1
0
mirror of https://github.com/arduino/Arduino.git synced 2025-01-17 06:52:18 +01:00

Added Arduino Robot libraries

This commit is contained in:
Cristian Maglie 2013-05-15 10:47:17 +02:00
parent 7e3aef91bc
commit bd11079cd0
86 changed files with 12062 additions and 0 deletions

View File

@ -13,6 +13,7 @@ ARDUINO 1.0.5 - 2013.05.15
* Upgrades to WiFi library * Upgrades to WiFi library
* Fixed a bunch of examples * Fixed a bunch of examples
* Added Arduino Robot libraries
[firmwares] [firmwares]

View File

@ -0,0 +1,688 @@
/******************************************************************
This is the core graphics library for all our displays, providing
basic graphics primitives (points, lines, circles, etc.). It needs
to be paired with a hardware-specific library for each display
device we carry (handling the lower-level functions).
Adafruit invests time and resources providing this open
source code, please support Adafruit and open-source hardware
by purchasing products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
BSD license, check license.txt for more information.
All text above must be included in any redistribution.
******************************************************************/
#include "Adafruit_GFX.h"
#include "glcdfont.c"
#include <avr/pgmspace.h>
void Adafruit_GFX::constructor(int16_t w, int16_t h) {
_width = WIDTH = w;
_height = HEIGHT = h;
rotation = 0;
cursor_y = cursor_x = 0;
textsize = 1;
textcolor = textbgcolor = 0xFFFF;
wrap = true;
strokeColor = 0;
useStroke = true;
fillColor = 0;
useFill = false;
}
// draw a circle outline
void Adafruit_GFX::drawCircle(int16_t x0, int16_t y0, int16_t r,
uint16_t color) {
int16_t f = 1 - r;
int16_t ddF_x = 1;
int16_t ddF_y = -2 * r;
int16_t x = 0;
int16_t y = r;
drawPixel(x0, y0+r, color);
drawPixel(x0, y0-r, color);
drawPixel(x0+r, y0, color);
drawPixel(x0-r, y0, color);
while (x<y) {
if (f >= 0) {
y--;
ddF_y += 2;
f += ddF_y;
}
x++;
ddF_x += 2;
f += ddF_x;
drawPixel(x0 + x, y0 + y, color);
drawPixel(x0 - x, y0 + y, color);
drawPixel(x0 + x, y0 - y, color);
drawPixel(x0 - x, y0 - y, color);
drawPixel(x0 + y, y0 + x, color);
drawPixel(x0 - y, y0 + x, color);
drawPixel(x0 + y, y0 - x, color);
drawPixel(x0 - y, y0 - x, color);
}
}
void Adafruit_GFX::drawCircleHelper( int16_t x0, int16_t y0,
int16_t r, uint8_t cornername, uint16_t color) {
int16_t f = 1 - r;
int16_t ddF_x = 1;
int16_t ddF_y = -2 * r;
int16_t x = 0;
int16_t y = r;
while (x<y) {
if (f >= 0) {
y--;
ddF_y += 2;
f += ddF_y;
}
x++;
ddF_x += 2;
f += ddF_x;
if (cornername & 0x4) {
drawPixel(x0 + x, y0 + y, color);
drawPixel(x0 + y, y0 + x, color);
}
if (cornername & 0x2) {
drawPixel(x0 + x, y0 - y, color);
drawPixel(x0 + y, y0 - x, color);
}
if (cornername & 0x8) {
drawPixel(x0 - y, y0 + x, color);
drawPixel(x0 - x, y0 + y, color);
}
if (cornername & 0x1) {
drawPixel(x0 - y, y0 - x, color);
drawPixel(x0 - x, y0 - y, color);
}
}
}
void Adafruit_GFX::fillCircle(int16_t x0, int16_t y0, int16_t r,
uint16_t color) {
drawFastVLine(x0, y0-r, 2*r+1, color);
fillCircleHelper(x0, y0, r, 3, 0, color);
}
// used to do circles and roundrects!
void Adafruit_GFX::fillCircleHelper(int16_t x0, int16_t y0, int16_t r,
uint8_t cornername, int16_t delta, uint16_t color) {
int16_t f = 1 - r;
int16_t ddF_x = 1;
int16_t ddF_y = -2 * r;
int16_t x = 0;
int16_t y = r;
while (x<y) {
if (f >= 0) {
y--;
ddF_y += 2;
f += ddF_y;
}
x++;
ddF_x += 2;
f += ddF_x;
if (cornername & 0x1) {
drawFastVLine(x0+x, y0-y, 2*y+1+delta, color);
drawFastVLine(x0+y, y0-x, 2*x+1+delta, color);
}
if (cornername & 0x2) {
drawFastVLine(x0-x, y0-y, 2*y+1+delta, color);
drawFastVLine(x0-y, y0-x, 2*x+1+delta, color);
}
}
}
// bresenham's algorithm - thx wikpedia
void Adafruit_GFX::drawLine(int16_t x0, int16_t y0,
int16_t x1, int16_t y1,
uint16_t color) {
int16_t steep = abs(y1 - y0) > abs(x1 - x0);
if (steep) {
swap(x0, y0);
swap(x1, y1);
}
if (x0 > x1) {
swap(x0, x1);
swap(y0, y1);
}
int16_t dx, dy;
dx = x1 - x0;
dy = abs(y1 - y0);
int16_t err = dx / 2;
int16_t ystep;
if (y0 < y1) {
ystep = 1;
} else {
ystep = -1;
}
for (; x0<=x1; x0++) {
if (steep) {
drawPixel(y0, x0, color);
} else {
drawPixel(x0, y0, color);
}
err -= dy;
if (err < 0) {
y0 += ystep;
err += dx;
}
}
}
// draw a rectangle
void Adafruit_GFX::drawRect(int16_t x, int16_t y,
int16_t w, int16_t h,
uint16_t color) {
drawFastHLine(x, y, w, color);
drawFastHLine(x, y+h-1, w, color);
drawFastVLine(x, y, h, color);
drawFastVLine(x+w-1, y, h, color);
}
void Adafruit_GFX::drawFastVLine(int16_t x, int16_t y,
int16_t h, uint16_t color) {
// stupidest version - update in subclasses if desired!
drawLine(x, y, x, y+h-1, color);
}
void Adafruit_GFX::drawFastHLine(int16_t x, int16_t y,
int16_t w, uint16_t color) {
// stupidest version - update in subclasses if desired!
drawLine(x, y, x+w-1, y, color);
}
void Adafruit_GFX::fillRect(int16_t x, int16_t y, int16_t w, int16_t h,
uint16_t color) {
// stupidest version - update in subclasses if desired!
for (int16_t i=x; i<x+w; i++) {
drawFastVLine(i, y, h, color);
}
}
void Adafruit_GFX::fillScreen(uint16_t color) {
fillRect(0, 0, _width, _height, color);
}
// draw a rounded rectangle!
void Adafruit_GFX::drawRoundRect(int16_t x, int16_t y, int16_t w,
int16_t h, int16_t r, uint16_t color) {
// smarter version
drawFastHLine(x+r , y , w-2*r, color); // Top
drawFastHLine(x+r , y+h-1, w-2*r, color); // Bottom
drawFastVLine( x , y+r , h-2*r, color); // Left
drawFastVLine( x+w-1, y+r , h-2*r, color); // Right
// draw four corners
drawCircleHelper(x+r , y+r , r, 1, color);
drawCircleHelper(x+w-r-1, y+r , r, 2, color);
drawCircleHelper(x+w-r-1, y+h-r-1, r, 4, color);
drawCircleHelper(x+r , y+h-r-1, r, 8, color);
}
// fill a rounded rectangle!
void Adafruit_GFX::fillRoundRect(int16_t x, int16_t y, int16_t w,
int16_t h, int16_t r, uint16_t color) {
// smarter version
fillRect(x+r, y, w-2*r, h, color);
// draw four corners
fillCircleHelper(x+w-r-1, y+r, r, 1, h-2*r-1, color);
fillCircleHelper(x+r , y+r, r, 2, h-2*r-1, color);
}
// draw a triangle!
void Adafruit_GFX::drawTriangle(int16_t x0, int16_t y0,
int16_t x1, int16_t y1,
int16_t x2, int16_t y2, uint16_t color) {
drawLine(x0, y0, x1, y1, color);
drawLine(x1, y1, x2, y2, color);
drawLine(x2, y2, x0, y0, color);
}
// fill a triangle!
void Adafruit_GFX::fillTriangle ( int16_t x0, int16_t y0,
int16_t x1, int16_t y1,
int16_t x2, int16_t y2, uint16_t color) {
int16_t a, b, y, last;
// Sort coordinates by Y order (y2 >= y1 >= y0)
if (y0 > y1) {
swap(y0, y1); swap(x0, x1);
}
if (y1 > y2) {
swap(y2, y1); swap(x2, x1);
}
if (y0 > y1) {
swap(y0, y1); swap(x0, x1);
}
if(y0 == y2) { // Handle awkward all-on-same-line case as its own thing
a = b = x0;
if(x1 < a) a = x1;
else if(x1 > b) b = x1;
if(x2 < a) a = x2;
else if(x2 > b) b = x2;
drawFastHLine(a, y0, b-a+1, color);
return;
}
int16_t
dx01 = x1 - x0,
dy01 = y1 - y0,
dx02 = x2 - x0,
dy02 = y2 - y0,
dx12 = x2 - x1,
dy12 = y2 - y1,
sa = 0,
sb = 0;
// For upper part of triangle, find scanline crossings for segments
// 0-1 and 0-2. If y1=y2 (flat-bottomed triangle), the scanline y1
// is included here (and second loop will be skipped, avoiding a /0
// error there), otherwise scanline y1 is skipped here and handled
// in the second loop...which also avoids a /0 error here if y0=y1
// (flat-topped triangle).
if(y1 == y2) last = y1; // Include y1 scanline
else last = y1-1; // Skip it
for(y=y0; y<=last; y++) {
a = x0 + sa / dy01;
b = x0 + sb / dy02;
sa += dx01;
sb += dx02;
/* longhand:
a = x0 + (x1 - x0) * (y - y0) / (y1 - y0);
b = x0 + (x2 - x0) * (y - y0) / (y2 - y0);
*/
if(a > b) swap(a,b);
drawFastHLine(a, y, b-a+1, color);
}
// For lower part of triangle, find scanline crossings for segments
// 0-2 and 1-2. This loop is skipped if y1=y2.
sa = dx12 * (y - y1);
sb = dx02 * (y - y0);
for(; y<=y2; y++) {
a = x1 + sa / dy12;
b = x0 + sb / dy02;
sa += dx12;
sb += dx02;
/* longhand:
a = x1 + (x2 - x1) * (y - y1) / (y2 - y1);
b = x0 + (x2 - x0) * (y - y0) / (y2 - y0);
*/
if(a > b) swap(a,b);
drawFastHLine(a, y, b-a+1, color);
}
}
void Adafruit_GFX::drawBitmap(int16_t x, int16_t y,
const uint8_t *bitmap, int16_t w, int16_t h,
uint16_t color) {
int16_t i, j, byteWidth = (w + 7) / 8;
for(j=0; j<h; j++) {
for(i=0; i<w; i++ ) {
if(pgm_read_byte(bitmap + j * byteWidth + i / 8) & (128 >> (i & 7))) {
drawPixel(x+i, y+j, color);
}
}
}
}
#if ARDUINO >= 100
size_t Adafruit_GFX::write(uint8_t c) {
#else
void Adafruit_GFX::write(uint8_t c) {
#endif
if (c == '\n') {
cursor_y += textsize*8;
cursor_x = 0;
} else if (c == '\r') {
// skip em
} else {
drawChar(cursor_x, cursor_y, c, textcolor, textbgcolor, textsize);
cursor_x += textsize*6;
if (wrap && (cursor_x > (_width - textsize*6))) {
cursor_y += textsize*8;
cursor_x = 0;
}
}
#if ARDUINO >= 100
return 1;
#endif
}
// draw a character
void Adafruit_GFX::drawChar(int16_t x, int16_t y, unsigned char c,
uint16_t color, uint16_t bg, uint8_t size) {
if((x >= _width) || // Clip right
(y >= _height) || // Clip bottom
((x + 5 * size - 1) < 0) || // Clip left
((y + 8 * size - 1) < 0)) // Clip top
return;
for (int8_t i=0; i<6; i++ ) {
uint8_t line;
if (i == 5)
line = 0x0;
else
line = pgm_read_byte(font+(c*5)+i);
for (int8_t j = 0; j<8; j++) {
if (line & 0x1) {
if (size == 1) // default size
drawPixel(x+i, y+j, color);
else { // big size
fillRect(x+(i*size), y+(j*size), size, size, color);
}
} else if (bg != color) {
if (size == 1) // default size
drawPixel(x+i, y+j, bg);
else { // big size
fillRect(x+i*size, y+j*size, size, size, bg);
}
}
line >>= 1;
}
}
}
void Adafruit_GFX::setCursor(int16_t x, int16_t y) {
cursor_x = x;
cursor_y = y;
}
void Adafruit_GFX::setTextSize(uint8_t s) {
textsize = (s > 0) ? s : 1;
}
void Adafruit_GFX::setTextColor(uint16_t c) {
textcolor = c;
textbgcolor = c;
// for 'transparent' background, we'll set the bg
// to the same as fg instead of using a flag
}
void Adafruit_GFX::setTextColor(uint16_t c, uint16_t b) {
textcolor = c;
textbgcolor = b;
}
void Adafruit_GFX::setTextWrap(boolean w) {
wrap = w;
}
uint8_t Adafruit_GFX::getRotation(void) {
rotation %= 4;
return rotation;
}
void Adafruit_GFX::setRotation(uint8_t x) {
x %= 4; // cant be higher than 3
rotation = x;
switch (x) {
case 0:
case 2:
_width = WIDTH;
_height = HEIGHT;
break;
case 1:
case 3:
_width = HEIGHT;
_height = WIDTH;
break;
}
}
void Adafruit_GFX::invertDisplay(boolean i) {
// do nothing, can be subclassed
}
// return the size of the display which depends on the rotation!
int16_t Adafruit_GFX::width(void) {
return _width;
}
int16_t Adafruit_GFX::height(void) {
return _height;
}
uint16_t Adafruit_GFX::newColor(uint8_t r, uint8_t g, uint8_t b) {
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
}
void Adafruit_GFX::background(uint8_t red, uint8_t green, uint8_t blue) {
background(newColor(red, green, blue));
}
void Adafruit_GFX::background(color c) {
fillScreen(c);
}
void Adafruit_GFX::stroke(uint8_t red, uint8_t green, uint8_t blue) {
stroke(newColor(red, green, blue));
}
void Adafruit_GFX::stroke(color c) {
useStroke = true;
strokeColor = c;
setTextColor(c);
}
void Adafruit_GFX::noStroke() {
useStroke = false;
}
void Adafruit_GFX::noFill() {
useFill = false;
}
void Adafruit_GFX::fill(uint8_t red, uint8_t green, uint8_t blue) {
fill(newColor(red, green, blue));
}
void Adafruit_GFX::fill(color c) {
useFill = true;
fillColor = c;
}
void Adafruit_GFX::text(int value, uint8_t x, uint8_t y){
if (!useStroke)
return;
setTextWrap(false);
setTextColor(strokeColor);
setCursor(x, y);
print(value);
}
void Adafruit_GFX::text(long value, uint8_t x, uint8_t y){
if (!useStroke)
return;
setTextWrap(false);
setTextColor(strokeColor);
setCursor(x, y);
print(value);
}
void Adafruit_GFX::text(char value, uint8_t x, uint8_t y){
if (!useStroke)
return;
setTextWrap(false);
setTextColor(strokeColor);
setCursor(x, y);
print(value);
}
void Adafruit_GFX::text(const char * text, int16_t x, int16_t y) {
if (!useStroke)
return;
setTextWrap(false);
setTextColor(strokeColor);
setCursor(x, y);
print(text);
}
void Adafruit_GFX::textWrap(const char * text, int16_t x, int16_t y) {
if (!useStroke)
return;
setTextWrap(true);
setTextColor(strokeColor);
setCursor(x, y);
print(text);
}
void Adafruit_GFX::textSize(uint8_t size) {
setTextSize(size);
}
void Adafruit_GFX::point(int16_t x, int16_t y) {
if (!useStroke)
return;
drawPixel(x, y, strokeColor);
}
void Adafruit_GFX::line(int16_t x1, int16_t y1, int16_t x2, int16_t y2) {
if (!useStroke)
return;
if (x1 == x2) {
drawFastVLine(x1, y1, y2 - y1, strokeColor);
}
else if (y1 == y2) {
drawFastHLine(x1, y1, x2 - x1, strokeColor);
}
else {
drawLine(x1, y1, x2, y2, strokeColor);
}
}
void Adafruit_GFX::rect(int16_t x, int16_t y, int16_t width, int16_t height) {
if (useFill) {
fillRect(x, y, width, height, fillColor);
}
if (useStroke) {
drawRect(x, y, width, height, strokeColor);
}
}
void Adafruit_GFX::rect(int16_t x, int16_t y, int16_t width, int16_t height, int16_t radius) {
if (radius == 0) {
rect(x, y, width, height);
}
if (useFill) {
fillRoundRect(x, y, width, height, radius, fillColor);
}
if (useStroke) {
drawRoundRect(x, y, width, height, radius, strokeColor);
}
}
void Adafruit_GFX::circle(int16_t x, int16_t y, int16_t r) {
if (r == 0)
return;
if (useFill) {
fillCircle(x, y, r, fillColor);
}
if (useStroke) {
drawCircle(x, y, r, strokeColor);
}
}
void Adafruit_GFX::triangle(int16_t x1, int16_t y1, int16_t x2, int16_t y2, int16_t x3, int16_t y3) {
if (useFill) {
fillTriangle(x1, y1, x2, y2, x3, y3, fillColor);
}
if (useStroke) {
drawTriangle(x1, y1, x2, y2, x3, y3, strokeColor);
}
}
#define BUFFPIXEL 20
/*
void Adafruit_GFX::image(PImage & img, uint16_t x, uint16_t y) {
int w, h, row, col;
uint8_t r, g, b;
uint32_t pos = 0;
uint8_t sdbuffer[3*BUFFPIXEL]; // pixel buffer (R+G+B per pixel)
uint8_t buffidx = sizeof(sdbuffer); // Current position in sdbuffer
// Crop area to be loaded
w = img._bmpWidth;
h = img._bmpHeight;
if((x+w-1) >= width()) w = width() - x;
if((y+h-1) >= height()) h = height() - y;
// Set TFT address window to clipped image bounds
//setAddrWindow(x, y, x+w-1, y+h-1);
for (row=0; row<h; row++) { // For each scanline...
// Seek to start of scan line. It might seem labor-
// intensive to be doing this on every line, but this
// method covers a lot of gritty details like cropping
// and scanline padding. Also, the seek only takes
// place if the file position actually needs to change
// (avoids a lot of cluster math in SD library).
if(img._flip) // Bitmap is stored bottom-to-top order (normal BMP)
pos = img._bmpImageoffset + (img._bmpHeight - 1 - row) * img._rowSize;
else // Bitmap is stored top-to-bottom
pos = img._bmpImageoffset + row * img._rowSize;
if(img._bmpFile.position() != pos) { // Need seek?
img._bmpFile.seek(pos);
buffidx = sizeof(sdbuffer); // Force buffer reload
}
for (col=0; col<w; col++) { // For each pixel...
// Time to read more pixel data?
if (buffidx >= sizeof(sdbuffer)) { // Indeed
img._bmpFile.read(sdbuffer, sizeof(sdbuffer));
buffidx = 0; // Set index to beginning
}
// Convert pixel from BMP to TFT format, push to display
b = sdbuffer[buffidx++];
g = sdbuffer[buffidx++];
r = sdbuffer[buffidx++];
//pushColor(tft.Color565(r,g,b));
drawPixel(x + col, y + row, newColor(r, g, b));
} // end pixel
} // end scanline
}*/

View File

@ -0,0 +1,190 @@
/******************************************************************
This is the core graphics library for all our displays, providing
basic graphics primitives (points, lines, circles, etc.). It needs
to be paired with a hardware-specific library for each display
device we carry (handling the lower-level functions).
Adafruit invests time and resources providing this open
source code, please support Adafruit and open-source hardware
by purchasing products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
BSD license, check license.txt for more information.
All text above must be included in any redistribution.
******************************************************************/
#ifndef _ADAFRUIT_GFX_H
#define _ADAFRUIT_GFX_H
#if ARDUINO >= 100
#include "Arduino.h"
#include "Print.h"
#else
#include "WProgram.h"
#endif
//#include "PImage.h"
#define swap(a, b) { int16_t t = a; a = b; b = t; }
/* TODO
enum RectMode {
CORNER,
CORNERS,
RADIUS,
CENTER
};
*/
typedef uint16_t color;
class Adafruit_GFX : public Print {
public:
//Adafruit_GFX();
// i have no idea why we have to formally call the constructor. kinda sux
void constructor(int16_t w, int16_t h);
// this must be defined by the subclass
virtual void drawPixel(int16_t x, int16_t y, uint16_t color);
virtual void invertDisplay(boolean i);
// these are 'generic' drawing functions, so we can share them!
virtual void drawLine(int16_t x0, int16_t y0, int16_t x1, int16_t y1,
uint16_t color);
virtual void drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color);
virtual void drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color);
virtual void drawRect(int16_t x, int16_t y, int16_t w, int16_t h,
uint16_t color);
virtual void fillRect(int16_t x, int16_t y, int16_t w, int16_t h,
uint16_t color);
virtual void fillScreen(uint16_t color);
void drawCircle(int16_t x0, int16_t y0, int16_t r, uint16_t color);
void drawCircleHelper(int16_t x0, int16_t y0,
int16_t r, uint8_t cornername, uint16_t color);
void fillCircle(int16_t x0, int16_t y0, int16_t r, uint16_t color);
void fillCircleHelper(int16_t x0, int16_t y0, int16_t r,
uint8_t cornername, int16_t delta, uint16_t color);
void drawTriangle(int16_t x0, int16_t y0, int16_t x1, int16_t y1,
int16_t x2, int16_t y2, uint16_t color);
void fillTriangle(int16_t x0, int16_t y0, int16_t x1, int16_t y1,
int16_t x2, int16_t y2, uint16_t color);
void drawRoundRect(int16_t x0, int16_t y0, int16_t w, int16_t h,
int16_t radius, uint16_t color);
void fillRoundRect(int16_t x0, int16_t y0, int16_t w, int16_t h,
int16_t radius, uint16_t color);
void drawBitmap(int16_t x, int16_t y,
const uint8_t *bitmap, int16_t w, int16_t h,
uint16_t color);
void drawChar(int16_t x, int16_t y, unsigned char c,
uint16_t color, uint16_t bg, uint8_t size);
#if ARDUINO >= 100
virtual size_t write(uint8_t);
#else
virtual void write(uint8_t);
#endif
void setCursor(int16_t x, int16_t y);
void setTextColor(uint16_t c);
void setTextColor(uint16_t c, uint16_t bg);
void setTextSize(uint8_t s);
void setTextWrap(boolean w);
int16_t height(void);
int16_t width(void);
void setRotation(uint8_t r);
uint8_t getRotation(void);
/*
* Processing-like graphics primitives
*/
/// transforms a color in 16-bit form given the RGB components.
/// The default implementation makes a 5-bit red, a 6-bit
/// green and a 5-bit blue (MSB to LSB). Devices that use
/// different scheme should override this.
virtual uint16_t newColor(uint8_t red, uint8_t green, uint8_t blue);
// http://processing.org/reference/background_.html
void background(uint8_t red, uint8_t green, uint8_t blue);
void background(color c);
// http://processing.org/reference/fill_.html
void fill(uint8_t red, uint8_t green, uint8_t blue);
void fill(color c);
// http://processing.org/reference/noFill_.html
void noFill();
// http://processing.org/reference/stroke_.html
void stroke(uint8_t red, uint8_t green, uint8_t blue);
void stroke(color c);
// http://processing.org/reference/noStroke_.html
void noStroke();
void text(const char * text, int16_t x, int16_t y);
void text(int value, uint8_t posX, uint8_t posY);
void text(long value, uint8_t posX, uint8_t posY);
void text(char value, uint8_t posX, uint8_t posY);
void textWrap(const char * text, int16_t x, int16_t y);
void textSize(uint8_t size);
// similar to ellipse() in Processing, but with
// a single radius.
// http://processing.org/reference/ellipse_.html
void circle(int16_t x, int16_t y, int16_t r);
void point(int16_t x, int16_t y);
void line(int16_t x1, int16_t y1, int16_t x2, int16_t y2);
void quad(int16_t x1, int16_t y1, int16_t x2, int16_t y2, int16_t x3, int16_t y3, int16_t x4, int16_t y4);
void rect(int16_t x, int16_t y, int16_t width, int16_t height);
void rect(int16_t x, int16_t y, int16_t width, int16_t height, int16_t radius);
void triangle(int16_t x1, int16_t y1, int16_t x2, int16_t y2, int16_t x3, int16_t y3);
/* TODO
void rectMode(RectMode mode);
void pushStyle();
void popStyle();
*/
// PImage loadImage(const char * fileName) { return PImage::loadImage(fileName); }
// void image(PImage & img, uint16_t x, uint16_t y);
protected:
int16_t WIDTH, HEIGHT; // this is the 'raw' display w/h - never changes
int16_t _width, _height; // dependent on rotation
int16_t cursor_x, cursor_y;
uint16_t textcolor, textbgcolor;
uint8_t textsize;
uint8_t rotation;
boolean wrap; // If set, 'wrap' text at right edge of display
/*
* Processing-style graphics state
*/
color strokeColor;
bool useStroke;
color fillColor;
bool useFill;
};
#endif

View File

@ -0,0 +1,40 @@
#include "ArduinoRobot.h"
#include "Multiplexer.h"
#include "Wire.h"
#include "EasyTransfer2.h"
//RobotControl::RobotControl(){}
RobotControl::RobotControl():Arduino_LCD(LCD_CS,DC_LCD,RST_LCD){
}
void RobotControl::begin(){
Wire.begin();
//Compass
//nothing here
//TK sensors
uint8_t MuxPins[]={MUXA,MUXB,MUXC,MUXD};
Multiplexer::begin(MuxPins,MUX_IN,4);
//piezo
pinMode(BUZZ,OUTPUT);
//communication
Serial1.begin(9600);
messageOut.begin(&Serial1);
messageIn.begin(&Serial1);
//TFT initialization
//Arduino_LCD::initR(INITR_GREENTAB);
}
void RobotControl::setMode(uint8_t mode){
messageOut.writeByte(COMMAND_SWITCH_MODE);
messageOut.writeByte(mode);
messageOut.sendData();
}
RobotControl Robot=RobotControl();

View File

@ -0,0 +1,360 @@
#ifndef ArduinoRobot_h
#define ArduinoRobot_h
#include "Arduino_LCD.h" // Hardware-specific library
//#include "FormattedText.h"
#include "SquawkSD.h"
#include "Multiplexer.h"
#include "EasyTransfer2.h"
#include "EEPROM_I2C.h"
#include "Compass.h"
#include "Fat16.h"
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#define BUTTON_NONE -1
#define BUTTON_LEFT 0
#define BUTTON_DOWN 1
#define BUTTON_UP 2
#define BUTTON_RIGHT 3
#define BUTTON_MIDDLE 4
#define NUMBER_BUTTONS 5
//beep length
#define BEEP_SIMPLE 0
#define BEEP_DOUBLE 1
#define BEEP_LONG 2
// image locations on the EEPROM
#define HOME_BMP 0
#define BATTERY_BMP 2048
#define COMPASS_BMP 4096
#define CONTROL_BMP 6144
#define GEARS_BMP 8192
#define LIGHT_BMP 10240
#define OSCILLO_BMP 12288
#define VOLT_BMP 14336
#define INICIO_BMP 16384 // this is a full screen splash
//Command code
#define COMMAND_SWITCH_MODE 0
#define COMMAND_RUN 10
#define COMMAND_MOTORS_STOP 11
#define COMMAND_ANALOG_WRITE 20
#define COMMAND_DIGITAL_WRITE 30
#define COMMAND_ANALOG_READ 40
#define COMMAND_ANALOG_READ_RE 41
#define COMMAND_DIGITAL_READ 50
#define COMMAND_DIGITAL_READ_RE 51
#define COMMAND_READ_IR 60
#define COMMAND_READ_IR_RE 61
#define COMMAND_ACTION_DONE 70
#define COMMAND_READ_TRIM 80
#define COMMAND_READ_TRIM_RE 81
#define COMMAND_PAUSE_MODE 90
#define COMMAND_LINE_FOLLOW_CONFIG 100
//component codename
#define CN_LEFT_MOTOR 0
#define CN_RIGHT_MOTOR 1
#define CN_IR 2
//motor board modes
#define MODE_SIMPLE 0
#define MODE_LINE_FOLLOW 1
#define MODE_ADJUST_MOTOR 2
#define MODE_IR_CONTROL 3
//port types, for R/W
#define TYPE_TOP_TK 0
#define TYPE_TOP_TKD 1
#define TYPE_BOTTOM_TK 2
//top TKs
#define TK0 100
#define TK1 101
#define TK2 102
#define TK3 103
#define TK4 104
#define TK5 105
#define TK6 106
#define TK7 107
//bottom TKs, just for communication purpose
#define B_TK1 201
#define B_TK2 202
#define B_TK3 203
#define B_TK4 204
//bottom IRs, for communication purpose
#define B_IR0 210
#define B_IR1 211
#define B_IR2 212
#define B_IR3 213
#define B_IR4 214
#ifndef LED1
#define LED1 17
#endif
//320 - 337 username,
#define ADDRESS_USERNAME 320
//338 - 355 robotname,
#define ADDRESS_ROBOTNAME 338
//356 - 373 cityname,
#define ADDRESS_CITYNAME 356
//374- 391 countryname,
#define ADDRESS_COUNTRYNAME 374
//508-511 robot info
#define ADDRESS_ROBOTINFO 508
#define BLACK ILI9163C_BLACK
#define BLUE ILI9163C_BLUE
#define RED ILI9163C_RED
#define GREEN ILI9163C_GREEN
#define CYAN ILI9163C_CYAN
#define MAGENTA ILI9163C_MAGENTA
#define YELLOW ILI9163C_YELLOW
#define WHITE ILI9163C_WHITE
//A data structure for storing the current state of motor board
struct MOTOR_BOARD_DATA{
int _B_TK1;
int _B_TK2;
int _B_TK3;
int _B_TK4;
/*int _B_IR0;
int _B_IR1;
int _B_IR2;
int _B_IR3;
int _B_IR4;*/
};
/*
A message structure will be:
switch mode:
byte COMMAND_SWITCH_MODE, byte mode
run:
byte COMMAND_RUN, int speedL, int speedR
analogWrite:
byte COMMAND_ANALOG_WRITE, byte codename, byte value;
digitalWrite:
byte COMMAND_DIGITAL_WRITE, byte codename, byte value;
analogRead:
byte COMMAND_ANALOG_READ, byte codename;
analogRead return:
byte COMMAND_ANALOG_READ_RE, byte codename, int value;
digitalRead return:
byte COMMAND_DIGITAL_READ_RE, byte codename, byte value;
read IR:
byte COMMAND_READ_IR, int valueA, int valueB, int valueC, int valueD;
*/
#define NUM_EEPROM_BMP 10
struct EEPROM_BMP{
char name[8];
uint8_t width;
uint8_t height;
uint16_t address;
};
//if you call #undef USE_SQUAWK_SYNTH_SD at the beginning of your sketch,
//it's going to remove anything regarding sound playing
class RobotControl:public Multiplexer,
public EEPROM_I2C,
public Compass,
public SquawkSynthSD,
//public FormattedText
public Arduino_LCD
{
public:
RobotControl();
void begin();
void setMode(uint8_t mode);
//Read & Write, TK0 - TK7, TKD0 - TKD1, bottom TK0 - TK4
bool digitalRead(uint8_t port);
int analogRead(uint8_t port);
void digitalWrite(uint8_t port, bool value);
void analogWrite(uint8_t port, uint8_t value);//It's not available, as there's no pin can be used for analog write
//IR sensors from the bottom board
//define an array as "int arr[4];", and supply the arry name here
uint16_t IRarray[5];
void updateIR();
//on board Potentiometor
int knobRead();
//Potentiometor of the motor board
int trimRead();
//on board piezo
void beginSpeaker(uint16_t frequency=44100);
void playMelody(char* script);
void playFile(char* filename);
void stopPlayFile();
void beep(int beep_length=BEEP_SIMPLE);
void tempoWrite(int tempo);
void tuneWrite(float tune);
//compass
uint16_t compassRead();
void drawCompass(uint16_t value);
void drawBase();
void drawDire(int16_t dire);
//keyboard
void keyboardCalibrate(int *vals);
int8_t keyboardRead();//return the key that is being pressed?Has been pressed(with _processKeyboard)?
//movement
void moveForward(int speed);
void moveBackward(int speed);
void turnLeft(int speed);
void turnRight(int speed);
void motorsStop();
void motorsWritePct(int speedLeftPct, int speedRightPct);
void motorsWrite(int speedLeft,int speedRight);
void pointTo(int degrees);//turn to an absolute angle from the compass
void turn(int degress);//turn certain degrees from the current heading
//Line Following
void lineFollowConfig(uint8_t KP, uint8_t KD, uint8_t robotSpeed, uint8_t intergrationTime);//default 11 5 50 10
//TFT LCD
//use the same commands as Arduino_LCD
void beginTFT(uint16_t foreGround=BLACK, uint16_t background=WHITE);
/*void text(int value, uint8_t posX, uint8_t posY, bool EW);
void text(long value, uint8_t posX, uint8_t posY, bool EW);
void text(char* value, uint8_t posX, uint8_t posY, bool EW);
void text(char value, uint8_t posX, uint8_t posY, bool EW);*/
void debugPrint(long value, uint8_t x=0, uint8_t y=0);
void clearScreen();
void drawBMP(char* filename, uint8_t x, uint8_t y);//detect if draw with EEPROM or SD, and draw it
void _drawBMP(uint32_t iconOffset, uint8_t x, uint8_t y, uint8_t width, uint8_t height);//draw from EEPROM
void _drawBMP(char* filename, uint8_t x, uint8_t y);//draw from SD
void beginBMPFromEEPROM();
void endBMPFromEEPROM();
uint16_t foreGround;//foreground color
uint16_t backGround;//background color
//SD card
void beginSD();
//Information
void userNameRead(char* container);
void robotNameRead(char* container);
void cityNameRead(char* container);
void countryNameRead(char* container);
void userNameWrite(char* text);
void robotNameWrite(char* text);
void cityNameWrite(char* text);
void countryNameWrite(char* text);
//Others
bool isActionDone();
void pauseMode(uint8_t onOff);
void displayLogos();
void waitContinue(uint8_t key=BUTTON_MIDDLE);
private:
//Read & Write
uint8_t _getTypeCode(uint8_t port);//different ports need different actions
uint8_t _portToTopMux(uint8_t port);//get the number for multiplexer within top TKs
uint8_t _topDPortToAPort(uint8_t port);//get the corrensponding analogIn pin for top TKDs
bool _digitalReadTopMux(uint8_t port);//TK0 - TK7
int _analogReadTopMux(uint8_t port);
bool _digitalReadTopPin(uint8_t port);
int _analogReadTopPin(uint8_t port);
void _digitalWriteTopPin(uint8_t port, bool value);
MOTOR_BOARD_DATA motorBoardData;
int* parseMBDPort(uint8_t port);
int get_motorBoardData(uint8_t port);
void set_motorBoardData(uint8_t port, int value);
bool _requestDigitalRead(uint8_t port);
int _requestAnalogRead(uint8_t port);
void _requestDigitalWrite(uint8_t port, uint8_t value);
//LCD
void _enableLCD();
void _setWrite(uint8_t posX, uint8_t posY);
void _setErase(uint8_t posX, uint8_t posY);
//SD
SdCard card;
Fat16 file;
Fat16 melody;
void _enableSD();
//keyboard
void _processKeyboard(); //need to run in loop, detect if the key is actually pressed
int averageAnalogInput(int pinNum);
//Ultrasonic ranger
//uint8_t pinTrigger_UR;
//uint8_t pinEcho_UR;
//Melody
void playNote(byte period, word length, char modifier);
//Communication
EasyTransfer2 messageOut;
EasyTransfer2 messageIn;
//TFT LCD
bool _isEEPROM_BMP_Allocated;
EEPROM_BMP * _eeprom_bmp;
void _drawBMP_EEPROM(uint16_t address, uint8_t width, uint8_t height);
void _drawBMP_SD(char* filename, uint8_t x, uint8_t y);
};
inline void RobotControl::userNameRead(char* container){
EEPROM_I2C::readBuffer(ADDRESS_USERNAME,(uint8_t*)container,18);
}
inline void RobotControl::robotNameRead(char* container){
EEPROM_I2C::readBuffer(ADDRESS_ROBOTNAME,(uint8_t*)container,18);
}
inline void RobotControl::cityNameRead(char* container){
EEPROM_I2C::readBuffer(ADDRESS_CITYNAME,(uint8_t*)container,18);
}
inline void RobotControl::countryNameRead(char* container){
EEPROM_I2C::readBuffer(ADDRESS_COUNTRYNAME,(uint8_t*)container,18);
}
inline void RobotControl::userNameWrite(char* text){
EEPROM_I2C::writePage(ADDRESS_USERNAME,(uint8_t*)text,18);
}
inline void RobotControl::robotNameWrite(char* text){
EEPROM_I2C::writePage(ADDRESS_ROBOTNAME,(uint8_t*)text,18);
}
inline void RobotControl::cityNameWrite(char* text){
EEPROM_I2C::writePage(ADDRESS_CITYNAME,(uint8_t*)text,18);
}
inline void RobotControl::countryNameWrite(char* text){
EEPROM_I2C::writePage(ADDRESS_COUNTRYNAME,(uint8_t*)text,18);
}
extern RobotControl Robot;
#endif

