it's got
|
||||
a Wiznet Ethernet module on board.
|
||||
|
||||
This example uses DNS, by assigning the Ethernet client with a MAC address,
|
||||
IP address, and DNS address.
|
||||
|
||||
Circuit:
|
||||
* Ethernet shield attached to pins 10, 11, 12, 13
|
||||
|
||||
created 19 Apr 2012
|
||||
by Tom Igoe
|
||||
|
||||
http://arduino.cc/en/Tutorial/WebClientRepeating
|
||||
This code is in the public domain.
|
||||
|
||||
*/
|
||||
|
||||
#include <SPI.h>
|
||||
#include <Ethernet.h>
|
||||
|
||||
// assign a MAC address for the ethernet controller.
|
||||
// fill in your address here:
|
||||
byte mac[] = {
|
||||
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
|
||||
// fill in an available IP address on your network here,
|
||||
// for manual configuration:
|
||||
IPAddress ip(10,0,0,20);
|
||||
|
||||
// fill in your Domain Name Server address here:
|
||||
IPAddress myDns(1,1,1,1);
|
||||
|
||||
// initialize the library instance:
|
||||
EthernetClient client;
|
||||
|
||||
char server[] = "www.arduino.cc";
|
||||
|
||||
unsigned long lastConnectionTime = 0; // last time you connected to the server, in milliseconds
|
||||
boolean lastConnected = false; // state of the connection last time through the main loop
|
||||
const unsigned long postingInterval = 60*1000; // delay between updates, in milliseconds
|
||||
|
||||
void setup() {
|
||||
// start serial port:
|
||||
Serial.begin(9600);
|
||||
// give the ethernet module time to boot up:
|
||||
delay(1000);
|
||||
// start the Ethernet connection using a fixed IP address and DNS server:
|
||||
Ethernet.begin(mac, ip, myDns);
|
||||
// print the Ethernet board/shield's IP address:
|
||||
Serial.print("My IP address: ");
|
||||
Serial.println(Ethernet.localIP());
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// if there's incoming data from the net connection.
|
||||
// send it out the serial port. This is for debugging
|
||||
// purposes only:
|
||||
if (client.available()) {
|
||||
char c = client.read();
|
||||
Serial.print(c);
|
||||
}
|
||||
|
||||
// if there's no net connection, but there was one last time
|
||||
// through the loop, then stop the client:
|
||||
if (!client.connected() && lastConnected) {
|
||||
Serial.println();
|
||||
Serial.println("disconnecting.");
|
||||
client.stop();
|
||||
}
|
||||
|
||||
// if you're not connected, and ten seconds have passed since
|
||||
// your last connection, then connect again and send data:
|
||||
if(!client.connected() && (millis() - lastConnectionTime > postingInterval)) {
|
||||
httpRequest();
|
||||
}
|
||||
// store the state of the connection for next time through
|
||||
// the loop:
|
||||
lastConnected = client.connected();
|
||||
}
|
||||
|
||||
// this method makes a HTTP connection to the server:
|
||||
void httpRequest() {
|
||||
// if there's a successful connection:
|
||||
if (client.connect(server, 80)) {
|
||||
Serial.println("connecting...");
|
||||
// send the HTTP PUT request:
|
||||
client.println("GET /latest.txt HTTP/1.1");
|
||||
client.println("Host: www.arduino.cc");
|
||||
client.println("User-Agent: arduino-ethernet");
|
||||
client.println("Connection: close");
|
||||
client.println();
|
||||
|
||||
// note the time that the connection was made:
|
||||
lastConnectionTime = millis();
|
||||
}
|
||||
else {
|
||||
// if you couldn't make a connection:
|
||||
Serial.println("connection failed");
|
||||
Serial.println("disconnecting.");
|
||||
client.stop();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,101 @@
|
||||
/*
|
||||
Web Server
|
||||
|
||||
A simple web server that shows the value of the analog input pins.
|
||||
using an Arduino Wiznet Ethernet shield.
|
||||
|
||||
Circuit:
|
||||
* Ethernet shield attached to pins 10, 11, 12, 13
|
||||
* Analog inputs attached to pins A0 through A5 (optional)
|
||||
|
||||
created 18 Dec 2009
|
||||
by David A. Mellis
|
||||
modified 9 Apr 2012
|
||||
by Tom Igoe
|
||||
|
||||
*/
|
||||
|
||||
#include <SPI.h>
|
||||
#include <Ethernet.h>
|
||||
|
||||
// Enter a MAC address and IP address for your controller below.
|
||||
// The IP address will be dependent on your local network:
|
||||
byte mac[] = {
|
||||
0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
|
||||
IPAddress ip(192,168,1, 177);
|
||||
|
||||
// Initialize the Ethernet server library
|
||||
// with the IP address and port you want to use
|
||||
// (port 80 is default for HTTP):
|
||||
EthernetServer server(80);
|
||||
|
||||
void setup() {
|
||||
// Open serial communications and wait for port to open:
|
||||
Serial.begin(9600);
|
||||
while (!Serial) {
|
||||
; // wait for serial port to connect. Needed for Leonardo only
|
||||
}
|
||||
|
||||
|
||||
// start the Ethernet connection and the server:
|
||||
Ethernet.begin(mac, ip);
|
||||
server.begin();
|
||||
Serial.print("server is at ");
|
||||
Serial.println(Ethernet.localIP());
|
||||
}
|
||||
|
||||
|
||||
void loop() {
|
||||
// listen for incoming clients
|
||||
EthernetClient client = server.available();
|
||||
if (client) {
|
||||
Serial.println("new client");
|
||||
// an http request ends with a blank line
|
||||
boolean currentLineIsBlank = true;
|
||||
while (client.connected()) {
|
||||
if (client.available()) {
|
||||
char c = client.read();
|
||||
Serial.write(c);
|
||||
// if you've gotten to the end of the line (received a newline
|
||||
// character) and the line is blank, the http request has ended,
|
||||
// so you can send a reply
|
||||
if (c == '\n' && currentLineIsBlank) {
|
||||
// send a standard http response header
|
||||
client.println("HTTP/1.1 200 OK");
|
||||
client.println("Content-Type: text/html");
|
||||
client.println("Connnection: close");
|
||||
client.println();
|
||||
client.println("<!DOCTYPE HTML>");
|
||||
client.println("<html>");