View File

@ -0,0 +1,706 @@
/***************************************************
This is a library for the Adafruit 1.8" SPI display.
This library works with the Adafruit 1.8" TFT Breakout w/SD card
----> http://www.adafruit.com/products/358
as well as Adafruit raw 1.8" TFT display
----> http://www.adafruit.com/products/618
Check out the links above for our tutorials and wiring diagrams
These displays use SPI to communicate, 4 or 5 pins are required to
interface (RST is optional)
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
MIT license, all text above must be included in any redistribution
****************************************************/
#include "Arduino_LCD.h"
//#include <avr/pgmspace.h>
#include <limits.h>
//#include "pins_arduino.h"
#include "wiring_private.h"
#include <SPI.h>
// Constructor when using software SPI. All output pins are configurable.
Arduino_LCD::Arduino_LCD(uint8_t cs, uint8_t rs, uint8_t sid,
uint8_t sclk, uint8_t rst) {
_cs = cs;
_rs = rs;
_sid = sid;
_sclk = sclk;
_rst = rst;
hwSPI = false;
}
// Constructor when using hardware SPI. Faster, but must use SPI pins
// specific to each board type (e.g. 11,13 for Uno, 51,52 for Mega, etc.)
Arduino_LCD::Arduino_LCD(uint8_t cs, uint8_t rs, uint8_t rst) {
_cs = cs;
_rs = rs;
_rst = rst;
hwSPI = true;
_sid = _sclk = 0;
}
inline void Arduino_LCD::spiwrite(uint8_t c) {
//Serial.println(c, HEX);
/* if (hwSPI) {
SPDR = c;
while(!(SPSR & _BV(SPIF)));
} else {
// Fast SPI bitbang swiped from LPD8806 library
for(uint8_t bit = 0x80; bit; bit >>= 1) {
if(c & bit) *dataport |= datapinmask;
else *dataport &= ~datapinmask;
*clkport |= clkpinmask;
*clkport &= ~clkpinmask;
}
}
*/
SPI.transfer(c);
}
void Arduino_LCD::writecommand(uint8_t c) {
// *rsport &= ~rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, LOW);
digitalWrite(_cs, LOW);
//Serial.print("C ");
spiwrite(c);
//SPI.transfer(c);
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
void Arduino_LCD::writedata(uint8_t c) {
// *rsport &= ~rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, HIGH);
digitalWrite(_cs, LOW);
//Serial.print("D ");
spiwrite(c);
//SPI.transfer(c);
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
// Rather than a bazillion writecommand() and writedata() calls, screen
// initialization commands and arguments are organized in these tables
// stored in PROGMEM. The table may look bulky, but that's mostly the
// formatting -- storage-wise this is hundreds of bytes more compact
// than the equivalent code. Companion function follows.
#define DELAY 0x80
//PROGMEM static prog_uchar
/*uint8_t
Bcmd[] = { // Initialization commands for 7735B screens
18, // 18 commands in list:
ILI9163C_SWRESET, DELAY, // 1: Software reset, no args, w/delay
50, // 50 ms delay
ILI9163C_SLPOUT , DELAY, // 2: Out of sleep mode, no args, w/delay
255, // 255 = 500 ms delay
ILI9163C_COLMOD , 1+DELAY, // 3: Set color mode, 1 arg + delay: // I THINK THERE WAS SOMETHING HERE BECAUSE THE COMMAND IS CALLED 3A on Adafruits
0x05, // 16-bit color
10, // 10 ms delay
ILI9163C_FRMCTR1, 3+DELAY, // 4: Frame rate control, 3 args + delay:
0x00, // fastest refresh
0x06, // 6 lines front porch
0x03, // 3 lines back porch
10, // 10 ms delay
ILI9163C_MADCTL , 1 , // 5: Memory access ctrl (directions), 1 arg:
0x08, // Row addr/col addr, bottom to top refresh
ILI9163C_DISSET5, 2 , // 6: Display settings #5, 2 args, no delay:
0x15, // 1 clk cycle nonoverlap, 2 cycle gate
// rise, 3 cycle osc equalize
0x02, // Fix on VTL
ILI9163C_INVCTR , 1 , // 7: Display inversion control, 1 arg:
0x0, // Line inversion
ILI9163C_PWCTR1 , 2+DELAY, // 8: Power control, 2 args + delay:
0x02, // GVDD = 4.7V
0x70, // 1.0uA
10, // 10 ms delay
ILI9163C_PWCTR2 , 1 , // 9: Power control, 1 arg, no delay:
0x05, // VGH = 14.7V, VGL = -7.35V
ILI9163C_PWCTR3 , 2 , // 10: Power control, 2 args, no delay:
0x01, // Opamp current small
0x02, // Boost frequency
ILI9163C_VMCTR1 , 2+DELAY, // 11: Power control, 2 args + delay:
0x3C, // VCOMH = 4V
0x38, // VCOML = -1.1V
10, // 10 ms delay
ILI9163C_PWCTR6 , 2 , // 12: Power control, 2 args, no delay:
0x11, 0x15,
ILI9163C_GMCTRP1,16 , // 13: Magical unicorn dust, 16 args, no delay:
0x09, 0x16, 0x09, 0x20, // (seriously though, not sure what
0x21, 0x1B, 0x13, 0x19, // these config values represent)
0x17, 0x15, 0x1E, 0x2B,
0x04, 0x05, 0x02, 0x0E,
ILI9163C_GMCTRN1,16+DELAY, // 14: Sparkles and rainbows, 16 args + delay:
0x0B, 0x14, 0x08, 0x1E, // (ditto)
0x22, 0x1D, 0x18, 0x1E,
0x1B, 0x1A, 0x24, 0x2B,
0x06, 0x06, 0x02, 0x0F,
10, // 10 ms delay
ILI9163C_CASET , 4 , // 15: Column addr set, 4 args, no delay:
0x00, 0x02, // XSTART = 2
0x00, 0x81, // XEND = 129
ILI9163C_RASET , 4 , // 16: Row addr set, 4 args, no delay:
0x00, 0x02, // XSTART = 1
0x00, 0x81, // XEND = 160
ILI9163C_NORON , DELAY, // 17: Normal display on, no args, w/delay
10, // 10 ms delay
ILI9163C_DISPON , DELAY, // 18: Main screen turn on, no args, w/delay
255 }, // 255 = 500 ms delay
*/
uint8_t
Bcmd[] = { // Initialization commands for 7735B screens
19, // 19 commands in list:
ILI9163C_SWRESET, DELAY, // 1: Software reset, no args, w/delay
50, // 50 ms delay
0x11 , DELAY, // 2: Out of sleep mode, no args, w/delay
100, // 255 = 500 ms delay
0x26 , 1, // 3: Set default gamma
0x04, // 16-bit color
0xb1, 2, // 4: Frame Rate
0x0b,
0x14,
0xc0, 2, // 5: VRH1[4:0] & VC[2:0]
0x08,
0x00,
0xc1, 1, // 6: BT[2:0]
0x05,
0xc5, 2, // 7: VMH[6:0] & VML[6:0]
0x41,
0x30,
0xc7, 1, // 8: LCD Driving control
0xc1,
0xEC, 1, // 9: Set pumping color freq
0x1b,
0x3a , 1 + DELAY, // 10: Set color format
0x55, // 16-bit color
100,
0x2a, 4, // 11: Set Column Address
0x00,
0x00,
0x00,
0x7f,
0x2b, 4, // 12: Set Page Address
0x00,
0x00,
0x00,
0x9f,
0x36, 1, // 12+1: Set Scanning Direction
0xc8,
0xb7, 1, // 14: Set Source Output Direciton
0x00,
0xf2, 1, // 15: Enable Gamma bit
0x01,
0xe0, 15 + DELAY, // 16: magic
0x28, 0x24, 0x22, 0x31,
0x2b, 0x0e, 0x53, 0xa5,
0x42, 0x16, 0x18, 0x12,
0x1a, 0x14, 0x03,
50,
0xe1, 15 + DELAY, // 17: more magic
0x17, 0x1b, 0x1d, 0x0e,
0x14, 0x11, 0x2c, 0xa5,
0x3d, 0x09, 0x27, 0x2d,
0x25, 0x2b, 0x3c,
50,
ILI9163C_NORON , DELAY, // 18: Normal display on, no args, w/delay
10, // 10 ms delay
ILI9163C_DISPON , DELAY, // 19: Main screen turn on, no args w/delay
100 }, // 100 ms delay
Rcmd1[] = { // Init for 7735R, part 1 (red or green tab)
15, // 15 commands in list:
ILI9163C_SWRESET, DELAY, // 1: Software reset, 0 args, w/delay
150, // 150 ms delay
ILI9163C_SLPOUT , DELAY, // 2: Out of sleep mode, 0 args, w/delay
255, // 500 ms delay
ILI9163C_FRMCTR1, 3 , // 3: Frame rate ctrl - normal mode, 3 args:
0x01, 0x2C, 0x2D, // Rate = fosc/(1x2+40) * (LINE+2C+2D)
ILI9163C_FRMCTR2, 3 , // 4: Frame rate control - idle mode, 3 args:
0x01, 0x2C, 0x2D, // Rate = fosc/(1x2+40) * (LINE+2C+2D)
ILI9163C_FRMCTR3, 6 , // 5: Frame rate ctrl - partial mode, 6 args:
0x01, 0x2C, 0x2D, // Dot inversion mode
0x01, 0x2C, 0x2D, // Line inversion mode
ILI9163C_INVCTR , 1 , // 6: Display inversion ctrl, 1 arg, no delay:
0x07, // No inversion
ILI9163C_PWCTR1 , 3 , // 7: Power control, 3 args, no delay:
0xA2,
0x02, // -4.6V
0x84, // AUTO mode
ILI9163C_PWCTR2 , 1 , // 8: Power control, 1 arg, no delay:
0xC5, // VGH25 = 2.4C VGSEL = -10 VGH = 3 * AVDD
ILI9163C_PWCTR3 , 2 , // 9: Power control, 2 args, no delay:
0x0A, // Opamp current small
0x00, // Boost frequency
ILI9163C_PWCTR4 , 2 , // 10: Power control, 2 args, no delay:
0x8A, // BCLK/2, Opamp current small & Medium low
0x2A,
ILI9163C_PWCTR5 , 2 , // 11: Power control, 2 args, no delay:
0x8A, 0xEE,
ILI9163C_VMCTR1 , 1 , // 12: Power control, 1 arg, no delay:
0x0E,
ILI9163C_INVOFF , 0 , // 13: Don't invert display, no args, no delay
ILI9163C_MADCTL , 1 , // 14: Memory access control (directions), 1 arg:
0xC8, // row addr/col addr, bottom to top refresh
ILI9163C_COLMOD , 1 , // 15: set color mode, 1 arg, no delay:
0x05 }, // 16-bit color
Rcmd2green[] = { // Init for 7735R, part 2 (green tab only)
2, // 2 commands in list:
ILI9163C_CASET , 4 , // 1: Column addr set, 4 args, no delay:
0x00, 0x02, // XSTART = 0
0x00, 0x7F+0x02, // XEND = 127
ILI9163C_RASET , 4 , // 2: Row addr set, 4 args, no delay:
0x00, 0x01, // XSTART = 0
0x00, 0x9F+0x01 }, // XEND = 159
Rcmd2red[] = { // Init for 7735R, part 2 (red tab only)
2, // 2 commands in list:
ILI9163C_CASET , 4 , // 1: Column addr set, 4 args, no delay:
0x00, 0x00, // XSTART = 0
0x00, 0x7F, // XEND = 127
ILI9163C_RASET , 4 , // 2: Row addr set, 4 args, no delay:
0x00, 0x00, // XSTART = 0
0x00, 0x9F }, // XEND = 159
Rcmd3[] = { // Init for 7735R, part 3 (red or green tab)
4, // 4 commands in list:
ILI9163C_GMCTRP1, 16 , // 1: Magical unicorn dust, 16 args, no delay:
0x02, 0x1c, 0x07, 0x12,
0x37, 0x32, 0x29, 0x2d,
0x29, 0x25, 0x2B, 0x39,
0x00, 0x01, 0x03, 0x10,
ILI9163C_GMCTRN1, 16 , // 2: Sparkles and rainbows, 16 args, no delay:
0x03, 0x1d, 0x07, 0x06,
0x2E, 0x2C, 0x29, 0x2D,
0x2E, 0x2E, 0x37, 0x3F,
0x00, 0x00, 0x02, 0x10,
ILI9163C_NORON , DELAY, // 3: Normal display on, no args, w/delay
10, // 10 ms delay
ILI9163C_DISPON , DELAY, // 4: Main screen turn on, no args w/delay
100 }; // 100 ms delay
// Companion code to the above tables. Reads and issues
// a series of LCD commands stored in PROGMEM byte array.
//void Arduino_LCD::commandList(prog_uchar *addr) {
void Arduino_LCD::commandList(uint8_t *addr) {
uint8_t numCommands, numArgs;
uint16_t ms;
numCommands = *addr++; // Number of commands to follow
while(numCommands--) { // For each command...
writecommand(*addr++); // Read, issue command
numArgs = *addr++; // Number of args to follow
ms = numArgs & DELAY; // If hibit set, delay follows args
numArgs &= ~DELAY; // Mask out delay bit
while(numArgs--) { // For each argument...
writedata(*addr++); // Read, issue argument
}
if(ms) {
ms = *addr++; // Read post-command delay time (ms)
if(ms == 255) ms = 500; // If 255, delay for 500 ms
delay(ms);
}
}
}
// Initialization code common to both 'B' and 'R' type displays
//void Arduino_LCD::commonInit(prog_uchar *cmdList) {
void Arduino_LCD::commonInit(uint8_t *cmdList) {
constructor(ILI9163C_TFTWIDTH, ILI9163C_TFTHEIGHT);
colstart = rowstart = 0; // May be overridden in init func
pinMode(_rs, OUTPUT);
pinMode(_cs, OUTPUT);
/*
csport = portOutputRegister(digitalPinToPort(_cs));
cspinmask = digitalPinToBitMask(_cs);
rsport = portOutputRegister(digitalPinToPort(_rs));
rspinmask = digitalPinToBitMask(_rs);
*/
// if(hwSPI) { // Using hardware SPI
SPI.begin();
SPI.setClockDivider(21); // 4 MHz (half speed)
// SPI.setClockDivider(SPI_CLOCK_DIV4); // 4 MHz (half speed)
// SPI.setBitOrder(MSBFIRST);
// there is no setBitOrder on the SPI library for the Due
SPI.setDataMode(SPI_MODE0);
/*
} else {
pinMode(_sclk, OUTPUT);
pinMode(_sid , OUTPUT);
clkport = portOutputRegister(digitalPinToPort(_sclk));
clkpinmask = digitalPinToBitMask(_sclk);
dataport = portOutputRegister(digitalPinToPort(_sid));
datapinmask = digitalPinToBitMask(_sid);
*clkport &= ~clkpinmask;
*dataport &= ~datapinmask;
}
*/
// toggle RST low to reset; CS low so it'll listen to us
// *csport &= ~cspinmask;
digitalWrite(_cs, LOW);
if (_rst) {
pinMode(_rst, OUTPUT);
digitalWrite(_rst, HIGH);
delay(500);
digitalWrite(_rst, LOW);
delay(500);
digitalWrite(_rst, HIGH);
delay(500);
}
if(cmdList) commandList(cmdList);
}
// Initialization for ST7735B screens
void Arduino_LCD::initB(void) {
commonInit(Bcmd);
commandList(Rcmd3);
}
// Initialization for ST7735R screens (green or red tabs)
void Arduino_LCD::initR(uint8_t options) {
commonInit(Rcmd1);
if(options == INITR_GREENTAB) {
commandList(Rcmd2green);
colstart = 2;
rowstart = 1;
} else {
// colstart, rowstart left at default '0' values
commandList(Rcmd2red);
}
commandList(Rcmd3);
}
void Arduino_LCD::setAddrWindow(uint8_t x0, uint8_t y0, uint8_t x1,
uint8_t y1) {
writecommand(ILI9163C_CASET); // Column addr set
writedata(0x00);
writedata(x0+colstart); // XSTART
writedata(0x00);
writedata(x1+colstart); // XEND
writecommand(ILI9163C_RASET); // Row addr set
writedata(0x00);
writedata(y0+rowstart); // YSTART
writedata(0x00);
writedata(y1+rowstart); // YEND
writecommand(ILI9163C_RAMWR); // write to RAM
}
void Arduino_LCD::fillScreen(uint16_t color) {
uint8_t x, y, hi = color >> 8, lo = color;
setAddrWindow(0, 0, _width-1, _height-1);
// *rsport |= rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, HIGH);
digitalWrite(_cs, LOW);
for(y=_height; y>0; y--) {
for(x=_width; x>0; x--) {
//SPI.transfer(hi);
//SPI.transfer(lo);
spiwrite(hi);
spiwrite(lo);
}
}
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
void Arduino_LCD::pushColor(uint16_t color) {
// *rsport |= rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, HIGH);
digitalWrite(_cs, LOW);
spiwrite(color >> 8);
spiwrite(color);
//SPI.transfer(color>>8);
//SPI.transfer(color);
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
void Arduino_LCD::drawPixel(int16_t x, int16_t y, uint16_t color) {
if((x < 0) ||(x >= _width) || (y < 0) || (y >= _height)) return;
setAddrWindow(x,y,x+1,y+1);
// *rsport |= rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, HIGH);
digitalWrite(_cs, LOW);
spiwrite(color >> 8);
spiwrite(color);
//SPI.transfer(color>>8);
//SPI.transfer(color);
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
void Arduino_LCD::drawFastVLine(int16_t x, int16_t y, int16_t h,
uint16_t color) {
// Rudimentary clipping
if((x >= _width) || (y >= _height)) return;
if((y+h-1) >= _height) h = _height-y;
setAddrWindow(x, y, x, y+h-1);
uint8_t hi = color >> 8, lo = color;
// *rsport |= rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, HIGH);
digitalWrite(_cs, LOW);
while (h--) {
spiwrite(hi);
spiwrite(lo);
//SPI.transfer(hi);
//SPI.transfer(lo);
}
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
void Arduino_LCD::drawFastHLine(int16_t x, int16_t y, int16_t w,
uint16_t color) {
// Rudimentary clipping
if((x >= _width) || (y >= _height)) return;
if((x+w-1) >= _width) w = _width-x;
setAddrWindow(x, y, x+w-1, y);
uint8_t hi = color >> 8, lo = color;
// *rsport |= rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, HIGH);
digitalWrite(_cs, LOW);
while (w--) {
spiwrite(hi);
spiwrite(lo);
//SPI.transfer(hi);
//SPI.transfer(lo);
}
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
// fill a rectangle
void Arduino_LCD::fillRect(int16_t x, int16_t y, int16_t w, int16_t h,
uint16_t color) {
// rudimentary clipping (drawChar w/big text requires this)
if((x >= _width) || (y >= _height)) return;
if((x + w - 1) >= _width) w = _width - x;
if((y + h - 1) >= _height) h = _height - y;
setAddrWindow(x, y, x+w-1, y+h-1);
uint8_t hi = color >> 8, lo = color;
// *rsport |= rspinmask;
// *csport &= ~cspinmask;
digitalWrite(_rs, HIGH);
digitalWrite(_cs, LOW);
for(y=h; y>0; y--) {
for(x=w; x>0; x--) {
spiwrite(hi);
spiwrite(lo);
//SPI.transfer(hi);
//SPI.transfer(lo);
}
}
// *csport |= cspinmask;
digitalWrite(_cs, HIGH);
}
// Pass 8-bit (each) R,G,B, get back 16-bit packed color
uint16_t Arduino_LCD::Color565(uint8_t r, uint8_t g, uint8_t b) {
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
}
#define MADCTL_MY 0x80
#define MADCTL_MX 0x40
#define MADCTL_MV 0x20
#define MADCTL_ML 0x10
#define MADCTL_RGB 0x08
#define MADCTL_MH 0x04
void Arduino_LCD::setRotation(uint8_t m) {
writecommand(ILI9163C_MADCTL);
rotation = m % 4; // can't be higher than 3
switch (rotation) {
case 0:
writedata(MADCTL_MX | MADCTL_MY | MADCTL_RGB);
_width = ILI9163C_TFTWIDTH;
_height = ILI9163C_TFTHEIGHT;
break;
case 1:
writedata(MADCTL_MY | MADCTL_MV | MADCTL_RGB);
_width = ILI9163C_TFTHEIGHT;
_height = ILI9163C_TFTWIDTH;
break;
case 2:
writedata(MADCTL_RGB);
_width = ILI9163C_TFTWIDTH;
_height = ILI9163C_TFTHEIGHT;
break;
case 3:
writedata(MADCTL_MX | MADCTL_MV | MADCTL_RGB);
_width = ILI9163C_TFTHEIGHT;
_height = ILI9163C_TFTWIDTH;
break;
}
}
void Arduino_LCD::invertDisplay(boolean i) {
writecommand(i ? ILI9163C_INVON : ILI9163C_INVOFF);
}
/*
18, // there are 17 commands
ILI9163C_SWRESET, DELAY, // 1: Software reset, no args, w/delay
50, // 50 ms delay
0x11, //Exit Sleep
DELAY,50,
0x26, //Set Default Gamma
0x104,
//0xF2, //E0h & E1h Enable/Disable
//0x100,
0xB1,
0x10C,
0x114,
0xC0, //Set VRH1[4:0] & VC[2:0] for VCI1 & GVDD
0x10C,
0x105,
0xC1, //Set BT[2:0] for AVDD & VCL & VGH & VGL
0x102,
0xC5, //Set VMH[6:0] & VML[6:0] for VOMH & VCOML
0x129,
0x143,
0xC7,
0x140,
0x3a, //Set Color Format
0x105,
0x2A, //Set Column Address
0x100,
0x100,
0x100,
0x17F,
0x2B, //Set Page Address
0x100,
0x100,
0x100,
0x19F,
0x36, //Set Scanning Direction, RGB
0x1C0,
0xB7, //Set Source Output Direction
0x100,
0xf2, //Enable Gamma bit
0x101,
0xE0,
0x136,//p1
0x129,//p2
0x112,//p3
0x122,//p4
0x11C,//p5
0x115,//p6
0x142,//p7
0x1B7,//p8
0x12F,//p9
0x113,//p10
0x112,//p11
0x10A,//p12
0x111,//p13
0x10B,//p14
0x106,//p15
0xE1,
0x109,//p1
0x116,//p2
0x12D,//p3
0x10D,//p4
0x113,//p5
0x115,//p6
0x140,//p7
0x148,//p8
0x153,//p9
0x10C,//p10
0x11D,//p11
0x125,//p12
0x12E,//p13
0x134,//p14
0x139,//p15
0x33, // scroll setup
0x100,
0x100,
0x100,
0x1C1,
0x100,
0x100,
0x29, // Display On
0x2C}, // write gram
*/

View File

@ -0,0 +1,141 @@
/***************************************************
This is a library for the Adafruit 1.8" SPI display.
This library works with the Adafruit 1.8" TFT Breakout w/SD card
----> http://www.adafruit.com/products/358
as well as Adafruit raw 1.8" TFT display
----> http://www.adafruit.com/products/618
Check out the links above for our tutorials and wiring diagrams
These displays use SPI to communicate, 4 or 5 pins are required to
interface (RST is optional)
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
MIT license, all text above must be included in any redistribution
****************************************************/
#ifndef _ARDUINO_LCDH_
#define _ARDUINO_LCDH_
#if ARDUINO >= 100
#include "Arduino.h"
#include "Print.h"
#else
#include "WProgram.h"
#endif
#include "Adafruit_GFX.h"
//#include <avr/pgmspace.h>
// some flags for initR() :(
#define INITR_GREENTAB 0x0
#define INITR_REDTAB 0x1
#define ILI9163C_TFTWIDTH 128
#define ILI9163C_TFTHEIGHT 160
#define ILI9163C_NOP 0x00
#define ILI9163C_SWRESET 0x01
#define ILI9163C_RDDID 0x04
#define ILI9163C_RDDST 0x09
#define ILI9163C_SLPIN 0x10
#define ILI9163C_SLPOUT 0x11
#define ILI9163C_PTLON 0x12
#define ILI9163C_NORON 0x13
#define ILI9163C_INVOFF 0x20
#define ILI9163C_INVON 0x21
#define ILI9163C_DISPOFF 0x28
#define ILI9163C_DISPON 0x29
#define ILI9163C_CASET 0x2A
#define ILI9163C_RASET 0x2B
#define ILI9163C_RAMWR 0x2C
#define ILI9163C_RAMRD 0x2E
#define ILI9163C_PTLAR 0x30
#define ILI9163C_COLMOD 0x3A // this is interface pixel format, this might be the issue
#define ILI9163C_MADCTL 0x36
#define ILI9163C_FRMCTR1 0xB1
#define ILI9163C_FRMCTR2 0xB2
#define ILI9163C_FRMCTR3 0xB3
#define ILI9163C_INVCTR 0xB4
#define ILI9163C_DISSET5 0xB6
#define ILI9163C_PWCTR1 0xC0
#define ILI9163C_PWCTR2 0xC1
#define ILI9163C_PWCTR3 0xC2
#define ILI9163C_PWCTR4 0xC3
#define ILI9163C_PWCTR5 0xC4
#define ILI9163C_VMCTR1 0xC5
#define ILI9163C_RDID1 0xDA
#define ILI9163C_RDID2 0xDB
#define ILI9163C_RDID3 0xDC
#define ILI9163C_RDID4 0xDD
#define ILI9163C_PWCTR6 0xFC
#define ILI9163C_GMCTRP1 0xE0
#define ILI9163C_GMCTRN1 0xE1
// Color definitions
#define ILI9163C_BLACK 0x0000
#define ILI9163C_BLUE 0x001F
#define ILI9163C_RED 0xF800
#define ILI9163C_GREEN 0x07E0
#define ILI9163C_CYAN 0x07FF
#define ILI9163C_MAGENTA 0xF81F
#define ILI9163C_YELLOW 0xFFE0
#define ILI9163C_WHITE 0xFFFF
class Arduino_LCD : public Adafruit_GFX {
public:
Arduino_LCD(uint8_t CS, uint8_t RS, uint8_t SID, uint8_t SCLK, uint8_t RST);
Arduino_LCD(uint8_t CS, uint8_t RS, uint8_t RST);
void initB(void), // for ST7735B displays
initR(uint8_t options = INITR_GREENTAB), // for ST7735R
setAddrWindow(uint8_t x0, uint8_t y0, uint8_t x1, uint8_t y1),
pushColor(uint16_t color),
fillScreen(uint16_t color),
drawPixel(int16_t x, int16_t y, uint16_t color),
drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color),
drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color),
fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint16_t color),
setRotation(uint8_t r),
invertDisplay(boolean i);
uint16_t Color565(uint8_t r, uint8_t g, uint8_t b);
/* These are not for current use, 8-bit protocol only!
uint8_t readdata(void),
readcommand8(uint8_t);
uint16_t readcommand16(uint8_t);
uint32_t readcommand32(uint8_t);
void dummyclock(void);
*/
private:
void spiwrite(uint8_t),
writecommand(uint8_t c),
writedata(uint8_t d),
// commandList(prog_uchar *addr),
// commonInit(prog_uchar *cmdList);
commandList(uint8_t *addr),
commonInit(uint8_t *cmdList);
//uint8_t spiread(void);
boolean hwSPI;
volatile uint8_t *dataport, *clkport, *csport, *rsport;
uint8_t _cs, _rs, _rst, _sid, _sclk,
datapinmask, clkpinmask, cspinmask, rspinmask,
colstart, rowstart; // some displays need this changed
};
#endif

View File

@ -0,0 +1,34 @@
#include "Compass.h"
#include <Wire.h>
void Compass::begin(){
Wire.begin();
}
float Compass::getReading(){
_beginTransmission();
_endTransmission();
//time delays required by HMC6352 upon receipt of the command
//Get Data. Compensate and Calculate New Heading : 6ms
delay(6);
Wire.requestFrom(HMC6352SlaveAddress, 2); //get the two data bytes, MSB and LSB
//"The heading output data will be the value in tenths of degrees
//from zero to 3599 and provided in binary format over the two bytes."
byte MSB = Wire.read();
byte LSB = Wire.read();
float headingSum = (MSB << 8) + LSB; //(MSB / LSB sum)
float headingInt = headingSum / 10;
return headingInt;
}
void Compass::_beginTransmission(){
Wire.beginTransmission(HMC6352SlaveAddress);
Wire.write(HMC6352ReadAddress);
}
void Compass::_endTransmission(){
Wire.endTransmission();
}

View File

@ -0,0 +1,24 @@
#ifndef Compass_h
#define Compass_h
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
//0x21==0x42>>1, from bildr's code
#define HMC6352SlaveAddress 0x21
#define HMC6352ReadAddress 0x41
class Compass{
public:
void begin();
float getReading();
private:
void _beginTransmission();
void _endTransmission();
};
#endif

View File

@ -0,0 +1,62 @@
#include "EEPROM_I2C.h"
#include <Wire.h>
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
void EEPROM_I2C::begin(){
Wire.begin();
}
void EEPROM_I2C::writeByte(unsigned int eeaddress, byte data){
int rdata = data;
this->_beginTransmission(eeaddress);
Wire.write(rdata);
this->_endTransmission();
}
byte EEPROM_I2C::readByte(unsigned int eeaddress){
int rdata;
this->_beginTransmission(eeaddress);
this->_endTransmission();
Wire.requestFrom(DEVICEADDRESS,1);
if (Wire.available()) rdata = Wire.read();
return rdata;
}
void EEPROM_I2C::writePage(unsigned int eeaddress, byte* data, byte length ){
this->_beginTransmission(eeaddress);
byte c;
for ( c = 0; c < length; c++)
Wire.write(data[c]);
this->_endTransmission();
delay(10); // need some delay
}
void EEPROM_I2C::readBuffer(unsigned int eeaddress, byte *buffer, int length ){
this->_beginTransmission(eeaddress);
this->_endTransmission();
Wire.requestFrom(DEVICEADDRESS,length);
for ( int c = 0; c < length; c++ )
if (Wire.available()) buffer[c] = Wire.read();
}
void EEPROM_I2C::_beginTransmission(unsigned int eeaddress){
Wire.beginTransmission(DEVICEADDRESS);
Wire.write((eeaddress >> 8)); // Address High Byte
Wire.write((eeaddress & 0xFF)); // Address Low Byte
}
void EEPROM_I2C::_endTransmission(){
Wire.endTransmission();
}

View File

@ -0,0 +1,31 @@
#ifndef EEPROM_I2C_h
#define EEPROM_I2C_h
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#define EE24LC512MAXBYTES 64000
#define DEVICEADDRESS 0x50
class EEPROM_I2C{
public:
void begin();
void writeByte(unsigned int eeaddresspage, byte data);
byte readByte(unsigned int eeaddresspage);
void writePage(unsigned int eeaddresspage, byte* data, byte length );
void readBuffer(unsigned int eeaddress, byte *buffer, int length );
//uint16_t readPixel(uint16_t theMemoryAddress);
//void readImage(uint16_t theMemoryAddress, int width, int height);
protected:
void _beginTransmission(unsigned int eeaddress);
void _endTransmission();
};
#endif

View File

@ -0,0 +1,152 @@
#include "EasyTransfer2.h"
//Captures address and size of struct
void EasyTransfer2::begin(HardwareSerial *theSerial){
_serial = theSerial;
//dynamic creation of rx parsing buffer in RAM
//rx_buffer = (uint8_t*) malloc(size);
resetData();
}
void EasyTransfer2::writeByte(uint8_t dat){
if(position<20)
data[position++]=dat;
size++;
}
void EasyTransfer2::writeInt(int dat){
if(position<19){
data[position++]=dat>>8;
data[position++]=dat;
size+=2;
}
}
uint8_t EasyTransfer2::readByte(){
if(position>=size)return 0;
return data[position++];
}
int EasyTransfer2::readInt(){
if(position+1>=size)return 0;
int dat_1=data[position++]<<8;
int dat_2=data[position++];
int dat= dat_1 | dat_2;
return dat;
}
void EasyTransfer2::resetData(){
for(int i=0;i<20;i++){
data[i]=0;
}
size=0;
position=0;
}
//Sends out struct in binary, with header, length info and checksum
void EasyTransfer2::sendData(){
uint8_t CS = size;
_serial->write(0x06);
_serial->write(0x85);
_serial->write(size);
for(int i = 0; i<size; i++){
CS^=*(data+i);
_serial->write(*(data+i));
//Serial.print(*(data+i));
//Serial.print(",");
}
//Serial.println("");
_serial->write(CS);
resetData();
}
boolean EasyTransfer2::receiveData(){
//start off by looking for the header bytes. If they were already found in a previous call, skip it.
if(rx_len == 0){
//this size check may be redundant due to the size check below, but for now I'll leave it the way it is.
if(_serial->available() >= 3){
//this will block until a 0x06 is found or buffer size becomes less then 3.
while(_serial->read() != 0x06) {
//This will trash any preamble junk in the serial buffer
//but we need to make sure there is enough in the buffer to process while we trash the rest
//if the buffer becomes too empty, we will escape and try again on the next call
if(_serial->available() < 3)
return false;
}
//Serial.println("head");
if (_serial->read() == 0x85){
rx_len = _serial->read();
//Serial.print("rx_len:");
//Serial.println(rx_len);
resetData();
//make sure the binary structs on both Arduinos are the same size.
/*if(rx_len != size){
rx_len = 0;
return false;
}*/
}
}
//Serial.println("nothing");
}
//we get here if we already found the header bytes, the struct size matched what we know, and now we are byte aligned.
if(rx_len != 0){
while(_serial->available() && rx_array_inx <= rx_len){
data[rx_array_inx++] = _serial->read();
}
if(rx_len == (rx_array_inx-1)){
//seem to have got whole message
//last uint8_t is CS
calc_CS = rx_len;
//Serial.print("len:");
//Serial.println(rx_len);
for (int i = 0; i<rx_len; i++){
calc_CS^=data[i];
//Serial.print("m");
//Serial.print(data[i]);
//Serial.print(",");
}
//Serial.println();
//Serial.print(data[rx_array_inx-1]);
//Serial.print(" ");
//Serial.println(calc_CS);
if(calc_CS == data[rx_array_inx-1]){//CS good
//resetData();
//memcpy(data,d,rx_len);
for(int i=0;i<20;i++){
//Serial.print(data[i]);
//Serial.print(",");
}
//Serial.println("");
size=rx_len;
rx_len = 0;
rx_array_inx = 0;
return true;
}
else{
//Serial.println("CS");
resetData();
//failed checksum, need to clear this out anyway
rx_len = 0;
rx_array_inx = 0;
return false;
}
}
}
//Serial.print(rx_len);
//Serial.print(" ");
//Serial.print(rx_array_inx);
//Serial.print(" ");
//Serial.println("Short");
return false;
}

View File

@ -0,0 +1,76 @@
/******************************************************************
* EasyTransfer Arduino Library
* details and example sketch:
* http://www.billporter.info/easytransfer-arduino-library/
*
* Brought to you by:
* Bill Porter
* www.billporter.info
*
* See Readme for other info and version history
*
*
*This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
<http://www.gnu.org/licenses/>
*
*This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.
*To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or
*send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
******************************************************************/
#ifndef EasyTransfer2_h
#define EasyTransfer2_h
//make it a little prettier on the front end.
#define details(name) (byte*)&name,sizeof(name)
//Not neccessary, but just in case.
#if ARDUINO > 22
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "HardwareSerial.h"
//#include <NewSoftSerial.h>
#include <math.h>
#include <stdio.h>
#include <stdint.h>
#include <avr/io.h>
class EasyTransfer2 {
public:
void begin(HardwareSerial *theSerial);
//void begin(uint8_t *, uint8_t, NewSoftSerial *theSerial);
void sendData();
boolean receiveData();
void writeByte(uint8_t dat);
void writeInt(int dat);
uint8_t readByte();
int readInt();
private:
HardwareSerial *_serial;
void resetData();
uint8_t data[20]; //data storage, for both read and send
uint8_t position;
uint8_t size; //size of data in bytes. Both for read and send
//uint8_t * address; //address of struct
//uint8_t size; //size of struct
//uint8_t * rx_buffer; //address for temporary storage and parsing buffer
//uint8_t rx_buffer[20];
uint8_t rx_array_inx; //index for RX parsing buffer
uint8_t rx_len; //RX packet length according to the packet
uint8_t calc_CS; //calculated Chacksum
};
#endif

View File

@ -0,0 +1,990 @@
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include <avr/pgmspace.h>
#if ARDUINO < 100
#include <WProgram.h>
#else // ARDUINO
#include <Arduino.h>
#endif // ARDUINO
#include <Fat16.h>
//-----------------------------------------------------------------------------
// volume info
uint8_t Fat16::volumeInitialized_ = 0; // true if FAT16 volume is valid
uint8_t Fat16::fatCount_; // number of file allocation tables
uint8_t Fat16::blocksPerCluster_; // must be power of 2
uint16_t Fat16::rootDirEntryCount_; // should be 512 for FAT16
fat_t Fat16::blocksPerFat_; // number of blocks in one FAT
fat_t Fat16::clusterCount_; // total clusters in volume
uint32_t Fat16::fatStartBlock_; // start of first FAT
uint32_t Fat16::rootDirStartBlock_; // start of root dir
uint32_t Fat16::dataStartBlock_; // start of data clusters
//------------------------------------------------------------------------------
// raw block cache
SdCard *Fat16::rawDev_ = 0; // class for block read and write
uint32_t Fat16::cacheBlockNumber_ = 0XFFFFFFFF; // init to invalid block number
cache16_t Fat16::cacheBuffer_; // 512 byte cache for SdCard
uint8_t Fat16::cacheDirty_ = 0; // cacheFlush() will write block if true
uint32_t Fat16::cacheMirrorBlock_ = 0; // mirror block for second FAT
//------------------------------------------------------------------------------
// callback function for date/time
void (*Fat16::dateTime_)(uint16_t* date, uint16_t* time) = NULL;
#if ALLOW_DEPRECATED_FUNCTIONS
void (*Fat16::oldDateTime_)(uint16_t& date, uint16_t& time) = NULL; // NOLINT
#endif // ALLOW_DEPRECATED_FUNCTIONS
//------------------------------------------------------------------------------
// format 8.3 name for directory entry
static uint8_t make83Name(const char* str, uint8_t* name) {
uint8_t c;
uint8_t n = 7; // max index for part before dot
uint8_t i = 0;
// blank fill name and extension
while (i < 11) name[i++] = ' ';
i = 0;
while ((c = *str++) != '\0') {
if (c == '.') {
if (n == 10) return false; // only one dot allowed
n = 10; // max index for full 8.3 name
i = 8; // place for extension
} else {
// illegal FAT characters
PGM_P p = PSTR("|<>^+=?/[];,*\"\\");
uint8_t b;
while ((b = pgm_read_byte(p++))) if (b == c) return false;
// check length and only allow ASCII printable characters
if (i > n || c < 0X21 || c > 0X7E) return false;
// only upper case allowed in 8.3 names - convert lower to upper
name[i++] = c < 'a' || c > 'z' ? c : c + ('A' - 'a');
}
}
// must have a file name, extension is optional
return name[0] != ' ';
}
//==============================================================================
// Fat16 member functions
//------------------------------------------------------------------------------
uint8_t Fat16::addCluster(void) {
// start search after last cluster of file or at cluster two in FAT
fat_t freeCluster = curCluster_ ? curCluster_ : 1;
for (fat_t i = 0; ; i++) {
// return no free clusters
if (i >= clusterCount_) return false;
// Fat has clusterCount + 2 entries
if (freeCluster > clusterCount_) freeCluster = 1;
freeCluster++;
fat_t value;
if (!fatGet(freeCluster, &value)) return false;
if (value == 0) break;
}
// mark cluster allocated
if (!fatPut(freeCluster, FAT16EOC)) return false;
if (curCluster_ != 0) {
// link cluster to chain
if (!fatPut(curCluster_, freeCluster)) return false;
} else {
// first cluster of file so update directory entry
flags_ |= F_FILE_DIR_DIRTY;
firstCluster_ = freeCluster;
}
curCluster_ = freeCluster;
return true;
}
//------------------------------------------------------------------------------
//
dir_t* Fat16::cacheDirEntry(uint16_t index, uint8_t action) {
if (index >= rootDirEntryCount_) return NULL;
if (!cacheRawBlock(rootDirStartBlock_ + (index >> 4), action)) return NULL;
return &cacheBuffer_.dir[index & 0XF];
}
//------------------------------------------------------------------------------
//
uint8_t Fat16::cacheFlush(void) {
if (cacheDirty_) {
if (!rawDev_->writeBlock(cacheBlockNumber_, cacheBuffer_.data)) {
return false;
}
// mirror FAT tables
if (cacheMirrorBlock_) {
if (!rawDev_->writeBlock(cacheMirrorBlock_, cacheBuffer_.data)) {
return false;
}
cacheMirrorBlock_ = 0;
}
cacheDirty_ = 0;
}
return true;
}
//------------------------------------------------------------------------------
//
uint8_t Fat16::cacheRawBlock(uint32_t blockNumber, uint8_t action) {
if (cacheBlockNumber_ != blockNumber) {
if (!cacheFlush()) return false;
if (!rawDev_->readBlock(blockNumber, cacheBuffer_.data)) return false;
cacheBlockNumber_ = blockNumber;
}
cacheDirty_ |= action;
return true;
}
//------------------------------------------------------------------------------
/**
* Close a file and force cached data and directory information
* to be written to the storage device.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
* Reasons for failure include no file is open or an I/O error.
*/
uint8_t Fat16::close(void) {
if (!sync()) return false;
flags_ = 0;
return true;
}
//------------------------------------------------------------------------------
/**
* Return a files directory entry
*
* \param[out] dir Location for return of the files directory entry.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Fat16::dirEntry(dir_t* dir) {
if (!sync()) return false;
dir_t* p = cacheDirEntry(dirEntryIndex_, CACHE_FOR_WRITE);
if (!p) return false;
memcpy(dir, p, sizeof(dir_t));
return true;
}
//------------------------------------------------------------------------------
uint8_t Fat16::fatGet(fat_t cluster, fat_t* value) {
if (cluster > (clusterCount_ + 1)) return false;
uint32_t lba = fatStartBlock_ + (cluster >> 8);
if (lba != cacheBlockNumber_) {
if (!cacheRawBlock(lba)) return false;
}
*value = cacheBuffer_.fat[cluster & 0XFF];
return true;
}
//------------------------------------------------------------------------------
uint8_t Fat16::fatPut(fat_t cluster, fat_t value) {
if (cluster < 2) return false;
if (cluster > (clusterCount_ + 1)) return false;
uint32_t lba = fatStartBlock_ + (cluster >> 8);
if (lba != cacheBlockNumber_) {
if (!cacheRawBlock(lba)) return false;
}
cacheBuffer_.fat[cluster & 0XFF] = value;
cacheSetDirty();
// mirror second FAT
if (fatCount_ > 1) cacheMirrorBlock_ = lba + blocksPerFat_;
return true;
}
//------------------------------------------------------------------------------
// free a cluster chain
uint8_t Fat16::freeChain(fat_t cluster) {
while (1) {
fat_t next;
if (!fatGet(cluster, &next)) return false;
if (!fatPut(cluster, 0)) return false;
if (isEOC(next)) return true;
cluster = next;
}
}
//------------------------------------------------------------------------------
/**
* Initialize a FAT16 volume.
*
* \param[in] dev The SdCard where the volume is located.
*
* \param[in] part The partition to be used. Legal values for \a part are
* 1-4 to use the corresponding partition on a device formatted with
* a MBR, Master Boot Record, or zero if the device is formatted as
* a super floppy with the FAT boot sector in block zero.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure. reasons for
* failure include not finding a valid FAT16 file system in the
* specified partition, a call to init() after a volume has
* been successful initialized or an I/O error.
*
*/
uint8_t Fat16::init(SdCard* dev, uint8_t part) {
// error if invalid partition
if (part > 4) return false;
rawDev_ = dev;
uint32_t volumeStartBlock = 0;
// if part == 0 assume super floppy with FAT16 boot sector in block zero
// if part > 0 assume mbr volume with partition table
if (part) {
if (!cacheRawBlock(volumeStartBlock)) return false;
volumeStartBlock = cacheBuffer_.mbr.part[part - 1].firstSector;
}
if (!cacheRawBlock(volumeStartBlock)) return false;
// check boot block signature
if (cacheBuffer_.data[510] != BOOTSIG0 ||
cacheBuffer_.data[511] != BOOTSIG1) return false;
bpb_t* bpb = &cacheBuffer_.fbs.bpb;
fatCount_ = bpb->fatCount;
blocksPerCluster_ = bpb->sectorsPerCluster;
blocksPerFat_ = bpb->sectorsPerFat16;
rootDirEntryCount_ = bpb->rootDirEntryCount;
fatStartBlock_ = volumeStartBlock + bpb->reservedSectorCount;
rootDirStartBlock_ = fatStartBlock_ + bpb->fatCount*bpb->sectorsPerFat16;
dataStartBlock_ = rootDirStartBlock_
+ ((32*bpb->rootDirEntryCount + 511)/512);
uint32_t totalBlocks = bpb->totalSectors16 ?
bpb->totalSectors16 : bpb->totalSectors32;
clusterCount_ = (totalBlocks - (dataStartBlock_ - volumeStartBlock))
/bpb->sectorsPerCluster;
// verify valid FAT16 volume
if (bpb->bytesPerSector != 512 // only allow 512 byte blocks
|| bpb->sectorsPerFat16 == 0 // zero for FAT32
|| clusterCount_ < 4085 // FAT12 if true
|| totalBlocks > 0X800000 // Max size for FAT16 volume
|| bpb->reservedSectorCount == 0 // invalid volume
|| bpb->fatCount == 0 // invalid volume
|| bpb->sectorsPerFat16 < (clusterCount_ >> 8) // invalid volume
|| bpb->sectorsPerCluster == 0 // invalid volume
// power of 2 test
|| bpb->sectorsPerCluster & (bpb->sectorsPerCluster - 1)) {
// not a usable FAT16 bpb
return false;
}
volumeInitialized_ = 1;
return true;
}
//------------------------------------------------------------------------------
/** List directory contents to Serial.
*
* \param[in] flags The inclusive OR of
*
* LS_DATE - %Print file modification date
*
* LS_SIZE - %Print file size.
*/
void Fat16::ls(uint8_t flags) {
dir_t d;
for (uint16_t index = 0; readDir(&d, &index, DIR_ATT_VOLUME_ID); index++) {
// print file name with possible blank fill
printDirName(d, flags & (LS_DATE | LS_SIZE) ? 14 : 0);
// print modify date/time if requested
if (flags & LS_DATE) {
printFatDate(d.lastWriteDate);
Serial.write(' ');
printFatTime(d.lastWriteTime);
}
// print size if requested
if (DIR_IS_FILE(&d) && (flags & LS_SIZE)) {
Serial.write(' ');
Serial.print(d.fileSize);
}
Serial.println();
}
}
//------------------------------------------------------------------------------
/**
* Open a file by file name.
*
* \note The file must be in the root directory and must have a DOS
* 8.3 name.
*
* \param[in] fileName A valid 8.3 DOS name for a file in the root directory.
*
* \param[in] oflag Values for \a oflag are constructed by a bitwise-inclusive
* OR of flags from the following list
*
* O_READ - Open for reading.
*
* O_RDONLY - Same as O_READ.
*
* O_WRITE - Open for writing.
*
* O_WRONLY - Same as O_WRITE.
*
* O_RDWR - Open for reading and writing.
*
* O_APPEND - If set, the file offset shall be set to the end of the
* file prior to each write.
*
* O_CREAT - If the file exists, this flag has no effect except as noted
* under O_EXCL below. Otherwise, the file shall be created
*
* O_EXCL - If O_CREAT and O_EXCL are set, open() shall fail if the file exists.
*
* O_SYNC - Call sync() after each write. This flag should not be used with
* write(uint8_t), write_P(PGM_P), writeln_P(PGM_P), or the Arduino Print class.
* These functions do character a time writes so sync() will be called
* after each byte.
*
* O_TRUNC - If the file exists and is a regular file, and the file is
* successfully opened and is not read only, its length shall be truncated to 0.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
* Reasons for failure include the FAT volume has not been initialized,
* a file is already open, \a fileName is invalid, the file does not exist,
* is a directory, or can't be opened in the access mode specified by oflag.
*/
uint8_t Fat16::open(const char* fileName, uint8_t oflag) {
uint8_t dname[11]; // name formated for dir entry
int16_t empty = -1; // index of empty slot
dir_t* p; // pointer to cached dir entry
if (!volumeInitialized_ || isOpen()) return false;
// error if invalid name
if (!make83Name(fileName, dname)) return false;
for (uint16_t index = 0; index < rootDirEntryCount_; index++) {
if (!(p = cacheDirEntry(index))) return false;
if (p->name[0] == DIR_NAME_FREE || p->name[0] == DIR_NAME_DELETED) {
// remember first empty slot
if (empty < 0) empty = index;
// done if no entries follow
if (p->name[0] == DIR_NAME_FREE) break;
} else if (!memcmp(dname, p->name, 11)) {
// don't open existing file if O_CREAT and O_EXCL
if ((oflag & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) return false;
// open existing file
return open(index, oflag);
}
}
// error if directory is full
if (empty < 0) return false;
// only create file if O_CREAT and O_WRITE
if ((oflag & (O_CREAT | O_WRITE)) != (O_CREAT | O_WRITE)) return false;
if (!(p = cacheDirEntry(empty, CACHE_FOR_WRITE))) return false;
// initialize as empty file
memset(p, 0, sizeof(dir_t));
memcpy(p->name, dname, 11);
// set timestamps
if (dateTime_) {
// call user function
dateTime_(&p->creationDate, &p->creationTime);
} else {
// use default date/time
p->creationDate = FAT_DEFAULT_DATE;
p->creationTime = FAT_DEFAULT_TIME;
}
p->lastAccessDate = p->creationDate;
p->lastWriteDate = p->creationDate;
p->lastWriteTime = p->creationTime;
// insure created directory entry will be written to storage device
if (!cacheFlush()) return false;
// open entry
return open(empty, oflag);
}
//------------------------------------------------------------------------------
/**
* Open a file by file index.
*
* \param[in] index The root directory index of the file to be opened. See \link
* Fat16::readDir() readDir()\endlink.
*
* \param[in] oflag See \link Fat16::open(const char*, uint8_t)\endlink.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
* Reasons for failure include the FAT volume has not been initialized,
* a file is already open, \a index is invalid or is not the index of a
* file or the file cannot be opened in the access mode specified by oflag.
*/
uint8_t Fat16::open(uint16_t index, uint8_t oflag) {
if (!volumeInitialized_ || isOpen()) return false;
if ((oflag & O_TRUNC) && !(oflag & O_WRITE)) return false;
dir_t* d = cacheDirEntry(index);
// if bad file index or I/O error
if (!d) return false;
// error if unused entry
if (d->name[0] == DIR_NAME_FREE || d->name[0] == DIR_NAME_DELETED) {
return false;
}
// error if long name, volume label or subdirectory
if ((d->attributes & (DIR_ATT_VOLUME_ID | DIR_ATT_DIRECTORY)) != 0) {
return false;
}
// don't allow write or truncate if read-only
if (d->attributes & DIR_ATT_READ_ONLY) {
if (oflag & (O_WRITE | O_TRUNC)) return false;
}
curCluster_ = 0;
curPosition_ = 0;
dirEntryIndex_ = index;
fileSize_ = d->fileSize;
firstCluster_ = d->firstClusterLow;
flags_ = oflag & (O_ACCMODE | O_SYNC | O_APPEND);
if (oflag & O_TRUNC ) return truncate(0);
return true;
}
//------------------------------------------------------------------------------
/** %Print the name field of a directory entry in 8.3 format to Serial.
*
* \param[in] dir The directory structure containing the name.
* \param[in] width Blank fill name if length is less than \a width.
*/
void Fat16::printDirName(const dir_t& dir, uint8_t width) {
uint8_t w = 0;
for (uint8_t i = 0; i < 11; i++) {
if (dir.name[i] == ' ') continue;
if (i == 8) {
Serial.write('.');
w++;
}
Serial.write(dir.name[i]);
w++;
}
if (DIR_IS_SUBDIR(&dir)) {
Serial.write('/');
w++;
}
while (w < width) {
Serial.write(' ');
w++;
}
}
//------------------------------------------------------------------------------
/** %Print a directory date field to Serial.
*
* Format is yyyy-mm-dd.
*
* \param[in] fatDate The date field from a directory entry.
*/
void Fat16::printFatDate(uint16_t fatDate) {
Serial.print(FAT_YEAR(fatDate));
Serial.write('-');
printTwoDigits(FAT_MONTH(fatDate));
Serial.write('-');
printTwoDigits(FAT_DAY(fatDate));
}
//------------------------------------------------------------------------------
/** %Print a directory time field to Serial.
*
* Format is hh:mm:ss.
*
* \param[in] fatTime The time field from a directory entry.
*/
void Fat16::printFatTime(uint16_t fatTime) {
printTwoDigits(FAT_HOUR(fatTime));
Serial.write(':');
printTwoDigits(FAT_MINUTE(fatTime));
Serial.write(':');
printTwoDigits(FAT_SECOND(fatTime));
}
//------------------------------------------------------------------------------
/** %Print a value as two digits to Serial.
*
* \param[in] v Value to be printed, 0 <= \a v <= 99
*/
void Fat16::printTwoDigits(uint8_t v) {
char str[3];
str[0] = '0' + v/10;
str[1] = '0' + v % 10;
str[2] = 0;
Serial.print(str);
}
//------------------------------------------------------------------------------
/**
* Read the next byte from a file.
*
* \return For success read returns the next byte in the file as an int.
* If an error occurs or end of file is reached -1 is returned.
*/
int16_t Fat16::read(void) {
uint8_t b;
return read(&b, 1) == 1 ? b : -1;
}
//------------------------------------------------------------------------------
/**
* Read data from a file at starting at the current file position.
*
* \param[out] buf Pointer to the location that will receive the data.
*
* \param[in] nbyte Maximum number of bytes to read.
*
* \return For success read returns the number of bytes read.
* A value less than \a nbyte, including zero, may be returned
* if end of file is reached.
* If an error occurs, read returns -1. Possible errors include
* read called before a file has been opened, the file has not been opened in
* read mode, a corrupt file system, or an I/O error.
*/
int16_t Fat16::read(void* buf, uint16_t nbyte) {
// convert void pointer to uin8_t pointer
uint8_t* dst = reinterpret_cast<uint8_t*>(buf);
// error if not open for read
if (!(flags_ & O_READ)) return -1;
// don't read beyond end of file
if ((curPosition_ + nbyte) > fileSize_) nbyte = fileSize_ - curPosition_;
// bytes left to read in loop
uint16_t nToRead = nbyte;
while (nToRead > 0) {
uint8_t blkOfCluster = blockOfCluster(curPosition_);
uint16_t blockOffset = cacheDataOffset(curPosition_);
if (blkOfCluster == 0 && blockOffset == 0) {
// start next cluster
if (curCluster_ == 0) {
curCluster_ = firstCluster_;
} else {
if (!fatGet(curCluster_, &curCluster_)) return -1;
}
// return error if bad cluster chain
if (curCluster_ < 2 || isEOC(curCluster_)) return -1;
}
// cache data block
if (!cacheRawBlock(dataBlockLba(curCluster_, blkOfCluster))) return -1;
// location of data in cache
uint8_t* src = cacheBuffer_.data + blockOffset;
// max number of byte available in block
uint16_t n = 512 - blockOffset;
// lesser of available and amount to read
if (n > nToRead) n = nToRead;
// copy data to caller
memcpy(dst, src, n);
curPosition_ += n;
dst += n;
nToRead -= n;
}
return nbyte;
}
//------------------------------------------------------------------------------
/**
* Read the next short, 8.3, directory entry.
*
* Unused entries and entries for long names are skipped.
*
* \param[out] dir Location that will receive the entry.
*
* \param[in,out] index The search starts at \a index and \a index is
* updated with the root directory index of the found directory entry.
* If the entry is a file, it may be opened by calling
* \link Fat16::open(uint16_t, uint8_t) \endlink.
*
* \param[in] skip Skip entries that have these attributes. If \a skip
* is not specified, the default is to skip the volume label and directories.
*
* \return The value one, true, is returned for success and the value zero,
* false, is returned if an error occurs or the end of the root directory is
* reached. On success, \a entry is set to the index of the found directory
* entry.
*/
uint8_t Fat16::readDir(dir_t* dir, uint16_t* index, uint8_t skip) {
dir_t* p;
for (uint16_t i = *index; ; i++) {
if (i >= rootDirEntryCount_) return false;
if (!(p = cacheDirEntry(i))) return false;
// done if beyond last used entry
if (p->name[0] == DIR_NAME_FREE) return false;
// skip deleted entry
if (p->name[0] == DIR_NAME_DELETED) continue;
// skip long names
if ((p->attributes & DIR_ATT_LONG_NAME_MASK) == DIR_ATT_LONG_NAME) continue;
// skip if attribute match
if (p->attributes & skip) continue;
// return found index
*index = i;
break;
}
memcpy(dir, p, sizeof(dir_t));
return true;
}
//------------------------------------------------------------------------------
/**
* Remove a file. The directory entry and all data for the file are deleted.
*
* \note This function should not be used to delete the 8.3 version of a
* file that has a long name. For example if a file has the long name
* "New Text Document.txt" you should not delete the 8.3 name "NEWTEX~1.TXT".
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
* Reasons for failure include the file is not open for write
* or an I/O error occurred.
*/
uint8_t Fat16::remove(void) {
// error if file is not open for write
if (!(flags_ & O_WRITE)) return false;
if (firstCluster_) {
if (!freeChain(firstCluster_)) return false;
}
dir_t* d = cacheDirEntry(dirEntryIndex_, CACHE_FOR_WRITE);
if (!d) return false;
d->name[0] = DIR_NAME_DELETED;
flags_ = 0;
return cacheFlush();
}
//------------------------------------------------------------------------------
/**
* Remove a file.
*
* The directory entry and all data for the file are deleted.
*
* \param[in] fileName The name of the file to be removed.
*
* \note This function should not be used to delete the 8.3 version of a
* file that has a long name. For example if a file has the long name
* "New Text Document.txt" you should not delete the 8.3 name "NEWTEX~1.TXT".
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
* Reasons for failure include the file is read only, \a fileName is not found
* or an I/O error occurred.
*/
uint8_t Fat16::remove(const char* fileName) {
Fat16 file;
if (!file.open(fileName, O_WRITE)) return false;
return file.remove();
}
//------------------------------------------------------------------------------
/**
* Sets the file's read/write position.
*
* \param[in] pos The new position in bytes from the beginning of the file.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Fat16::seekSet(uint32_t pos) {
// error if file not open or seek past end of file
if (!isOpen() || pos > fileSize_) return false;
if (pos == 0) {
// set position to start of file
curCluster_ = 0;
curPosition_ = 0;
return true;
}
fat_t n = ((pos - 1) >> 9)/blocksPerCluster_;
if (pos < curPosition_ || curPosition_ == 0) {
// must follow chain from first cluster
curCluster_ = firstCluster_;
} else {
// advance from curPosition
n -= ((curPosition_ - 1) >> 9)/blocksPerCluster_;
}
while (n--) {
if (!fatGet(curCluster_, &curCluster_)) return false;
}
curPosition_ = pos;
return true;
}
//------------------------------------------------------------------------------
/**
* The sync() call causes all modified data and directory fields
* to be written to the storage device.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
* Reasons for failure include a call to sync() before a file has been
* opened or an I/O error.
*/
uint8_t Fat16::sync(void) {
if (flags_ & F_FILE_DIR_DIRTY) {
// cache directory entry
dir_t* d = cacheDirEntry(dirEntryIndex_, CACHE_FOR_WRITE);
if (!d) return false;
// update file size and first cluster
d->fileSize = fileSize_;
d->firstClusterLow = firstCluster_;
// set modify time if user supplied a callback date/time function
if (dateTime_) {
dateTime_(&d->lastWriteDate, &d->lastWriteTime);
d->lastAccessDate = d->lastWriteDate;
}
flags_ &= ~F_FILE_DIR_DIRTY;
}
return cacheFlush();
}
//------------------------------------------------------------------------------
/**
* The timestamp() call sets a file's timestamps in its directory entry.
*
* \param[in] flags Values for \a flags are constructed by a bitwise-inclusive
* OR of flags from the following list
*
* T_ACCESS - Set the file's last access date.
*
* T_CREATE - Set the file's creation date and time.
*
* T_WRITE - Set the file's last write/modification date and time.
*
* \param[in] year Valid range 1980 - 2107 inclusive.
*
* \param[in] month Valid range 1 - 12 inclusive.
*
* \param[in] day Valid range 1 - 31 inclusive.
*
* \param[in] hour Valid range 0 - 23 inclusive.
*
* \param[in] minute Valid range 0 - 59 inclusive.
*
* \param[in] second Valid range 0 - 59 inclusive
*
* \note It is possible to set an invalid date since there is no check for
* the number of days in a month.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t Fat16::timestamp(uint8_t flags, uint16_t year, uint8_t month,
uint8_t day, uint8_t hour, uint8_t minute, uint8_t second) {
if (!isOpen()
|| year < 1980
|| year > 2107
|| month < 1
|| month > 12
|| day < 1
|| day > 31
|| hour > 23
|| minute > 59
|| second > 59) {
return false;
}
dir_t* d = cacheDirEntry(dirEntryIndex_, CACHE_FOR_WRITE);
if (!d) return false;
uint16_t dirDate = FAT_DATE(year, month, day);
uint16_t dirTime = FAT_TIME(hour, minute, second);
if (flags & T_ACCESS) {
d->lastAccessDate = dirDate;
}
if (flags & T_CREATE) {
d->creationDate = dirDate;
d->creationTime = dirTime;
// seems to be units of 1/100 second not 1/10 as Microsoft standard states
d->creationTimeTenths = second & 1 ? 100 : 0;
}
if (flags & T_WRITE) {
d->lastWriteDate = dirDate;
d->lastWriteTime = dirTime;
}
cacheSetDirty();
return sync();
}
//------------------------------------------------------------------------------
/**
* Truncate a file to a specified length. The current file position
* will be maintained if it is less than or equal to \a length otherwise
* it will be set to end of file.
*
* \param[in] length The desired length for the file.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
* Reasons for failure include file is read only, file is a directory,
* \a length is greater than the current file size or an I/O error occurs.
*/
uint8_t Fat16::truncate(uint32_t length) {
// error if file is not open for write
if (!(flags_ & O_WRITE)) return false;
if (length > fileSize_) return false;
// fileSize and length are zero - nothing to do
if (fileSize_ == 0) return true;
uint32_t newPos = curPosition_ > length ? length : curPosition_;
if (length == 0) {
// free all clusters
if (!freeChain(firstCluster_)) return false;
curCluster_ = firstCluster_ = 0;
} else {
fat_t toFree;
if (!seekSet(length)) return false;
if (!fatGet(curCluster_, &toFree)) return false;
if (!isEOC(toFree)) {
// free extra clusters
if (!fatPut(curCluster_, FAT16EOC)) return false;
if (!freeChain(toFree)) return false;
}
}
fileSize_ = length;
flags_ |= F_FILE_DIR_DIRTY;
if (!sync()) return false;
return seekSet(newPos);
}
//------------------------------------------------------------------------------
/**
* Write data at the current position of an open file.
*
* \note Data is moved to the cache but may not be written to the
* storage device until sync() is called.
*
* \param[in] buf Pointer to the location of the data to be written.
*
* \param[in] nbyte Number of bytes to write.
*
* \return For success write() returns the number of bytes written, always
* \a nbyte. If an error occurs, write() returns -1. Possible errors include
* write() is called before a file has been opened, the file has not been opened
* for write, device is full, a corrupt file system or an I/O error.
*
*/
int16_t Fat16::write(const void* buf, uint16_t nbyte) {
uint16_t nToWrite = nbyte;
const uint8_t* src = reinterpret_cast<const uint8_t*>(buf);
// error if file is not open for write
if (!(flags_ & O_WRITE)) goto writeErrorReturn;
// go to end of file if O_APPEND
if ((flags_ & O_APPEND) && curPosition_ != fileSize_) {
if (!seekEnd()) goto writeErrorReturn;
}
while (nToWrite > 0) {
uint8_t blkOfCluster = blockOfCluster(curPosition_);
uint16_t blockOffset = cacheDataOffset(curPosition_);
if (blkOfCluster == 0 && blockOffset == 0) {
// start of new cluster
if (curCluster_ == 0) {
if (firstCluster_ == 0) {
// allocate first cluster of file
if (!addCluster()) goto writeErrorReturn;
} else {
curCluster_ = firstCluster_;
}
} else {
fat_t next;
if (!fatGet(curCluster_, &next)) goto writeErrorReturn;
if (isEOC(next)) {
// add cluster if at end of chain
if (!addCluster()) goto writeErrorReturn;
} else {
curCluster_ = next;
}
}
}
uint32_t lba = dataBlockLba(curCluster_, blkOfCluster);
if (blockOffset == 0 && curPosition_ >= fileSize_) {
// start of new block don't need to read into cache
if (!cacheFlush()) goto writeErrorReturn;
cacheBlockNumber_ = lba;
cacheSetDirty();
} else {
// rewrite part of block
if (!cacheRawBlock(lba, CACHE_FOR_WRITE)) return -1;
}
uint8_t* dst = cacheBuffer_.data + blockOffset;
// max space in block
uint16_t n = 512 - blockOffset;
// lesser of space and amount to write
if (n > nToWrite) n = nToWrite;
// copy data to cache
memcpy(dst, src, n);
curPosition_ += n;
nToWrite -= n;
src += n;
}
if (curPosition_ > fileSize_) {
// update fileSize and insure sync will update dir entry
fileSize_ = curPosition_;
flags_ |= F_FILE_DIR_DIRTY;
} else if (dateTime_ && nbyte) {
// insure sync will update modified date and time
flags_ |= F_FILE_DIR_DIRTY;
}
if (flags_ & O_SYNC) {
if (!sync()) goto writeErrorReturn;
}
return nbyte;
writeErrorReturn:
writeError = true;
return -1;
}
//------------------------------------------------------------------------------
/**
* Write a byte to a file. Required by the Arduino Print class.
*
* Use Fat16::writeError to check for errors.
*/
#if ARDUINO < 100
void Fat16::write(uint8_t b) {
write(&b, 1);
}
#else // ARDUINO < 100
size_t Fat16::write(uint8_t b) {
return write(&b, 1) == 1 ? 1 : 0;
}
#endif // ARDUINO < 100
//------------------------------------------------------------------------------
/**
* Write a string to a file. Used by the Arduino Print class.
*
* Use Fat16::writeError to check for errors.
*/
#if ARDUINO < 100
void Fat16::write(const char* str) {
write(str, strlen(str));
}
#else // ARDUINO < 100
int16_t Fat16::write(const char* str) {
return write(str, strlen(str));
}
#endif // ARDUINO < 100
//------------------------------------------------------------------------------
/**
* Write a PROGMEM string to a file.
*
* Use Fat16::writeError to check for errors.
*/
void Fat16::write_P(PGM_P str) {
for (uint8_t c; (c = pgm_read_byte(str)); str++) write(c);
}
//------------------------------------------------------------------------------
/**
* Write a PROGMEM string followed by CR/LF to a file.
*
* Use Fat16::writeError to check for errors.
*/
void Fat16::writeln_P(PGM_P str) {
write_P(str);
println();
}

View File

@ -0,0 +1,378 @@
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef Fat16_h
#define Fat16_h
/**
* \file
* Fat16 class
*/
#include <string.h>
#include <avr/pgmspace.h>
#include <Print.h>
#include <SdCard.h>
#include <FatStructs.h>
#include <Fat16Config.h>
//------------------------------------------------------------------------------
/** Fat16 version YYYYMMDD */
#define FAT16_VERSION 20111205
//------------------------------------------------------------------------------
// flags for ls()
/** ls() flag to print modify date */
uint8_t const LS_DATE = 1;
/** ls() flag to print file size */
uint8_t const LS_SIZE = 2;
// use the gnu style oflags
/** open for reading */
uint8_t const O_READ = 0X01;
/** same as O_READ */
uint8_t const O_RDONLY = O_READ;
/** open for write */
uint8_t const O_WRITE = 0X02;
/** same as O_WRITE */
uint8_t const O_WRONLY = O_WRITE;
/** open for reading and writing */
uint8_t const O_RDWR = O_READ | O_WRITE;
/** mask for access modes */
uint8_t const O_ACCMODE = O_READ | O_WRITE;
/** The file offset shall be set to the end of the file prior to each write. */
uint8_t const O_APPEND = 0X04;
/** synchronous writes - call sync() after each write */
uint8_t const O_SYNC = 0X08;
/** create the file if nonexistent */
uint8_t const O_CREAT = 0X10;
/** If O_CREAT and O_EXCL are set, open() shall fail if the file exists */
uint8_t const O_EXCL = 0X20;
/** truncate the file to zero length */
uint8_t const O_TRUNC = 0X40;
// flags for timestamp
/** set the file's last access date */
uint8_t const T_ACCESS = 1;
/** set the file's creation date and time */
uint8_t const T_CREATE = 2;
/** Set the file's write date and time */
uint8_t const T_WRITE = 4;
/** date field for FAT directory entry */
static inline uint16_t FAT_DATE(uint16_t year, uint8_t month, uint8_t day) {
return (year - 1980) << 9 | month << 5 | day;
}
/** year part of FAT directory date field */
static inline uint16_t FAT_YEAR(uint16_t fatDate) {
return 1980 + (fatDate >> 9);
}
/** month part of FAT directory date field */
static inline uint8_t FAT_MONTH(uint16_t fatDate) {
return (fatDate >> 5) & 0XF;
}
/** day part of FAT directory date field */
static inline uint8_t FAT_DAY(uint16_t fatDate) {
return fatDate & 0X1F;
}
/** time field for FAT directory entry */
static inline uint16_t FAT_TIME(uint8_t hour, uint8_t minute, uint8_t second) {
return hour << 11 | minute << 5 | second >> 1;
}
/** hour part of FAT directory time field */
static inline uint8_t FAT_HOUR(uint16_t fatTime) {
return fatTime >> 11;
}
/** minute part of FAT directory time field */
static inline uint8_t FAT_MINUTE(uint16_t fatTime) {
return(fatTime >> 5) & 0X3F;
}
/** second part of FAT directory time field */
static inline uint8_t FAT_SECOND(uint16_t fatTime) {
return 2*(fatTime & 0X1F);
}
/** Default date for file timestamps is 1 Jan 2000 */
uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | (1 << 5) | 1;
/** Default time for file timestamp is 1 am */
uint16_t const FAT_DEFAULT_TIME = (1 << 11);
//------------------------------------------------------------------------------
/**
* \typedef fat_t
*
* \brief Type for FAT16 entry
*/
typedef uint16_t fat_t;
/**
* \union cache16_t
*
* \brief Cache buffer data type
*
*/
union cache16_t {
/** Used to access cached file data blocks. */
uint8_t data[512];
/** Used to access cached FAT entries. */
fat_t fat[256];
/** Used to access cached directory entries. */
dir_t dir[16];
/** Used to access a cached Master Boot Record. */
mbr_t mbr;
/** Used to access to a cached FAT16 boot sector. */
fbs_t fbs;
};
//------------------------------------------------------------------------------
/** \class Fat16
* \brief Fat16 implements a minimal Arduino FAT16 Library
*
* Fat16 does not support subdirectories or long file names.
*/
class Fat16 : public Print {
public:
/*
* Public functions
*/
/** create with file closed */
Fat16(void) : flags_(0) {}
/** \return The current cluster number. */
fat_t curCluster(void) const {return curCluster_;}
uint8_t close(void);
/** \return The count of clusters in the FAT16 volume. */
static fat_t clusterCount(void) {return clusterCount_;}
/** \return The number of 512 byte blocks in a cluster */
static uint8_t clusterSize(void) {return blocksPerCluster_;}
/** \return The current file position. */
uint32_t curPosition(void) const {return curPosition_;}
/**
* Set the date/time callback function
*
* \param[in] dateTime The user's callback function. The callback
* function is of the form:
*
* \code
* void dateTime(uint16_t* date, uint16_t* time) {
* uint16_t year;
* uint8_t month, day, hour, minute, second;
*
* // User gets date and time from GPS or real-time clock here
*
* // return date using FAT_DATE macro to format fields
* *date = FAT_DATE(year, month, day);
*
* // return time using FAT_TIME macro to format fields
* *time = FAT_TIME(hour, minute, second);
* }
* \endcode
*
* Sets the function that is called when a file is created or when
* a file's directory entry is modified by sync(). All timestamps,
* access, creation, and modify, are set when a file is created.
* sync() maintains the last access date and last modify date/time.
*
* See the timestamp() function.
*/
static void dateTimeCallback(
void (*dateTime)(uint16_t* date, uint16_t* time)) {
dateTime_ = dateTime;
}
/**
* Cancel the date/time callback function.
*/
static void dateTimeCallbackCancel(void) {dateTime_ = NULL;}
uint8_t dirEntry(dir_t* dir);
/** \return The file's size in bytes. */
uint32_t fileSize(void) const {return fileSize_;}
static uint8_t init(SdCard* dev, uint8_t part);
/**
* Initialize a FAT16 volume.
*
* First try partition 1 then try super floppy format.
*
* \param[in] dev The SdCard where the volume is located.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure. reasons for
* failure include not finding a valid FAT16 file system, a call
* to init() after a volume has been successful initialized or
* an I/O error.
*
*/
static uint8_t init(SdCard* dev) {
return init(dev, 1) ? true : init(dev, 0);
}
/**
* Checks the file's open/closed status for this instance of Fat16.
* \return The value true if a file is open otherwise false;
*/
uint8_t isOpen(void) const {return (flags_ & O_ACCMODE) != 0;}
static void ls(uint8_t flags = 0);
uint8_t open(const char* fileName, uint8_t oflag);
uint8_t open(uint16_t entry, uint8_t oflag);
static void printDirName(const dir_t& dir, uint8_t width);
static void printFatDate(uint16_t fatDate);
static void printFatTime(uint16_t fatTime);
static void printTwoDigits(uint8_t v);
int16_t read(void);
int16_t read(void* buf, uint16_t nbyte);
static uint8_t readDir(dir_t* dir, uint16_t* index,
uint8_t skip = (DIR_ATT_VOLUME_ID | DIR_ATT_DIRECTORY));
uint8_t remove(void);
static uint8_t remove(const char* fileName);
/** Sets the file's current position to zero. */
void rewind(void) {curPosition_ = curCluster_ = 0;}
/** \return The number of entries in the root directory. */
static uint16_t rootDirEntryCount(void) {return rootDirEntryCount_;}
/** Seek to current position plus \a pos bytes. See Fat16::seekSet(). */
uint8_t seekCur(uint32_t pos) {return seekSet(curPosition_ + pos);}
/** Seek to end of file. See Fat16::seekSet(). */
uint8_t seekEnd(void) {return seekSet(fileSize_);}
uint8_t seekSet(uint32_t pos);
uint8_t sync(void);
uint8_t timestamp(uint8_t flag, uint16_t year, uint8_t month, uint8_t day,
uint8_t hour, uint8_t minute, uint8_t second);
uint8_t truncate(uint32_t size);
/** Fat16::writeError is set to true if an error occurs during a write().
* Set Fat16::writeError to false before calling print() and/or write() and check
* for true after calls to write() and/or print().
*/
bool writeError;
int16_t write(const void *buf, uint16_t nbyte);
#if ARDUINO < 100
void write(uint8_t b);
void write(const char* str);
#else // ARDUINO < 100
size_t write(uint8_t b);
int16_t write(const char* str);
#endif // ARDUINO < 100
void write_P(PGM_P str);
void writeln_P(PGM_P str);
//------------------------------------------------------------------------------
#if FAT16_DEBUG_SUPPORT
/** For debug only. Do not use in applications. */
static cache16_t* dbgBufAdd(void) {return &cacheBuffer_;}
/** For debug only. Do not use in applications. */
static void dbgSetDev(SdCard* dev) {rawDev_ = dev;}
/** For debug only. Do not use in applications. */
static uint8_t* dbgCacheBlock(uint32_t blockNumber) {
return cacheRawBlock(blockNumber) ? cacheBuffer_.data : 0; }
/** For debug only. Do not use in applications. */
static dir_t* dbgCacheDir(uint16_t index) {
return cacheDirEntry(index);}
#endif // FAT16_DEBUG_SUPPORT
//------------------------------------------------------------------------------
#if ALLOW_DEPRECATED_FUNCTIONS
// Deprecated functions - suppress cpplint messages with NOLINT comment
public:
/**
* Deprecated - Use:
* static void Fat16::dateTimeCallback(
* void (*dateTime)(uint16_t* date, uint16_t* time));
*/
static void dateTimeCallback(
void (*dateTime)(uint16_t& date, uint16_t& time)) { // NOLINT
oldDateTime_ = dateTime;
dateTime_ = dateTime ? oldToNew : 0;
}
/** Deprecated - Use: uint8_t Fat16::dirEntry(dir_t* dir); */
uint8_t dirEntry(dir_t& dir) { // NOLINT
return dirEntry(&dir);
}
/** Deprecated - Use: static uint8_t Fat16::init(SdCard *dev); */
static uint8_t init(SdCard& dev) {return init(&dev);} // NOLINT
/** Deprecated - Use: static uint8_t Fat16::init(SdCard *dev, uint8_t part) */
static uint8_t init(SdCard& dev, uint8_t part) { // NOLINT
return init(&dev, part);
}
/**
* Deprecated - Use:
* uint8_t Fat16::readDir(dir_t* dir, uint16_t* index, uint8_t skip);
*/
static uint8_t readDir(dir_t& dir, uint16_t& index, // NOLINT
uint8_t skip = (DIR_ATT_VOLUME_ID | DIR_ATT_DIRECTORY)) {
return readDir(&dir, &index, skip);
}
//------------------------------------------------------------------------------
private:
static void (*oldDateTime_)(uint16_t& date, uint16_t& time); // NOLINT
static void oldToNew(uint16_t *date, uint16_t *time) {
uint16_t d;
uint16_t t;
oldDateTime_(d, t);
*date = d;
*time = t;
}
#endif // ALLOW_DEPRECATED_FUNCTIONS
//------------------------------------------------------------------------------
private:
// Volume info
static uint8_t volumeInitialized_; // true if volume has been initialized
static uint8_t fatCount_; // number of FATs
static uint8_t blocksPerCluster_; // must be power of 2
static uint16_t rootDirEntryCount_; // should be 512 for FAT16
static fat_t blocksPerFat_; // number of blocks in one FAT
static fat_t clusterCount_; // total clusters in volume
static uint32_t fatStartBlock_; // start of first FAT
static uint32_t rootDirStartBlock_; // start of root dir
static uint32_t dataStartBlock_; // start of data clusters
// block cache
static uint8_t const CACHE_FOR_READ = 0; // cache a block for read
static uint8_t const CACHE_FOR_WRITE = 1; // cache a block and set dirty
static SdCard *rawDev_; // Device
static cache16_t cacheBuffer_; // 512 byte cache for raw blocks
static uint32_t cacheBlockNumber_; // Logical number of block in the cache
static uint8_t cacheDirty_; // cacheFlush() will write block if true
static uint32_t cacheMirrorBlock_; // mirror block for second FAT
// callback function for date/time
static void (*dateTime_)(uint16_t* date, uint16_t* time);
// define fields in flags_
static uint8_t const F_OFLAG = O_ACCMODE | O_APPEND | O_SYNC;
static uint8_t const F_FILE_DIR_DIRTY = 0X80; // require sync directory entry
uint8_t flags_; // see above for bit definitions
int16_t dirEntryIndex_; // index of directory entry for open file
fat_t firstCluster_; // first cluster of file
uint32_t fileSize_; // fileSize
fat_t curCluster_; // current cluster
uint32_t curPosition_; // current byte offset
// private functions for cache
static uint8_t blockOfCluster(uint32_t position) {
// depends on blocks per cluster being power of two
return (position >> 9) & (blocksPerCluster_ - 1);
}
static uint16_t cacheDataOffset(uint32_t position) {return position & 0X1FF;}
static dir_t* cacheDirEntry(uint16_t index, uint8_t action = 0);
static uint8_t cacheRawBlock(uint32_t blockNumber, uint8_t action = 0);
static uint8_t cacheFlush(void);
static void cacheSetDirty(void) {cacheDirty_ |= CACHE_FOR_WRITE;}
static uint32_t dataBlockLba(fat_t cluster, uint8_t blockOfCluster) {
return dataStartBlock_ + (uint32_t)(cluster - 2) * blocksPerCluster_
+ blockOfCluster;
}
static uint8_t fatGet(fat_t cluster, fat_t* value);
static uint8_t fatPut(fat_t cluster, fat_t value);
// end of chain test
static uint8_t isEOC(fat_t cluster) {return cluster >= 0XFFF8;}
// allocate a cluster to a file
uint8_t addCluster(void);
// free a cluster chain
uint8_t freeChain(fat_t cluster);
};
#endif // Fat16_h