|
||||
// add a meta refresh tag, so the browser pulls again every 5 seconds:
|
||||
client.println("<meta http-equiv=\"refresh\" content=\"5\">");
|
||||
// output the value of each analog input pin
|
||||
for (int analogChannel = 0; analogChannel < 6; analogChannel++) {
|
||||
int sensorReading = analogRead(analogChannel);
|
||||
client.print("analog input ");
|
||||
client.print(analogChannel);
|
||||
client.print(" is ");
|
||||
client.print(sensorReading);
|
||||
client.println("<br />");
|
||||
}
|
||||
client.println("</html>");
|
||||
break;
|
||||
}
|
||||
if (c == '\n') {
|
||||
// you're starting a new line
|
||||
currentLineIsBlank = true;
|
||||
}
|
||||
else if (c != '\r') {
|
||||
// you've gotten a character on the current line
|
||||
currentLineIsBlank = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
// give the web browser time to receive the data
|
||||
delay(1);
|
||||
// close the connection:
|
||||
client.stop();
|
||||
Serial.println("client disonnected");
|
||||
}
|
||||
}
|
||||
|
37
hardware/arduino/sam/libraries/Ethernet/keywords.txt
Normal file
37
hardware/arduino/sam/libraries/Ethernet/keywords.txt
Normal file
@ -0,0 +1,37 @@
|
||||
#######################################
|
||||
# Syntax Coloring Map For Ethernet
|
||||
#######################################
|
||||
|
||||
#######################################
|
||||
# Datatypes (KEYWORD1)
|
||||
#######################################
|
||||
|
||||
Ethernet KEYWORD1
|
||||
EthernetClient KEYWORD1
|
||||
EthernetServer KEYWORD1
|
||||
IPAddress KEYWORD1
|
||||
|
||||
#######################################
|
||||
# Methods and Functions (KEYWORD2)
|
||||
#######################################
|
||||
|
||||
status KEYWORD2
|
||||
connect KEYWORD2
|
||||
write KEYWORD2
|
||||
available KEYWORD2
|
||||
read KEYWORD2
|
||||
peek KEYWORD2
|
||||
flush KEYWORD2
|
||||
stop KEYWORD2
|
||||
connected KEYWORD2
|
||||
begin KEYWORD2
|
||||
beginPacket KEYWORD2
|
||||
endPacket KEYWORD2
|
||||
parsePacket KEYWORD2
|
||||
remoteIP KEYWORD2
|
||||
remotePort KEYWORD2
|
||||
|
||||
#######################################
|
||||
# Constants (LITERAL1)
|
||||
#######################################
|
||||
|
13
hardware/arduino/sam/libraries/Ethernet/util.h
Normal file
13
hardware/arduino/sam/libraries/Ethernet/util.h
Normal file
@ -0,0 +1,13 @@
|
||||
#ifndef UTIL_H
|
||||
#define UTIL_H
|
||||
|
||||
#define htons(x) ( ((x)<<8) | (((x)>>8)&0xFF) )
|
||||
#define ntohs(x) htons(x)
|
||||
|
||||
#define htonl(x) ( ((x)<<24 & 0xFF000000UL) | \
|
||||
((x)<< 8 & 0x00FF0000UL) | \
|
||||
((x)>> 8 & 0x0000FF00UL) | \
|
||||
((x)>>24 & 0x000000FFUL) )
|
||||
#define ntohl(x) htonl(x)
|
||||
|
||||
#endif
|
400
hardware/arduino/sam/libraries/Ethernet/utility/socket.cpp
Normal file
400
hardware/arduino/sam/libraries/Ethernet/utility/socket.cpp
Normal file
@ -0,0 +1,400 @@
|
||||
#include "w5100.h"
|
||||
#include "socket.h"
|
||||
|
||||
static uint16_t local_port;
|
||||
|
||||
/**
|
||||
* @brief This Socket function initialize the channel in perticular mode, and set the port and wait for W5100 done it.
|
||||
* @return 1 for success else 0.
|
||||
*/
|
||||
uint8_t socket(SOCKET s, uint8_t protocol, uint16_t port, uint8_t flag)
|
||||
{
|
||||
if ((protocol == SnMR::TCP) || (protocol == SnMR::UDP) || (protocol == SnMR::IPRAW) || (protocol == SnMR::MACRAW) || (protocol == SnMR::PPPOE))
|
||||
{
|
||||
close(s);
|
||||
W5100.writeSnMR(s, protocol | flag);
|
||||
if (port != 0) {
|
||||
W5100.writeSnPORT(s, port);
|
||||
}
|
||||
else {
|
||||
local_port++; // if don't set the source port, set local_port number.
|
||||
W5100.writeSnPORT(s, local_port);
|
||||
}
|
||||
|
||||
W5100.execCmdSn(s, Sock_OPEN);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief This function close the socket and parameter is "s" which represent the socket number
|
||||
*/
|
||||
void close(SOCKET s)
|
||||
{
|
||||
W5100.execCmdSn(s, Sock_CLOSE);
|
||||
W5100.writeSnIR(s, 0xFF);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief This function established the connection for the channel in passive (server) mode. This function waits for the request from the peer.
|
||||
* @return 1 for success else 0.
|
||||
*/
|
||||
uint8_t listen(SOCKET s)
|
||||
{
|
||||
if (W5100.readSnSR(s) != SnSR::INIT)
|
||||
return 0;
|
||||
W5100.execCmdSn(s, Sock_LISTEN);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief This function established the connection for the channel in Active (client) mode.
|
||||
* This function waits for the untill the connection is established.
|
||||
*
|
||||
* @return 1 for success else 0.
|
||||
*/
|
||||
uint8_t connect(SOCKET s, uint8_t * addr, uint16_t port)
|
||||
{
|
||||
if
|
||||
(
|
||||
((addr[0] == 0xFF) && (addr[1] == 0xFF) && (addr[2] == 0xFF) && (addr[3] == 0xFF)) ||
|
||||
((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
|
||||
(port == 0x00)
|
||||
)
|
||||
return 0;
|
||||
|
||||
// set destination IP
|
||||
W5100.writeSnDIPR(s, addr);
|
||||
W5100.writeSnDPORT(s, port);
|
||||
W5100.execCmdSn(s, Sock_CONNECT);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief This function used for disconnect the socket and parameter is "s" which represent the socket number
|
||||
* @return 1 for success else 0.
|
||||
*/
|
||||
void disconnect(SOCKET s)
|
||||
{
|
||||
W5100.execCmdSn(s, Sock_DISCON);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief This function used to send the data in TCP mode
|
||||
* @return 1 for success else 0.
|
||||
*/
|
||||
uint16_t send(SOCKET s, const uint8_t * buf, uint16_t len)
|
||||
{
|
||||
uint8_t status=0;
|
||||
uint16_t ret=0;
|
||||
uint16_t freesize=0;
|
||||
|
||||
if (len > W5100.SSIZE)
|
||||
ret = W5100.SSIZE; // check size not to exceed MAX size.
|
||||
else
|
||||
ret = len;
|
||||
|
||||
// if freebuf is available, start.
|
||||
do
|
||||
{
|
||||
freesize = W5100.getTXFreeSize(s);
|
||||
status = W5100.readSnSR(s);
|
||||
if ((status != SnSR::ESTABLISHED) && (status != SnSR::CLOSE_WAIT))
|
||||
{
|
||||
ret = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
while (freesize < ret);
|
||||
|
||||
// copy data
|
||||
W5100.send_data_processing(s, (uint8_t *)buf, ret);
|
||||
W5100.execCmdSn(s, Sock_SEND);
|
||||
|
||||
/* +2008.01 bj */
|
||||
while ( (W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
|
||||
{
|
||||
/* m2008.01 [bj] : reduce code */
|
||||
if ( W5100.readSnSR(s) == SnSR::CLOSED )
|
||||
{
|
||||
close(s);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
/* +2008.01 bj */
|
||||
W5100.writeSnIR(s, SnIR::SEND_OK);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief This function is an application I/F function which is used to receive the data in TCP mode.
|
||||
* It continues to wait for data as much as the application wants to receive.
|
||||
*
|
||||
* @return received data size for success else -1.
|
||||
*/
|
||||
int16_t recv(SOCKET s, uint8_t *buf, int16_t len)
|
||||
{
|
||||
// Check how much data is available
|
||||
int16_t ret = W5100.getRXReceivedSize(s);
|
||||
if ( ret == 0 )
|
||||
{
|
||||
// No data available.
|
||||
uint8_t status = W5100.readSnSR(s);
|
||||
if ( status == SnSR::LISTEN || status == SnSR::CLOSED || status == SnSR::CLOSE_WAIT )
|
||||
{
|
||||
// The remote end has closed its side of the connection, so this is the eof state
|
||||
ret = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
// The connection is still up, but there's no data waiting to be read
|
||||
ret = -1;
|
||||
}
|
||||
}
|
||||
else if (ret > len)
|
||||
{
|
||||
ret = len;
|
||||
}
|
||||
|
||||
if ( ret > 0 )
|
||||
{
|
||||
W5100.recv_data_processing(s, buf, ret);
|
||||
W5100.execCmdSn(s, Sock_RECV);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Returns the first byte in the receive queue (no checking)
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
uint16_t peek(SOCKET s, uint8_t *buf)
|
||||
{
|
||||
W5100.recv_data_processing(s, buf, 1, 1);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief This function is an application I/F function which is used to send the data for other then TCP mode.
|
||||
* Unlike TCP transmission, The peer's destination address and the port is needed.
|
||||
*
|
||||
* @return This function return send data size for success else -1.
|
||||
*/
|
||||
uint16_t sendto(SOCKET s, const uint8_t *buf, uint16_t len, uint8_t *addr, uint16_t port)
|
||||
{
|
||||
uint16_t ret=0;
|
||||
|
||||
if (len > W5100.SSIZE) ret = W5100.SSIZE; // check size not to exceed MAX size.
|
||||
else ret = len;
|
||||
|
||||
if
|
||||
(
|
||||
((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
|
||||
((port == 0x00)) ||(ret == 0)
|
||||
)
|
||||
{
|
||||
/* +2008.01 [bj] : added return value */
|
||||
ret = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
W5100.writeSnDIPR(s, addr);
|
||||
W5100.writeSnDPORT(s, port);
|
||||
|
||||
// copy data
|
||||
W5100.send_data_processing(s, (uint8_t *)buf, ret);
|
||||
W5100.execCmdSn(s, Sock_SEND);
|
||||
|
||||
/* +2008.01 bj */
|
||||
while ( (W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
|
||||
{
|
||||
if (W5100.readSnIR(s) & SnIR::TIMEOUT)
|
||||
{
|
||||
/* +2008.01 [bj]: clear interrupt */
|
||||
W5100.writeSnIR(s, (SnIR::SEND_OK | SnIR::TIMEOUT)); /* clear SEND_OK & TIMEOUT */
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* +2008.01 bj */
|
||||
W5100.writeSnIR(s, SnIR::SEND_OK);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief This function is an application I/F function which is used to receive the data in other then
|
||||
* TCP mode. This function is used to receive UDP, IP_RAW and MAC_RAW mode, and handle the header as well.
|
||||
*
|
||||
* @return This function return received data size for success else -1.
|
||||
*/
|
||||
uint16_t recvfrom(SOCKET s, uint8_t *buf, uint16_t len, uint8_t *addr, uint16_t *port)
|
||||
{
|
||||
uint8_t head[8];
|
||||
uint16_t data_len=0;
|
||||
uint16_t ptr=0;
|
||||
|
||||
if ( len > 0 )
|
||||
{
|
||||
ptr = W5100.readSnRX_RD(s);
|
||||
switch (W5100.readSnMR(s) & 0x07)
|
||||
{
|
||||
case SnMR::UDP :
|
||||
W5100.read_data(s, ptr, head, 0x08);
|
||||
ptr += 8;
|
||||
// read peer's IP address, port number.
|
||||
addr[0] = head[0];
|
||||
addr[1] = head[1];
|
||||
addr[2] = head[2];
|
||||
addr[3] = head[3];
|
||||
*port = head[4];
|
||||
*port = (*port << 8) + head[5];
|
||||
data_len = head[6];
|
||||
data_len = (data_len << 8) + head[7];
|
||||
|
||||
W5100.read_data(s, ptr, buf, data_len); // data copy.
|
||||
ptr += data_len;
|
||||
|
||||
W5100.writeSnRX_RD(s, ptr);
|
||||
break;
|
||||
|
||||
case SnMR::IPRAW :
|
||||
W5100.read_data(s, ptr, head, 0x06);
|
||||
ptr += 6;
|
||||
|
||||
addr[0] = head[0];
|
||||
addr[1] = head[1];
|
||||
addr[2] = head[2];
|
||||
addr[3] = head[3];
|
||||
data_len = head[4];
|
||||
data_len = (data_len << 8) + head[5];
|
||||
|
||||
W5100.read_data(s, ptr, buf, data_len); // data copy.