View File

@ -0,0 +1,38 @@
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
/**
* \file
* Configuration file
*/
#ifndef Fat16Config_h
#define Fat16Config_h
/**
* Allow use of deprecated functions if non-zero
*/
#define ALLOW_DEPRECATED_FUNCTIONS 1
/**
* SdCard::writeBlock will protect block zero if set non-zero
*/
#define SD_PROTECT_BLOCK_ZERO 1
/**
* Set non-zero to allow access to Fat16 internals by cardInfo debug sketch
*/
#define FAT16_DEBUG_SUPPORT 1
#endif // Fat16Config_h

View File

@ -0,0 +1,208 @@
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
/**
\mainpage Arduino Fat16 Library
<CENTER>Copyright &copy; 2008 by William Greiman
</CENTER>
\section Intro Introduction
The Arduino Fat16 Library is a minimal implementation of the FAT16 file system
on standard SD flash memory cards. Fat16 supports read, write, file
creation, deletion, and truncation.
The Fat16 class only supports access to files in the root directory and only
supports short 8.3 names. Directory time and date fields for creation
and modification can be maintained by providing a date/time callback
function \link Fat16::dateTimeCallback() dateTimeCallback()\endlink
or calling \link Fat16::timestamp() timestamp()\endlink.
Fat16 was designed to use the Arduino Print class which
allows files to be written with \link Print::print() print() \endlink and
\link Print::println() println()\endlink.
\section comment Bugs and Comments
If you wish to report bugs or have comments, send email to fat16lib@sbcglobal.net.
\section SDcard SD Cards
Arduinos access SD cards using the cards SPI protocol. PCs, Macs, and
most consumer devices use the 4-bit parallel SD protocol. A card that
functions well on A PC or Mac may not work well on the Arduino.
Most cards have good SPI read performance but cards vary widely in SPI
write performance. Write performance is limited by how efficiently the
card manages internal erase/remapping operations. The Arduino cannot
optimize writes to reduce erase operations because of its limit RAM.
SanDisk cards generally have good write performance. They seem to have
more internal RAM buffering than other cards and therefore can limit
the number of flash erase operations that the Arduino forces due to its
limited RAM.
Some Dane-Elec cards have a write speed that is only 20% as fast as
a good SanDisk card.
\section Hardware Hardware Configuration
Fat16 was developed using an <A HREF = "http://www.adafruit.com/"> Adafruit Industries</A>
<A HREF = "http://ladyada.net/make/gpsshield/modules.html"> GPS Shield</A>.
The hardware interface to the SD card should not use a resistor based level
shifter. SdCard::init() sets the SPI bus frequency to 8 MHz which results in
signal rise times that are too slow for the edge detectors in many newer SD card
controllers when resistor voltage dividers are used.
The 5 to 3.3 V level shifter for 5 V arduinos should be IC based like the
74HC4050N based circuit shown in the file SdLevel.png. The Adafruit Wave Shield
uses a 74AHC125N. Gravitech sells SD and MicroSD Card Adapters based on the
74LCX245.
If you are using a resistor based level shifter and are having problems try
setting the SPI bus frequency to 4 MHz. This can be done by using
card.init(true) to initialize the SD card.
\section Fat16Class Fat16 Usage
The class Fat16 is a minimal implementation of FAT16 on standard SD cards.
High Capacity SD cards, SDHC, are not supported. It should work on all
standard cards from 8MB to 2GB formatted with a FAT16 file system.
\note
The Arduino Print class uses character
at a time writes so it was necessary to use a \link Fat16::sync() sync() \endlink
function to control when data is written to the SD card.
\par
An application which writes to a file using \link Print::print() print()\endlink,
\link Print::println() println() \endlink
or \link Fat16::write write() \endlink must call \link Fat16::sync() sync() \endlink
at the appropriate time to force data and directory information to be written
to the SD Card. Data and directory information are also written to the SD card
when \link Fat16::close() close() \endlink is called.
\par
Applications must use care calling \link Fat16::sync() sync() \endlink
since 2048 bytes of I/O is required to update file and
directory information. This includes writing the current data block, reading
the block that contains the directory entry for update, writing the directory
block back and reading back the current data block.
Fat16 only supports access to files in the root directory and only supports
short 8.3 names.
It is possible to open a file with two or more instances of Fat16. A file may
be corrupted if data is written to the file by more than one instance of Fat16.
Short names are limited to 8 characters followed by an optional period (.)
and extension of up to 3 characters. The characters may be any combination
of letters and digits. The following special characters are also allowed:
$ % ' - _ @ ~ ` ! ( ) { } ^ # &
Short names are always converted to upper case and their original case
value is lost.
Fat16 uses a slightly restricted form of short names.
Only printable ASCII characters are supported. No characters with code point
values greater than 127 are allowed. Space is not allowed even though space
was allowed in the API of early versions of DOS.
Fat16 has been optimized for The Arduino ATmega168. Minimizing RAM use is the
highest priority goal followed by flash use and finally performance.
Most SD cards only support 512 byte block write operations so a 512 byte
cache buffer is used by Fat16. This is the main use of RAM. A small
amount of RAM is used to store key volume and file information.
Flash memory usage can be controlled by selecting options in Fat16Config.h.
\section HowTo How to format SD Cards as FAT16 Volumes
Microsoft operating systems support removable media formatted with a
Master Boot Record, MBR, or formatted as a super floppy with a FAT Boot Sector
in block zero.
Microsoft operating systems expect MBR formatted removable media
to have only one partition. The first partition should be used.
Microsoft operating systems do not support partitioning SD flash cards.
If you erase an SD card with a program like KillDisk, Most versions of
Windows will format the card as a super floppy.
The best way to restore an SD card's MBR is to use SDFormatter
which can be downloaded from:
http://www.sdcard.org/consumers/formatter/
SDFormatter does not have an option for FAT type so it may format
small cards as FAT12.
After the MBR is restored by SDFormatter you may need to reformat small
cards that have been formatted FAT12 to force the volume type to be FAT16.
The FAT type, FAT12, FAT16, or FAT32, is determined by the count
of clusters on the volume and nothing else.
Microsoft published the following code for determining FAT type:
\code
if (CountOfClusters < 4085) {
// Volume is FAT12
}
else if (CountOfClusters < 65525) {
// Volume is FAT16
}
else {
// Volume is FAT32
}
\endcode
If you format a FAT volume with an OS utility , choose a cluster size that
will result in:
4084 < CountOfClusters && CountOfClusters < 65525
The volume will then be FAT16.
If you are formatting an SD card on OS X or Linux, be sure to use the first
partition. Format this partition with a cluster count in above range.
\section References References
The Arduino site:
http://www.arduino.cc/
For more information about FAT file systems see:
http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
For information about using SD cards as SPI devices see:
http://www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
The ATmega328 datasheet:
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf
*/

View File

@ -0,0 +1,74 @@
#ifndef Fat16util_h
#define Fat16util_h
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
/**
* \file
* Useful utility functions.
*/
#if ARDUINO < 100
#include <WProgram.h>
#else // ARDUINO
#include <Arduino.h>
#endif // ARDUINO
#include <avr/pgmspace.h>
/** Store and print a string in flash memory.*/
#define PgmPrint(x) SerialPrint_P(PSTR(x))
/** Store and print a string in flash memory followed by a CR/LF.*/
#define PgmPrintln(x) SerialPrintln_P(PSTR(x))
/** Defined so doxygen works for function definitions. */
#define NOINLINE __attribute__((noinline))
//------------------------------------------------------------------------------
/** Return the number of bytes currently free in RAM. */
static int FreeRam(void) {
extern int __bss_end;
extern int* __brkval;
int free_memory;
if (reinterpret_cast<int>(__brkval) == 0) {
// if no heap use from end of bss section
free_memory = reinterpret_cast<int>(&free_memory)
- reinterpret_cast<int>(&__bss_end);
} else {
// use from top of stack to heap
free_memory = reinterpret_cast<int>(&free_memory)
- reinterpret_cast<int>(__brkval);
}
return free_memory;
}
//------------------------------------------------------------------------------
/**
* %Print a string in flash memory to the serial port.
*
* \param[in] str Pointer to string stored in flash memory.
*/
static NOINLINE void SerialPrint_P(PGM_P str) {
for (uint8_t c; (c = pgm_read_byte(str)); str++) Serial.write(c);
}
//------------------------------------------------------------------------------
/**
* %Print a string in flash memory followed by a CR/LF.
*
* \param[in] str Pointer to string stored in flash memory.
*/
static NOINLINE void SerialPrintln_P(PGM_P str) {
SerialPrint_P(str);
Serial.println();
}
#endif // #define Fat16util_h

View File

@ -0,0 +1,418 @@
/* Arduino Fat16 Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino Fat16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef FatStructs_h
#define FatStructs_h
/**
* \file
* FAT file structures
*/
/*
* mostly from Microsoft document fatgen103.doc
* http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
*/
//------------------------------------------------------------------------------
/** Value for byte 510 of boot block or MBR */
uint8_t const BOOTSIG0 = 0X55;
/** Value for byte 511 of boot block or MBR */
uint8_t const BOOTSIG1 = 0XAA;
//------------------------------------------------------------------------------
/**
* \struct partitionTable
* \brief MBR partition table entry
*
* A partition table entry for a MBR formatted storage device.
* The MBR partition table has four entries.
*/
struct partitionTable {
/**
* Boot Indicator . Indicates whether the volume is the active
* partition. Legal values include: 0X00. Do not use for booting.
* 0X80 Active partition.
*/
uint8_t boot;
/**
* Head part of Cylinder-head-sector address of the first block in
* the partition. Legal values are 0-255. Only used in old PC BIOS.
*/
uint8_t beginHead;
/**
* Sector part of Cylinder-head-sector address of the first block in
* the partition. Legal values are 1-63. Only used in old PC BIOS.
*/
unsigned beginSector : 6;
/** High bits cylinder for first block in partition. */
unsigned beginCylinderHigh : 2;
/**
* Combine beginCylinderLow with beginCylinderHigh. Legal values
* are 0-1023. Only used in old PC BIOS.
*/
uint8_t beginCylinderLow;
/**
* Partition type. See defines that begin with PART_TYPE_ for
* some Microsoft partition types.
*/
uint8_t type;
/**
* head part of cylinder-head-sector address of the last sector in the
* partition. Legal values are 0-255. Only used in old PC BIOS.
*/
uint8_t endHead;
/**
* Sector part of cylinder-head-sector address of the last sector in
* the partition. Legal values are 1-63. Only used in old PC BIOS.
*/
unsigned endSector : 6;
/** High bits of end cylinder */
unsigned endCylinderHigh : 2;
/**
* Combine endCylinderLow with endCylinderHigh. Legal values
* are 0-1023. Only used in old PC BIOS.
*/
uint8_t endCylinderLow;
/** Logical block address of the first block in the partition. */
uint32_t firstSector;
/** Length of the partition, in blocks. */
uint32_t totalSectors;
};
/** Type name for partitionTable */
typedef struct partitionTable part_t;
//------------------------------------------------------------------------------
/**
* \struct masterBootRecord
*
* \brief Master Boot Record
*
* The first block of a storage device that is formatted with a MBR.
*/
struct masterBootRecord {
/** Code Area for master boot program. */
uint8_t codeArea[440];
/** Optional WindowsNT disk signature. May contain more boot code. */
uint32_t diskSignature;
/** Usually zero but may be more boot code. */
uint16_t usuallyZero;
/** Partition tables. */
part_t part[4];
/** First MBR signature byte. Must be 0X55 */
uint8_t mbrSig0;
/** Second MBR signature byte. Must be 0XAA */
uint8_t mbrSig1;
};
/** Type name for masterBootRecord */
typedef struct masterBootRecord mbr_t;
//------------------------------------------------------------------------------
/**
* \struct biosParmBlock
*
* \brief BIOS parameter block
*
* The BIOS parameter block describes the physical layout of a FAT volume.
*/
struct biosParmBlock {
/**
* Count of bytes per sector. This value may take on only the
* following values: 512, 1024, 2048 or 4096
*/
uint16_t bytesPerSector;
/**
* Number of sectors per allocation unit. This value must be a
* power of 2 that is greater than 0. The legal values are
* 1, 2, 4, 8, 16, 32, 64, and 128.
*/
uint8_t sectorsPerCluster;
/**
* Number of sectors before the first FAT.
* This value must not be zero.
*/
uint16_t reservedSectorCount;
/** The count of FAT data structures on the volume. This field should
* always contain the value 2 for any FAT volume of any type.
*/
uint8_t fatCount;
/**
* For FAT12 and FAT16 volumes, this field contains the count of
* 32-byte directory entries in the root directory. For FAT32 volumes,
* this field must be set to 0. For FAT12 and FAT16 volumes, this
* value should always specify a count that when multiplied by 32
* results in a multiple of bytesPerSector. FAT16 volumes should
* use the value 512.
*/
uint16_t rootDirEntryCount;
/**
* This field is the old 16-bit total count of sectors on the volume.
* This count includes the count of all sectors in all four regions
* of the volume. This field can be 0; if it is 0, then totalSectors32
* must be non-zero. For FAT32 volumes, this field must be 0. For
* FAT12 and FAT16 volumes, this field contains the sector count, and
* totalSectors32 is 0 if the total sector count fits
* (is less than 0x10000).
*/
uint16_t totalSectors16;
/**
* This dates back to the old MS-DOS 1.x media determination and is
* no longer usually used for anything. 0xF8 is the standard value
* for fixed (non-removable) media. For removable media, 0xF0 is
* frequently used. Legal values are 0xF0 or 0xF8-0xFF.
*/
uint8_t mediaType;
/**
* Count of sectors occupied by one FAT on FAT12/FAT16 volumes.
* On FAT32 volumes this field must be 0, and sectorsPerFat32
* contains the FAT size count.
*/
uint16_t sectorsPerFat16;
/** Sectors per track for interrupt 0x13. Not used otherwise. */
uint16_t sectorsPerTrtack;
/** Number of heads for interrupt 0x13. Not used otherwise. */
uint16_t headCount;
/**
* Count of hidden sectors preceding the partition that contains this
* FAT volume. This field is generally only relevant for media
* visible on interrupt 0x13.
*/
uint32_t hidddenSectors;
/**
* This field is the new 32-bit total count of sectors on the volume.
* This count includes the count of all sectors in all four regions
* of the volume. This field can be 0; if it is 0, then
* totalSectors16 must be non-zero.
*/
uint32_t totalSectors32;
/**
* Count of sectors occupied by one FAT on FAT32 volumes.
*/
uint32_t sectorsPerFat32;
/**
* This field is only defined for FAT32 media and does not exist on
* FAT12 and FAT16 media.
* Bits 0-3 -- Zero-based number of active FAT.
* Only valid if mirroring is disabled.
* Bits 4-6 -- Reserved.
* Bit 7 -- 0 means the FAT is mirrored at runtime into all FATs.
* -- 1 means only one FAT is active; it is the one referenced in bits 0-3.
* Bits 8-15 -- Reserved.
*/
uint16_t fat32Flags;
/**
* FAT32 version. High byte is major revision number.
* Low byte is minor revision number. Only 0.0 define.
*/
uint16_t fat32Version;
/**
* Cluster number of the first cluster of the root directory for FAT32.
* This usually 2 but not required to be 2.
*/
uint32_t fat32RootCluster;
/**
* Sector number of FSINFO structure in the reserved area of the
* FAT32 volume. Usually 1.
*/
uint16_t fat32FSInfo;
/**
* If non-zero, indicates the sector number in the reserved area
* of the volume of a copy of the boot record. Usually 6.
* No value other than 6 is recommended.
*/
uint16_t fat32BackBootBlock;
/**
* Reserved for future expansion. Code that formats FAT32 volumes
* should always set all of the bytes of this field to 0.
*/
uint8_t fat32Reserved[12];
};
/** Type name for biosParmBlock */
typedef struct biosParmBlock bpb_t;
//------------------------------------------------------------------------------
/**
* \struct fat32BootSector
*
* \brief Boot sector for a FAT16 or FAT32 volume.
*
*/
struct fat32BootSector {
/** X86 jmp to boot program */
uint8_t jmpToBootCode[3];
/** informational only - don't depend on it */
char oemName[8];
/** BIOS Parameter Block */
bpb_t bpb;
/** for int0x13 use value 0X80 for hard drive */
uint8_t driveNumber;
/** used by Windows NT - should be zero for FAT */
uint8_t reserved1;
/** 0X29 if next three fields are valid */
uint8_t bootSignature;
/** usually generated by combining date and time */
uint32_t volumeSerialNumber;
/** should match volume label in root dir */
char volumeLabel[11];
/** informational only - don't depend on it */
char fileSystemType[8];
/** X86 boot code */
uint8_t bootCode[420];
/** must be 0X55 */
uint8_t bootSectorSig0;
/** must be 0XAA */
uint8_t bootSectorSig1;
};
//------------------------------------------------------------------------------
// End Of Chain values for FAT entries
/** FAT16 end of chain value used by Microsoft. */
uint16_t const FAT16EOC = 0XFFFF;
/** Minimum value for FAT16 EOC. Use to test for EOC. */
uint16_t const FAT16EOC_MIN = 0XFFF8;
/** FAT32 end of chain value used by Microsoft. */
uint32_t const FAT32EOC = 0X0FFFFFFF;
/** Minimum value for FAT32 EOC. Use to test for EOC. */
uint32_t const FAT32EOC_MIN = 0X0FFFFFF8;
/** Mask a for FAT32 entry. Entries are 28 bits. */
uint32_t const FAT32MASK = 0X0FFFFFFF;
/** Type name for fat32BootSector */
typedef struct fat32BootSector fbs_t;
//------------------------------------------------------------------------------
/**
* \struct directoryEntry
* \brief FAT short directory entry
*
* Short means short 8.3 name, not the entry size.
*
* Date Format. A FAT directory entry date stamp is a 16-bit field that is
* basically a date relative to the MS-DOS epoch of 01/01/1980. Here is the
* format (bit 0 is the LSB of the 16-bit word, bit 15 is the MSB of the
* 16-bit word):
*
* Bits 9-15: Count of years from 1980, valid value range 0-127
* inclusive (1980-2107).
*
* Bits 5-8: Month of year, 1 = January, valid value range 1-12 inclusive.
*
* Bits 0-4: Day of month, valid value range 1-31 inclusive.
*
* Time Format. A FAT directory entry time stamp is a 16-bit field that has
* a granularity of 2 seconds. Here is the format (bit 0 is the LSB of the
* 16-bit word, bit 15 is the MSB of the 16-bit word).
*
* Bits 11-15: Hours, valid value range 0-23 inclusive.
*
* Bits 5-10: Minutes, valid value range 0-59 inclusive.
*
* Bits 0-4: 2-second count, valid value range 0-29 inclusive (0 - 58 seconds).
*
* The valid time range is from Midnight 00:00:00 to 23:59:58.
*/
struct directoryEntry {
/**
* Short 8.3 name.
* The first eight bytes contain the file name with blank fill.
* The last three bytes contain the file extension with blank fill.
*/
uint8_t name[11];
/** Entry attributes.
*
* The upper two bits of the attribute byte are reserved and should
* always be set to 0 when a file is created and never modified or
* looked at after that. See defines that begin with DIR_ATT_.
*/
uint8_t attributes;
/**
* Reserved for use by Windows NT. Set value to 0 when a file is
* created and never modify or look at it after that.
*/
uint8_t reservedNT;
/**
* The granularity of the seconds part of creationTime is 2 seconds
* so this field is a count of tenths of a second and its valid
* value range is 0-199 inclusive. (WHG note - seems to be hundredths)
*/
uint8_t creationTimeTenths;
/** Time file was created. */
uint16_t creationTime;
/** Date file was created. */
uint16_t creationDate;
/**
* Last access date. Note that there is no last access time, only
* a date. This is the date of last read or write. In the case of
* a write, this should be set to the same date as lastWriteDate.
*/
uint16_t lastAccessDate;
/**
* High word of this entry's first cluster number (always 0 for a
* FAT12 or FAT16 volume).
*/
uint16_t firstClusterHigh;
/** Time of last write. File creation is considered a write. */
uint16_t lastWriteTime;
/** Date of last write. File creation is considered a write. */
uint16_t lastWriteDate;
/** Low word of this entry's first cluster number. */
uint16_t firstClusterLow;
/** 32-bit unsigned holding this file's size in bytes. */
uint32_t fileSize;
};
//------------------------------------------------------------------------------
// Definitions for directory entries
//
/** Type name for directoryEntry */
typedef struct directoryEntry dir_t;
/** escape for name[0] = 0XE5 */
uint8_t const DIR_NAME_0XE5 = 0X05;
/** name[0] value for entry that is free after being "deleted" */
uint8_t const DIR_NAME_DELETED = 0XE5;
/** name[0] value for entry that is free and no allocated entries follow */
uint8_t const DIR_NAME_FREE = 0X00;
/** file is read-only */
uint8_t const DIR_ATT_READ_ONLY = 0X01;
/** File should hidden in directory listings */
uint8_t const DIR_ATT_HIDDEN = 0X02;
/** Entry is for a system file */
uint8_t const DIR_ATT_SYSTEM = 0X04;
/** Directory entry contains the volume label */
uint8_t const DIR_ATT_VOLUME_ID = 0X08;
/** Entry is for a directory */
uint8_t const DIR_ATT_DIRECTORY = 0X10;
/** Old DOS archive bit for backup support */
uint8_t const DIR_ATT_ARCHIVE = 0X20;
/** Test value for long name entry. Test is
(d->attributes & DIR_ATT_LONG_NAME_MASK) == DIR_ATT_LONG_NAME. */
uint8_t const DIR_ATT_LONG_NAME = 0X0F;
/** Test mask for long name entry */
uint8_t const DIR_ATT_LONG_NAME_MASK = 0X3F;
/** defined attribute bits */
uint8_t const DIR_ATT_DEFINED_BITS = 0X3F;
/** Directory entry is part of a long name */
static inline uint8_t DIR_IS_LONG_NAME(const dir_t* dir) {
return (dir->attributes & DIR_ATT_LONG_NAME_MASK) == DIR_ATT_LONG_NAME;
}
/** Mask for file/subdirectory tests */
uint8_t const DIR_ATT_FILE_TYPE_MASK = (DIR_ATT_VOLUME_ID | DIR_ATT_DIRECTORY);
/** Directory entry is for a file */
static inline uint8_t DIR_IS_FILE(const dir_t* dir) {
return (dir->attributes & DIR_ATT_FILE_TYPE_MASK) == 0;
}
/** Directory entry is for a subdirectory */
static inline uint8_t DIR_IS_SUBDIR(const dir_t* dir) {
return (dir->attributes & DIR_ATT_FILE_TYPE_MASK) == DIR_ATT_DIRECTORY;
}
/** Directory entry is for a file or subdirectory */
static inline uint8_t DIR_IS_FILE_OR_SUBDIR(const dir_t* dir) {
return (dir->attributes & DIR_ATT_VOLUME_ID) == 0;
}
#endif // FatStructs_h

View File

@ -0,0 +1,100 @@
#include "ArduinoRobot.h"
#include "SquawkSD.h"
#include "Fat16.h"
SQUAWK_CONSTRUCT_ISR(SQUAWK_PWM_PIN5);
void RobotControl::beginSpeaker(uint16_t frequency){
SquawkSynth::begin(frequency);
SquawkSynth::play();
osc[2].vol = 0x7F;
}
void RobotControl::playNote(byte period, word length, char modifier) {
// Modifier . makes note length 2/3
if(modifier == '.') length = (length * 2) / 3;
// Set up the play frequency, 352800 is [sample_rate]=44100 * [tuning]=8.0
osc[2].freq = 352800 / period;
// Delay, silence, delay
delay(length);
osc[2].freq = 0;
delay(length);
}
void RobotControl::playMelody(char* script){
// Find length of play string
word length = strlen(script);
// Set the default note time
word time = 500;
// Loop through each character in the play string
for(int n = 0; n < length; n++) {
// Fetch the character AFTER the current one - it may contain a modifier
char modifier = script[n + 1];
// Fetch the current character and branch accordingly
switch(script[n]) {
// Notes
case 'c': playNote(214, time, modifier); break; // Play a C
case 'C': playNote(202, time, modifier); break; // Play a C#
case 'd': playNote(190, time, modifier); break; // Play a D
case 'D': playNote(180, time, modifier); break; // Play a D#
case 'e': playNote(170, time, modifier); break; // Play an F
case 'f': playNote(160, time, modifier); break; // Play an F
case 'F': playNote(151, time, modifier); break; // Play an F#
case 'g': playNote(143, time, modifier); break; // Play a G
case 'G': playNote(135, time, modifier); break; // Play a G#
case 'a': playNote(127, time, modifier); break; // Play an A
case 'A': playNote(120, time, modifier); break; // Play an A#
case 'b': playNote(113, time, modifier); break; // Play a B
// Delay
case '-': playNote(0, time, modifier); break; // Play a quiet note
// Note lengths
case '1': time = 1000; break; // Full note
case '2': time = 500; break; // Half note
case '4': time = 250; break; // Quarter note
case '8': time = 50; break; // Eigth note
// Modifier '.' makes note length 2/3
}
}
}
void RobotControl::beep(int beep_length){
char scr1[]="8F";
char scr2[]="8Fe";
char scr3[]="1F";
switch (beep_length)
{
case BEEP_SIMPLE:
default:
playMelody(scr1);
break;
case BEEP_DOUBLE:
playMelody(scr2);
break;
case BEEP_LONG:
playMelody(scr3);
}
}
void RobotControl::tempoWrite(int tempo){
SquawkSynthSD::tempo(tempo);
}
void RobotControl::tuneWrite(float tune){
SquawkSynthSD::tune(tune);
}
void RobotControl::playFile(char* filename){
melody.open(filename,O_READ);
SquawkSynthSD::play(melody);
}
void RobotControl::stopPlayFile(){
melody.close();
}

View File

@ -0,0 +1 @@
#include "ArduinoRobot.h" #include "EasyTransfer2.h" void RobotControl::motorsStop(){ messageOut.writeByte(COMMAND_MOTORS_STOP); messageOut.sendData(); } void RobotControl::motorsWrite(int speedLeft,int speedRight){ messageOut.writeByte(COMMAND_RUN); messageOut.writeInt(speedLeft); messageOut.writeInt(speedRight); messageOut.sendData(); } void RobotControl::motorsWritePct(int speedLeftPct, int speedRightPct){ int16_t speedLeft=255*speedLeftPct; int16_t speedRight=255*speedRightPct; motorsWrite(speedLeft,speedRight); } void RobotControl::pointTo(int angle){ int target=angle; uint8_t speed=80; target=target%360; if(target<0){ target+=360; } int direction=angle; while(1){ if(direction>0){ motorsWrite(speed,-speed);//right delay(10); }else{ motorsWrite(-speed,speed);//left delay(10); } int currentAngle=compassRead(); int diff=target-currentAngle; if(diff<-180) diff += 360; else if(diff> 180) diff -= 360; direction=-diff; if(abs(diff)<5){ motorsWrite(0,0); return; } } } void RobotControl::turn(int angle){ int originalAngle=compassRead(); int target=originalAngle+angle; pointTo(target); /*uint8_t speed=80; target=target%360; if(target<0){ target+=360; } int direction=angle; while(1){ if(direction>0){ motorsWrite(speed,speed);//right delay(10); }else{ motorsWrite(-speed,-speed);//left delay(10); } int currentAngle=compassRead(); int diff=target-currentAngle; if(diff<-180) diff += 360; else if(diff> 180) diff -= 360; direction=-diff; if(abs(diff)<5){ motorsWrite(0,0); return; } }*/ } void RobotControl::moveForward(int speed){ motorsWrite(speed,speed); } void RobotControl::moveBackward(int speed){ motorsWrite(speed,speed); } void RobotControl::turnLeft(int speed){ motorsWrite(speed,255); } void RobotControl::turnRight(int speed){ motorsWrite(255,speed); } /* int RobotControl::getIRrecvResult(){ messageOut.writeByte(COMMAND_GET_IRRECV); messageOut.sendData(); //delay(10); while(!messageIn.receiveData()); if(messageIn.readByte()==COMMAND_GET_IRRECV_RE){ return messageIn.readInt(); } return -1; } */

View File

@ -0,0 +1,37 @@
#include "Multiplexer.h"
void Multiplexer::begin(uint8_t* selectors, uint8_t Z, uint8_t length){
for(uint8_t i=0;i<length;i++){
this->selectors[i]=selectors[i];
pinMode(selectors[i],OUTPUT);
}
this->length=length;
this->pin_Z=Z;
pinMode(pin_Z,INPUT);
}
void Multiplexer::selectPin(uint8_t num){
for(uint8_t i=0;i<length;i++){
//Serial.print(bitRead(num,i));
digitalWrite(selectors[i],bitRead(num,i));
}
//Serial.println("");
}
int Multiplexer::getAnalogValue(){
return analogRead(pin_Z);
}
bool Multiplexer::getDigitalValue(){
return digitalRead(pin_Z);
}
int Multiplexer::getAnalogValueAt(uint8_t num){
selectPin(num);
return getAnalogValue();
}
bool Multiplexer::getDigitalValueAt(uint8_t num){
selectPin(num);
return getDigitalValue();
}

View File

@ -0,0 +1,24 @@
#ifndef Multiplexer_h
#define Multiplexer_h
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
class Multiplexer{
public:
void begin(uint8_t* selectors, uint8_t Z, uint8_t length);
void selectPin(uint8_t num);
int getAnalogValue();
int getAnalogValueAt(uint8_t num);
bool getDigitalValue();
bool getDigitalValueAt(uint8_t num);
private:
uint8_t selectors[4];
uint8_t pin_Z;
uint8_t length;
};
#endif

View File

@ -0,0 +1,22 @@
#include <ArduinoRobot.h>
void RobotControl::beginSD(){
card.init();
file.init(&card);
melody.init(&card);
}
void RobotControl::_enableSD(){
DDRB = DDRB & 0xDF; //pinMode(CS_LCD,INPUT);
DDRB = DDRB | 0x10; //pinMode(CS_SD,OUTPUT);
}
/*
void RobotControl::sdTest(){
file.open("Infor.txt",O_READ);
uint8_t buf[7];
char n;
while ((n = file.read(buf, sizeof(buf))) > 0) {
for (uint8_t i = 0; i < n; i++) Serial.write(buf[i]);
}
}*/

View File

@ -0,0 +1,66 @@
/*
* Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
* SPI Master library for arduino.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/
#include "pins_arduino.h"
#include "SPI.h"
SPIClass SPI;
void SPIClass::begin() {
// Set SS to high so a connected chip will be "deselected" by default
digitalWrite(SS, HIGH);
// When the SS pin is set as OUTPUT, it can be used as
// a general purpose output port (it doesn't influence
// SPI operations).
pinMode(SS, OUTPUT);
// Warning: if the SS pin ever becomes a LOW INPUT then SPI
// automatically switches to Slave, so the data direction of
// the SS pin MUST be kept as OUTPUT.
SPCR |= _BV(MSTR);
SPCR |= _BV(SPE);
// Set direction register for SCK and MOSI pin.
// MISO pin automatically overrides to INPUT.
// By doing this AFTER enabling SPI, we avoid accidentally
// clocking in a single bit since the lines go directly
// from "input" to SPI control.
// http://code.google.com/p/arduino/issues/detail?id=888
pinMode(SCK, OUTPUT);
pinMode(MOSI, OUTPUT);
}
void SPIClass::end() {
SPCR &= ~_BV(SPE);
}
void SPIClass::setBitOrder(uint8_t bitOrder)
{
if(bitOrder == LSBFIRST) {
SPCR |= _BV(DORD);
} else {
SPCR &= ~(_BV(DORD));
}
}
void SPIClass::setDataMode(uint8_t mode)
{
SPCR = (SPCR & ~SPI_MODE_MASK) | mode;
}
void SPIClass::setClockDivider(uint8_t rate)
{
SPCR = (SPCR & ~SPI_CLOCK_MASK) | (rate & SPI_CLOCK_MASK);
SPSR = (SPSR & ~SPI_2XCLOCK_MASK) | ((rate >> 2) & SPI_2XCLOCK_MASK);
}

View File

@ -0,0 +1,70 @@
/*
* Copyright (c) 2010 by Cristian Maglie <c.maglie@bug.st>
* SPI Master library for arduino.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/
#ifndef _SPI_H_INCLUDED
#define _SPI_H_INCLUDED
#include <stdio.h>
#include <Arduino.h>
#include <avr/pgmspace.h>
#define SPI_CLOCK_DIV4 0x00
#define SPI_CLOCK_DIV16 0x01
#define SPI_CLOCK_DIV64 0x02
#define SPI_CLOCK_DIV128 0x03
#define SPI_CLOCK_DIV2 0x04
#define SPI_CLOCK_DIV8 0x05
#define SPI_CLOCK_DIV32 0x06
//#define SPI_CLOCK_DIV64 0x07
#define SPI_MODE0 0x00
#define SPI_MODE1 0x04
#define SPI_MODE2 0x08
#define SPI_MODE3 0x0C
#define SPI_MODE_MASK 0x0C // CPOL = bit 3, CPHA = bit 2 on SPCR
#define SPI_CLOCK_MASK 0x03 // SPR1 = bit 1, SPR0 = bit 0 on SPCR
#define SPI_2XCLOCK_MASK 0x01 // SPI2X = bit 0 on SPSR
class SPIClass {
public:
inline static byte transfer(byte _data);
// SPI Configuration methods
inline static void attachInterrupt();
inline static void detachInterrupt(); // Default
static void begin(); // Default
static void end();
static void setBitOrder(uint8_t);
static void setDataMode(uint8_t);
static void setClockDivider(uint8_t);
};
extern SPIClass SPI;
byte SPIClass::transfer(byte _data) {
SPDR = _data;
while (!(SPSR & _BV(SPIF)))
;
return SPDR;
}
void SPIClass::attachInterrupt() {
SPCR |= _BV(SPIE);
}
void SPIClass::detachInterrupt() {
SPCR &= ~_BV(SPIE);
}
#endif

View File

@ -0,0 +1,279 @@
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include <avr/pgmspace.h>
#if ARDUINO < 100
#include <WProgram.h>
#else // ARDUINO
#include <Arduino.h>
#endif // ARDUINO
#include <Fat16Config.h>
#include <SdCard.h>
//------------------------------------------------------------------------------
// r1 status values
uint8_t const R1_READY_STATE = 0;
uint8_t const R1_IDLE_STATE = 1;
// start data token for read or write
uint8_t const DATA_START_BLOCK = 0XFE;
// data response tokens for write block
uint8_t const DATA_RES_MASK = 0X1F;
uint8_t const DATA_RES_ACCEPTED = 0X05;
uint8_t const DATA_RES_CRC_ERROR = 0X0B;
uint8_t const DATA_RES_WRITE_ERROR = 0X0D;
//
// stop compiler from inlining where speed optimization is not required
#define STATIC_NOINLINE static __attribute__((noinline))
//------------------------------------------------------------------------------
// SPI static functions
//
// clock byte in
STATIC_NOINLINE uint8_t spiRec(void) {
SPDR = 0xff;
while (!(SPSR & (1 << SPIF)));
return SPDR;
}
// clock byte out
STATIC_NOINLINE void spiSend(uint8_t b) {
SPDR = b;
while (!(SPSR & (1 << SPIF)));
}
//------------------------------------------------------------------------------
// wait for card to go not busy
// return false if timeout
static uint8_t waitForToken(uint8_t token, uint16_t timeoutMillis) {
uint16_t t0 = millis();
while (spiRec() != token) {
if (((uint16_t)millis() - t0) > timeoutMillis) return false;
}
return true;
}
//------------------------------------------------------------------------------
uint8_t SdCard::cardCommand(uint8_t cmd, uint32_t arg) {
uint8_t r1;
// select card
chipSelectLow();
// wait if busy
waitForToken(0XFF, SD_COMMAND_TIMEOUT);
// send command
spiSend(cmd | 0x40);
// send argument
for (int8_t s = 24; s >= 0; s -= 8) spiSend(arg >> s);
// send CRC - must send valid CRC for CMD0
spiSend(cmd == CMD0 ? 0x95 : 0XFF);
// wait for not busy
for (uint8_t retry = 0; (0X80 & (r1 = spiRec())) && retry != 0XFF; retry++);
return r1;
}
//------------------------------------------------------------------------------
uint8_t SdCard::cardAcmd(uint8_t cmd, uint32_t arg) {
cardCommand(CMD55, 0);
return cardCommand(cmd, arg);
}
//==============================================================================
// SdCard member functions
//------------------------------------------------------------------------------
/**
* Determine the size of a standard SD flash memory card
* \return The number of 512 byte data blocks in the card
*/
uint32_t SdCard::cardSize(void) {
uint16_t c_size;
csd_t csd;
if (!readReg(CMD9, &csd)) return 0;
uint8_t read_bl_len = csd.read_bl_len;
c_size = (csd.c_size_high << 10) | (csd.c_size_mid << 2) | csd.c_size_low;
uint8_t c_size_mult = (csd.c_size_mult_high << 1) | csd.c_size_mult_low;
return (uint32_t)(c_size+1) << (c_size_mult + read_bl_len - 7);
}
//------------------------------------------------------------------------------
void SdCard::chipSelectHigh(void) {
digitalWrite(chipSelectPin_, HIGH);
// make sure MISO goes high impedance
spiSend(0XFF);
}
//------------------------------------------------------------------------------
void SdCard::chipSelectLow(void) {
// Enable SPI, Master, clock rate F_CPU/4
SPCR = (1 << SPE) | (1 << MSTR);
// Doubled Clock Frequency to F_CPU/2 unless speed_ is nonzero
if (!speed_) SPSR |= (1 << SPI2X);
digitalWrite(chipSelectPin_, LOW);
}
//------------------------------------------------------------------------------
void SdCard::error(uint8_t code, uint8_t data) {
errorData = data;
error(code);
}
//------------------------------------------------------------------------------
void SdCard::error(uint8_t code) {
errorCode = code;
chipSelectHigh();
}
//------------------------------------------------------------------------------
/**
* Initialize a SD flash memory card.
*
* \param[in] speed Set SPI Frequency to F_CPU/2 if speed = 0 or F_CPU/4
* if speed = 1.
* \param[in] chipSelectPin SD chip select pin number.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*
*/
uint8_t SdCard::init(uint8_t speed, uint8_t chipSelectPin) {
if (speed > 1) {
error(SD_ERROR_SPI_SPEED);
return false;
}
speed_ = speed;
chipSelectPin_ = chipSelectPin;
errorCode = 0;
uint8_t r;
// 16-bit init start time allows over a minute
uint16_t t0 = (uint16_t)millis();
pinMode(chipSelectPin_, OUTPUT);
digitalWrite(chipSelectPin_, HIGH);
pinMode(SPI_MISO_PIN, INPUT);
pinMode(SPI_SS_PIN, OUTPUT);
pinMode(SPI_MOSI_PIN, OUTPUT);
pinMode(SPI_SCK_PIN, OUTPUT);
// Enable SPI, Master, clock rate F_CPU/128
SPCR = (1 << SPE) | (1 << MSTR) | (1 << SPR1) | (1 << SPR0);
// must supply min of 74 clock cycles with CS high.
for (uint8_t i = 0; i < 10; i++) spiSend(0XFF);
digitalWrite(chipSelectPin_, LOW);
// command to go idle in SPI mode
while ((r = cardCommand(CMD0, 0)) != R1_IDLE_STATE) {
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
error(SD_ERROR_CMD0, r);
return false;
}
}
// start initialization and wait for completed initialization
while ((r = cardAcmd(ACMD41, 0)) != R1_READY_STATE) {
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
error(SD_ERROR_ACMD41, r);
return false;
}
}
chipSelectHigh();
return true;
}
//------------------------------------------------------------------------------
/**
* Reads a 512 byte block from a storage device.
*
* \param[in] blockNumber Logical block to be read.
* \param[out] dst Pointer to the location that will receive the data.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t SdCard::readBlock(uint32_t blockNumber, uint8_t* dst) {
if (cardCommand(CMD17, blockNumber << 9)) {
error(SD_ERROR_CMD17);
return false;
}
return readTransfer(dst, 512);
}
//------------------------------------------------------------------------------
uint8_t SdCard::readReg(uint8_t cmd, void* buf) {
uint8_t* dst = reinterpret_cast<uint8_t*>(buf);
if (cardCommand(cmd, 0)) {
chipSelectHigh();
return false;
}
return readTransfer(dst, 16);
}
//------------------------------------------------------------------------------
uint8_t SdCard::readTransfer(uint8_t* dst, uint16_t count) {
// wait for start of data
if (!waitForToken(DATA_START_BLOCK, SD_READ_TIMEOUT)) {
error(SD_ERROR_READ_TIMEOUT);
}
// start first spi transfer
SPDR = 0XFF;
for (uint16_t i = 0; i < count; i++) {
while (!(SPSR & (1 << SPIF)));
dst[i] = SPDR;
SPDR = 0XFF;
}
// wait for first CRC byte
while (!(SPSR & (1 << SPIF)));
spiRec(); // second CRC byte
chipSelectHigh();
return true;
}
//------------------------------------------------------------------------------
/**
* Writes a 512 byte block to a storage device.
*
* \param[in] blockNumber Logical block to be written.
* \param[in] src Pointer to the location of the data to be written.
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure.
*/
uint8_t SdCard::writeBlock(uint32_t blockNumber, const uint8_t* src) {
uint32_t address = blockNumber << 9;
#if SD_PROTECT_BLOCK_ZERO
// don't allow write to first block
if (address == 0) {
error(SD_ERROR_BLOCK_ZERO_WRITE);
return false;
}
#endif // SD_PROTECT_BLOCK_ZERO
if (cardCommand(CMD24, address)) {
error(SD_ERROR_CMD24);
return false;
}
// optimize write loop
SPDR = DATA_START_BLOCK;
for (uint16_t i = 0; i < 512; i++) {
while (!(SPSR & (1 << SPIF)));
SPDR = src[i];
}
while (!(SPSR & (1 << SPIF))); // wait for last data byte
spiSend(0xFF); // dummy crc
spiSend(0xFF); // dummy crc
// get write response
uint8_t r1 = spiRec();
if ((r1 & DATA_RES_MASK) != DATA_RES_ACCEPTED) {
error(SD_ERROR_WRITE_RESPONSE, r1);
return false;
}
// wait for card to complete write programming
if (!waitForToken(0XFF, SD_WRITE_TIMEOUT)) {
error(SD_ERROR_WRITE_TIMEOUT);
}
chipSelectHigh();
return true;
}

View File

@ -0,0 +1,192 @@
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef SdCard_h
#define SdCard_h
/**
* \file
* SdCard class
*/
#include <SdInfo.h>
//------------------------------------------------------------------------------
// Warning only SD_CHIP_SELECT_PIN, the SD card select pin, may be redefined.
// define hardware SPI pins
#if defined(__AVR_ATmega168__)\
||defined(__AVR_ATmega168P__)\
||defined(__AVR_ATmega328P__)
// 168 and 328 Arduinos
/** Slave Select pin */
uint8_t const SPI_SS_PIN = 10;
/** Master Out Slave In pin */
uint8_t const SPI_MOSI_PIN = 11;
/** Master In Slave Out pin */
uint8_t const SPI_MISO_PIN = 12;
/** Serial Clock */
uint8_t const SPI_SCK_PIN = 13;
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega1280__)\
|| defined(__AVR_ATmega2560__)
// pins for Arduino Mega
uint8_t const SPI_SS_PIN = 53;
uint8_t const SPI_MOSI_PIN = 51;
uint8_t const SPI_MISO_PIN = 50;
uint8_t const SPI_SCK_PIN = 52;
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega644P__)\
|| defined(__AVR_ATmega644__)\
|| defined(__AVR_ATmega1284P__)
// pins for Sanguino
uint8_t const SPI_SS_PIN = 4;
uint8_t const SPI_MOSI_PIN = 5;
uint8_t const SPI_MISO_PIN = 6;
uint8_t const SPI_SCK_PIN = 7;
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega32U4__)
// pins for Teensy 2.0
uint8_t const SPI_SS_PIN = 8;
uint8_t const SPI_MOSI_PIN = 16;
uint8_t const SPI_MISO_PIN = 14;
uint8_t const SPI_SCK_PIN = 15;
//------------------------------------------------------------------------------
#elif defined(__AVR_AT90USB646__)\
|| defined(__AVR_AT90USB1286__)
// pins for Teensy++ 1.0 & 2.0
uint8_t const SPI_SS_PIN = 20;
uint8_t const SPI_MOSI_PIN = 22;
uint8_t const SPI_MISO_PIN = 23;
uint8_t const SPI_SCK_PIN = 21;
//------------------------------------------------------------------------------
#else // SPI pins
#error unknown CPU
#endif // SPI pins
//------------------------------------------------------------------------------
/**
* SD Chip Select pin
*
* Warning if this pin is redefined the hardware SS pin will be enabled
* as an output by init(). An avr processor will not function as an SPI
* master unless SS is set to output mode.
*
* For example to set SD_CHIP_SELECT_PIN to 8 for the SparkFun microSD shield:
* uint8_t const SD_CHIP_SELECT_PIN = 8;
*
* The default chip select pin for the SD card is SS.
*/
uint8_t const SD_CHIP_SELECT_PIN = SPI_SS_PIN;
//------------------------------------------------------------------------------
/** command timeout ms */
uint16_t const SD_COMMAND_TIMEOUT = 300;
/** init timeout ms */
uint16_t const SD_INIT_TIMEOUT = 2000;
/** read timeout ms */
uint16_t const SD_READ_TIMEOUT = 300;
/** write timeout ms */
uint16_t const SD_WRITE_TIMEOUT = 600;
//------------------------------------------------------------------------------
// error codes
/** Card did not go into SPI mode */
uint8_t const SD_ERROR_CMD0 = 1;
/** Card did not go ready */
uint8_t const SD_ERROR_ACMD41 = 2;
/** Write command not accepted */
uint8_t const SD_ERROR_CMD24 = 3;
/** Read command not accepted */
uint8_t const SD_ERROR_CMD17 = 4;
/** timeout waiting for read data */
uint8_t const SD_ERROR_READ_TIMEOUT = 5;
/** write error occurred */
uint8_t const SD_ERROR_WRITE_RESPONSE = 6;
/** timeout waiting for write status */
uint8_t const SD_ERROR_WRITE_TIMEOUT = 7;
/** attempt to write block zero */
uint8_t const SD_ERROR_BLOCK_ZERO_WRITE = 8;
/** card returned an error to a CMD13 status check after a write */
uint8_t const SD_ERROR_WRITE_PROGRAMMING = 9;
/** invalid SPI speed in init() call */
uint8_t const SD_ERROR_SPI_SPEED = 10;
//------------------------------------------------------------------------------
// SD command codes
/** SEND OPERATING CONDITIONS */
uint8_t const ACMD41 = 0X29;
/** GO_IDLE_STATE - init card in spi mode if CS low */
uint8_t const CMD0 = 0X00;
/** SEND_CSD - Card Specific Data */
uint8_t const CMD9 = 0X09;
/** SEND_CID - Card IDentification */
uint8_t const CMD10 = 0X0A;
/** SEND_STATUS - read the card status register */
uint8_t const CMD13 = 0X0D;
/** READ_BLOCK */
uint8_t const CMD17 = 0X11;
/** WRITE_BLOCK */
uint8_t const CMD24 = 0X18;
/** APP_CMD - escape for application specific command */
uint8_t const CMD55 = 0X37;
//------------------------------------------------------------------------------
/**
* \class SdCard
* \brief Hardware access class for SD flash cards
*
* Supports raw access to a standard SD flash memory card.
*
*/
class SdCard {
public:
/** Code for a SD error. See SdCard.h for definitions. */
uint8_t errorCode;
/** Data that may be helpful in determining the cause of an error */
uint8_t errorData;
uint32_t cardSize(void);
/**
* Initialize an SD flash memory card with default clock rate and chip
* select pin. See SdCard::init(uint8_t sckRateID, uint8_t chipSelectPin).
*/
uint8_t init(void) {
return init(0, SD_CHIP_SELECT_PIN);
}
/**
* Initialize an SD flash memory card with the selected SPI clock rate
* and the default SD chip select pin.
* See SdCard::init(uint8_t slow, uint8_t chipSelectPin).
*/
uint8_t init(uint8_t speed) {
return init(speed, SD_CHIP_SELECT_PIN);
}
uint8_t init(uint8_t speed, uint8_t chipselectPin);
uint8_t readBlock(uint32_t block, uint8_t* dst);
/** Read the CID register which contains info about the card.
* This includes Manufacturer ID, OEM ID, product name, version,
* serial number, and manufacturing date. */
uint8_t readCID(cid_t* cid) {
return readReg(CMD10, cid);
}
uint8_t writeBlock(uint32_t block, const uint8_t* src);
private:
uint8_t cardAcmd(uint8_t cmd, uint32_t arg);
uint8_t cardCommand(uint8_t cmd, uint32_t arg);
uint8_t chipSelectPin_;
uint8_t speed_;
void chipSelectHigh(void);
void chipSelectLow(void);
void error(uint8_t code, uint8_t data);
void error(uint8_t code);
uint8_t readReg(uint8_t cmd, void* buf);
uint8_t readTransfer(uint8_t* dst, uint16_t count);
};
#endif // SdCard_h

View File

@ -0,0 +1,117 @@
/* Arduino FAT16 Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino FAT16 Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino Fat16 Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef SdInfo_h
#define SdInfo_h
#include <stdint.h>
// Based on the document:
//
// SD Specifications
// Part 1
// Physical Layer
// Simplified Specification
// Version 2.00
// September 25, 2006
//
// www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
//
// Card IDentification (CID) register
typedef struct CID {
// byte 0
uint8_t mid; // Manufacturer ID
// byte 1-2
char oid[2]; // OEM/Application ID
// byte 3-7
char pnm[5]; // Product name
// byte 8
unsigned prv_m : 4; // Product revision n.m
unsigned prv_n : 4;
// byte 9-12
uint32_t psn; // Product serial number
// byte 13
unsigned mdt_year_high : 4; // Manufacturing date
unsigned reserved : 4;
// byte 14
unsigned mdt_month : 4;
unsigned mdt_year_low :4;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
}cid_t;
// Card-Specific Data register
typedef struct CSD {
// byte 0
unsigned reserved1 : 6;
unsigned csd_ver : 2;
// byte 1
uint8_t taac;
// byte 2
uint8_t nsac;
// byte 3
uint8_t tran_speed;
// byte 4
uint8_t ccc_high;
// byte 5
unsigned read_bl_len : 4;
unsigned ccc_low : 4;
// byte 6
unsigned c_size_high : 2;
unsigned reserved2 : 2;
unsigned dsr_imp : 1;
unsigned read_blk_misalign :1;
unsigned write_blk_misalign : 1;
unsigned read_bl_partial : 1;
// byte 7
uint8_t c_size_mid;
// byte 8
unsigned vdd_r_curr_max : 3;
unsigned vdd_r_curr_min : 3;
unsigned c_size_low :2;
// byte 9
unsigned c_size_mult_high : 2;
unsigned vdd_w_cur_max : 3;
unsigned vdd_w_curr_min : 3;
// byte 10
unsigned sector_size_high : 6;
unsigned erase_blk_en : 1;
unsigned c_size_mult_low : 1;
// byte 11
unsigned wp_grp_size : 7;
unsigned sector_size_low : 1;
// byte 12
unsigned write_bl_len_high : 2;
unsigned r2w_factor : 3;
unsigned reserved3 : 2;
unsigned wp_grp_enable : 1;
// byte 13
unsigned reserved4 : 5;
unsigned write_partial : 1;
unsigned write_bl_len_low : 2;
// byte 14
unsigned reserved5: 2;
unsigned file_format : 2;
unsigned tmp_write_protect : 1;
unsigned perm_write_protect : 1;
unsigned copy : 1;
unsigned file_format_grp : 1;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
}csd_t;
#endif // SdInfo_h

View File

@ -0,0 +1,274 @@
#include "ArduinoRobot.h"
#include "Multiplexer.h"
#include "Wire.h"
bool RobotControl::digitalRead(uint8_t port){
uint8_t type=_getTypeCode(port);
switch(type){
case TYPE_TOP_TK:
return _digitalReadTopMux(port);
break;
case TYPE_TOP_TKD:
return _digitalReadTopPin(port);
break;
case TYPE_BOTTOM_TK:
return _requestDigitalRead(port);
break;
}
}
int RobotControl::analogRead(uint8_t port){
uint8_t type=_getTypeCode(port);
switch(type){
case TYPE_TOP_TK:
return _analogReadTopMux(port);
break;
case TYPE_TOP_TKD:
return _analogReadTopPin(port);
break;
case TYPE_BOTTOM_TK:
return _requestAnalogRead(port);
break;
}
}
void RobotControl::digitalWrite(uint8_t port, bool value){
uint8_t type=_getTypeCode(port);
switch(type){
case TYPE_TOP_TK:
//Top TKs can't use digitalWrite?
break;
case TYPE_TOP_TKD:
_digitalWriteTopPin(port, value);
break;
case TYPE_BOTTOM_TK:
_requestDigitalWrite(port, value);
break;
}
}
void RobotControl::analogWrite(uint8_t port, uint8_t value){
if(port==TKD4)
::analogWrite(port,value);
}
uint8_t RobotControl::_getTypeCode(uint8_t port){
switch(port){
case TK0:
case TK1:
case TK2:
case TK3:
case TK4:
case TK5:
case TK6:
case TK7:
return TYPE_TOP_TK;
break;
case TKD0:
case TKD1:
case TKD2:
case TKD3:
case TKD4:
case TKD5:
case LED1:
return TYPE_TOP_TKD;
break;
case B_TK1:
case B_TK2:
case B_TK3:
case B_TK4:
return TYPE_BOTTOM_TK;
break;
}
}
uint8_t RobotControl::_portToTopMux(uint8_t port){
switch(port){
case TK0:
return 0;
case TK1:
return 1;
case TK2:
return 2;
case TK3:
return 3;
case TK4:
return 4;
case TK5:
return 5;
case TK6:
return 6;
case TK7:
return 7;
}
}
uint8_t RobotControl::_topDPortToAPort(uint8_t port){
switch(port){
case TKD0:
return A1;
case TKD1:
return A2;
case TKD2:
return A3;
case TKD3:
return A4;
case TKD4:
return A7;
case TKD5:
return A11;
}
}
int* RobotControl::parseMBDPort(uint8_t port){
//Serial.println(port);
switch(port){
case B_TK1:
return &motorBoardData._B_TK1;
case B_TK2:
return &motorBoardData._B_TK2;
case B_TK3:
return &motorBoardData._B_TK3;
case B_TK4:
return &motorBoardData._B_TK4;
/*
case B_IR0:
return &motorBoardData._B_IR0;
case B_IR1:
return &motorBoardData._B_IR1;
case B_IR2:
return &motorBoardData._B_IR2;
case B_IR3:
return &motorBoardData._B_IR3;
case B_IR4:
return &motorBoardData._B_IR4;*/
}
}
int RobotControl::get_motorBoardData(uint8_t port){
return *parseMBDPort(port);
}
void RobotControl::set_motorBoardData(uint8_t port, int data){
*parseMBDPort(port)=data;
}
bool RobotControl::_digitalReadTopMux(uint8_t port){
uint8_t num=_portToTopMux(port);
return Multiplexer::getDigitalValueAt(num);
}
int RobotControl::_analogReadTopMux(uint8_t port){
uint8_t num=_portToTopMux(port);
return Multiplexer::getAnalogValueAt(num);
}
bool RobotControl::_digitalReadTopPin(uint8_t port){
return ::digitalRead(port);
}
int RobotControl::_analogReadTopPin(uint8_t port){
uint8_t aPin=_topDPortToAPort(port);
return ::analogRead(aPin);
}
void RobotControl::_digitalWriteTopPin(uint8_t port, bool value){
::digitalWrite(port, value);
}
bool RobotControl::_requestDigitalRead(uint8_t port){
messageOut.writeByte(COMMAND_DIGITAL_READ);
messageOut.writeByte(port);//B_TK1 - B_TK4
messageOut.sendData();
delay(10);
if(messageIn.receiveData()){
//Serial.println("*************");
uint8_t cmd=messageIn.readByte();
//Serial.print("cmd: ");
//Serial.println(cmd);
if(!(cmd==COMMAND_DIGITAL_READ_RE))
return false;
uint8_t pt=messageIn.readByte(); //Bottom TK port codename
//Serial.print("pt: ");
//Serial.println(pt);
set_motorBoardData(pt,messageIn.readByte());
return get_motorBoardData(port);
}
}
int RobotControl::_requestAnalogRead(uint8_t port){
messageOut.writeByte(COMMAND_ANALOG_READ);
messageOut.writeByte(port);//B_TK1 - B_TK4
messageOut.sendData();
delay(10);
if(messageIn.receiveData()){
uint8_t cmd=messageIn.readByte();
//Serial.println("*************");
//Serial.print("cmd: ");
//Serial.println(cmd);
if(!(cmd==COMMAND_ANALOG_READ_RE))
return false;
uint8_t pt=messageIn.readByte();
//Serial.print("pt: ");
//Serial.println(pt);
set_motorBoardData(pt,messageIn.readInt());
return get_motorBoardData(port);
}
}
void RobotControl::_requestDigitalWrite(uint8_t selector, uint8_t value){
messageOut.writeByte(COMMAND_DIGITAL_WRITE);
messageOut.writeByte(selector);//B_TK1 - B_TK4
messageOut.writeByte(value);
messageOut.sendData();
}
void RobotControl::updateIR(){
messageOut.writeByte(COMMAND_READ_IR);
messageOut.sendData();
delay(10);
if(messageIn.receiveData()){
if(messageIn.readByte()==COMMAND_READ_IR_RE){
for(int i=0;i<5;i++){
IRarray[i]=messageIn.readInt();
}
}
}
}
int RobotControl::knobRead(){
return ::analogRead(POT);
}
int RobotControl::trimRead(){
messageOut.writeByte(COMMAND_READ_TRIM);
messageOut.sendData();
delay(10);
if(messageIn.receiveData()){
uint8_t cmd=messageIn.readByte();
if(!(cmd==COMMAND_READ_TRIM_RE))
return false;
uint16_t pt=messageIn.readInt();
return pt;
}
}
uint16_t RobotControl::compassRead(){
return Compass::getReading();
}
/*
void RobotControl::beginUR(uint8_t pinTrigger, uint8_t pinEcho){
pinTrigger_UR=pinTrigger;
pinEcho_UR=pinEcho;
pinMode(pinEcho_UR, INPUT);
pinMode(pinTrigger_UR, OUTPUT);
}
uint16_t RobotControl::getDistance(){
digitalWrite(pinTrigger_UR, LOW); // Set the trigger pin to low for 2uS
delayMicroseconds(2);
digitalWrite(pinTrigger_UR, HIGH); // Send a 10uS high to trigger ranging
delayMicroseconds(10);
digitalWrite(pinTrigger_UR, LOW); // Send pin low again
uint16_t distance = pulseIn(pinEcho_UR, HIGH); // Read in times pulse
distance= distance/58; // Calculate distance from time of pulse
return distance;
}*/

View File

@ -0,0 +1,601 @@
// Squawk Soft-Synthesizer Library for Arduino
//
// Davey Taylor 2013
// d.taylor@arduino.cc
#include "Squawk.h"
// Period range, used for clamping
#define PERIOD_MIN 28
#define PERIOD_MAX 3424
// Convenience macros
#define LO4(V) ((V) & 0x0F)
#define HI4(V) (((V) & 0xF0) >> 4)
#define MIN(A, B) ((A) < (B) ? (A) : (B))
#define MAX(A, B) ((A) > (B) ? (A) : (B))
#define FREQ(PERIOD) (tuning_long / (PERIOD))
// SquawkStream class for PROGMEM data
class StreamROM : public SquawkStream {
private:
uint8_t *p_start;
uint8_t *p_cursor;
public:
StreamROM(const uint8_t *p_rom = NULL) { p_start = p_cursor = (uint8_t*)p_rom; }
uint8_t read() { return pgm_read_byte(p_cursor++); }
void seek(size_t offset) { p_cursor = p_start + offset; }
};
// Oscillator memory
typedef struct {
uint8_t fxp;
uint8_t offset;
uint8_t mode;
} pto_t;
// Deconstructed cell
typedef struct {
uint8_t fxc, fxp, ixp;
} cel_t;
// Effect memory
typedef struct {
int8_t volume;
uint8_t port_speed;
uint16_t port_target;
bool glissando;
pto_t vibr;
pto_t trem;
uint16_t period;
uint8_t param;
} fxm_t;
// Locals
static uint8_t order_count;
static uint8_t order[64];
static uint8_t speed;
static uint8_t tick;
static uint8_t ix_row;
static uint8_t ix_order;
static uint8_t ix_nextrow;
static uint8_t ix_nextorder;
static uint8_t row_delay;
static fxm_t fxm[4];
static cel_t cel[4];
static uint32_t tuning_long;
static uint16_t sample_rate;
static float tuning = 1.0;
static uint16_t tick_rate = 50;
static SquawkStream *stream;
static uint16_t stream_base;
static StreamROM rom;
// Imports
extern intptr_t squawk_register;
extern uint16_t cia;
// Exports
osc_t osc[4];
uint8_t pcm = 128;
// ProTracker period tables
uint16_t period_tbl[84] PROGMEM = {
3424, 3232, 3048, 2880, 2712, 2560, 2416, 2280, 2152, 2032, 1920, 1814,
1712, 1616, 1524, 1440, 1356, 1280, 1208, 1140, 1076, 1016, 960, 907,
856, 808, 762, 720, 678, 640, 604, 570, 538, 508, 480, 453,
428, 404, 381, 360, 339, 320, 302, 285, 269, 254, 240, 226,
214, 202, 190, 180, 170, 160, 151, 143, 135, 127, 120, 113,
107, 101, 95, 90, 85, 80, 75, 71, 67, 63, 60, 56,
53, 50, 47, 45, 42, 40, 37, 35, 33, 31, 30, 28,
};
// ProTracker sine table
int8_t sine_tbl[32] PROGMEM = {
0x00, 0x0C, 0x18, 0x25, 0x30, 0x3C, 0x47, 0x51, 0x5A, 0x62, 0x6A, 0x70, 0x76, 0x7A, 0x7D, 0x7F,
0x7F, 0x7F, 0x7D, 0x7A, 0x76, 0x70, 0x6A, 0x62, 0x5A, 0x51, 0x47, 0x3C, 0x30, 0x25, 0x18, 0x0C,
};
// Squawk object
SquawkSynth Squawk;
// Look up or generate waveform for ProTracker vibrato/tremolo oscillator
static int8_t do_osc(pto_t *p_osc) {
int8_t sample = 0;
int16_t mul;
switch(p_osc->mode & 0x03) {
case 0: // Sine
sample = pgm_read_byte(&sine_tbl[(p_osc->offset) & 0x1F]);
if(p_osc->offset & 0x20) sample = -sample;
break;
case 1: // Square
sample = (p_osc->offset & 0x20) ? 127 : -128;
break;
case 2: // Saw
sample = -(p_osc->offset << 2);
break;
case 3: // Noise (random)
sample = rand();
break;
}
mul = sample * LO4(p_osc->fxp);
p_osc->offset = (p_osc->offset + HI4(p_osc->fxp));
return mul >> 6;
}
// Calculates and returns arpeggio period
// Essentially finds period of current note + halftones
static inline uint16_t arpeggio(uint8_t ch, uint8_t halftones) {
uint8_t n;
for(n = 0; n != 47; n++) {
if(fxm[ch].period >= pgm_read_word(&period_tbl[n])) break;
}
return pgm_read_word(&period_tbl[MIN(n + halftones, 47)]);
}
// Calculates and returns glissando period
// Essentially snaps a sliding frequency to the closest note
static inline uint16_t glissando(uint8_t ch) {
uint8_t n;
uint16_t period_h, period_l;
for(n = 0; n != 47; n++) {
period_l = pgm_read_word(&period_tbl[n]);
period_h = pgm_read_word(&period_tbl[n + 1]);
if(fxm[ch].period < period_l && fxm[ch].period >= period_h) {
if(period_l - fxm[ch].period <= fxm[ch].period - period_h) {
period_h = period_l;
}
break;
}
}
return period_h;
}
// Tunes Squawk to a different frequency
void SquawkSynth::tune(float new_tuning) {
tuning = new_tuning;
tuning_long = (long)(((double)3669213184.0 / (double)sample_rate) * (double)tuning);
}
// Sets tempo
void SquawkSynth::tempo(uint16_t new_tempo) {
tick_rate = new_tempo;
cia = sample_rate / tick_rate; // not atomic?
}
// Initializes Squawk
// Sets up the selected port, and the sample grinding ISR
void SquawkSynth::begin(uint16_t hz) {
word isr_rr;
sample_rate = hz;
tuning_long = (long)(((double)3669213184.0 / (double)sample_rate) * (double)tuning);
cia = sample_rate / tick_rate;
if(squawk_register == (intptr_t)&OCR0A) {
// Squawk uses PWM on OCR0A/PD5(ATMega328/168)/PB7(ATMega32U4)
#ifdef __AVR_ATmega32U4__
DDRB |= 0b10000000; // TODO: FAIL on 32U4
#else
DDRD |= 0b01000000;
#endif
TCCR0A = 0b10000011; // Fast-PWM 8-bit
TCCR0B = 0b00000001; // 62500Hz
OCR0A = 0x7F;
} else if(squawk_register == (intptr_t)&OCR0B) {
// Squawk uses PWM on OCR0B/PC5(ATMega328/168)/PD0(ATMega32U4)
#ifdef __AVR_ATmega32U4__
DDRD |= 0b00000001;
#else
DDRD |= 0b00100000;
#endif // Set timer mode to
TCCR0A = 0b00100011; // Fast-PWM 8-bit
TCCR0B = 0b00000001; // 62500Hz
OCR0B = 0x7F;
#ifdef OCR2A
} else if(squawk_register == (intptr_t)&OCR2A) {
// Squawk uses PWM on OCR2A/PB3
DDRB |= 0b00001000; // Set timer mode to
TCCR2A = 0b10000011; // Fast-PWM 8-bit
TCCR2B = 0b00000001; // 62500Hz
OCR2A = 0x7F;
#endif
#ifdef OCR2B
} else if(squawk_register == (intptr_t)&OCR2B) {
// Squawk uses PWM on OCR2B/PD3
DDRD |= 0b00001000; // Set timer mode to
TCCR2A = 0b00100011; // Fast-PWM 8-bit
TCCR2B = 0b00000001; // 62500Hz
OCR2B = 0x7F;
#endif
#ifdef OCR3AL
} else if(squawk_register == (intptr_t)&OCR3AL) {
// Squawk uses PWM on OCR3AL/PC6
DDRC |= 0b01000000; // Set timer mode to
TCCR3A = 0b10000001; // Fast-PWM 8-bit
TCCR3B = 0b00001001; // 62500Hz
OCR3AH = 0x00;
OCR3AL = 0x7F;
#endif
} else if(squawk_register == (intptr_t)&SPDR) {
// NOT YET SUPPORTED
// Squawk uses external DAC via SPI
// TODO: Configure SPI
// TODO: Needs SS toggle in sample grinder
} else if(squawk_register == (intptr_t)&PORTB) {
// NOT YET SUPPORTED
// Squawk uses resistor ladder on PORTB
// TODO: Needs shift right in sample grinder
DDRB = 0b11111111;
} else if(squawk_register == (intptr_t)&PORTC) {
// NOT YET SUPPORTED
// Squawk uses resistor ladder on PORTC
// TODO: Needs shift right in sample grinder
DDRC = 0b11111111;
}
// Seed LFSR (needed for noise)
osc[3].freq = 0x2000;
// Set up ISR to run at sample_rate (may not be exact)
isr_rr = F_CPU / sample_rate;
TCCR1A = 0b00000000; // Set timer mode
TCCR1B = 0b00001001;
OCR1AH = isr_rr >> 8; // Set freq
OCR1AL = isr_rr & 0xFF;
}
// Decrunches a 9 byte row into a useful data
static void decrunch_row() {
uint8_t data;
// Initial decrunch
stream->seek(stream_base + ((order[ix_order] << 6) + ix_row) * 9);
data = stream->read(); cel[0].fxc = data << 0x04;
cel[1].fxc = data & 0xF0;
data = stream->read(); cel[0].fxp = data;
data = stream->read(); cel[1].fxp = data;
data = stream->read(); cel[2].fxc = data << 0x04;
cel[3].fxc = data >> 0x04;
data = stream->read(); cel[2].fxp = data;
data = stream->read(); cel[3].fxp = data;
data = stream->read(); cel[0].ixp = data;
data = stream->read(); cel[1].ixp = data;
data = stream->read(); cel[2].ixp = data;
// Decrunch extended effects
if(cel[0].fxc == 0xE0) { cel[0].fxc |= cel[0].fxp >> 4; cel[0].fxp &= 0x0F; }
if(cel[1].fxc == 0xE0) { cel[1].fxc |= cel[1].fxp >> 4; cel[1].fxp &= 0x0F; }
if(cel[2].fxc == 0xE0) { cel[2].fxc |= cel[2].fxp >> 4; cel[2].fxp &= 0x0F; }
// Decrunch cell 3 ghetto-style
cel[3].ixp = ((cel[3].fxp & 0x80) ? 0x00 : 0x7F) | ((cel[3].fxp & 0x40) ? 0x80 : 0x00);
cel[3].fxp &= 0x3F;
switch(cel[3].fxc) {
case 0x02:
case 0x03: if(cel[3].fxc & 0x01) cel[3].fxp |= 0x40; cel[3].fxp = (cel[3].fxp >> 4) | (cel[3].fxp << 4); cel[3].fxc = 0x70; break;
case 0x01: if(cel[3].fxp & 0x08) cel[3].fxp = (cel[3].fxp & 0x07) << 4; cel[3].fxc = 0xA0; break;
case 0x04: cel[3].fxc = 0xC0; break;
case 0x05: cel[3].fxc = 0xB0; break;
case 0x06: cel[3].fxc = 0xD0; break;
case 0x07: cel[3].fxc = 0xF0; break;
case 0x08: cel[3].fxc = 0xE7; break;
case 0x09: cel[3].fxc = 0xE9; break;
case 0x0A: cel[3].fxc = (cel[3].fxp & 0x08) ? 0xEA : 0xEB; cel[3].fxp &= 0x07; break;
case 0x0B: cel[3].fxc = (cel[3].fxp & 0x10) ? 0xED : 0xEC; cel[3].fxp &= 0x0F; break;
case 0x0C: cel[3].fxc = 0xEE; break;
}
// Apply generic effect parameter memory
uint8_t ch;
cel_t *p_cel = cel;
fxm_t *p_fxm = fxm;
for(ch = 0; ch != 4; ch++) {
uint8_t fx = p_cel->fxc;
if(fx == 0x10 || fx == 0x20 || fx == 0xE1 || fx == 0xE2 || fx == 0x50 || fx == 0x60 || fx == 0xA0) {
if(p_cel->fxp) {
p_fxm->param = p_cel->fxp;
} else {
p_cel->fxp = p_fxm->param;
}
}
p_cel++; p_fxm++;
}
}
// Resets playback
static void playroutine_reset() {
memset(fxm, 0, sizeof(fxm));
tick = 0;
ix_row = 0;
ix_order = 0;
ix_nextrow = 0xFF;
ix_nextorder = 0xFF;
row_delay = 0;
speed = 6;
decrunch_row();
}
// Start grinding samples
void SquawkSynth::play() {
TIMSK1 = 1 << OCIE1A; // Enable interrupt
}
// Load a melody stream and start grinding samples
void SquawkSynth::play(SquawkStream *melody) {
uint8_t n;
pause();
stream = melody;
stream->seek(0);
n = stream->read();
if(n == 'S') {
// Squawk SD file
stream->seek(4);
stream_base = stream->read() << 8;
stream_base |= stream->read();
stream_base += 6;
} else {
// Squawk ROM array
stream_base = 1;
}
stream->seek(stream_base);
order_count = stream->read();
if(order_count <= 64) {
stream_base += order_count + 1;
for(n = 0; n < order_count; n++) order[n] = stream->read();
playroutine_reset();
play();
} else {
order_count = 0;
}
}
// Load a melody in PROGMEM and start grinding samples
void SquawkSynth::play(const uint8_t *melody) {
pause();
rom = StreamROM(melody);
play(&rom);
}
// Pause playback
void SquawkSynth::pause() {
TIMSK1 = 0; // Disable interrupt
}
// Stop playing, unload melody
void SquawkSynth::stop() {
pause();
order_count = 0; // Unload melody
}
// Progress module by one tick
void squawk_playroutine() {
static bool lockout = false;
if(!order_count) return;
// Protect from re-entry via ISR
cli();
if(lockout) {
sei();
return;
}
lockout = true;
sei();
// Handle row delay
if(row_delay) {
if(tick == 0) row_delay--;
// Advance tick
if(++tick == speed) tick = 0;
} else {
// Quick pointer access
fxm_t *p_fxm = fxm;
osc_t *p_osc = osc;
cel_t *p_cel = cel;
// Temps
uint8_t ch, fx, fxp;
bool pattern_jump = false;
uint8_t ix_period;
for(ch = 0; ch != 4; ch++) {
uint8_t temp;
// Local register copy
fx = p_cel->fxc;
fxp = p_cel->fxp;
ix_period = p_cel->ixp;
// If first tick
if(tick == (fx == 0xED ? fxp : 0)) {
// Reset volume
if(ix_period & 0x80) p_osc->vol = p_fxm->volume = 0x20;
if((ix_period & 0x7F) != 0x7F) {
// Reset oscillators (unless continous flag set)
if((p_fxm->vibr.mode & 0x4) == 0x0) p_fxm->vibr.offset = 0;
if((p_fxm->trem.mode & 0x4) == 0x0) p_fxm->trem.offset = 0;
// Cell has note
if(fx == 0x30 || fx == 0x50) {
// Tone-portamento effect setup
p_fxm->port_target = pgm_read_word(&period_tbl[ix_period & 0x7F]);
} else {
// Set required effect memory parameters
p_fxm->period = pgm_read_word(&period_tbl[ix_period & 0x7F]);
// Start note
if(ch != 3) p_osc->freq = FREQ(p_fxm->period);
}
}
// Effects processed when tick = 0
switch(fx) {
case 0x30: // Portamento
if(fxp) p_fxm->port_speed = fxp;
break;
case 0xB0: // Jump to pattern
ix_nextorder = (fxp >= order_count ? 0x00 : fxp);
ix_nextrow = 0;
pattern_jump = true;
break;
case 0xC0: // Set volume
p_osc->vol = p_fxm->volume = MIN(fxp, 0x20);
break;
case 0xD0: // Jump to row
if(!pattern_jump) ix_nextorder = ((ix_order + 1) >= order_count ? 0x00 : ix_order + 1);
pattern_jump = true;
ix_nextrow = (fxp > 63 ? 0 : fxp);
break;
case 0xF0: // Set speed, BPM(CIA) not supported
if(fxp <= 0x20) speed = fxp;
break;
case 0x40: // Vibrato
if(fxp) p_fxm->vibr.fxp = fxp;
break;
case 0x70: // Tremolo
if(fxp) p_fxm->trem.fxp = fxp;
break;
case 0xE1: // Fine slide up
if(ch != 3) {
p_fxm->period = MAX(p_fxm->period - fxp, PERIOD_MIN);
p_osc->freq = FREQ(p_fxm->period);
}
break;
case 0xE2: // Fine slide down
if(ch != 3) {
p_fxm->period = MIN(p_fxm->period + fxp, PERIOD_MAX);
p_osc->freq = FREQ(p_fxm->period);
}
break;
case 0xE3: // Glissando control
p_fxm->glissando = (fxp != 0);
break;
case 0xE4: // Set vibrato waveform
p_fxm->vibr.mode = fxp;
break;
case 0xE7: // Set tremolo waveform
p_fxm->trem.mode = fxp;
break;
case 0xEA: // Fine volume slide up
p_osc->vol = p_fxm->volume = MIN(p_fxm->volume + fxp, 0x20);
break;
case 0xEB: // Fine volume slide down
p_osc->vol = p_fxm->volume = MAX(p_fxm->volume - fxp, 0);
break;
case 0xEE: // Delay
row_delay = fxp;
break;
}
} else {
// Effects processed when tick > 0
switch(fx) {
case 0x10: // Slide up
if(ch != 3) {
p_fxm->period = MAX(p_fxm->period - fxp, PERIOD_MIN);
p_osc->freq = FREQ(p_fxm->period);
}
break;
case 0x20: // Slide down
if(ch != 3) {
p_fxm->period = MIN(p_fxm->period + fxp, PERIOD_MAX);
p_osc->freq = FREQ(p_fxm->period);
}
break;
/*
// Just feels... ugly
case 0xE9: // Retrigger note
temp = tick; while(temp >= fxp) temp -= fxp;
if(!temp) {
if(ch == 3) {
p_osc->freq = p_osc->phase = 0x2000;
} else {
p_osc->phase = 0;
}
}
break;
*/
case 0xEC: // Note cut
if(fxp == tick) p_osc->vol = 0x00;
break;
default: // Multi-effect processing
// Portamento
if(ch != 3 && (fx == 0x30 || fx == 0x50)) {
if(p_fxm->period < p_fxm->port_target) p_fxm->period = MIN(p_fxm->period + p_fxm->port_speed, p_fxm->port_target);
else p_fxm->period = MAX(p_fxm->period - p_fxm->port_speed, p_fxm->port_target);
if(p_fxm->glissando) p_osc->freq = FREQ(glissando(ch));
else p_osc->freq = FREQ(p_fxm->period);
}
// Volume slide
if(fx == 0x50 || fx == 0x60 || fx == 0xA0) {
if((fxp & 0xF0) == 0) p_fxm->volume -= (LO4(fxp));
if((fxp & 0x0F) == 0) p_fxm->volume += (HI4(fxp));
p_osc->vol = p_fxm->volume = MAX(MIN(p_fxm->volume, 0x20), 0);
}
}
}
// Normal play and arpeggio
if(fx == 0x00) {
if(ch != 3) {
temp = tick; while(temp > 2) temp -= 2;
if(temp == 0) {
// Reset
p_osc->freq = FREQ(p_fxm->period);
} else if(fxp) {
// Arpeggio
p_osc->freq = FREQ(arpeggio(ch, (temp == 1 ? HI4(fxp) : LO4(fxp))));
}
}
} else if(fx == 0x40 || fx == 0x60) {
// Vibrato
if(ch != 3) p_osc->freq = FREQ((p_fxm->period + do_osc(&p_fxm->vibr)));
} else if(fx == 0x70) {
int8_t trem = p_fxm->volume + do_osc(&p_fxm->trem);
p_osc->vol = MAX(MIN(trem, 0x20), 0);
}
// Next channel
p_fxm++; p_cel++; p_osc++;
}
// Advance tick
if(++tick == speed) tick = 0;
// Advance playback
if(tick == 0) {
if(++ix_row == 64) {
ix_row = 0;
if(++ix_order >= order_count) ix_order = 0;
}
// Forced order/row
if( ix_nextorder != 0xFF ) {
ix_order = ix_nextorder;
ix_nextorder = 0xFF;
}
if( ix_nextrow != 0xFF ) {
ix_row = ix_nextrow;
ix_nextrow = 0xFF;
}
decrunch_row();
}
}
lockout = false;
}