|
||||
ptr += data_len;
|
||||
|
||||
W5100.writeSnRX_RD(s, ptr);
|
||||
break;
|
||||
|
||||
case SnMR::MACRAW:
|
||||
W5100.read_data(s, ptr, head, 2);
|
||||
ptr+=2;
|
||||
data_len = head[0];
|
||||
data_len = (data_len<<8) + head[1] - 2;
|
||||
|
||||
W5100.read_data(s, ptr, buf, data_len);
|
||||
ptr += data_len;
|
||||
W5100.writeSnRX_RD(s, ptr);
|
||||
break;
|
||||
|
||||
default :
|
||||
break;
|
||||
}
|
||||
W5100.execCmdSn(s, Sock_RECV);
|
||||
}
|
||||
return data_len;
|
||||
}
|
||||
|
||||
|
||||
uint16_t igmpsend(SOCKET s, const uint8_t * buf, uint16_t len)
|
||||
{
|
||||
uint8_t status=0;
|
||||
uint16_t ret=0;
|
||||
|
||||
if (len > W5100.SSIZE)
|
||||
ret = W5100.SSIZE; // check size not to exceed MAX size.
|
||||
else
|
||||
ret = len;
|
||||
|
||||
if (ret == 0)
|
||||
return 0;
|
||||
|
||||
W5100.send_data_processing(s, (uint8_t *)buf, ret);
|
||||
W5100.execCmdSn(s, Sock_SEND);
|
||||
|
||||
while ( (W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
|
||||
{
|
||||
status = W5100.readSnSR(s);
|
||||
if (W5100.readSnIR(s) & SnIR::TIMEOUT)
|
||||
{
|
||||
/* in case of igmp, if send fails, then socket closed */
|
||||
/* if you want change, remove this code. */
|
||||
close(s);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
W5100.writeSnIR(s, SnIR::SEND_OK);
|
||||
return ret;
|
||||
}
|
||||
|
||||
uint16_t bufferData(SOCKET s, uint16_t offset, const uint8_t* buf, uint16_t len)
|
||||
{
|
||||
uint16_t ret =0;
|
||||
if (len > W5100.getTXFreeSize(s))
|
||||
{
|
||||
ret = W5100.getTXFreeSize(s); // check size not to exceed MAX size.
|
||||
}
|
||||
else
|
||||
{
|
||||
ret = len;
|
||||
}
|
||||
W5100.send_data_processing_offset(s, offset, buf, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int startUDP(SOCKET s, uint8_t* addr, uint16_t port)
|
||||
{
|
||||
if
|
||||
(
|
||||
((addr[0] == 0x00) && (addr[1] == 0x00) && (addr[2] == 0x00) && (addr[3] == 0x00)) ||
|
||||
((port == 0x00))
|
||||
)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
W5100.writeSnDIPR(s, addr);
|
||||
W5100.writeSnDPORT(s, port);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
int sendUDP(SOCKET s)
|
||||
{
|
||||
W5100.execCmdSn(s, Sock_SEND);
|
||||
|
||||
/* +2008.01 bj */
|
||||
while ( (W5100.readSnIR(s) & SnIR::SEND_OK) != SnIR::SEND_OK )
|
||||
{
|
||||
if (W5100.readSnIR(s) & SnIR::TIMEOUT)
|
||||
{
|
||||
/* +2008.01 [bj]: clear interrupt */
|
||||
W5100.writeSnIR(s, (SnIR::SEND_OK|SnIR::TIMEOUT));
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* +2008.01 bj */
|
||||
W5100.writeSnIR(s, SnIR::SEND_OK);
|
||||
|
||||
/* Sent ok */
|
||||
return 1;
|
||||
}
|
||||
|
41
hardware/arduino/sam/libraries/Ethernet/utility/socket.h
Executable file
41
hardware/arduino/sam/libraries/Ethernet/utility/socket.h
Executable file
@ -0,0 +1,41 @@
|
||||
#ifndef _SOCKET_H_
|
||||
#define _SOCKET_H_
|
||||
|
||||
#include "w5100.h"
|
||||
|
||||
extern uint8_t socket(SOCKET s, uint8_t protocol, uint16_t port, uint8_t flag); // Opens a socket(TCP or UDP or IP_RAW mode)
|
||||
extern void close(SOCKET s); // Close socket
|
||||
extern uint8_t connect(SOCKET s, uint8_t * addr, uint16_t port); // Establish TCP connection (Active connection)
|
||||
extern void disconnect(SOCKET s); // disconnect the connection
|
||||
extern uint8_t listen(SOCKET s); // Establish TCP connection (Passive connection)
|
||||
extern uint16_t send(SOCKET s, const uint8_t * buf, uint16_t len); // Send data (TCP)
|
||||
extern int16_t recv(SOCKET s, uint8_t * buf, int16_t len); // Receive data (TCP)
|
||||
extern uint16_t peek(SOCKET s, uint8_t *buf);
|
||||
extern uint16_t sendto(SOCKET s, const uint8_t * buf, uint16_t len, uint8_t * addr, uint16_t port); // Send data (UDP/IP RAW)
|
||||
extern uint16_t recvfrom(SOCKET s, uint8_t * buf, uint16_t len, uint8_t * addr, uint16_t *port); // Receive data (UDP/IP RAW)
|
||||
|
||||
extern uint16_t igmpsend(SOCKET s, const uint8_t * buf, uint16_t len);
|
||||
|
||||
// Functions to allow buffered UDP send (i.e. where the UDP datagram is built up over a
|
||||
// number of calls before being sent
|
||||
/*
|
||||
@brief This function sets up a UDP datagram, the data for which will be provided by one
|
||||
or more calls to bufferData and then finally sent with sendUDP.
|
||||
@return 1 if the datagram was successfully set up, or 0 if there was an error
|
||||
*/
|
||||
extern int startUDP(SOCKET s, uint8_t* addr, uint16_t port);
|
||||
/*
|
||||
@brief This function copies up to len bytes of data from buf into a UDP datagram to be
|
||||
sent later by sendUDP. Allows datagrams to be built up from a series of bufferData calls.
|
||||
@return Number of bytes successfully buffered
|
||||
*/
|
||||
uint16_t bufferData(SOCKET s, uint16_t offset, const uint8_t* buf, uint16_t len);
|
||||
/*
|
||||
@brief Send a UDP datagram built up from a sequence of startUDP followed by one or more
|
||||
calls to bufferData.
|
||||
@return 1 if the datagram was successfully sent, or 0 if there was an error
|
||||
*/
|
||||
int sendUDP(SOCKET s);
|
||||
|
||||
#endif
|
||||
/* _SOCKET_H_ */
|
182
hardware/arduino/sam/libraries/Ethernet/utility/w5100.cpp
Normal file
182
hardware/arduino/sam/libraries/Ethernet/utility/w5100.cpp
Normal file
@ -0,0 +1,182 @@
|
||||
/*
|
||||
* Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
|
||||
*
|
||||
* This file is free software; you can redistribute it and/or modify
|
||||
* it under the terms of either the GNU General Public License version 2
|
||||
* or the GNU Lesser General Public License version 2.1, both as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "w5100.h"
|
||||
|
||||
// W5100 controller instance
|
||||
W5100Class W5100;
|
||||
|
||||
#define SPI_CS 10
|
||||
|
||||
#define TX_RX_MAX_BUF_SIZE 2048
|
||||
#define TX_BUF 0x1100
|
||||
#define RX_BUF (TX_BUF + TX_RX_MAX_BUF_SIZE)
|
||||
|
||||
#define TXBUF_BASE 0x4000
|
||||
#define RXBUF_BASE 0x6000
|
||||
|
||||
void W5100Class::init(void)
|
||||
{
|
||||
SPI.begin(SPI_CS);
|
||||
SPI.setClockDivider(SPI_CS, 255);
|
||||
SPI.setDataMode(SPI_CS, SPI_MODE0);
|
||||
|
||||
delay(300);
|
||||
|
||||
writeMR(1<<RST);
|
||||
writeTMSR(0x55);
|
||||
writeRMSR(0x55);
|
||||
|
||||
for (int i=0; i<MAX_SOCK_NUM; i++) {
|
||||
SBASE[i] = TXBUF_BASE + SSIZE * i;
|
||||
RBASE[i] = RXBUF_BASE + RSIZE * i;
|
||||
}
|
||||
}
|
||||
|
||||
uint16_t W5100Class::getTXFreeSize(SOCKET s)
|
||||
{
|
||||
uint16_t val=0, val1=0;
|
||||
do {
|
||||
val1 = readSnTX_FSR(s);
|
||||
if (val1 != 0)
|
||||
val = readSnTX_FSR(s);
|
||||
}
|
||||
while (val != val1);
|
||||
return val;
|
||||
}
|
||||
|
||||
uint16_t W5100Class::getRXReceivedSize(SOCKET s)
|
||||
{
|
||||
uint16_t val=0,val1=0;
|
||||
do {
|
||||
val1 = readSnRX_RSR(s);
|
||||
if (val1 != 0)
|
||||
val = readSnRX_RSR(s);
|
||||
}
|
||||
while (val != val1);
|
||||
return val;
|
||||
}
|
||||
|
||||
|
||||
void W5100Class::send_data_processing(SOCKET s, const uint8_t *data, uint16_t len)
|
||||
{
|
||||
// This is same as having no offset in a call to send_data_processing_offset
|
||||
send_data_processing_offset(s, 0, data, len);
|
||||
}
|
||||
|
||||
void W5100Class::send_data_processing_offset(SOCKET s, uint16_t data_offset, const uint8_t *data, uint16_t len)
|
||||
{
|
||||
uint16_t ptr = readSnTX_WR(s);
|
||||
ptr += data_offset;
|
||||
uint16_t offset = ptr & SMASK;
|
||||
uint16_t dstAddr = offset + SBASE[s];
|
||||
|
||||
if (offset + len > SSIZE)
|
||||
{
|
||||
// Wrap around circular buffer
|
||||
uint16_t size = SSIZE - offset;
|
||||
write(dstAddr, data, size);
|
||||
write(SBASE[s], data + size, len - size);
|
||||
}
|
||||
else {
|
||||
write(dstAddr, data, len);
|
||||
}
|
||||
|
||||
ptr += len;
|
||||
writeSnTX_WR(s, ptr);
|
||||
}
|
||||
|
||||
|
||||
void W5100Class::recv_data_processing(SOCKET s, uint8_t *data, uint16_t len, uint8_t peek)
|
||||
{
|
||||
uint16_t ptr;
|
||||
ptr = readSnRX_RD(s);
|
||||
read_data(s, ptr, data, len);
|
||||
if (!peek)
|
||||
{
|
||||
ptr += len;
|
||||
writeSnRX_RD(s, ptr);
|
||||
}
|
||||
}
|
||||
|
||||
void W5100Class::read_data(SOCKET s, volatile uint16_t src, volatile uint8_t *dst, uint16_t len)
|
||||
{
|
||||
uint16_t size;
|
||||
uint16_t src_mask;
|
||||
uint16_t src_ptr;
|
||||
|
||||
src_mask = src & RMASK;
|
||||
src_ptr = RBASE[s] + src_mask;
|
||||
|
||||
if( (src_mask + len) > RSIZE )
|
||||
{
|
||||
size = RSIZE - src_mask;
|
||||
read(src_ptr, (uint8_t *)dst, size);
|
||||
dst += size;
|
||||
read(RBASE[s], (uint8_t *) dst, len - size);
|
||||
}
|
||||
else
|
||||
read(src_ptr, (uint8_t *) dst, len);
|
||||
}
|
||||
|
||||
|
||||
uint8_t W5100Class::write(uint16_t _addr, uint8_t _data)
|
||||
{
|
||||
SPI.transfer(SPI_CS, 0xF0, SPI_CONTINUE);
|
||||
SPI.transfer(SPI_CS, _addr >> 8, SPI_CONTINUE);
|
||||
SPI.transfer(SPI_CS, _addr & 0xFF, SPI_CONTINUE);
|
||||
SPI.transfer(SPI_CS, _data);
|
||||
return 1;
|
||||
}
|
||||
|
||||
uint16_t W5100Class::write(uint16_t _addr, const uint8_t *_buf, uint16_t _len)
|
||||
{
|
||||
for (uint16_t i=0; i<_len; i++)
|
||||
{
|
||||
SPI.transfer(SPI_CS, 0xF0, SPI_CONTINUE);
|
||||
SPI.transfer(SPI_CS, _addr >> 8, SPI_CONTINUE);
|
||||
SPI.transfer(SPI_CS, _addr & 0xFF, SPI_CONTINUE);
|
||||
SPI.transfer(SPI_CS, _buf[i]);
|
||||
_addr++;
|
||||
}
|
||||
return _len;
|
||||
}
|
||||
|
||||
uint8_t W5100Class::read(uint16_t _addr)
|
||||
{
|
||||
SPI.transfer(SPI_CS, 0x0F, SPI_CONTINUE);
|
||||
SPI.transfer(SPI_CS, _addr >> 8, SPI_CONTINUE);
|
||||
SPI.transfer(SPI_CS, _addr & 0xFF, SPI_CONTINUE);
|
||||
uint8_t _data = SPI.transfer(SPI_CS, 0);
|
||||
return _data;
|
||||
}
|
||||
|
||||
uint16_t W5100Class::read(uint16_t _addr, uint8_t *_buf, uint16_t _len)
|
||||
{
|
||||