View File

@ -0,0 +1,265 @@
// Squawk Soft-Synthesizer Library for Arduino
//
// Davey Taylor 2013
// d.taylor@arduino.cc
#ifndef _SQUAWK_H_
#define _SQUAWK_H_
#include <stddef.h>
#include <inttypes.h>
#include "Arduino.h"
#define Melody const uint8_t PROGMEM
class SquawkStream {
public:
virtual ~SquawkStream() = 0;
virtual uint8_t read() = 0;
virtual void seek(size_t offset) = 0;
};
inline SquawkStream::~SquawkStream() { }
class SquawkSynth {
protected:
// Load and play specified melody
void play(SquawkStream *melody);
public:
SquawkSynth() {};
// Initialize Squawk to generate samples at sample_rate Hz
void begin(uint16_t sample_rate);
// Load and play specified melody
// melody needs to point to PROGMEM data
void play(const uint8_t *melody);
// Resume currently loaded melody (or enable direct osc manipulation by sketch)
void play();
// Pause playback
void pause();
// Stop playback (unloads song)
void stop();
// Tune Squawk to a different frequency - default is 1.0
void tune(float tuning);
// Change the tempo - default is 50
void tempo(uint16_t tempo);
};
extern SquawkSynth Squawk;
// oscillator structure
typedef struct {
uint8_t vol;
uint16_t freq;
uint16_t phase;
} osc_t;
typedef osc_t Oscillator;
// oscillator memory
extern osc_t osc[4];
extern uint8_t pcm;
// channel 0 is pulse wave @ 25% duty
// channel 1 is square wave
// channel 2 is triangle wave
// channel 3 is noise
// For channel 3, freq is used as part of its LFSR and should not be changed.
// LFSR: Linear feedback shift register, a method of producing a
// pseudo-random bit sequence, used to generate nasty noise.
#ifdef __AVR_ATmega32U4__
// Supported configurations for ATmega32U4
#define SQUAWK_PWM_PIN5 OCR3AL
#define SQUAWK_PWM_PIN11 OCR0A
#define SQUAWK_PWM_PIN3 OCR0B
/*
// NOT SUPPORTED YET
#define SQUAWK_PWM_PIN6 OCR4D
#define SQUAWK_PWM_PIN9 OCR4B
#define SQUAWK_PWM_PIN10 OCR4B
*/
#endif
#ifdef __AVR_ATmega168__
// Supported configurations for ATmega168
#define SQUAWK_PWM_PIN6 OCR0A
#define SQUAWK_PWM_PIN5 OCR0B
#define SQUAWK_PWM_PIN11 OCR2A
#define SQUAWK_PWM_PIN3 OCR2B
#endif
#ifdef __AVR_ATmega328P__
// Supported configurations for ATmega328P
#define SQUAWK_PWM_PIN6 OCR0A
#define SQUAWK_PWM_PIN5 OCR0B
#define SQUAWK_PWM_PIN11 OCR2A
#define SQUAWK_PWM_PIN3 OCR2B
#endif
/*
// NOT SUPPORTED YET
#define SQUAWK_SPI SPDR
#define SQUAWK_RLD_PORTB PORTB
#define SQUAWK_RLD_PORTC PORTC
*/
extern void squawk_playroutine() asm("squawk_playroutine");
// SAMPLE GRINDER
// generates samples and updates oscillators
// uses 132 cycles (not counting playroutine)
// ~1/3 CPU @ 44kHz on 16MHz
#define SQUAWK_CONSTRUCT_ISR(TARGET_REGISTER) \
uint16_t cia, cia_count; \
intptr_t squawk_register = (intptr_t)&TARGET_REGISTER; \
ISR(TIMER1_COMPA_vect, ISR_NAKED) { \
asm volatile( \
"push r2 " "\n\t" \
"in r2, __SREG__ " "\n\t" \
"push r18 " "\n\t" \
"push r27 " "\n\t" \
"push r26 " "\n\t" \
"push r0 " "\n\t" \
"push r1 " "\n\t" \
\
"lds r18, osc+2*%[mul]+%[fre] " "\n\t" \
"lds r0, osc+2*%[mul]+%[pha] " "\n\t" \
"add r0, r18 " "\n\t" \
"sts osc+2*%[mul]+%[pha], r0 " "\n\t" \
"lds r18, osc+2*%[mul]+%[fre]+1" "\n\t" \
"lds r1, osc+2*%[mul]+%[pha]+1" "\n\t" \
"adc r1, r18 " "\n\t" \
"sts osc+2*%[mul]+%[pha]+1, r1 " "\n\t" \
\
"mov r27, r1 " "\n\t" \
"sbrc r27, 7 " "\n\t" \
"com r27 " "\n\t" \
"lsl r27 " "\n\t" \
"lds r26, osc+2*%[mul]+%[vol] " "\n\t" \
"subi r27, 128 " "\n\t" \
"muls r27, r26 " "\n\t" \
"lsl r1 " "\n\t" \
"mov r26, r1 " "\n\t" \
\
"lds r18, osc+0*%[mul]+%[fre] " "\n\t" \
"lds r0, osc+0*%[mul]+%[pha] " "\n\t" \
"add r0, r18 " "\n\t" \
"sts osc+0*%[mul]+%[pha], r0 " "\n\t" \
"lds r18, osc+0*%[mul]+%[fre]+1" "\n\t" \
"lds r1, osc+0*%[mul]+%[pha]+1" "\n\t" \
"adc r1, r18 " "\n\t" \
"sts osc+0*%[mul]+%[pha]+1, r1 " "\n\t" \
\
"mov r18, r1 " "\n\t" \
"lsl r18 " "\n\t" \
"and r18, r1 " "\n\t" \
"lds r27, osc+0*%[mul]+%[vol] " "\n\t" \
"sbrc r18, 7 " "\n\t" \
"neg r27 " "\n\t" \
"add r26, r27 " "\n\t" \
\
"lds r18, osc+1*%[mul]+%[fre] " "\n\t" \
"lds r0, osc+1*%[mul]+%[pha] " "\n\t" \
"add r0, r18 " "\n\t" \
"sts osc+1*%[mul]+%[pha], r0 " "\n\t" \
"lds r18, osc+1*%[mul]+%[fre]+1" "\n\t" \
"lds r1, osc+1*%[mul]+%[pha]+1" "\n\t" \
"adc r1, r18 " "\n\t" \
"sts osc+1*%[mul]+%[pha]+1, r1 " "\n\t" \
\
"lds r27, osc+1*%[mul]+%[vol] " "\n\t" \
"sbrc r1, 7 " "\n\t" \
"neg r27 " "\n\t" \
"add r26, r27 " "\n\t" \
\
"ldi r27, 1 " "\n\t" \
"lds r0, osc+3*%[mul]+%[fre] " "\n\t" \
"lds r1, osc+3*%[mul]+%[fre]+1" "\n\t" \
"add r0, r0 " "\n\t" \
"adc r1, r1 " "\n\t" \
"sbrc r1, 7 " "\n\t" \
"eor r0, r27 " "\n\t" \
"sbrc r1, 6 " "\n\t" \
"eor r0, r27 " "\n\t" \
"sts osc+3*%[mul]+%[fre], r0 " "\n\t" \
"sts osc+3*%[mul]+%[fre]+1, r1 " "\n\t" \
\
"lds r27, osc+3*%[mul]+%[vol] " "\n\t" \
"sbrc r1, 7 " "\n\t" \
"neg r27 " "\n\t" \
"add r26, r27 " "\n\t" \
\
"lds r27, pcm " "\n\t" \
"add r26, r27 " "\n\t" \
"sts %[reg], r26 " "\n\t" \
\
"lds r27, cia_count+1 " "\n\t" \
"lds r26, cia_count " "\n\t" \
"sbiw r26, 1 " "\n\t" \
"breq call_playroutine " "\n\t" \
"sts cia_count+1, r27 " "\n\t" \
"sts cia_count, r26 " "\n\t" \
"pop r1 " "\n\t" \
"pop r0 " "\n\t" \
"pop r26 " "\n\t" \
"pop r27 " "\n\t" \
"pop r18 " "\n\t" \
"out __SREG__, r2 " "\n\t" \
"pop r2 " "\n\t" \
"reti " "\n\t" \
"call_playroutine: " "\n\t" \
\
"lds r27, cia+1 " "\n\t" \
"lds r26, cia " "\n\t" \
"sts cia_count+1, r27 " "\n\t" \
"sts cia_count, r26 " "\n\t" \
\
"sei " "\n\t" \
"push r19 " "\n\t" \
"push r20 " "\n\t" \
"push r21 " "\n\t" \
"push r22 " "\n\t" \
"push r23 " "\n\t" \
"push r24 " "\n\t" \
"push r25 " "\n\t" \
"push r30 " "\n\t" \
"push r31 " "\n\t" \
\
"clr r1 " "\n\t" \
"call squawk_playroutine " "\n\t" \
\
"pop r31 " "\n\t" \
"pop r30 " "\n\t" \
"pop r25 " "\n\t" \
"pop r24 " "\n\t" \
"pop r23 " "\n\t" \
"pop r22 " "\n\t" \
"pop r21 " "\n\t" \
"pop r20 " "\n\t" \
"pop r19 " "\n\t" \
\
"pop r1 " "\n\t" \
"pop r0 " "\n\t" \
"pop r26 " "\n\t" \
"pop r27 " "\n\t" \
"pop r18 " "\n\t" \
"out __SREG__, r2 " "\n\t" \
"pop r2 " "\n\t" \
"reti " "\n\t" \
: \
: [reg] "M" _SFR_MEM_ADDR(TARGET_REGISTER), \
[mul] "M" (sizeof(Oscillator)), \
[pha] "M" (offsetof(Oscillator, phase)), \
[fre] "M" (offsetof(Oscillator, freq)), \
[vol] "M" (offsetof(Oscillator, vol)) \
); \
}
#endif

View File

@ -0,0 +1,182 @@
#include <SquawkSD.h>
SquawkSynthSD SquawkSD;
class StreamFile : public SquawkStream {
private:
Fat16 f;
public:
StreamFile(Fat16 file = Fat16()) { f = file; }
uint8_t read() { return f.read(); }
void seek(size_t offset) { f.seekSet(offset); }
};
static StreamFile file;
extern uint16_t period_tbl[84] PROGMEM;
void SquawkSynthSD::play(Fat16 melody) {
SquawkSynth::pause();
file = StreamFile(melody);
SquawkSynth::play(&file);
}
/*
void SquawkSynthSD::convert(Fat16 in, Fat16 out) {
unsigned int n;
uint8_t patterns = 0, order_count;
unsigned int ptn, row, chn;
uint8_t temp;
uint8_t fxc[4], fxp[4], note[4], sample[4];
uint16_t period;
out.write('S'); // ID
out.write('Q');
out.write('M');
out.write('1');
out.write((uint8_t)0); // No meta data
out.write((uint8_t)0);
// Write order list, count patterns
in.seek(0x3B6);
order_count = in.read();
out.write(order_count);
in.seek(0x3B8);
for(n = 0; n < order_count; n++) {
temp = in.read();
if(temp >= patterns) patterns = temp + 1;
out.write(temp);
}
// Write patterns
in.seek(0x43C);
for(ptn = 0; ptn < patterns; ptn++) {
for(row = 0; row < 64; row++) {
for(chn = 0; chn < 4; chn++) {
// Basic extraction
temp = in.read(); // sample.msb and period.msb
period = (temp & 0x0F) << 8;
sample[chn] = temp & 0xF0;
period |= in.read(); // period.lsb
temp = in.read(); // sample.lsb and effect
sample[chn] |= temp >> 4;
fxc[chn] = (temp & 0x0F) << 4;
fxp[chn] = in.read(); // parameters
if(fxc[chn] == 0xE0) {
fxc[chn] |= fxp[chn] >> 4; // extended parameters
fxp[chn] &= 0x0F;
}
#define DIF(A, B) ((A) > (B) ? ((int32_t)(A) - (int32_t)(B)) : ((int32_t)(B) - (int32_t)(A)))
// Find closest matching period
if(period == 0) {
note[chn] = 0x7F;
} else {
int16_t best = DIF(period, pgm_read_word(&period_tbl[0]));
note[chn] = 0;
for(n = 0; n < sizeof(period_tbl) / sizeof(uint16_t); n++) {
if(DIF(period, pgm_read_word(&period_tbl[n])) < best) {
note[chn] = n;
best = DIF(period, pgm_read_word(&period_tbl[n]));
}
}
}
// Crunch volume/decimal commands
if(fxc[chn] == 0x50 || fxc[chn] == 0x60 || fxc[chn] == 0xA0) {
fxp[chn] = (fxp[chn] >> 1) & 0x77;
} else if(fxc[chn] == 0x70) {
fxp[chn] = (fxp[chn] & 0xF0) | ((fxp[chn] & 0x0F) >> 1);
} else if(fxc[chn] == 0xC0 || fxc[chn] == 0xEA || fxc[chn] == 0xEB) {
fxp[chn] >>= 1;
} else if(fxc[chn] == 0xD0) {
fxp[chn] = ((fxp[chn] >> 4) * 10) | (fxp[chn] & 0x0F);
}
// Re-nibblify - it's a word!
if(chn != 3) {
if((fxc[chn] & 0xF0) == 0xE0) fxp[chn] |= fxc[chn] << 4;
fxc[chn] >>= 4;
}
}
// Ghetto crunch the last channel to save a byte
switch(fxc[3]) {
case 0x50: case 0x60: case 0xA0:
fxc[3] = 0x1;
if((fxp[3] >> 4) >= (fxp[3] & 0x0F)) {
fxp[3] = 0x80 + ((fxp[3] >> 4) - (fxp[3] & 0x0F));
} else {
fxp[3] = ((fxp[3] & 0x0F) - (fxp[3] >> 4));
}
break;
case 0x70:
fxc[3] = (fxp[3] & 0x4) ? 0x3 : 0x2;
fxp[3] = (fxp[3] >> 4) | ((fxp[3] & 0x03) << 4);
break;
case 0xC0:
fxc[3] = 0x4;
fxp[3] &= 0x1F;
break;
case 0xB0:
fxc[3] = 0x5;
fxp[3] &= 0x1F;
break;
case 0xD0:
fxc[3] = 0x6;
if(fxp[3] > 63) fxp[3] = 0;
break;
case 0xF0:
if(fxp[3] > 0x20) {
fxc[3] = 0x0;
fxp[3] = 0x00;
} else {
fxc[3] = 0x7;
}
break;
case 0xE7:
fxc[3] = 0x8;
break;
case 0xE9:
fxc[3] = 0x9;
break;
case 0xEA:
fxc[3] = 0xA;
fxp[3] |= 0x08;
break;
case 0xEB:
fxc[3] = 0xA;
break;
case 0xEC:
fxc[3] = 0xB;
break;
case 0xED:
fxc[3] = 0xB;
fxp[3] |= 0x10;
break;
case 0xEE:
fxc[3] = 0xC;
break;
default:
fxc[3] = 0;
fxp[3] = 0;
}
if(note[3] != 0x7F) fxp[3] |= 0x80;
if(sample[3]) fxp[3] |= 0x40;
// Write out
out.write((fxc[0]) | fxc[1] << 4);
out.write(fxp[0]);
out.write(fxp[1]);
out.write((fxc[2]) | fxc[3] << 4);
out.write(fxp[2]);
out.write(fxp[3]);
out.write(note[0] | (sample[0] == 0 ? 0x00 : 0x80));
out.write(note[1] | (sample[1] == 0 ? 0x00 : 0x80));
out.write(note[2] | (sample[2] == 0 ? 0x00 : 0x80));
}
}
}*/

View File

@ -0,0 +1,17 @@
#ifndef _SQUAWKSD_H_
#define _SQUAWKSD_H_
#include <Squawk.h>
#include "Fat16.h"
class SquawkSynthSD : public SquawkSynth {
private:
Fat16 f;
public:
inline void play() { Squawk.play(); };
void play(Fat16 file);
//void convert(Fat16 in, Fat16 out);
};
extern SquawkSynthSD SquawkSD;
#endif

View File

@ -0,0 +1,298 @@
/*
TwoWire.cpp - TWI/I2C library for Wiring & Arduino
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts
*/
extern "C" {
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "twi.h"
}
#include "Wire.h"
// Initialize Class Variables //////////////////////////////////////////////////
uint8_t TwoWire::rxBuffer[BUFFER_LENGTH];
uint8_t TwoWire::rxBufferIndex = 0;
uint8_t TwoWire::rxBufferLength = 0;
uint8_t TwoWire::txAddress = 0;
uint8_t TwoWire::txBuffer[BUFFER_LENGTH];
uint8_t TwoWire::txBufferIndex = 0;
uint8_t TwoWire::txBufferLength = 0;
uint8_t TwoWire::transmitting = 0;
void (*TwoWire::user_onRequest)(void);
void (*TwoWire::user_onReceive)(int);
// Constructors ////////////////////////////////////////////////////////////////
TwoWire::TwoWire()
{
}
// Public Methods //////////////////////////////////////////////////////////////
void TwoWire::begin(void)
{
rxBufferIndex = 0;
rxBufferLength = 0;
txBufferIndex = 0;
txBufferLength = 0;
twi_init();
}
void TwoWire::begin(uint8_t address)
{
twi_setAddress(address);
twi_attachSlaveTxEvent(onRequestService);
twi_attachSlaveRxEvent(onReceiveService);
begin();
}
void TwoWire::begin(int address)
{
begin((uint8_t)address);
}
uint8_t TwoWire::requestFrom(uint8_t address, uint8_t quantity, uint8_t sendStop)
{
// clamp to buffer length
if(quantity > BUFFER_LENGTH){
quantity = BUFFER_LENGTH;
}
// perform blocking read into buffer
uint8_t read = twi_readFrom(address, rxBuffer, quantity, sendStop);
// set rx buffer iterator vars
rxBufferIndex = 0;
rxBufferLength = read;
return read;
}
uint8_t TwoWire::requestFrom(uint8_t address, uint8_t quantity)
{
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)true);
}
uint8_t TwoWire::requestFrom(int address, int quantity)
{
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)true);
}
uint8_t TwoWire::requestFrom(int address, int quantity, int sendStop)
{
return requestFrom((uint8_t)address, (uint8_t)quantity, (uint8_t)sendStop);
}
void TwoWire::beginTransmission(uint8_t address)
{
// indicate that we are transmitting
transmitting = 1;
// set address of targeted slave
txAddress = address;
// reset tx buffer iterator vars
txBufferIndex = 0;
txBufferLength = 0;
}
void TwoWire::beginTransmission(int address)
{
beginTransmission((uint8_t)address);
}
//
// Originally, 'endTransmission' was an f(void) function.
// It has been modified to take one parameter indicating
// whether or not a STOP should be performed on the bus.
// Calling endTransmission(false) allows a sketch to
// perform a repeated start.
//
// WARNING: Nothing in the library keeps track of whether
// the bus tenure has been properly ended with a STOP. It
// is very possible to leave the bus in a hung state if
// no call to endTransmission(true) is made. Some I2C
// devices will behave oddly if they do not see a STOP.
//
uint8_t TwoWire::endTransmission(uint8_t sendStop)
{
// transmit buffer (blocking)
int8_t ret = twi_writeTo(txAddress, txBuffer, txBufferLength, 1, sendStop);
// reset tx buffer iterator vars
txBufferIndex = 0;
txBufferLength = 0;
// indicate that we are done transmitting
transmitting = 0;
return ret;
}
// This provides backwards compatibility with the original
// definition, and expected behaviour, of endTransmission
//
uint8_t TwoWire::endTransmission(void)
{
return endTransmission(true);
}
// must be called in:
// slave tx event callback
// or after beginTransmission(address)
size_t TwoWire::write(uint8_t data)
{
if(transmitting){
// in master transmitter mode
// don't bother if buffer is full
if(txBufferLength >= BUFFER_LENGTH){
setWriteError();
return 0;
}
// put byte in tx buffer
txBuffer[txBufferIndex] = data;
++txBufferIndex;
// update amount in buffer
txBufferLength = txBufferIndex;
}else{
// in slave send mode
// reply to master
twi_transmit(&data, 1);
}
return 1;
}
// must be called in:
// slave tx event callback
// or after beginTransmission(address)
size_t TwoWire::write(const uint8_t *data, size_t quantity)
{
if(transmitting){
// in master transmitter mode
for(size_t i = 0; i < quantity; ++i){
write(data[i]);
}
}else{
// in slave send mode
// reply to master
twi_transmit(data, quantity);
}
return quantity;
}
// must be called in:
// slave rx event callback
// or after requestFrom(address, numBytes)
int TwoWire::available(void)
{
return rxBufferLength - rxBufferIndex;
}
// must be called in:
// slave rx event callback
// or after requestFrom(address, numBytes)
int TwoWire::read(void)
{
int value = -1;
// get each successive byte on each call
if(rxBufferIndex < rxBufferLength){
value = rxBuffer[rxBufferIndex];
++rxBufferIndex;
}
return value;
}
// must be called in:
// slave rx event callback
// or after requestFrom(address, numBytes)
int TwoWire::peek(void)
{
int value = -1;
if(rxBufferIndex < rxBufferLength){
value = rxBuffer[rxBufferIndex];
}
return value;
}
void TwoWire::flush(void)
{
// XXX: to be implemented.
}
// behind the scenes function that is called when data is received
void TwoWire::onReceiveService(uint8_t* inBytes, int numBytes)
{
// don't bother if user hasn't registered a callback
if(!user_onReceive){
return;
}
// don't bother if rx buffer is in use by a master requestFrom() op
// i know this drops data, but it allows for slight stupidity
// meaning, they may not have read all the master requestFrom() data yet
if(rxBufferIndex < rxBufferLength){
return;
}
// copy twi rx buffer into local read buffer
// this enables new reads to happen in parallel
for(uint8_t i = 0; i < numBytes; ++i){
rxBuffer[i] = inBytes[i];
}
// set rx iterator vars
rxBufferIndex = 0;
rxBufferLength = numBytes;
// alert user program
user_onReceive(numBytes);
}
// behind the scenes function that is called when data is requested
void TwoWire::onRequestService(void)
{
// don't bother if user hasn't registered a callback
if(!user_onRequest){
return;
}
// reset tx buffer iterator vars
// !!! this will kill any pending pre-master sendTo() activity
txBufferIndex = 0;
txBufferLength = 0;
// alert user program
user_onRequest();
}
// sets function called on slave write
void TwoWire::onReceive( void (*function)(int) )
{
user_onReceive = function;
}
// sets function called on slave read
void TwoWire::onRequest( void (*function)(void) )
{
user_onRequest = function;
}
// Preinstantiate Objects //////////////////////////////////////////////////////
TwoWire Wire = TwoWire();

View File

@ -0,0 +1,79 @@
/*
TwoWire.h - TWI/I2C library for Arduino & Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts
*/
#ifndef TwoWire_h
#define TwoWire_h
#include <inttypes.h>
#include "Stream.h"
#define BUFFER_LENGTH 32
class TwoWire : public Stream
{
private:
static uint8_t rxBuffer[];
static uint8_t rxBufferIndex;
static uint8_t rxBufferLength;
static uint8_t txAddress;
static uint8_t txBuffer[];
static uint8_t txBufferIndex;
static uint8_t txBufferLength;
static uint8_t transmitting;
static void (*user_onRequest)(void);
static void (*user_onReceive)(int);
static void onRequestService(void);
static void onReceiveService(uint8_t*, int);
public:
TwoWire();
void begin();
void begin(uint8_t);
void begin(int);
void beginTransmission(uint8_t);
void beginTransmission(int);
uint8_t endTransmission(void);
uint8_t endTransmission(uint8_t);
uint8_t requestFrom(uint8_t, uint8_t);
uint8_t requestFrom(uint8_t, uint8_t, uint8_t);
uint8_t requestFrom(int, int);
uint8_t requestFrom(int, int, int);
virtual size_t write(uint8_t);
virtual size_t write(const uint8_t *, size_t);
virtual int available(void);
virtual int read(void);
virtual int peek(void);
virtual void flush(void);
void onReceive( void (*)(int) );
void onRequest( void (*)(void) );
inline size_t write(unsigned long n) { return write((uint8_t)n); }
inline size_t write(long n) { return write((uint8_t)n); }
inline size_t write(unsigned int n) { return write((uint8_t)n); }
inline size_t write(int n) { return write((uint8_t)n); }
using Print::write;
};
extern TwoWire Wire;
#endif

View File

@ -0,0 +1 @@
#include <ArduinoRobot.h> bool RobotControl::isActionDone(){ if(messageIn.receiveData()){ if(messageIn.readByte()==COMMAND_ACTION_DONE){ return true; } } return false; } void RobotControl::pauseMode(uint8_t onOff){ messageOut.writeByte(COMMAND_PAUSE_MODE); if(onOff){ messageOut.writeByte(true); }else{ messageOut.writeByte(false); } messageOut.sendData(); } void RobotControl::lineFollowConfig(uint8_t KP, uint8_t KD, uint8_t robotSpeed, uint8_t intergrationTime){ messageOut.writeByte(COMMAND_LINE_FOLLOW_CONFIG); messageOut.writeByte(KP); messageOut.writeByte(KD); messageOut.writeByte(robotSpeed); messageOut.writeByte(intergrationTime); messageOut.sendData(); }

View File

@ -0,0 +1,134 @@
/* Robot Logo
This sketch demonstrates basic movement of the Robot.
When the sketch starts, press the on-board buttons to tell
the robot how to move. Pressing the middle button will
save the pattern, and the robot will follow accordingly.
You can record up to 20 commands. The robot will move for
one second per command.
This example uses images on an SD card. It looks for
files named "lg0.bmp" and "lg1.bmp" and draws them on the
screen.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h> // include the robot library
int commands[20]; // array for storing commands
void setup() {
// initialize the Robot, SD card, and display
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
// draw "lg0.bmp" and "lg1.bmp" on the screen
Robot.displayLogos();
}
void loop() {
Robot.drawBMP("intro.bmp", 0, 0); //display background image
iniCommands(); // remove commands from the array
addCommands(); // add commands to the array
delay(1000); // wait for a second
executeCommands(); // follow orders
Robot.stroke(0,0,0);
Robot.text("Done!", 5, 103); // write some text to the display
delay(1500); // wait for a moment
}
// empty the commands array
void iniCommands() {
for(int i=0; i<20; i++)
commands[i]=-1;
}
// add commands to the array
void addCommands() {
Robot.stroke(0,0,0);
// display text on the screen
Robot.text("1. Press buttons to\n add commands.\n\n 2. Middle to finish.", 5, 5);
// read the buttons' state
for(int i=0; i<20;) { //max 20 commands
int key = Robot.keyboardRead();
if(key == BUTTON_MIDDLE) { //finish input
break;
}else if(key == BUTTON_NONE) { //if no button is pressed
continue;
}
commands[i] = key; // save the button to the array
PrintCommandI(i, 46); // print the command on the screen
delay(100);
i++;
}
}
// run through the array and move the robot
void executeCommands() {
// print status to the screen
Robot.text("Excuting...",5,70);
// read through the array and move accordingly
for(int i=0; i<20; i++) {
switch(commands[i]) {
case BUTTON_LEFT:
Robot.turn(-90);
break;
case BUTTON_RIGHT:
Robot.turn(90);
break;
case BUTTON_UP:
Robot.motorsWrite(255, 255);
break;
case BUTTON_DOWN:
Robot.motorsWrite(-255, -255);
break;
case BUTTON_NONE:
return;
}
// print the current command to the screen
Robot.stroke(255,0,0);
PrintCommandI(i, 86);
delay(1000);
// stop moving for a second
Robot.motorsStop();
delay(1000);
}
}
// convert the button press to a single character
char keyToChar(int key) {
switch(key) {
case BUTTON_LEFT:
return '<';
case BUTTON_RIGHT:
return '>';
case BUTTON_UP:
return '^';
case BUTTON_DOWN:
return 'v';
}
}
// display a command
void PrintCommandI(int i, int originY) {
Robot.text(keyToChar(commands[i]), i%14*8+5, i/14*10+originY);
}

View File

@ -0,0 +1,71 @@
/* Robot Line Follow
This sketch demonstrates the line following capabilities
of the Arduino Robot. On the floor, place some black
electrical tape along the path you wish the robot to follow.
To indicate a stopping point, place another piece of tape
perpendicular to the path.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h> // include the robot library
long timerOrigin; // used for counting elapsed time
void setup() {
// initialize the Robot, SD card, display, and speaker
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
Robot.beginSpeaker();
// show the logots on the TFT screen
Robot.displayLogos();
Robot.drawBMP("lf.bmp", 0, 0); // display background image
// These are some general values that work for line following
Robot.lineFollowConfig(11, 5, 50, 10);
//set the motor board into line-follow mode
Robot.setMode(MODE_LINE_FOLLOW);
Robot.playFile("chase.sqm"); // play a song from the SD card
// add the instructions
Robot.text("Line Following\n\n place the robot on\n the track and \n see it run", 5, 5);
Robot.text("Press the middle\n button to start...", 5, 61);
Robot.waitContinue();
// start
Robot.fill(255, 255, 255);
Robot.stroke(255, 255, 255);
Robot.rect(0, 0, 128, 80); // erase the previous text
Robot.stroke(0, 0, 0);
Robot.text("Start", 5, 5);
Robot.stroke(0, 0, 0); // choose color for the text
Robot.text("Time passed:", 5, 21); // write some text to the screen
timerOrigin=millis(); // keep track of the elapsed time
while(!Robot.isActionDone()) { //wait for the finish signal
Robot.debugPrint(millis()-timerOrigin, 5, 29); // show how much time has passed
}
Robot.stroke(0, 0, 0);
Robot.text("Done!", 5, 45);
}
void loop() {
//nothing here, the program only runs once. Reset the robot
//to do it again!
}

View File

@ -0,0 +1,179 @@
/* Disco Bot
This sketch shows you how to use the melody playing
feature of the robot, with some really cool 8-bit music.
Music will play when the robot is turned on, and it
will show you some dance moves.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h> // include the robot library
/* Dancing steps:
S: stop
L: turn left
R: turn right
F: go forward
B: go backwards
The number after each command determines how long
each step lasts. Each number is 1/2 second long.
The "\0" indicates end of string
*/
char danceScript[] = "S4L1R1S2F1B1S1\0";
int currentScript = 0; // what step are we at
int currentSong = 0; // keep track of the current song
static const int SONGS_COUNT = 3; // number of songs
// an array to hold the songs
char musics[][11] = {
"melody.sqm",
"menu.sqm",
"chase.sqm",
};
// variables for non-blocking delay
long waitFrom;
long waitTime = 0;
void setup() {
// initialize the Robot, SD card, display, and speaker
Robot.begin();
Robot.beginSpeaker();
Robot.beginSD();
Robot.beginTFT();
// draw "lg0.bmp" and "lg1.bmp" on the screen
Robot.displayLogos();
// Print instructions to the screen
Robot.text("1. Use left and\n right key to switch\n song", 5, 5);
Robot.text("2. Put robot on the\n ground to dance", 5, 33);
// wait for a few soconds
delay(3000);
setInterface(); // display the current song
play(0); //play the first song in the array
resetWait(); //Initialize non-blocking delay
}
void loop() {
// read the butttons on the robot
int key = Robot.keyboardRead();
// Right/left buttons play next/previous song
switch(key) {
case BUTTON_UP:
case BUTTON_LEFT:
play(-1); //play previous song
break;
case BUTTON_DOWN:
case BUTTON_RIGHT:
play(1); //play next song
break;
}
// dance!
runScript();
}
// Dancing function
void runScript() {
if(!waiting()) { // if the previous instructions have finished
// get the next 2 commands (direction and duration)
parseCommand(danceScript[currentScript], danceScript[currentScript+1]);
currentScript += 2;
if(danceScript[currentScript] == '\0') // at the end of the array
currentScript = 0; // start again at the beginning
}
}
// instead of delay, use this timer
boolean waiting() {
if(millis()-waitFrom >= waitTime)
return false;
else
return true;
}
// how long to wait
void wait(long t) {
resetWait();
waitTime = t;
}
// reset the timer
void resetWait() {
waitFrom = millis();
}
// read the direction and dirstion of the steps
void parseCommand(char dir, char duration) {
//convert the scripts to action
switch(dir) {
case 'L':
Robot.motorsWrite(-255, 255);
break;
case 'R':
Robot.motorsWrite(255, -255);
break;
case 'F':
Robot.motorsWrite(255, 255);
break;
case 'B':
Robot.motorsWrite(-255, -255);
break;
case 'S':
Robot.motorsStop();
break;
}
//You can change "500" to change the pace of dancing
wait(500*(duration-'0'));
}
// display the song
void setInterface() {
Robot.clearScreen();
Robot.fill(0, 0, 0);
Robot.text(musics[0], 0, 0);
}
// display the next song
void select(int seq, boolean onOff) {
if(onOff){//select
Robot.fill(0, 0, 0);
Robot.text(musics[seq], 0, 0);
}else{//deselect
Robot.fill(255, 255, 255);
Robot.text(musics[seq], 0, 0);
}
}
// play the slected song
void play(int seq) {
select(currentSong, false);
if(currentSong <= 0 && seq == -1) { //previous of 1st song?
currentSong = SONGS_COUNT-1; //go to last song
} else if(currentSong >= SONGS_COUNT-1 && seq == 1) { //next of last?
currentSong = 0; //go to 1st song
} else {
currentSong += seq; //next song
}
Robot.stopPlayFile();
Robot.playFile(musics[currentSong]);
select(currentSong, true); //display the current song
}

View File

@ -0,0 +1,70 @@
/* Robot Compass
The robot has an on-board compass module, with
which it can tell the direction the robot is
facing. This sketch will make sure the robot
goes towards a certain direction.
Beware, magnets will interfere with the compass
readings.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
// include the robot library
#include <ArduinoRobot.h>
int speedLeft;
int speedRight;
int compassValue;
int direc = 180; //Direction the robot is heading
void setup() {
// initialize the modules
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
Robot.displayLogos();
}
void loop() {
// read the compass orientation
compassValue = Robot.compassRead();
// how many degrees are we off
int diff = compassValue-direc;
// modify degress
if(diff > 180)
diff = -360+diff;
else if(diff < -180)
diff = 360+diff;
// Make the robot turn to its proper orientation
diff = map(diff, -180, 180, -255, 255);
if(diff > 0) {
// keep the right wheel spinning,
// change the speed of the left wheel
speedLeft = 255-diff;
speedRight = 255;
} else {
// keep the right left spinning,
// change the speed of the left wheel
speedLeft = 255;
speedRight = 255+diff;
}
// write out to the motors
Robot.motorsWrite(speedLeft, speedRight);
// draw the orientation on the screen
Robot.drawCompass(compassValue);
}

View File

@ -0,0 +1,166 @@
/* Robot Inputs
This sketch shows you how to use the on-board
potentiometer and buttons as inputs.
Turning the potentiometer draws a clock-shaped
circle. The up and down buttons change the pitch,
while the left and right buttons change the tempo.
The middle button resets tempo and pitch.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
// default tempo and pitch of the music
int tempo = 60;
int pitch = 1000;
void setup() {
// initialize the Robot, SD card, speaker, and display
Robot.begin();
Robot.beginTFT();
Robot.beginSpeaker();
Robot.beginSD();
// draw "lg0.bmp" and "lg1.bmp" on the screen
Robot.displayLogos();
// play a sound file
Robot.playFile("Melody.sqm");
}
void loop() {
// check the value of the buttons
keyDown(Robot.keyboardRead());
// check the value of the pot
drawKnob(Robot.knobRead());
}
// Draw the basic interface
void renderUI() {
//fill the buttons blank
Robot.fill(255, 255, 255);
Robot.rect(53, 58, 13, 13); // left
Robot.rect(93, 58, 13, 13); // right
Robot.rect(73, 38, 13, 13); // up
Robot.circle(79, 64, 6); // middle
Robot.rect(73, 78, 13, 13); // down
Robot.circle(26, 116, 18); // knob
//draw the vertical bargraph
int fullPart=map(pitch, 200, 2000, 0, 58); //length of filled bargraph
Robot.fill(255, 255, 255);
Robot.rect(21, 30, 13, 58-fullPart);
Robot.fill(0, 0, 255);
Robot.rect(21, 88-fullPart, 13, fullPart); //58-fullPart+30
//draw the horizontal bargraph
fullPart = map(tempo, 20, 100, 0, 58); // length of filled bargraph
Robot.fill(255, 190, 0);
Robot.rect(53, 110, fullPart, 13);
Robot.fill(255, 255, 255);
Robot.rect(53+fullPart, 110, 58-fullPart, 13);
}
void keyDown(int keyCode) {
// use a static int so it is persistent over time
static int oldKey;
switch(keyCode) {
case BUTTON_LEFT:
//left button pressed, reduces tempo
tempo -= 5;
if(tempo < 20) tempo = 20; //lowest tempo 20
Robot.fill(255,190,0);
Robot.rect(53, 58, 13, 13);
break;
case BUTTON_RIGHT:
//right button pressed, increases tempo
tempo += 5;
if(tempo > 100) tempo = 100; //highest tempo 100
Robot.fill(255,190,0);
Robot.rect(93, 58, 13, 13);
break;
case BUTTON_UP:
//up button pressed, increases pitch
pitch += 120;
if(pitch > 2000) pitch = 2000;
Robot.fill(0, 0, 255);
Robot.rect(73, 38, 13, 13);
break;
case BUTTON_DOWN:
//down button pressed, reduces pitch
pitch -= 120;
if(pitch < 200){
pitch = 200;
}
Robot.fill(0, 0, 255);
Robot.rect(73, 78, 13, 13);
break;
case BUTTON_MIDDLE:
//middle button pressed, resets tempo and pitch
tempo = 60;
pitch = 1000;
Robot.fill(160,160,160);
Robot.circle(79, 64, 6);
break;
case BUTTON_NONE:
//Only when the keys are released(thus BUTTON_NONE is
//encountered the first time), the interface will be
//re-drawn.
if(oldKey != BUTTON_NONE){
renderUI();
}
break;
}
if(oldKey != keyCode) {
// change the song's tempo
Robot.tempoWrite(tempo);
// change the song's pitch
Robot.tuneWrite(float(pitch/1000.0));
}
oldKey = keyCode;
}
void drawKnob(int val) {
static int x = 0, y = 0, val_old = 0;
// radian number, -3.14 to 3.14
float ang = map(val, 0, 1023, -PI*1000, PI*1000) / 1000.0;
// erase the old line
if (val_old != val) {
Robot.stroke(255, 255, 255);
Robot.line(26, 116, x, y);
}
// the following lines avoid a glitch in the TFT library
// that seems to appear when drawing a vertical line
if (val < 1011 && val > 265 || val < 253) {
//a bit math for drawing the hand inside the clock
x = 16*sin(ang)+26;
y = 16*cos(ang)+116;
}
if (val > 265 && val < 253) {
x = 10; y = 116;
}
if (val >= 1011) {
x = 27; y = 100;
}
Robot.stroke(0, 0, 0);
Robot.line(26, 116, x, y);
val_old = val;
}