for (uint16_t i=0; i<_len; i++)
|
||||
{
|
||||
SPI.transfer(SPI_CS, 0x0F, SPI_CONTINUE);
|
||||
SPI.transfer(SPI_CS, _addr >> 8, SPI_CONTINUE);
|
||||
SPI.transfer(SPI_CS, _addr & 0xFF, SPI_CONTINUE);
|
||||
_buf[i] = SPI.transfer(SPI_CS, 0);
|
||||
_addr++;
|
||||
}
|
||||
return _len;
|
||||
}
|
||||
|
||||
void W5100Class::execCmdSn(SOCKET s, SockCMD _cmd) {
|
||||
// Send command to socket
|
||||
writeSnCR(s, _cmd);
|
||||
// Wait for command to complete
|
||||
while (readSnCR(s))
|
||||
;
|
||||
}
|
384
hardware/arduino/sam/libraries/Ethernet/utility/w5100.h
Executable file
384
hardware/arduino/sam/libraries/Ethernet/utility/w5100.h
Executable file
@ -0,0 +1,384 @@
|
||||
/*
|
||||
* Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
|
||||
*
|
||||
* This file is free software; you can redistribute it and/or modify
|
||||
* it under the terms of either the GNU General Public License version 2
|
||||
* or the GNU Lesser General Public License version 2.1, both as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#ifndef W5100_H_INCLUDED
|
||||
#define W5100_H_INCLUDED
|
||||
|
||||
#include <SPI.h>
|
||||
|
||||
#define MAX_SOCK_NUM 4
|
||||
|
||||
typedef uint8_t SOCKET;
|
||||
|
||||
#define IDM_OR 0x8000
|
||||
#define IDM_AR0 0x8001
|
||||
#define IDM_AR1 0x8002
|
||||
#define IDM_DR 0x8003
|
||||
/*
|
||||
class MR {
|
||||
public:
|
||||
static const uint8_t RST = 0x80;
|
||||
static const uint8_t PB = 0x10;
|
||||
static const uint8_t PPPOE = 0x08;
|
||||
static const uint8_t LB = 0x04;
|
||||
static const uint8_t AI = 0x02;
|
||||
static const uint8_t IND = 0x01;
|
||||
};
|
||||
*/
|
||||
/*
|
||||
class IR {
|
||||
public:
|
||||
static const uint8_t CONFLICT = 0x80;
|
||||
static const uint8_t UNREACH = 0x40;
|
||||
static const uint8_t PPPoE = 0x20;
|
||||
static const uint8_t SOCK0 = 0x01;
|
||||
static const uint8_t SOCK1 = 0x02;
|
||||
static const uint8_t SOCK2 = 0x04;
|
||||
static const uint8_t SOCK3 = 0x08;
|
||||
static inline uint8_t SOCK(SOCKET ch) { return (0x01 << ch); };
|
||||
};
|
||||
*/
|
||||
|
||||
class SnMR {
|
||||
public:
|
||||
static const uint8_t CLOSE = 0x00;
|
||||
static const uint8_t TCP = 0x01;
|
||||
static const uint8_t UDP = 0x02;
|
||||
static const uint8_t IPRAW = 0x03;
|
||||
static const uint8_t MACRAW = 0x04;
|
||||
static const uint8_t PPPOE = 0x05;
|
||||
static const uint8_t ND = 0x20;
|
||||
static const uint8_t MULTI = 0x80;
|
||||
};
|
||||
|
||||
enum SockCMD {
|
||||
Sock_OPEN = 0x01,
|
||||
Sock_LISTEN = 0x02,
|
||||
Sock_CONNECT = 0x04,
|
||||
Sock_DISCON = 0x08,
|
||||
Sock_CLOSE = 0x10,
|
||||
Sock_SEND = 0x20,
|
||||
Sock_SEND_MAC = 0x21,
|
||||
Sock_SEND_KEEP = 0x22,
|
||||
Sock_RECV = 0x40
|
||||
};
|
||||
|
||||
/*class SnCmd {
|
||||
public:
|
||||
static const uint8_t OPEN = 0x01;
|
||||
static const uint8_t LISTEN = 0x02;
|
||||
static const uint8_t CONNECT = 0x04;
|
||||
static const uint8_t DISCON = 0x08;
|
||||
static const uint8_t CLOSE = 0x10;
|
||||
static const uint8_t SEND = 0x20;
|
||||
static const uint8_t SEND_MAC = 0x21;
|
||||
static const uint8_t SEND_KEEP = 0x22;
|
||||
static const uint8_t RECV = 0x40;
|
||||
};
|
||||
*/
|
||||
|
||||
class SnIR {
|
||||
public:
|
||||
static const uint8_t SEND_OK = 0x10;
|
||||
static const uint8_t TIMEOUT = 0x08;
|
||||
static const uint8_t RECV = 0x04;
|
||||
static const uint8_t DISCON = 0x02;
|
||||
static const uint8_t CON = 0x01;
|
||||
};
|
||||
|
||||
class SnSR {
|
||||
public:
|
||||
static const uint8_t CLOSED = 0x00;
|
||||
static const uint8_t INIT = 0x13;
|
||||
static const uint8_t LISTEN = 0x14;
|
||||
static const uint8_t SYNSENT = 0x15;
|
||||
static const uint8_t SYNRECV = 0x16;
|
||||
static const uint8_t ESTABLISHED = 0x17;
|
||||
static const uint8_t FIN_WAIT = 0x18;
|
||||
static const uint8_t CLOSING = 0x1A;
|
||||
static const uint8_t TIME_WAIT = 0x1B;
|
||||
static const uint8_t CLOSE_WAIT = 0x1C;
|
||||
static const uint8_t LAST_ACK = 0x1D;
|
||||
static const uint8_t UDP = 0x22;
|
||||
static const uint8_t IPRAW = 0x32;
|
||||
static const uint8_t MACRAW = 0x42;
|
||||
static const uint8_t PPPOE = 0x5F;
|
||||
};
|
||||
|
||||
class IPPROTO {
|
||||
public:
|
||||
static const uint8_t IP = 0;
|
||||
static const uint8_t ICMP = 1;
|
||||
static const uint8_t IGMP = 2;
|
||||
static const uint8_t GGP = 3;
|
||||
static const uint8_t TCP = 6;
|
||||
static const uint8_t PUP = 12;
|
||||
static const uint8_t UDP = 17;
|
||||
static const uint8_t IDP = 22;
|
||||
static const uint8_t ND = 77;
|
||||
static const uint8_t RAW = 255;
|
||||
};
|
||||
|
||||
class W5100Class {
|
||||
|
||||
public:
|
||||
void init();
|
||||
|
||||
/**
|
||||
* @brief This function is being used for copy the data form Receive buffer of the chip to application buffer.
|
||||
*
|
||||
* It calculate the actual physical address where one has to read
|
||||
* the data from Receive buffer. Here also take care of the condition while it exceed
|
||||
* the Rx memory uper-bound of socket.
|
||||
*/
|
||||
void read_data(SOCKET s, volatile uint16_t src, volatile uint8_t * dst, uint16_t len);
|
||||
|
||||
/**
|
||||
* @brief This function is being called by send() and sendto() function also.
|
||||
*
|
||||
* This function read the Tx write pointer register and after copy the data in buffer update the Tx write pointer
|
||||
* register. User should read upper byte first and lower byte later to get proper value.
|
||||
*/
|
||||
void send_data_processing(SOCKET s, const uint8_t *data, uint16_t len);
|
||||
/**
|
||||
* @brief A copy of send_data_processing that uses the provided ptr for the
|
||||
* write offset. Only needed for the "streaming" UDP API, where
|
||||
* a single UDP packet is built up over a number of calls to
|
||||
* send_data_processing_ptr, because TX_WR doesn't seem to get updated
|
||||
* correctly in those scenarios
|
||||
* @param ptr value to use in place of TX_WR. If 0, then the value is read
|
||||
* in from TX_WR
|
||||
* @return New value for ptr, to be used in the next call
|
||||
*/
|
||||
// FIXME Update documentation
|
||||
void send_data_processing_offset(SOCKET s, uint16_t data_offset, const uint8_t *data, uint16_t len);
|
||||
|
||||
/**
|
||||
* @brief This function is being called by recv() also.
|
||||
*
|
||||
* This function read the Rx read pointer register
|
||||
* and after copy the data from receive buffer update the Rx write pointer register.
|
||||
* User should read upper byte first and lower byte later to get proper value.
|
||||
*/
|
||||
void recv_data_processing(SOCKET s, uint8_t *data, uint16_t len, uint8_t peek = 0);
|
||||
|
||||
inline void setGatewayIp(uint8_t *_addr);
|
||||
inline void getGatewayIp(uint8_t *_addr);
|
||||
|
||||
inline void setSubnetMask(uint8_t *_addr);
|
||||
inline void getSubnetMask(uint8_t *_addr);
|
||||
|
||||
inline void setMACAddress(uint8_t * addr);
|
||||
inline void getMACAddress(uint8_t * addr);
|
||||
|
||||
inline void setIPAddress(uint8_t * addr);
|
||||
inline void getIPAddress(uint8_t * addr);
|
||||
|
||||
inline void setRetransmissionTime(uint16_t timeout);
|
||||
inline void setRetransmissionCount(uint8_t _retry);
|
||||
|
||||
void execCmdSn(SOCKET s, SockCMD _cmd);
|
||||
|
||||
uint16_t getTXFreeSize(SOCKET s);
|
||||
uint16_t getRXReceivedSize(SOCKET s);
|
||||
|
||||
|
||||
// W5100 Registers
|
||||
// ---------------
|
||||
private:
|
||||
static uint8_t write(uint16_t _addr, uint8_t _data);
|
||||
static uint16_t write(uint16_t addr, const uint8_t *buf, uint16_t len);
|
||||
static uint8_t read(uint16_t addr);
|
||||
static uint16_t read(uint16_t addr, uint8_t *buf, uint16_t len);
|
||||
|
||||
#define __GP_REGISTER8(name, address) \
|
||||
static inline void write##name(uint8_t _data) { \
|
||||
write(address, _data); \
|
||||
} \
|
||||
static inline uint8_t read##name() { \
|
||||
return read(address); \
|
||||
}
|
||||
#define __GP_REGISTER16(name, address) \
|
||||
static void write##name(uint16_t _data) { \
|
||||
write(address, _data >> 8); \
|
||||
write(address+1, _data & 0xFF); \
|
||||
} \
|
||||
static uint16_t read##name() { \
|
||||
uint16_t res = read(address); \
|
||||
res = (res << 8) + read(address + 1); \
|
||||
return res; \
|
||||
}
|
||||
#define __GP_REGISTER_N(name, address, size) \
|
||||
static uint16_t write##name(uint8_t *_buff) { \
|
||||
return write(address, _buff, size); \
|
||||
} \
|
||||
static uint16_t read##name(uint8_t *_buff) { \
|
||||
return read(address, _buff, size); \
|
||||
}
|
||||
|
||||
public:
|
||||
__GP_REGISTER8 (MR, 0x0000); // Mode
|
||||
__GP_REGISTER_N(GAR, 0x0001, 4); // Gateway IP address
|
||||
__GP_REGISTER_N(SUBR, 0x0005, 4); // Subnet mask address
|
||||
__GP_REGISTER_N(SHAR, 0x0009, 6); // Source MAC address
|
||||
__GP_REGISTER_N(SIPR, 0x000F, 4); // Source IP address
|
||||
__GP_REGISTER8 (IR, 0x0015); // Interrupt
|
||||
__GP_REGISTER8 (IMR, 0x0016); // Interrupt Mask
|
||||
__GP_REGISTER16(RTR, 0x0017); // Timeout address
|
||||
__GP_REGISTER8 (RCR, 0x0019); // Retry count
|
||||
__GP_REGISTER8 (RMSR, 0x001A); // Receive memory size
|
||||
__GP_REGISTER8 (TMSR, 0x001B); // Transmit memory size
|
||||
__GP_REGISTER8 (PATR, 0x001C); // Authentication type address in PPPoE mode
|
||||
__GP_REGISTER8 (PTIMER, 0x0028); // PPP LCP Request Timer
|
||||
__GP_REGISTER8 (PMAGIC, 0x0029); // PPP LCP Magic Number
|
||||
__GP_REGISTER_N(UIPR, 0x002A, 4); // Unreachable IP address in UDP mode
|
||||
__GP_REGISTER16(UPORT, 0x002E); // Unreachable Port address in UDP mode
|
||||
|
||||
#undef __GP_REGISTER8
|
||||
#undef __GP_REGISTER16
|
||||
#undef __GP_REGISTER_N
|
||||
|
||||
// W5100 Socket registers
|
||||
// ----------------------
|
||||
private:
|
||||