View File

@ -0,0 +1,103 @@
/* 6 Wheel Calibration
Use this sketch to calibrate the wheels in your robot.
Your robot should drive as straight as possible when
putting both motors at the same speed.
Run the software and follow the on-screen instructions.
Use the trimmer on the motor board to make sure the
robot is working at its best!
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h> // inport the robot librsry
// import the utility library
// a description of its funtionality is below
#include <utility/RobotTextManager.h>
// arrays to hold the text for instructions
char script1[] ="Wheel Calibration";
char script2[] ="1. Put Robot on a\n flat surface";
char script3[] ="2. Adjust speed with the knob on top";
char script4[] ="3. If robot goes\n straight, it's done";
char script5[] ="4. Use screwdriver\n on the bottom trim";
char script6[] ="- Robot turns left,\n screw it clockwise;";
char script7[] ="- Turns right, screw it ct-colockwise;";
char script8[] ="5. Repeat 4 until\n going straight";
int speedRobot; //robot speed
int calibrationValue; //value for calibrate difference between wheels
void setup(){
//necessary initialization sequence
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
// left and top margin for displaying text
// see below for a description of this
textManager.setMargin(5,5);
// write all instructions at once
writeAllscript();
}
void loop(){
//Control the robot's speed with knob on top
int speedRobot=map(Robot.knobRead(),0,1023,-255,255);
Robot.motorsWrite(speedRobot,speedRobot);
//read value of the pot on motor baord,to clibrate the wheels
int calibrationValue=map(Robot.trimRead(),0,1023,-30,30);
// print the values to the screen
Robot.debugPrint(calibrationValue,110,145);
delay(40);
}
void writeAllscript(){
//prints 8 scripts one after another
textManager.writeText(0,0,script1);
textManager.writeText(1,0,script2);
textManager.writeText(3,0,script3);
textManager.writeText(5,0,script4);
textManager.writeText(7,0,script5);
textManager.writeText(9,0,script6);
textManager.writeText(11,0,script7);
textManager.writeText(13,0,script8);
}
/**
textManager mostly contains helper functions for
R06_Wheel_Calibration and R01_Hello_User.
textManager.setMargin(margin_left, margin_top):
Configure the left and top margin for text
display. The margins will be used by
textManager.writeText().
Parameters:
margin_left, margin_top: int, the margin values
from the top and left side of the screen.
Returns:
none
textManager.writeText(line,column,text):
Display text on the specific line and column.
It's different from Robot.text() which
uses pixels for positioning the text.
Parameters:
line:int, which line is the text displayed. Each line
is 10px high.
column:int, which column is the text displayed. Each
column is 8px wide.
text:a char array(string) of the text to be displayed.
Returns:
none
*/

View File

@ -0,0 +1,78 @@
/* Runaway Robot
Play tag with your robot! With an ultrasonic
distance sensor, it's capable of detecting and avoiding
obstacles, never bumping into walls again!
You'll need to attach an untrasonic range finder to TK1.
Circuit:
* Arduino Robot
* US range finder like Maxbotix EZ10, with analog output
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
// include the robot library
#include <ArduinoRobot.h>
int sensorPin = TK1; // pin is used by the sensor
void setup() {
// initialize the Robot, SD card, and display
Serial.begin(9600);
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
Robot.displayLogos();
// draw a face on the LCD screen
setFace(true);
}
void loop() {
// If the robot is blocked, turn until free
while(getDistance() < 40) { // If an obstacle is less than 20cm away
setFace(false); //shows an unhappy face
Robot.motorsStop(); // stop the motors
delay(1000); // wait for a moment
Robot.turn(90); // turn to the right and try again
setFace(true); // happy face
}
// if there are no objects in the way, keep moving
Robot.motorsWrite(255, 255);
delay(100);
}
// return the distance in cm
float getDistance() {
// read the value from the sensor
int sensorValue = Robot.analogRead(sensorPin);
//Convert the sensor input to cm.
float distance_cm = sensorValue*1.27;
return distance_cm;
}
// make a happy or sad face
void setFace(boolean onOff) {
if(onOff) {
// if true show a happy face
Robot.background(0, 0, 255);
Robot.setCursor(44, 60);
Robot.stroke(0, 255, 0);
Robot.setTextSize(4);
Robot.print(":)");
}else{
// if false show an upset face
Robot.background(255, 0, 0);
Robot.setCursor(44, 60);
Robot.stroke(0, 255, 0);
Robot.setTextSize(4);
Robot.print("X(");
}
}

View File

@ -0,0 +1,114 @@
/* 08 Remote Control
*******************
***
***This example code is in an experimental state.
***You are welcome to try this with your robot,
***and no harm will come to it. We will provide a
***detailed description of an updated version of this
***in a future update
***
*******************
If you connect a IR receiver to the robot,
you can control it like you control a TV set.
Using a Sony compatiable remote control,
map some buttons to different actions.
You can make the robot move around without
even touching it!
Circuit:
* Arduino Robot
* Connect the IRreceiver to TDK2
* Sony compatible remote control
based on the IRremote library
by Ken Shirriff
http://arcfn.com
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
// include the necessary libraries
#include <IRremote.h>
#include <ArduinoRobot.h>
// Define a few commands from your remote control
#define IR_CODE_FORWARD 0x2C9B
#define IR_CODE_BACKWARDS 0x6C9B
#define IR_CODE_TURN_LEFT 0xD4B8F
#define IR_CODE_TURN_RIGHT 0x34B8F
int RECV_PIN = TKD2; // the pin the IR receiver is connected to
IRrecv irrecv(RECV_PIN); // an instance of the IR receiver object
decode_results results; // container for received IR codes
void setup() {
// initialize the Robot, SD card, display, and speaker
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
// print some text to the screen
Robot.stroke(0, 0, 0);
Robot.text("Remote Control code:", 5, 5);
Robot.text("Command:", 5, 26);
irrecv.enableIRIn(); // Start the receiver
}
void loop() {
// if there is an IR command, process it
if (irrecv.decode(&results)) {
processResult();
irrecv.resume(); // resume receiver
}
}
void processResult() {
unsigned long res = results.value;
// print the value to the screen
Robot.debugPrint(res, 5, 15);
if(res == IR_CODE_FORWARD || res == IR_CODE_BACKWARDS || res == IR_CODE_TURN_LEFT || res == IR_CODE_TURN_RIGHT) {
Robot.fill(255, 255, 255);
Robot.stroke(255, 255, 255);
Robot.rect(5, 36, 55, 10);
}
switch(results.value){
case IR_CODE_FORWARD:
Robot.stroke(0, 0, 0);
Robot.text("Forward", 5, 36);
Robot.motorsWrite(255, 255);
delay(300);
Robot.motorsStop();
break;
case IR_CODE_BACKWARDS:
Robot.stroke(0, 0, 0);
Robot.text("Backwards", 5, 36);
Robot.motorsWrite(-255, -255);
delay(300);
Robot.motorsStop();
break;
case IR_CODE_TURN_LEFT:
Robot.stroke(0, 0, 0);
Robot.text("Left", 5, 36);
Robot.motorsWrite(-255, 255);
delay(100);
Robot.motorsStop();
break;
case IR_CODE_TURN_RIGHT:
Robot.stroke(0, 0, 0);
Robot.text("Right", 5, 36);
Robot.motorsWrite(255, -255);
delay(100);
Robot.motorsStop();
break;
}
}

View File

@ -0,0 +1,159 @@
/* Picture Browser
You can make your own gallery/picture show with the
Robot. Put some pictures on the SD card, start the
sketch, they will diplay on the screen.
Use the left/right buttons to navigate through the
previous and next images.
Press up or down to enter a mode where you change
the pictures by rotating the robot.
You can add your own pictures onto the SD card, and
view them in the Robot's gallery!
Pictures must be uncompressed BMP, 24-bit color depth,
160 pixels wide, and 128 pixels tall.
They should be named as "picN.bmp". Replace 'N' with a
number between 0 and 9.
The current code only supports 10 pictures. How would you
improve it to handle more?
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h> // include the robot library
const int NUM_PICS = 4; //Total number of pictures in Gallery
// name the modes
const int CONTROL_MODE_KEY = 0;
const int CONTROL_MODE_COMPASS = 1;
char buffer[] = "pic1.bmp"; // current file name
int i = 1; // Current gallery sequence counter
int mode = 0; // Current mode
// text to display on screen
char modeNames[][9] = { "keyboard", "tilt " };
void setup() {
// initialize the Robot, SD card, display, and speaker
Robot.beginSD();
Robot.beginTFT();
Robot.begin();
// draw "lg0.bmp" and "lg1.bmp" on the screen
Robot.displayLogos();
// draw init3.bmp from the SD card on the screen
Robot.drawBMP("init3.bmp", 0, 0);
// display instructions
Robot.stroke(0, 0, 0);
Robot.text("The gallery\n\n has 2 modes, in\n keyboard mode, L/R\n key for switching\n pictures, U/D key\n for changing modes", 5, 5);
delay(6000);
Robot.clearScreen();
Robot.drawBMP("pb.bmp", 0, 0);
Robot.text("In tilt mode,\n quickly tilt the\n robot to switch\n pictures", 5, 5);
delay(4000);
}
void loop() {
buffer[3] = '0'+i;// change filename of the img to be displayed
Robot.drawBMP(buffer, 0, 0); // draw the file on the screen
// change control modes
switch(mode) {
case CONTROL_MODE_COMPASS:
compassControl(3);
break;
case CONTROL_MODE_KEY:
keyboardControl();
break;
}
delay(200);
}
void keyboardControl() {
//Use buttons to control the gallery
while(true) {
int keyPressed = Robot.keyboardRead(); // read the button values
switch(keyPressed) {
case BUTTON_LEFT: // display previous picture
if(--i < 1) i = NUM_PICS;
return;
case BUTTON_MIDDLE: // do nothing
case BUTTON_RIGHT: // display next picture
if(++i > NUM_PICS) i = 1;
return;
case BUTTON_UP: // change mode
changeMode(-1);
return;
case BUTTON_DOWN: // change mode
changeMode(1);
return;
}
}
}
// if controlling by the compass
void compassControl(int change) {
// Rotate the robot to change the pictures
while(true) {
// read the value of the compass
int oldV = Robot.compassRead();
//get the change of angle
int diff = Robot.compassRead()-oldV;
if(diff > 180) diff -= 360;
else if(diff < -180) diff += 360;
if(abs(diff) > change) {
if(++i > NUM_PICS) i = 1;
return;
}
// chage modes, if buttons are pressed
int keyPressed = Robot.keyboardRead();
switch(keyPressed) {
case BUTTON_UP:
changeMode(-1);
return;
case BUTTON_DOWN:
changeMode(1);
return;
}
delay(10);
}
}
// Change the control mode and display it on the LCD
void changeMode(int changeDir) {
// alternate modes
mode += changeDir;
if(mode < 0) {
mode = 1;
} else if(mode > 1)
mode=0;
// display the mode on screen
Robot.fill(255, 255, 255);
Robot.stroke(255, 255, 255);
Robot.rect(0, 0, 128, 12);
Robot.stroke(0, 0, 0);
Robot.text("Control:", 2, 2);
Robot.text(modeNames[mode], 52, 2);
delay(1000);
}

View File

@ -0,0 +1,122 @@
/* Robot Rescue
In this example, the robot enters the line following mode and
plays some music until it reaches its target. Once it finds the
target, it pushes it out of the track. It then returns to the
track and looks for a second target.
You can make the robot push as many objects as you want to, just
add more to calls to the rescue function or even move that code
into the loop.
Circuit:
* Arduino Robot
* some objects for the robot to push
* a line-following circuit
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h> // include the robot library
void setup(){
// initialize the Robot, SD card, display, and speaker
Robot.begin();
Robot.beginTFT();
Robot.beginSD();
Robot.beginSpeaker();
// draw "lg0.bmp" and "lg1.bmp" on the screen
Robot.displayLogos();
// display the line following instructional image from the SD card
Robot.drawBMP("lf.bmp", 0, 0);
// play the chase music file
Robot.playFile("chase.sqm");
// add the instructions
Robot.text("Rescue\n\n place the robot on\n the rescue track\n pushing the\n obstacles away", 5, 5);
Robot.text("Press the middle\n button to start...", 5, 61);
Robot.waitContinue();
// start
Robot.fill(255, 255, 255);
Robot.stroke(255, 255, 255);
Robot.rect(0, 0, 128, 80); // erase the previous text
Robot.stroke(0, 0, 0);
Robot.text("Start", 5, 5);
// use this to calibrate the line following algorithm
Robot.lineFollowConfig(14, 9, 50, 10);
// run the rescue sequence
rescueSequence();
Robot.text("Found obstacle", 5, 12);
// find the track again
goToNext();
Robot.text("Found track", 5, 19);
// run the rescue sequence a second time
rescueSequence();
Robot.text("Found obstacle", 5, 24);
// here you could go on ...
// write status on the screen
Robot.stroke(0, 0, 0);
Robot.text("Done!", 5, 25);
}
void loop(){
//nothing here, the program only runs once.
}
// run the sequence
void rescueSequence(){
//set the motor board into line-follow mode
Robot.setMode(MODE_LINE_FOLLOW);
while(!Robot.isActionDone()){ // wait until it is no longer following the line
}
delay(1000);
// do the rescue operation
doRescue();
delay(1000);
}
void doRescue(){
// Reached the endline, engage the target
Robot.motorsWrite(200,200);
delay(250);
Robot.motorsStop();
delay(1000);
// Turn the robot
Robot.turn(90);
Robot.motorsStop();
delay(1000);
// Move forward
Robot.motorsWrite(200,200);
delay(500);
Robot.motorsStop();
delay(1000);
// move backwards, leave the target
Robot.motorsWrite(-200,-200);
delay(500);
Robot.motorsStop();
}
void goToNext(){
// Turn the robot
Robot.turn(-90);
Robot.motorsStop();
delay(1000);
}

View File

@ -0,0 +1,181 @@
/* Hello User
Hello User! This sketch is the first thing you see
when starting this robot. It gives you a warm welcome,
showing you some of the really amazing abilities of
the robot, and make itself really personal to you.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h> // include the robot library
// include the utility function for ths sketch
// see the details below
#include <utility/RobotTextManager.h>
char buffer[20];//for storing user name
void setup(){
//necessary initialization sequence
Robot.begin();
Robot.beginTFT();
Robot.beginSpeaker(32000);
Robot.beginSD();
// show the logos from the SD card
Robot.displayLogos();
// play the music file
Robot.playFile("menu.sqm");
// clear the screen
Robot.clearScreen();
// From now on, display different slides of
// text/pictures in sequence. The so-called
// scripts are strings of text stored in the
// robot's memory
// these functions are explained below
//Script 6
textManager.writeScript(5, 4, 0);
textManager.writeScript(9, 10, 0);
Robot.waitContinue();
delay(500);
Robot.clearScreen();
//Script 7
textManager.writeScript(6, 4, 0);
textManager.writeScript(9, 10, 0);
Robot.waitContinue();
delay(500);
Robot.clearScreen();
//Script 8
// this function enables sound and images at once
textManager.showPicture("init2.bmp", 0, 0);
textManager.writeScript(7, 2, 0);
textManager.writeScript(9, 7, 0);
Robot.waitContinue();
delay(500);
Robot.clearScreen();
//Script 9
textManager.showPicture("init3.bmp", 0, 0);
textManager.writeScript(8, 2, 0);
textManager.writeScript(9, 7, 0);
Robot.waitContinue();
delay(500);
Robot.clearScreen();
//Script 11
textManager.writeScript(10, 4, 0);
textManager.writeScript(9, 10, 0);
Robot.waitContinue();
delay(500);
Robot.clearScreen();
//Input screen
textManager.writeScript(0, 1, 1);
textManager.input(3, 1, USERNAME);
textManager.writeScript(1, 5, 1);
textManager.input(7, 1, ROBOTNAME);
delay(1000);
Robot.clearScreen();
//last screen
textManager.showPicture("init4.bmp", 0, 0);
textManager.writeText(1, 2, "Hello");
Robot.userNameRead(buffer);
textManager.writeText(3, 2, buffer);
textManager.writeScript(4,10,0);
Robot.waitContinue(BUTTON_LEFT);
Robot.waitContinue(BUTTON_RIGHT);
textManager.showPicture("kt1.bmp", 0, 0);
}
void loop(){
// do nothing here
}
/**
textManager mostly contains helper functions for
R06_Wheel_Calibration and R01_Hello_User.
The ones used in this example:
textManager.setMargin(margin_left, margin_top):
Configure the left and top margin for text
display. The margins will be used for
textManager.writeText().
Parameters:
margin_left, margin_top: the margin values
from the top and left side of the screen.
Returns:
none
textManager.writeScript(script_number,line,column):
Display a script of Hello User example.
Parameters:
script_number: an int value representing the
script to be displayed.
line, column: in which line,column is the script
displayed. Same as writeText().
Returns:
none
textManager.input(line,column,codename):
Print an input indicator(">") in the line and column,
dispaly and receive input from a virtual keyboard,
and save the value into EEPROM represented by codename
Parameters:
line,column: int values represents where the input
starts. Same as wirteText().
codename: either USERNAME,ROBOTNAME,CITYNAME or
COUNTRYNAME. You can call Robot.userNameRead(),
robotNameRead(),cityNameRead() or countryNameRead()
to access the values later.
Returns:
none;
textManager.writeText(line,column,text):
Display text on the specific line and column.
It's different from Robot.text() as the later
uses pixels for positioning the text.
Parameters:
line:in which line is the text displayed. Each line
is 10px high.
column:in which column is the text displayed. Each
column is 8px wide.
text:a char array(string) of the text to be displayed.
Returns:
none
textManager.showPicture(filename, x, y):
It has the same functionality as Robot.drawPicture(),
while fixing the conflict between drawPicture() and
sound playing. Using Robot.drawPicture(), it'll have
glitches when playing sound at the same time. Using
showPicture(), it'll stop sound when displaying
picture, so preventing the problem.
Parameters:
filename:string, name of the bmp file in sd
x,y: int values, position of the picture
Returns:
none
*/

View File

@ -0,0 +1,149 @@
/*
All IO Ports
This example goes through all the IO ports on your robot and
reads/writes from/to them. Uncomment the different lines inside
the loop to test the different possibilities.
The TK inputs on the Control Board are multiplexed and therefore
it is not recommended to use them as outputs. The TKD pins on the
Control Board as well as the TK pins on the Motor Board go directly
to the microcontroller and therefore can be used both as inputs
and outputs.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
// use arrays to store the names of the pins to be read
uint8_t arr[] = { TK0, TK1, TK2, TK3, TK4, TK5, TK6, TK7 };
uint8_t arr2[] = { TKD0, TKD1, TKD2, TKD3, TKD4, TKD5 };
uint8_t arr3[] = { B_TK1, B_TK2, B_TK3, B_TK4 };
void setup(){
// initialize the robot
Robot.begin();
// open the serial port to send the information of what you are reading
Serial.begin(9600);
}
void loop(){
// read all the TK inputs at the Motor Board as analog
analogReadB_TKs();
// read all the TK inputs at the Motor Board as digital
//digitalReadB_TKs();
// read all the TK inputs at the Control Board as analog
//analogReadTKs();
// read all the TK inputs at the Control Board as digital
//digitalReadTKs();
// read all the TKD inputs at the Control Board as analog
//analogReadTKDs();
// read all the TKD inputs at the Control Board as digital
//digitalReadTKDs();
// write all the TK outputs at the Motor Board as digital
//digitalWriteB_TKs();
// write all the TKD outputs at the Control Board as digital
//digitalWriteTKDs();
delay(5);
}
// read all TK inputs on the Control Board as analog inputs
void analogReadTKs() {
for(int i=0;i<8;i++) {
Serial.print(Robot.analogRead(arr[i]));
Serial.print(",");
}
Serial.println("");
}
// read all TK inputs on the Control Board as digital inputs
void digitalReadTKs() {
for(int i=0;i<8;i++) {
Serial.print(Robot.digitalRead(arr[i]));
Serial.print(",");
}
Serial.println("");
}
// read all TKD inputs on the Control Board as analog inputs
void analogReadTKDs() {
for(int i=0; i<6; i++) {
Serial.print(Robot.analogRead(arr2[i]));
Serial.print(",");
}
Serial.println("");
}
// read all TKD inputs on the Control Board as digital inputs
void digitalReadTKDs() {
for(int i=0; i<6; i++) {
Serial.print(Robot.digitalRead(arr2[i]));
Serial.print(",");
}
Serial.println("");
}
// write all TKD outputs on the Control Board as digital outputs
void digitalWriteTKDs() {
// turn all the pins on
for(int i=0; i<6; i++) {
Robot.digitalWrite(arr2[i], HIGH);
}
delay(500);
// turn all the pins off
for(int i=0; i<6; i++){
Robot.digitalWrite(arr2[i], LOW);
}
delay(500);
}
// write all TK outputs on the Motor Board as digital outputs
void digitalWriteB_TKs() {
// turn all the pins on
for(int i=0; i<4; i++) {
Robot.digitalWrite(arr3[i], HIGH);
}
delay(500);
// turn all the pins off
for(int i=0; i<4; i++) {
Robot.digitalWrite(arr3[i], LOW);
}
delay(500);
}
// read all TK inputs on the Motor Board as analog inputs
void analogReadB_TKs() {
for(int i=0; i<4; i++) {
Serial.print(Robot.analogRead(arr3[i]));
Serial.print(",");
}
Serial.println("");
}
// read all TKD inputs on the Motor Board as digital inputs
void digitalReadB_TKs() {
for(int i=0; i<4; i++) {
Serial.print(Robot.digitalRead(arr3[i]));
Serial.print(",");
}
Serial.println("");
}

View File

@ -0,0 +1,39 @@
/*
Beep
Test different pre-configured beeps on
the robot's speaker.
Possible beeps are:
- BEEP_SIMPLE
- BEEP_DOUBLE
- BEEP_LONG
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
void setup() {
// initialize the robot
Robot.begin();
// initialize the sound speaker
Robot.beginSpeaker();
}
void loop() {
Robot.beep(BEEP_SIMPLE);
delay(1000);
Robot.beep(BEEP_DOUBLE);
delay(1000);
Robot.beep(BEEP_LONG);
delay(1000);
}

View File

@ -0,0 +1,41 @@
/*
Clean EEPROM
This example erases the user information stored on the
external EEPROM memory chip on your robot.
BEWARE, this will erase the following information:
- your name
- your robots name given by you
- your city and country if you configured them via software
EEPROMs shouldn't be rewritten too often, therefore the
code runs only during setup and not inside loop.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
void setup(){
// initialize the robot
Robot.begin();
// write empty strings for the different fields
Robot.userNameWrite("");
Robot.robotNameWrite("");
Robot.cityNameWrite("");
Robot.countryNameWrite("");
}
void loop(){
// do nothing
}

View File

@ -0,0 +1,41 @@
/*
Compass
Try the compass both on the robot's TFT
and through the serial port.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
void setup() {
// initialize the robot
Robot.begin();
// initialize the robot's screen
Robot.beginTFT();
// initialize the serial port
Serial.begin(9600);
}
void loop() {
// read the compass
int compass = Robot.compassRead();
// print out the sensor's value
Serial.println(compass);
// show the value on the robot's screen
Robot.drawCompass(compass);
}

View File

@ -0,0 +1,44 @@
/*
IR array
Read the analog value of the IR sensors at the
bottom of the robot. The also-called line following
sensors are a series of pairs of IR sender/receiver
used to detect how dark it is underneath the robot.
The information coming from the sensor array is stored
into the Robot.IRarray[] and updated using the Robot.updateIR()
method.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
void setup(){
// initialize the robot
Robot.begin();
// initialize the serial port
Serial.begin(9600);
}
void loop(){
// store the sensor information into the array
Robot.updateIR();
// iterate the array and print the data to the Serial port
for(int i=0; i<5; i++){
Serial.print(Robot.IRarray[i]);
Serial.print(" ");
}
Serial.println("");
}

View File

@ -0,0 +1,37 @@
/*
LCD Debug Print
Use the Robot's library function debugPrint() to
quickly send a sensor reading to the robot's creen.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
int value;
void setup() {
// initialize the robot
Robot.begin();
// initialize the screen
Robot.beginTFT();
}
void loop(){
// read a value
value = analogRead(A4);
// send the value to the screen
Robot.debugPrint(value);
delay(40);
}

View File

@ -0,0 +1,44 @@
/*
LCD Print
Print the reading from a sensor to the screen.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
int value;
void setup() {
// initialize the robot
Robot.begin();
// initialize the robot's screen
Robot.beginLCD();
}
void loop() {
// read a analog port
value=Robot.analogRead(TK4);
// write the sensor value on the screen
Robot.fill(0, 255, 0);
Robot.textSize(1);
Robot.text(value, 0, 0);
delay(500);
// erase the previous text on the screen
Robot.fill(255, 255, 255);
Robot.textSize(1);
Robot.text(value, 0, 0);
}

View File

@ -0,0 +1,41 @@
/*
LCD Write Text
Use the Robot's library function text() to
print out text to the robot's screen. Take
into account that you need to erase the
information before continuing writing.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
void setup() {
// initialize the robot
Robot.begin();
// initialize the screen
Robot.beginTFT();
}
void loop() {
Robot.stroke(0, 0, 0); // choose the color black
Robot.text("Hello World", 0, 0); // print the text
delay(2000);
Robot.stroke(255, 255, 255); // choose the color white
Robot.text("Hello World", 0, 0); // writing text in the same color as the BG erases the text!
Robot.stroke(0, 0, 0); // choose the color black
Robot.text("I am a robot", 0, 0); // print the text
delay(3000);
Robot.stroke(255, 255, 255); // choose the color black
Robot.text("I am a robot", 0, 0); // print the text
}

View File

@ -0,0 +1,49 @@
/*
Line Following with Pause
As the robot has two processors, one to command the motors and one to
take care of the screen and user input, it is possible to write
programs that put one part of the robot to do something and get the
other half to control it.
This example shows how the Control Board assigns the Motor one to
follow a line, but asks it to stop every 3 seconds.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
void setup() {
// initialize the robot
Robot.begin();
// initialize the screen
Robot.beginTFT();
// get some time to place the robot on the ground
delay(3000);
// set the robot in line following mode
Robot.setMode(MODE_LINE_FOLLOW);
}
void loop() {
// tell the robot to take a break and stop
Robot.pauseMode(true);
Robot.debugPrint('p');
delay(3000);
// tell the robot to move on
Robot.pauseMode(false);
Robot.debugPrint('>');
delay(3000);
}

View File

@ -0,0 +1,62 @@
/*
Melody
Plays a melody stored in a string.
The notes and durations are encoded as follows:
NOTES:
c play "C"
C play "#C"
d play "D"
D play "#D"
e play "E"
f play "F"
F play "#F"
g play "G"
G play "#G"
a play "A"
A play "#A"
b play "B"
- silence
DURATIONS:
1 Set as full note
2 Set as half note
4 Set as quarter note
8 Set as eigth note
SPECIAL NOTATION:
. Make the previous note 3/4 the length
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
This code uses the Squawk sound library designed by STG. For
more information about it check: http://github.com/stg/squawk
*/
#include <ArduinoRobot.h>
void setup() {
// initialize the robot
Robot.begin();
// initialize the sound library
Robot.beginSpeaker();
}
void loop() {
// array containing the melody
char aTinyMelody[] = "8eF-FFga4b.a.g.F.8beee-d2e.1-";
// play the melody
Robot.playMelody(aTinyMelody);
}

View File

@ -0,0 +1,41 @@
/*
Motor Test
Just see if the robot can move and turn.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
void setup() {
// initialize the robot
Robot.begin();
}
void loop() {
Robot.motorsWrite(255,255); // move forward
delay(2000);
Robot.motorsStop(); // fast stop
delay(1000);
Robot.motorsWrite(-255,-255); // backward
delay(1000);
Robot.motorsWrite(0,0); // slow stop
delay(1000);
Robot.motorsWrite(-255,255); // turn left
delay(2000);
Robot.motorsStop(); // fast stop
delay(1000);
Robot.motorsWrite(255,-255); // turn right
delay(2000);
Robot.motorsStop(); // fast stop
delay(1000);
}

View File

@ -0,0 +1,39 @@
/*
Speed by Potentiometer
Control the robot's speed using the on-board
potentiometer. The speed will be printed on
the TFT screen.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
void setup() {
// initialize the robot
Robot.begin();
// initialize the screen
Robot.beginTFT();
}
void loop() {
// read the value of the potentiometer
int val=map(Robot.knobRead(), 0, 1023, -255, 255);
// print the value to the TFT screen
Robot.debugPrint(val);
// set the same speed on both of the robot's wheels
Robot.motorsWrite(val,val);
delay(10);
}

View File

@ -0,0 +1,32 @@
/*
Turn Test
Check if the robot turns a certain amount of degrees.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
void setup() {
// initialize the robot
Robot.begin();
}
void loop(){
Robot.turn(50); //turn 50 degrees to the right
Robot.motorsStop();
delay(1000);
Robot.turn(-100); //turn 100 degrees to the left
Robot.motorsStop();
delay(1000);
}

View File

@ -0,0 +1,37 @@
/*
Turn Test
Check if the robot turns a certain amount of degrees.
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
void setup() {
// initialize the robot
Robot.begin();
}
<<<<<<< HEAD
void loop() {
Robot.turn(50); //turn 50 degrees to the right
=======
void loop(){
Robot.turn(50);//turn 50 degrees to the right
Robot.motorsStop();
>>>>>>> f062f704463222e83390b4a954e211f0f7e6e66f
delay(1000);
Robot.turn(-100);//turn 100 degrees to the left
Robot.motorsStop();
delay(1000);
}

View File

@ -0,0 +1,38 @@
/*
Keyboard Test
Check how the robot's keyboard works. This example
sends the data about the key pressed through the
serial port.
All the buttons on the Control Board are tied up to a
single analog input pin, in this way it is possible to multiplex a
whole series of buttons on one single pin.
It is possible to recalibrate the thresholds of the buttons using
the Robot.keyboardCalibrate() function, that takes a 5 ints long
array as parameter
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
void setup() {
// initialize the serial port
Serial.begin(9600);
}
void loop() {
// print out the keyboard readings
Serial.println(Robot.keyboardRead());
delay(100);
}

View File

@ -0,0 +1,49 @@
/*
Keyboard Test
Check how the robot's keyboard works. This example
sends the data about the key pressed through the
serial port.
All the buttons on the Control Board are tied up to a
single analog input pin, in this way it is possible to multiplex a
whole series of buttons on one single pin.
It is possible to recalibrate the thresholds of the buttons using
the Robot.keyboardCalibrate() function, that takes a 5 ints long
array as parameter
Circuit:
* Arduino Robot
created 1 May 2013
by X. Yang
modified 12 May 2013
by D. Cuartielles
This example is in the public domain
*/
#include <ArduinoRobot.h>
<<<<<<< HEAD
// it is possible to use an array to calibrate
//int vals[] = { 0, 133, 305, 481, 724 };
void setup() {
// initialize the serial port
Serial.begin(9600);
// calibrate the keyboard
//Robot.keyboardCalibrate(vals);//For the new robot only.
=======
void setup(){
Serial.begin(9600);
>>>>>>> f062f704463222e83390b4a954e211f0f7e6e66f
}
void loop() {
// print out the keyboard readings
Serial.println(Robot.keyboardRead());
delay(100);
}