static inline uint8_t readSn(SOCKET _s, uint16_t _addr);
|
||||
static inline uint8_t writeSn(SOCKET _s, uint16_t _addr, uint8_t _data);
|
||||
static inline uint16_t readSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t len);
|
||||
static inline uint16_t writeSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t len);
|
||||
|
||||
static const uint16_t CH_BASE = 0x0400;
|
||||
static const uint16_t CH_SIZE = 0x0100;
|
||||
|
||||
#define __SOCKET_REGISTER8(name, address) \
|
||||
static inline void write##name(SOCKET _s, uint8_t _data) { \
|
||||
writeSn(_s, address, _data); \
|
||||
} \
|
||||
static inline uint8_t read##name(SOCKET _s) { \
|
||||
return readSn(_s, address); \
|
||||
}
|
||||
#define __SOCKET_REGISTER16(name, address) \
|
||||
static void write##name(SOCKET _s, uint16_t _data) { \
|
||||
writeSn(_s, address, _data >> 8); \
|
||||
writeSn(_s, address+1, _data & 0xFF); \
|
||||
} \
|
||||
static uint16_t read##name(SOCKET _s) { \
|
||||
uint16_t res = readSn(_s, address); \
|
||||
uint16_t res2 = readSn(_s,address + 1); \
|
||||
res = res << 8; \
|
||||
res2 = res2 & 0xFF; \
|
||||
res = res | res2; \
|
||||
return res; \
|
||||
}
|
||||
#define __SOCKET_REGISTER_N(name, address, size) \
|
||||
static uint16_t write##name(SOCKET _s, uint8_t *_buff) { \
|
||||
return writeSn(_s, address, _buff, size); \
|
||||
} \
|
||||
static uint16_t read##name(SOCKET _s, uint8_t *_buff) { \
|
||||
return readSn(_s, address, _buff, size); \
|
||||
}
|
||||
|
||||
public:
|
||||
__SOCKET_REGISTER8(SnMR, 0x0000) // Mode
|
||||
__SOCKET_REGISTER8(SnCR, 0x0001) // Command
|
||||
__SOCKET_REGISTER8(SnIR, 0x0002) // Interrupt
|
||||
__SOCKET_REGISTER8(SnSR, 0x0003) // Status
|
||||
__SOCKET_REGISTER16(SnPORT, 0x0004) // Source Port
|
||||
__SOCKET_REGISTER_N(SnDHAR, 0x0006, 6) // Destination Hardw Addr
|
||||
__SOCKET_REGISTER_N(SnDIPR, 0x000C, 4) // Destination IP Addr
|
||||
__SOCKET_REGISTER16(SnDPORT, 0x0010) // Destination Port
|
||||
__SOCKET_REGISTER16(SnMSSR, 0x0012) // Max Segment Size
|
||||
__SOCKET_REGISTER8(SnPROTO, 0x0014) // Protocol in IP RAW Mode
|
||||
__SOCKET_REGISTER8(SnTOS, 0x0015) // IP TOS
|
||||
__SOCKET_REGISTER8(SnTTL, 0x0016) // IP TTL
|
||||
__SOCKET_REGISTER16(SnTX_FSR, 0x0020) // TX Free Size
|
||||
__SOCKET_REGISTER16(SnTX_RD, 0x0022) // TX Read Pointer
|
||||
__SOCKET_REGISTER16(SnTX_WR, 0x0024) // TX Write Pointer
|
||||
__SOCKET_REGISTER16(SnRX_RSR, 0x0026) // RX Free Size
|
||||
__SOCKET_REGISTER16(SnRX_RD, 0x0028) // RX Read Pointer
|
||||
__SOCKET_REGISTER16(SnRX_WR, 0x002A) // RX Write Pointer (supported?)
|
||||
|
||||
#undef __SOCKET_REGISTER8
|
||||
#undef __SOCKET_REGISTER16
|
||||
#undef __SOCKET_REGISTER_N
|
||||
|
||||
|
||||
private:
|
||||
static const uint8_t RST = 7; // Reset BIT
|
||||
|
||||
static const int SOCKETS = 4;
|
||||
static const uint16_t SMASK = 0x07FF; // Tx buffer MASK
|
||||
static const uint16_t RMASK = 0x07FF; // Rx buffer MASK
|
||||
public:
|
||||
static const uint16_t SSIZE = 2048; // Max Tx buffer size
|
||||
private:
|
||||
static const uint16_t RSIZE = 2048; // Max Rx buffer size
|
||||
uint16_t SBASE[SOCKETS]; // Tx buffer base address
|
||||
uint16_t RBASE[SOCKETS]; // Rx buffer base address
|
||||
|
||||
};
|
||||
|
||||
extern W5100Class W5100;
|
||||
|
||||
uint8_t W5100Class::readSn(SOCKET _s, uint16_t _addr) {
|
||||
return read(CH_BASE + _s * CH_SIZE + _addr);
|
||||
}
|
||||
|
||||
uint8_t W5100Class::writeSn(SOCKET _s, uint16_t _addr, uint8_t _data) {
|
||||
return write(CH_BASE + _s * CH_SIZE + _addr, _data);
|
||||
}
|
||||
|
||||
uint16_t W5100Class::readSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t _len) {
|
||||
return read(CH_BASE + _s * CH_SIZE + _addr, _buf, _len);
|
||||
}
|
||||
|
||||
uint16_t W5100Class::writeSn(SOCKET _s, uint16_t _addr, uint8_t *_buf, uint16_t _len) {
|
||||
return write(CH_BASE + _s * CH_SIZE + _addr, _buf, _len);
|
||||
}
|
||||
|
||||
void W5100Class::getGatewayIp(uint8_t *_addr) {
|
||||
readGAR(_addr);
|
||||
}
|
||||
|
||||
void W5100Class::setGatewayIp(uint8_t *_addr) {
|
||||
writeGAR(_addr);
|
||||
}
|
||||
|
||||
void W5100Class::getSubnetMask(uint8_t *_addr) {
|
||||
readSUBR(_addr);
|
||||
}
|
||||
|
||||
void W5100Class::setSubnetMask(uint8_t *_addr) {
|
||||
writeSUBR(_addr);
|
||||
}
|
||||
|
||||
void W5100Class::getMACAddress(uint8_t *_addr) {
|
||||
readSHAR(_addr);
|
||||
}
|
||||
|
||||
void W5100Class::setMACAddress(uint8_t *_addr) {
|
||||
writeSHAR(_addr);
|
||||
}
|
||||
|
||||
void W5100Class::getIPAddress(uint8_t *_addr) {
|
||||
readSIPR(_addr);
|
||||
}
|
||||
|
||||
void W5100Class::setIPAddress(uint8_t *_addr) {
|
||||
writeSIPR(_addr);
|
||||
}
|
||||
|
||||
void W5100Class::setRetransmissionTime(uint16_t _timeout) {
|
||||
writeRTR(_timeout);
|
||||
}
|
||||
|
||||
void W5100Class::setRetransmissionCount(uint8_t _retry) {
|
||||
writeRCR(_retry);
|
||||
}
|
||||
|
||||
#endif
|
Loading…
x
Reference in New Issue
Block a user