View File

@ -0,0 +1,266 @@
#include <avr/io.h>
#include <avr/pgmspace.h>
#ifndef FONT5X7_H
#define FONT5X7_H
// standard ascii 5x7 font
static unsigned char font[] PROGMEM = {
0x00, 0x00, 0x00, 0x00, 0x00,
0x3E, 0x5B, 0x4F, 0x5B, 0x3E,
0x3E, 0x6B, 0x4F, 0x6B, 0x3E,
0x1C, 0x3E, 0x7C, 0x3E, 0x1C,
0x18, 0x3C, 0x7E, 0x3C, 0x18,
0x1C, 0x57, 0x7D, 0x57, 0x1C,
0x1C, 0x5E, 0x7F, 0x5E, 0x1C,
0x00, 0x18, 0x3C, 0x18, 0x00,
0xFF, 0xE7, 0xC3, 0xE7, 0xFF,
0x00, 0x18, 0x24, 0x18, 0x00,
0xFF, 0xE7, 0xDB, 0xE7, 0xFF,
0x30, 0x48, 0x3A, 0x06, 0x0E,
0x26, 0x29, 0x79, 0x29, 0x26,
0x40, 0x7F, 0x05, 0x05, 0x07,
0x40, 0x7F, 0x05, 0x25, 0x3F,
0x5A, 0x3C, 0xE7, 0x3C, 0x5A,
0x7F, 0x3E, 0x1C, 0x1C, 0x08,
0x08, 0x1C, 0x1C, 0x3E, 0x7F,
0x14, 0x22, 0x7F, 0x22, 0x14,
0x5F, 0x5F, 0x00, 0x5F, 0x5F,
0x06, 0x09, 0x7F, 0x01, 0x7F,
0x00, 0x66, 0x89, 0x95, 0x6A,
0x60, 0x60, 0x60, 0x60, 0x60,
0x94, 0xA2, 0xFF, 0xA2, 0x94,
0x08, 0x04, 0x7E, 0x04, 0x08,
0x10, 0x20, 0x7E, 0x20, 0x10,
0x08, 0x08, 0x2A, 0x1C, 0x08,
0x08, 0x1C, 0x2A, 0x08, 0x08,
0x1E, 0x10, 0x10, 0x10, 0x10,
0x0C, 0x1E, 0x0C, 0x1E, 0x0C,
0x30, 0x38, 0x3E, 0x38, 0x30,
0x06, 0x0E, 0x3E, 0x0E, 0x06,
0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x5F, 0x00, 0x00,
0x00, 0x07, 0x00, 0x07, 0x00,
0x14, 0x7F, 0x14, 0x7F, 0x14,
0x24, 0x2A, 0x7F, 0x2A, 0x12,
0x23, 0x13, 0x08, 0x64, 0x62,
0x36, 0x49, 0x56, 0x20, 0x50,
0x00, 0x08, 0x07, 0x03, 0x00,
0x00, 0x1C, 0x22, 0x41, 0x00,
0x00, 0x41, 0x22, 0x1C, 0x00,
0x2A, 0x1C, 0x7F, 0x1C, 0x2A,
0x08, 0x08, 0x3E, 0x08, 0x08,
0x00, 0x80, 0x70, 0x30, 0x00,
0x08, 0x08, 0x08, 0x08, 0x08,
0x00, 0x00, 0x60, 0x60, 0x00,
0x20, 0x10, 0x08, 0x04, 0x02,
0x3E, 0x51, 0x49, 0x45, 0x3E,
0x00, 0x42, 0x7F, 0x40, 0x00,
0x72, 0x49, 0x49, 0x49, 0x46,
0x21, 0x41, 0x49, 0x4D, 0x33,
0x18, 0x14, 0x12, 0x7F, 0x10,
0x27, 0x45, 0x45, 0x45, 0x39,
0x3C, 0x4A, 0x49, 0x49, 0x31,
0x41, 0x21, 0x11, 0x09, 0x07,
0x36, 0x49, 0x49, 0x49, 0x36,
0x46, 0x49, 0x49, 0x29, 0x1E,
0x00, 0x00, 0x14, 0x00, 0x00,
0x00, 0x40, 0x34, 0x00, 0x00,
0x00, 0x08, 0x14, 0x22, 0x41,
0x14, 0x14, 0x14, 0x14, 0x14,
0x00, 0x41, 0x22, 0x14, 0x08,
0x02, 0x01, 0x59, 0x09, 0x06,
0x3E, 0x41, 0x5D, 0x59, 0x4E,
0x7C, 0x12, 0x11, 0x12, 0x7C,
0x7F, 0x49, 0x49, 0x49, 0x36,
0x3E, 0x41, 0x41, 0x41, 0x22,
0x7F, 0x41, 0x41, 0x41, 0x3E,
0x7F, 0x49, 0x49, 0x49, 0x41,
0x7F, 0x09, 0x09, 0x09, 0x01,
0x3E, 0x41, 0x41, 0x51, 0x73,
0x7F, 0x08, 0x08, 0x08, 0x7F,
0x00, 0x41, 0x7F, 0x41, 0x00,
0x20, 0x40, 0x41, 0x3F, 0x01,
0x7F, 0x08, 0x14, 0x22, 0x41,
0x7F, 0x40, 0x40, 0x40, 0x40,
0x7F, 0x02, 0x1C, 0x02, 0x7F,
0x7F, 0x04, 0x08, 0x10, 0x7F,
0x3E, 0x41, 0x41, 0x41, 0x3E,
0x7F, 0x09, 0x09, 0x09, 0x06,
0x3E, 0x41, 0x51, 0x21, 0x5E,
0x7F, 0x09, 0x19, 0x29, 0x46,
0x26, 0x49, 0x49, 0x49, 0x32,
0x03, 0x01, 0x7F, 0x01, 0x03,
0x3F, 0x40, 0x40, 0x40, 0x3F,
0x1F, 0x20, 0x40, 0x20, 0x1F,
0x3F, 0x40, 0x38, 0x40, 0x3F,
0x63, 0x14, 0x08, 0x14, 0x63,
0x03, 0x04, 0x78, 0x04, 0x03,
0x61, 0x59, 0x49, 0x4D, 0x43,
0x00, 0x7F, 0x41, 0x41, 0x41,
0x02, 0x04, 0x08, 0x10, 0x20,
0x00, 0x41, 0x41, 0x41, 0x7F,
0x04, 0x02, 0x01, 0x02, 0x04,
0x40, 0x40, 0x40, 0x40, 0x40,
0x00, 0x03, 0x07, 0x08, 0x00,
0x20, 0x54, 0x54, 0x78, 0x40,
0x7F, 0x28, 0x44, 0x44, 0x38,
0x38, 0x44, 0x44, 0x44, 0x28,
0x38, 0x44, 0x44, 0x28, 0x7F,
0x38, 0x54, 0x54, 0x54, 0x18,
0x00, 0x08, 0x7E, 0x09, 0x02,
0x18, 0xA4, 0xA4, 0x9C, 0x78,
0x7F, 0x08, 0x04, 0x04, 0x78,
0x00, 0x44, 0x7D, 0x40, 0x00,
0x20, 0x40, 0x40, 0x3D, 0x00,
0x7F, 0x10, 0x28, 0x44, 0x00,
0x00, 0x41, 0x7F, 0x40, 0x00,
0x7C, 0x04, 0x78, 0x04, 0x78,
0x7C, 0x08, 0x04, 0x04, 0x78,
0x38, 0x44, 0x44, 0x44, 0x38,
0xFC, 0x18, 0x24, 0x24, 0x18,
0x18, 0x24, 0x24, 0x18, 0xFC,
0x7C, 0x08, 0x04, 0x04, 0x08,
0x48, 0x54, 0x54, 0x54, 0x24,
0x04, 0x04, 0x3F, 0x44, 0x24,
0x3C, 0x40, 0x40, 0x20, 0x7C,
0x1C, 0x20, 0x40, 0x20, 0x1C,
0x3C, 0x40, 0x30, 0x40, 0x3C,
0x44, 0x28, 0x10, 0x28, 0x44,
0x4C, 0x90, 0x90, 0x90, 0x7C,
0x44, 0x64, 0x54, 0x4C, 0x44,
0x00, 0x08, 0x36, 0x41, 0x00,
0x00, 0x00, 0x77, 0x00, 0x00,
0x00, 0x41, 0x36, 0x08, 0x00,
0x02, 0x01, 0x02, 0x04, 0x02,
0x3C, 0x26, 0x23, 0x26, 0x3C,
0x1E, 0xA1, 0xA1, 0x61, 0x12,
0x3A, 0x40, 0x40, 0x20, 0x7A,
0x38, 0x54, 0x54, 0x55, 0x59,
0x21, 0x55, 0x55, 0x79, 0x41,
0x21, 0x54, 0x54, 0x78, 0x41,
0x21, 0x55, 0x54, 0x78, 0x40,
0x20, 0x54, 0x55, 0x79, 0x40,
0x0C, 0x1E, 0x52, 0x72, 0x12,
0x39, 0x55, 0x55, 0x55, 0x59,
0x39, 0x54, 0x54, 0x54, 0x59,
0x39, 0x55, 0x54, 0x54, 0x58,
0x00, 0x00, 0x45, 0x7C, 0x41,
0x00, 0x02, 0x45, 0x7D, 0x42,
0x00, 0x01, 0x45, 0x7C, 0x40,
0xF0, 0x29, 0x24, 0x29, 0xF0,
0xF0, 0x28, 0x25, 0x28, 0xF0,
0x7C, 0x54, 0x55, 0x45, 0x00,
0x20, 0x54, 0x54, 0x7C, 0x54,
0x7C, 0x0A, 0x09, 0x7F, 0x49,
0x32, 0x49, 0x49, 0x49, 0x32,
0x32, 0x48, 0x48, 0x48, 0x32,
0x32, 0x4A, 0x48, 0x48, 0x30,
0x3A, 0x41, 0x41, 0x21, 0x7A,
0x3A, 0x42, 0x40, 0x20, 0x78,
0x00, 0x9D, 0xA0, 0xA0, 0x7D,
0x39, 0x44, 0x44, 0x44, 0x39,
0x3D, 0x40, 0x40, 0x40, 0x3D,
0x3C, 0x24, 0xFF, 0x24, 0x24,
0x48, 0x7E, 0x49, 0x43, 0x66,
0x2B, 0x2F, 0xFC, 0x2F, 0x2B,
0xFF, 0x09, 0x29, 0xF6, 0x20,
0xC0, 0x88, 0x7E, 0x09, 0x03,
0x20, 0x54, 0x54, 0x79, 0x41,
0x00, 0x00, 0x44, 0x7D, 0x41,
0x30, 0x48, 0x48, 0x4A, 0x32,
0x38, 0x40, 0x40, 0x22, 0x7A,
0x00, 0x7A, 0x0A, 0x0A, 0x72,
0x7D, 0x0D, 0x19, 0x31, 0x7D,
0x26, 0x29, 0x29, 0x2F, 0x28,
0x26, 0x29, 0x29, 0x29, 0x26,
0x30, 0x48, 0x4D, 0x40, 0x20,
0x38, 0x08, 0x08, 0x08, 0x08,
0x08, 0x08, 0x08, 0x08, 0x38,
0x2F, 0x10, 0xC8, 0xAC, 0xBA,
0x2F, 0x10, 0x28, 0x34, 0xFA,
0x00, 0x00, 0x7B, 0x00, 0x00,
0x08, 0x14, 0x2A, 0x14, 0x22,
0x22, 0x14, 0x2A, 0x14, 0x08,
0xAA, 0x00, 0x55, 0x00, 0xAA,
0xAA, 0x55, 0xAA, 0x55, 0xAA,
0x00, 0x00, 0x00, 0xFF, 0x00,
0x10, 0x10, 0x10, 0xFF, 0x00,
0x14, 0x14, 0x14, 0xFF, 0x00,
0x10, 0x10, 0xFF, 0x00, 0xFF,
0x10, 0x10, 0xF0, 0x10, 0xF0,
0x14, 0x14, 0x14, 0xFC, 0x00,
0x14, 0x14, 0xF7, 0x00, 0xFF,
0x00, 0x00, 0xFF, 0x00, 0xFF,
0x14, 0x14, 0xF4, 0x04, 0xFC,
0x14, 0x14, 0x17, 0x10, 0x1F,
0x10, 0x10, 0x1F, 0x10, 0x1F,
0x14, 0x14, 0x14, 0x1F, 0x00,
0x10, 0x10, 0x10, 0xF0, 0x00,
0x00, 0x00, 0x00, 0x1F, 0x10,
0x10, 0x10, 0x10, 0x1F, 0x10,
0x10, 0x10, 0x10, 0xF0, 0x10,
0x00, 0x00, 0x00, 0xFF, 0x10,
0x10, 0x10, 0x10, 0x10, 0x10,
0x10, 0x10, 0x10, 0xFF, 0x10,
0x00, 0x00, 0x00, 0xFF, 0x14,
0x00, 0x00, 0xFF, 0x00, 0xFF,
0x00, 0x00, 0x1F, 0x10, 0x17,
0x00, 0x00, 0xFC, 0x04, 0xF4,
0x14, 0x14, 0x17, 0x10, 0x17,
0x14, 0x14, 0xF4, 0x04, 0xF4,
0x00, 0x00, 0xFF, 0x00, 0xF7,
0x14, 0x14, 0x14, 0x14, 0x14,
0x14, 0x14, 0xF7, 0x00, 0xF7,
0x14, 0x14, 0x14, 0x17, 0x14,
0x10, 0x10, 0x1F, 0x10, 0x1F,
0x14, 0x14, 0x14, 0xF4, 0x14,
0x10, 0x10, 0xF0, 0x10, 0xF0,
0x00, 0x00, 0x1F, 0x10, 0x1F,
0x00, 0x00, 0x00, 0x1F, 0x14,
0x00, 0x00, 0x00, 0xFC, 0x14,
0x00, 0x00, 0xF0, 0x10, 0xF0,
0x10, 0x10, 0xFF, 0x10, 0xFF,
0x14, 0x14, 0x14, 0xFF, 0x14,
0x10, 0x10, 0x10, 0x1F, 0x00,
0x00, 0x00, 0x00, 0xF0, 0x10,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xF0, 0xF0, 0xF0, 0xF0, 0xF0,
0xFF, 0xFF, 0xFF, 0x00, 0x00,
0x00, 0x00, 0x00, 0xFF, 0xFF,
0x0F, 0x0F, 0x0F, 0x0F, 0x0F,
0x38, 0x44, 0x44, 0x38, 0x44,
0x7C, 0x2A, 0x2A, 0x3E, 0x14,
0x7E, 0x02, 0x02, 0x06, 0x06,
0x02, 0x7E, 0x02, 0x7E, 0x02,
0x63, 0x55, 0x49, 0x41, 0x63,
0x38, 0x44, 0x44, 0x3C, 0x04,
0x40, 0x7E, 0x20, 0x1E, 0x20,
0x06, 0x02, 0x7E, 0x02, 0x02,
0x99, 0xA5, 0xE7, 0xA5, 0x99,
0x1C, 0x2A, 0x49, 0x2A, 0x1C,
0x4C, 0x72, 0x01, 0x72, 0x4C,
0x30, 0x4A, 0x4D, 0x4D, 0x30,
0x30, 0x48, 0x78, 0x48, 0x30,
0xBC, 0x62, 0x5A, 0x46, 0x3D,
0x3E, 0x49, 0x49, 0x49, 0x00,
0x7E, 0x01, 0x01, 0x01, 0x7E,
0x2A, 0x2A, 0x2A, 0x2A, 0x2A,
0x44, 0x44, 0x5F, 0x44, 0x44,
0x40, 0x51, 0x4A, 0x44, 0x40,
0x40, 0x44, 0x4A, 0x51, 0x40,
0x00, 0x00, 0xFF, 0x01, 0x03,
0xE0, 0x80, 0xFF, 0x00, 0x00,
0x08, 0x08, 0x6B, 0x6B, 0x08,
0x36, 0x12, 0x36, 0x24, 0x36,
0x06, 0x0F, 0x09, 0x0F, 0x06,
0x00, 0x00, 0x18, 0x18, 0x00,
0x00, 0x00, 0x10, 0x10, 0x00,
0x30, 0x40, 0xFF, 0x01, 0x01,
0x00, 0x1F, 0x01, 0x01, 0x1E,
0x00, 0x19, 0x1D, 0x17, 0x12,
0x00, 0x3C, 0x3C, 0x3C, 0x3C,
0x00, 0x00, 0x00, 0x00, 0x00,
};
#endif

View File

@ -0,0 +1,45 @@
#include "ArduinoRobot.h"
void RobotControl::drawBase(){
Arduino_LCD::drawCircle(64,80,50,foreGround);
Arduino_LCD::drawLine(64,30,64,20,foreGround);
}
void RobotControl::drawDire(int16_t dire){
static uint8_t x_old;
static uint8_t y_old;
static uint8_t x_t_old;
static uint8_t y_t_old;
uint8_t x=60*sin(dire/360.0*6.28)+64;
uint8_t x_t=40*sin(dire/360.0*6.28)+64;
uint8_t y=60*cos(dire/360.0*6.28)+80;
uint8_t y_t=40*cos(dire/360.0*6.28)+80;
Arduino_LCD::drawLine(x_t_old,y_t_old,x_old,y_old,backGround);
Arduino_LCD::drawLine(x_t,y_t,x,y,RED);
x_old=x;
y_old=y;
x_t_old=x_t;
y_t_old=y_t;
}
void RobotControl::drawCompass(uint16_t value){
drawBase();
drawDire(value);
debugPrint(value,57,76);
}
//display logos
void RobotControl::displayLogos(){
_drawBMP("lg0.bmp",0,0);
delay(2000);
_drawBMP("lg1.bmp",0,0);
delay(2000);
clearScreen();
}
//wait for a button to be pressed
void RobotControl::waitContinue(uint8_t key){
while(!(Robot.keyboardRead()==key));
}

View File

@ -0,0 +1,41 @@
/*#include <ArduinoRobot.h>
//0 - 319: pic array,
//320 - 337 username,
#define ADDRESS_USERNAME 320
//338 - 355 robotname,
#define ADDRESS_ROBOTNAME 338
//356 - 373 cityname,
#define ADDRESS_CITYNAME 356
//374- 391 countryname,
#define ADDRESS_COUNTRYNAME 374
//508-511 robot info
#define ADDRESS_ROBOTINFO 508
void RobotControl::getMyName(char* container){
EEPROM_I2C::readBuffer(ADDRESS_USERNAME,(uint8_t*)container,18);
}
void RobotControl::getRobotName(char* container){
EEPROM_I2C::readBuffer(ADDRESS_ROBOTNAME,(uint8_t*)container,18);
}
void RobotControl::getMyCity(char* container){
EEPROM_I2C::readBuffer(ADDRESS_CITYNAME,(uint8_t*)container,18);
}
void RobotControl::getMyCountry(char* container){
EEPROM_I2C::readBuffer(ADDRESS_COUNTRYNAME,(uint8_t*)container,18);
}
void RobotControl::setMyName(char* text){
EEPROM_I2C::writePage(ADDRESS_USERNAME,(uint8_t*)text,18);
}
void RobotControl::setRobotName(char* text){
EEPROM_I2C::writePage(ADDRESS_ROBOTNAME,(uint8_t*)text,18);
}
void RobotControl::setMyCity(char* text){
EEPROM_I2C::writePage(ADDRESS_CITYNAME,(uint8_t*)text,18);
}
void RobotControl::setMyCountry(char* text){
EEPROM_I2C::writePage(ADDRESS_COUNTRYNAME,(uint8_t*)text,18);
}
*/

View File

@ -0,0 +1,65 @@
#include "ArduinoRobot.h"
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
int pul_min[]={0,133,319,494,732};
int pul_max[]={10,153,339,514,752};
/*int pul_min[]={0,123,295,471,714};
int pul_max[]={0,143,315,491,734};*/
/*
int pul_min[]={0,133,319,494,732};
int pul_max[]={10,153,339,514,752};
*/
void sort(int* v);
void RobotControl::keyboardCalibrate(int *vals){
for(int i=0;i<5;i++){
pul_min[i]=vals[i]-10;
pul_max[i]=vals[i]+10;
}
}
int8_t RobotControl::keyboardRead(void)
{
int lectura_pul;
int8_t conta_pul=0;
static int anterior=0;
lectura_pul = this->averageAnalogInput(KEY);
while ((conta_pul < NUMBER_BUTTONS) && !(lectura_pul >= pul_min[conta_pul] && lectura_pul <= pul_max[conta_pul]))
conta_pul++;
if (conta_pul >= NUMBER_BUTTONS)
conta_pul = -1;
else
delay(100);
return conta_pul;
}
int RobotControl::averageAnalogInput(int pinNum)
{
int vals[5];
for(int i=0;i<5;i++){
for(int j=i;j<5;j++){
vals[j]=::analogRead(pinNum);
}
sort(vals);
}
return vals[0];
}
void sort(int* v){
int tmp;
for(int i=0;i<4;i++)
for(int j=i+1;j<5;j++)
if(v[j]<v[i]){
tmp=v[j];
v[j]=v[i];
v[i]=tmp;
}
v[0]=v[3];
}

View File

@ -0,0 +1,279 @@
#include "ArduinoRobot.h"
#include "Wire.h"
#define BUFFPIXEL 20
bool cmp(char* str1, char* str2, uint8_t len);
uint16_t read16(Fat16& f);
uint32_t read32(Fat16& f);
//uint16_t color565(uint8_t r, uint8_t g, uint8_t b);
void RobotControl::beginTFT(uint16_t foreGround, uint16_t backGround){
//TFT initialization
Arduino_LCD::initB();
Arduino_LCD::fillScreen(backGround);
Arduino_LCD::setTextColor(foreGround);
Arduino_LCD::setTextSize(1);
this->foreGround=foreGround;
this->backGround=backGround;
}
void RobotControl::_enableLCD(){
DDRB = DDRB & 0xEF; //pinMode(CS_SD,INPUT);
DDRB = DDRB | 0x20; //pinMode(CS_LCD,OUTPUT);
}
/*void RobotControl::_setErase(uint8_t posX, uint8_t posY){
Arduino_LCD::setCursor(posX,posY);
Arduino_LCD::setTextColor(backGround);
Arduino_LCD::setTextSize(1);
}
void RobotControl::_setWrite(uint8_t posX, uint8_t posY){
Arduino_LCD::setCursor(posX,posY);
Arduino_LCD::setTextColor(foreGround);
Arduino_LCD::setTextSize(1);
}*/
/*
void RobotControl::text(int value, uint8_t posX, uint8_t posY, bool EW){
if(EW)
_setWrite(posX,posY);
else
_setErase(posX,posY);
Arduino_LCD::print(value);
}
void RobotControl::text(long value, uint8_t posX, uint8_t posY, bool EW){
if(EW)
_setWrite(posX,posY);
else
_setErase(posX,posY);
Arduino_LCD::print(value);
}
void RobotControl::text(char* value, uint8_t posX, uint8_t posY, bool EW){
if(EW)
_setWrite(posX,posY);
else
_setErase(posX,posY);
Arduino_LCD::print(value);
}
void RobotControl::text(char value, uint8_t posX, uint8_t posY, bool EW){
if(EW)
_setWrite(posX,posY);
else
_setErase(posX,posY);
Arduino_LCD::print(value);
}
*/
void RobotControl::debugPrint(long value, uint8_t x, uint8_t y){
static long oldVal=0;
Arduino_LCD::stroke(backGround);
text(oldVal,x,y);
Arduino_LCD::stroke(foreGround);
text(value,x,y);
oldVal=value;
}
void RobotControl::clearScreen(){
Arduino_LCD::fillScreen(backGround);
}
void RobotControl::drawBMP(char* filename, uint8_t x, uint8_t y){
/*for(int j=0;j<NUM_EEPROM_BMP;j++){
Serial.println(_eeprom_bmp[j].name);
Serial.print(" ");
Serial.print(_eeprom_bmp[j].address);
Serial.print(" ");
Serial.print(_eeprom_bmp[j].width);
Serial.print(" ");
Serial.println(_eeprom_bmp[j].height);
}
Serial.println();*/
if(_isEEPROM_BMP_Allocated){
for(int i=0;i<NUM_EEPROM_BMP;i++){
if(cmp(_eeprom_bmp[i].name,filename,7)){
/*Serial.println(_eeprom_bmp[i].name);
Serial.print(" ");
Serial.print(_eeprom_bmp[i].address);
Serial.print(" ");
Serial.print(_eeprom_bmp[i].width);
Serial.print(" ");
Serial.println(_eeprom_bmp[i].height);*/
_drawBMP(_eeprom_bmp[i].address,x,y,_eeprom_bmp[i].width,_eeprom_bmp[i].height);
return;
}
}
}else{
_drawBMP(filename,x,y);//goes to SD
}
}
bool cmp(char* str1, char* str2, uint8_t len){
for(uint8_t i=0;i<len;i++){
if(str1[i]==' ')break;
if(str1[i]!=str2[i])return false;
}
return true;
}
void RobotControl::_drawBMP(uint32_t iconOffset, uint8_t x, uint8_t y, uint8_t width, uint8_t height){
uint8_t screenWidth=Arduino_LCD::width();
uint8_t screenHeight=Arduino_LCD::height();
if((x >= screenWidth) || (y >= screenHeight)) return;
// Crop area to be loaded
if((x+width-1) >= screenWidth) width = screenWidth - x;
if((y+height-1) >= screenHeight) height = screenHeight - y;
// Set TFT address window to clipped image bounds
Arduino_LCD::setAddrWindow(x, y, x+width-1, y+height-1);
// launch the reading command
_drawBMP_EEPROM(iconOffset, width, height);
}
// Draw BMP from SD card through the filename
void RobotControl::_drawBMP(char* filename, uint8_t posX, uint8_t posY){
uint8_t bmpWidth, bmpHeight; // W+H in pixels
uint8_t bmpDepth; // Bit depth (currently must be 24)
uint32_t bmpImageoffset; // Start of image data in file
uint32_t rowSize; // Not always = bmpWidth; may have padding
uint8_t sdbuffer[3*BUFFPIXEL]; // pixel buffer (R+G+B per pixel)
uint8_t buffidx = sizeof(sdbuffer); // Current position in sdbuffer
bool goodBmp = false; // Set to true on valid header parse
bool flip = true; // BMP is stored bottom-to-top
uint8_t w, h, row, col;
uint8_t r, g, b;
uint32_t pos = 0;
// Open requested file on SD card
if ((file.open(filename,O_READ)) == NULL) {
return;
}
// Parse BMP header
if(read16(file) == 0x4D42) { // BMP signature
read32(file);//uint32_t aux = read32(file);
(void)read32(file); // Read & ignore creator bytes
bmpImageoffset = read32(file); // Start of image data
// Read DIB header
(void)read32(file);//aux = read32(file);
bmpWidth = read32(file);
bmpHeight = read32(file);
if(read16(file) == 1) { // # planes -- must be '1'
bmpDepth = read16(file); // bits per pixel
if((bmpDepth == 24) && (read32(file) == 0)) { // 0 = uncompressed
goodBmp = true; // Supported BMP format -- proceed!
// BMP rows are padded (if needed) to 4-byte boundary
rowSize = (bmpWidth * 3 + 3) & ~3;
// If bmpHeight is negative, image is in top-down order.
// This is not canon but has been observed in the wild.
if(bmpHeight < 0) {
bmpHeight = -bmpHeight;
flip = false;
}
// Crop area to be loaded
w = bmpWidth;
h = bmpHeight;
// Start drawing
//_enableLCD();
Arduino_LCD::setAddrWindow(posX, posY, posX+bmpWidth-1, posY+bmpHeight-1);
for (row=0; row<h; row++) { // For each scanline...
if(flip) // Bitmap is stored bottom-to-top order (normal BMP)
pos = bmpImageoffset + (bmpHeight - 1 - row) * rowSize;
else // Bitmap is stored top-to-bottom
pos = bmpImageoffset + row * rowSize;
if(file.curPosition() != pos) { // Need seek?
//_enableSD();
file.seekSet(pos);
buffidx = sizeof(sdbuffer); // Force buffer reload
//_enableLCD();
}
for (col=0; col<w; col++) { // For each pixel...
// Time to read more pixel data?
if (buffidx >= sizeof(sdbuffer)) { // Indeed
//_enableSD();
file.read(sdbuffer, sizeof(sdbuffer));
buffidx = 0; // Set index to beginning
//_enableLCD();
}
// Convert pixel from BMP to TFT format, push to display
b = sdbuffer[buffidx++];
g = sdbuffer[buffidx++];
r = sdbuffer[buffidx++];
int color = Arduino_LCD::Color565(r,g,b);
Arduino_LCD::pushColor(color);
} // end pixel
} // end scanline
//_enableSD();
} // end goodBmp*/
}
}
file.close();
//_enableLCD();
}
uint16_t read16(Fat16& f) {
uint16_t result;
f.read(&result,sizeof(result));
return result;
}
uint32_t read32(Fat16& f) {
uint32_t result;
f.read(&result,sizeof(result));
return result;
}
/*
uint16_t color565(uint8_t r, uint8_t g, uint8_t b) {
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
}*/
void RobotControl::_drawBMP_EEPROM(uint16_t address, uint8_t width, uint8_t height){
uint16_t u16retVal = 0;
EEPROM_I2C::_beginTransmission(address);
EEPROM_I2C::_endTransmission();
/*Wire.beginTransmission(DEVICEADDRESS);
Wire.write( (address >> 8) & 0xFF );
Wire.write( (address >> 0) & 0xFF );
Wire.endTransmission();*/
long s = width * height ;
for(long j = 0; j < (long) s >> 4; j++) { // divided by 32, times 2
Wire.requestFrom(DEVICEADDRESS, 32);
for(int i = 0; i < 32; i+=2) {
u16retVal = Wire.read();
u16retVal = (u16retVal << 8) + Wire.read();
Arduino_LCD::pushColor(u16retVal);
}
}
}
void RobotControl::beginBMPFromEEPROM(){
_eeprom_bmp=(EEPROM_BMP*)malloc(NUM_EEPROM_BMP*sizeof(EEPROM_BMP));
EEPROM_I2C::_beginTransmission(0);
EEPROM_I2C::_endTransmission();
for(uint8_t j=0;j<NUM_EEPROM_BMP;j++){
Wire.requestFrom(DEVICEADDRESS, sizeof(EEPROM_BMP));
for(uint8_t i=0;i<8;i++){
_eeprom_bmp[j].name[i]=Wire.read();//name
}
_eeprom_bmp[j].width=Wire.read();//width
_eeprom_bmp[j].height=Wire.read();//height
_eeprom_bmp[j].address=Wire.read();
_eeprom_bmp[j].address=_eeprom_bmp[j].address + (Wire.read() << 8);//address
}
_isEEPROM_BMP_Allocated=true;
}
void RobotControl::endBMPFromEEPROM(){
free(_eeprom_bmp);
_isEEPROM_BMP_Allocated=false;
}

View File

@ -0,0 +1,192 @@
#include <avr/pgmspace.h>
#include <ArduinoRobot.h>
#include "VirtualKeyboard.h"
#include "RobotTextManager.h"
#include "scripts_Hello_User.h"
const int TextManager::lineHeight=10;
const int TextManager::charWidth=6;
void TextManager::setMargin(int margin_left,int margin_top){
this->margin_left=margin_left;
this->margin_top=margin_top;
}
int TextManager::getLin(int lineNum){
return lineNum*lineHeight+margin_top;
}
int TextManager::getCol(int colNum){
return colNum*charWidth+margin_left;
}
void TextManager::writeText(int lineNum, int colNum, char* txt, bool onOff){
if(!onOff)
Robot.setTextColor(WHITE);
Robot.setCursor(getCol(colNum),getLin(lineNum));
Robot.print(txt);
Robot.setTextColor(BLACK);
}
void TextManager::drawInput(bool onOff){
if(!onOff)
Robot.setTextColor(WHITE);
Robot.setCursor(getCol(inputCol),getLin(inputLin)+1);
Robot.print('_');
Robot.setTextColor(BLACK);
}
void TextManager::mvInput(int dire){
drawInput(0);
if(dire<0){
if(inputPos>0){
inputPos--;
inputCol--;
}
}else{
if(inputPos<16){
inputPos++;
inputCol++;
}
}
drawInput(1);
}
char TextManager::selectLetter(){
static int oldVal;
char val=map(Robot.knobRead(),0,1023,32,125);
if(val==oldVal){
return 0; //No changes
}else{
oldVal=val;
return val; //Current letter
}
}
void TextManager::refreshCurrentLetter(char letter){
if(letter){
writeText(inputLin,inputCol,inputPool+inputPos,false);//erase
inputPool[inputPos]=letter;
writeText(inputLin,inputCol,inputPool+inputPos,true);//write
}
}
void TextManager::getInput(int lin, int col){
writeText(lin,col,">"); //Input indicator
writeText(lin, col+1, inputPool);
inputLin=lin; //Ini input cursor
inputCol=col+1;
inputPos=0;
drawInput(true);
Vkey.display(100);//Vkey is a object of VirtualKeyboard class
while(true){
switch(Robot.keyboardRead()){
case BUTTON_LEFT:
//Robot.beep(BEEP_SIMPLE);
mvInput(-1);
break;
case BUTTON_RIGHT:
//Robot.beep(BEEP_SIMPLE);
mvInput(1);
break;
case BUTTON_MIDDLE:
//Robot.beep(BEEP_DOUBLE);
char selection=Vkey.getSelection();
if(selection!='\0'){
refreshCurrentLetter(selection);
mvInput(1);
}else{
drawInput(false);
return;
}
}
Vkey.run();
delay(10);
}
}
void TextManager::setInputPool(int code){
switch(code){
case USERNAME:
Robot.userNameRead(inputPool);
break;
case ROBOTNAME:
Robot.robotNameRead(inputPool);
break;
case CITYNAME:
Robot.cityNameRead(inputPool);
break;
case COUNTRYNAME:
Robot.countryNameRead(inputPool);
break;
}
for(int i=0;i<18;i++){
if(inputPool[i]=='\0'){
for(int j=i;j<18;j++){
inputPool[j]='\0';
}
break;
}
}
}
void TextManager::pushInput(int code){
switch(code){
case USERNAME:
Robot.userNameWrite(inputPool);
break;
case ROBOTNAME:
Robot.robotNameWrite(inputPool);
break;
case CITYNAME:
Robot.cityNameWrite(inputPool);
break;
case COUNTRYNAME:
Robot.countryNameWrite(inputPool);
break;
}
for(int i=0;i<18;i++){
inputPool[i]='\0';
}
}
void TextManager::input(int lin,int col, int code){
setInputPool(code);
getInput(lin,col);
pushInput(code);
}
void TextManager::showPicture(char * filename, int posX, int posY){
Robot.pause();
Robot._drawBMP(filename,posX,posY);
Robot.play();
}
void TextManager::getPGMtext(int seq){
//It takes a string from program space, and fill it
//in the buffer
//if(in hello user example){
if(true){
strcpy_P(PGMbuffer,(char*)pgm_read_word(&(::scripts_Hello_User[seq])));
}
}
void TextManager::writeScript(int seq, int line, int col){
//print a string from program space to a specific line,
//column on the LCD
//first fill the buffer with text from program space
getPGMtext(seq);
//then print it to the screen
textManager.writeText(line,col,PGMbuffer);
}
TextManager textManager=TextManager();

View File

@ -0,0 +1,77 @@
#ifndef ROBOTTEXTMANAGER_H
#define ROBOTTEXTMANAGER_H
#define USERNAME 0
#define ROBOTNAME 1
#define CITYNAME 2
#define COUNTRYNAME 3
#define EMPTY 4
class TextManager{
//The TextManager class is a collection of features specific for Hello
//User example.
//
//- It includes solution for setting text position based on
// line/column. The original Robot.text(), or the more low level
// print() function can only set text position on pixels from left,
// top.
//
//- The process of accepting input with the virtual keyboard, saving
// into or reading from EEPROM is delt with here.
//
//- A workflow for stop the music while displaying image. Trouble
// will happen otherwise.
public:
//add some margin to the text, left side only atm.
void setMargin(int margin_left,int margin_top);
//print text based on line, column.
void writeText(int lineNum, int colNum, char* txt, bool onOff=true);
//print a script from the scripts library
void writeScript(int seq, int line, int col);
//The whole process of getting input
void input(int lin,int col, int code);
//Print a cursor and virtual keyboard on screen, and save the user's input
void getInput(int lin, int col);
//Get user name, robot name, city name or country name from EEPROM
//and store in the input pool.
void setInputPool(int code);
//save user input to EEPROM
void pushInput(int code);
//Replaces Robot.drawPicture(), as this one solves collision between
//image and music
void showPicture(char * filename, int posX, int posY);
private:
int margin_left,margin_top;
int getLin(int lineNum); //Convert line to pixels from top
int getCol(int colNum); //Convert line to pixels from left
static const int lineHeight;//8+2=10
static const int charWidth;//5+1=6
int inputPos;
int inputLin;
int inputCol;
void drawInput(bool onOff);
void mvInput(int dire);
char selectLetter();
void refreshCurrentLetter(char letter);
void getPGMtext(int seq);
char PGMbuffer[85]; //the buffer for storing strings
char inputPool[18];
};
//a trick for removing the need of creating an object of TextManager.
//So you can call me.somefunction() directly in the sketch.
extern TextManager textManager;
#endif

View File

@ -0,0 +1,127 @@
#include "VirtualKeyboard.h"
int VirtualKeyboard::getColLin(int val){
uint8_t col,lin;
lin=val/10;
col=val%10; // saving 36 bytes :(
/*if(0<=val && 9>=val){
col=val;
lin=0;
}else if(10<=val && 19>=val){
col=val-10;
lin=1;
}else if(20<=val && 29>=val){
col=val-20;
lin=2;
}else if(30<=val && 39>=val){
col=val-30;
lin=3;
}*/
return (col<<8)+lin; //Put col and lin in one int
}
void VirtualKeyboard::run(){
/** visually select a letter on the keyboard
* The selection boarder is 1px higher than the character,
* 1px on the bottom, 2px to the left and 2px to the right.
*
*/
if(!onOff)return;
//Serial.println(onOff);
static int oldColLin=0;
uint8_t val=map(Robot.knobRead(),0,1023,0,38);
if(val==38)val=37; //The last value is jumpy when using batteries
int colLin=getColLin(val);
if(oldColLin!=colLin){
uint8_t x=(oldColLin>>8 & 0xFF)*11+10;//col*11+1+9
uint8_t y=(oldColLin & 0xFF)*11+1+top;//lin*11+1+top
uint8_t w=9;
if(oldColLin==1795) //last item "Enter", col=7 lin=3
w=33; //(5+1)*6-1+2+2 charWidth=5, charMargin=1, count("Enter")=6, lastItem_MarginRight=0, marginLeft==marginRight=2
Robot.drawRect(x,y,w,9,hideColor);
x=(colLin>>8 & 0xFF)*11+10;
y=(colLin & 0xFF)*11+1+top;
w=9;
if(colLin==1795) //last item "Enter", col=7 lin=3
w=33; //(5+1)*6-1+2+2 charWidth=5, charMargin=1, count("Enter")=6, lastItem_MarginRight=0, marginLeft==marginRight=2
Robot.drawRect(x,y,w,9,showColor);
oldColLin=colLin;
}
}
char VirtualKeyboard::getSelection(){
if(!onOff)return -1;
uint8_t val=map(Robot.knobRead(),0,1023,0,38);
if(0<=val && 9>=val)
val='0'+val;
else if(10<=val && 35>=val)
val='A'+val-10;
else if(val==36)
val=' ';
else if(val>=37)
val='\0';
return val;
}
void VirtualKeyboard::hide(){
onOff=false;
Robot.fillRect(0,top,128,44,hideColor);//11*4
}
void VirtualKeyboard::display(uint8_t top, uint16_t showColor, uint16_t hideColor){
/** Display the keyboard at y position of top
* formular:
* When text size is 1, one character is 5*7
* margin-left==margin-right==3,
* margin-top==margin-bottom==2,
* keyWidth=5+3+3==11,
* keyHeight=7+2+2==11,
* keyboard-margin-left=keyboard-margin-right==9
* so character-x=11*col+9+3=11*col+12
* character-y=11*lin+2+top
*
**/
this->top=top;
this->onOff=true;
this->showColor=showColor;
this->hideColor=hideColor;
for(uint8_t i=0;i<36;i++){
Robot.setCursor(i%10*11+12,2+top+i/10*11);
if(i<10)
Robot.print(char('0'+i));
else
Robot.print(char(55+i));//'A'-10=55
}//for saving 58 bytes :(
/*for(int i=0;i<10;i++){
Robot.setCursor(i*11+12,2+top);//11*0+2+top
Robot.print(char('0'+i));//line_1: 0-9
}
for(int i=0;i<10;i++){
Robot.setCursor(i*11+12,13+top);//11*1+2+top
Robot.print(char('A'+i));//line_2: A-J
}
for(int i=0;i<10;i++){
Robot.setCursor(i*11+12,24+top);//11*2+2+top
Robot.print(char('K'+i));//line_3: K-T
}
for(int i=0;i<6;i++){
Robot.setCursor(i*11+12,35+top);//11*3+2+top
Robot.print(char('U'+i));//line_4: U-Z
}*/
//space and enter at the end of the last line.
Robot.setCursor(78,35+top);//6*11+12=78
Robot.print('_');//_
Robot.setCursor(89,35+top);//7*11+12=89
Robot.print("Enter");//enter
}
VirtualKeyboard Vkey=VirtualKeyboard();

View File

@ -0,0 +1,28 @@
#ifndef VIRTUAL_KEYBOARD_H
#define VIRTUAL_KEYBOARD_H
#include <Arduino.h>
#include <ArduinoRobot.h>
class VirtualKeyboard{
public:
//void begin();
void display(uint8_t top, uint16_t showColor=BLACK, uint16_t hideColor=WHITE);
void hide();
char getSelection();
void run();
private:
uint8_t top;
bool onOff;
uint16_t showColor;
uint16_t hideColor;
int getColLin(int val);
};
extern VirtualKeyboard Vkey;
#endif

View File

@ -0,0 +1,51 @@
#include <avr/pgmspace.h>
//an advanced trick for storing strings inside the program space
//as the ram of Arduino is very tiny, keeping too many string in it
//can kill the program
prog_char hello_user_script1[] PROGMEM="What's your name?";
prog_char hello_user_script2[] PROGMEM="Give me a name!";
prog_char hello_user_script3[] PROGMEM="And the country?";
prog_char hello_user_script4[] PROGMEM="The city you're in?";
prog_char hello_user_script5[] PROGMEM=" Plug me to\n\n your computer\n\n and start coding!";
prog_char hello_user_script6[] PROGMEM=" Hello User!\n\n It's me, your robot\n\n I'm alive! <3";
prog_char hello_user_script7[] PROGMEM=" First I need some\n\n input from you!";
prog_char hello_user_script8[] PROGMEM=" Use the knob\n\n to select letters";
prog_char hello_user_script9[] PROGMEM=" Use L/R button\n\n to move the cursor,\n\n middle to confirm";
prog_char hello_user_script10[] PROGMEM=" Press middle key\n to continue...";
prog_char hello_user_script11[] PROGMEM=" Choose \"enter\" to\n\n finish the input";
PROGMEM const char *scripts_Hello_User[]={
hello_user_script1,
hello_user_script2,
hello_user_script3,
hello_user_script4,
hello_user_script5,
hello_user_script6,
hello_user_script7,
hello_user_script8,
hello_user_script9,
hello_user_script10,
hello_user_script11,
};
/*
void getPGMtext(int seq){
//It takes a string from program space, and fill it
//in the buffer
strcpy_P(buffer,(char*)pgm_read_word(&(scripts[seq])));
}
void writeScript(int seq, int line, int col){
//print a string from program space to a specific line,
//column on the LCD
//first fill the buffer with text from program space
getPGMtext(seq);
//then print it to the screen
textManager.writeText(line,col,buffer);
}
*/

View File

@ -0,0 +1,527 @@
/*
twi.c - TWI/I2C library for Wiring & Arduino
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts
*/
#include <math.h>
#include <stdlib.h>
#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <compat/twi.h>
#include "Arduino.h" // for digitalWrite
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
#include "pins_arduino.h"
#include "twi.h"
static volatile uint8_t twi_state;
static volatile uint8_t twi_slarw;
static volatile uint8_t twi_sendStop; // should the transaction end with a stop
static volatile uint8_t twi_inRepStart; // in the middle of a repeated start
static void (*twi_onSlaveTransmit)(void);
static void (*twi_onSlaveReceive)(uint8_t*, int);
static uint8_t twi_masterBuffer[TWI_BUFFER_LENGTH];
static volatile uint8_t twi_masterBufferIndex;
static volatile uint8_t twi_masterBufferLength;
static uint8_t twi_txBuffer[TWI_BUFFER_LENGTH];
static volatile uint8_t twi_txBufferIndex;
static volatile uint8_t twi_txBufferLength;
static uint8_t twi_rxBuffer[TWI_BUFFER_LENGTH];
static volatile uint8_t twi_rxBufferIndex;
static volatile uint8_t twi_error;
/*
* Function twi_init
* Desc readys twi pins and sets twi bitrate
* Input none
* Output none
*/
void twi_init(void)
{
// initialize state
twi_state = TWI_READY;
twi_sendStop = true; // default value
twi_inRepStart = false;
// activate internal pullups for twi.
digitalWrite(SDA, 1);
digitalWrite(SCL, 1);
// initialize twi prescaler and bit rate
cbi(TWSR, TWPS0);
cbi(TWSR, TWPS1);
TWBR = ((F_CPU / TWI_FREQ) - 16) / 2;
/* twi bit rate formula from atmega128 manual pg 204
SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))
note: TWBR should be 10 or higher for master mode
It is 72 for a 16mhz Wiring board with 100kHz TWI */
// enable twi module, acks, and twi interrupt
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA);
}
/*
* Function twi_slaveInit
* Desc sets slave address and enables interrupt
* Input none
* Output none
*/
void twi_setAddress(uint8_t address)
{
// set twi slave address (skip over TWGCE bit)
TWAR = address << 1;
}
/*
* Function twi_readFrom
* Desc attempts to become twi bus master and read a
* series of bytes from a device on the bus
* Input address: 7bit i2c device address
* data: pointer to byte array
* length: number of bytes to read into array
* sendStop: Boolean indicating whether to send a stop at the end
* Output number of bytes read
*/
uint8_t twi_readFrom(uint8_t address, uint8_t* data, uint8_t length, uint8_t sendStop)
{
uint8_t i;
// ensure data will fit into buffer
if(TWI_BUFFER_LENGTH < length){
return 0;
}
// wait until twi is ready, become master receiver
while(TWI_READY != twi_state){
continue;
}
twi_state = TWI_MRX;
twi_sendStop = sendStop;
// reset error state (0xFF.. no error occured)
twi_error = 0xFF;
// initialize buffer iteration vars
twi_masterBufferIndex = 0;
twi_masterBufferLength = length-1; // This is not intuitive, read on...
// On receive, the previously configured ACK/NACK setting is transmitted in
// response to the received byte before the interrupt is signalled.
// Therefor we must actually set NACK when the _next_ to last byte is
// received, causing that NACK to be sent in response to receiving the last
// expected byte of data.
// build sla+w, slave device address + w bit
twi_slarw = TW_READ;
twi_slarw |= address << 1;
if (true == twi_inRepStart) {
// if we're in the repeated start state, then we've already sent the start,
// (@@@ we hope), and the TWI statemachine is just waiting for the address byte.
// We need to remove ourselves from the repeated start state before we enable interrupts,
// since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning
// up. Also, don't enable the START interrupt. There may be one pending from the
// repeated start that we sent outselves, and that would really confuse things.
twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR
TWDR = twi_slarw;
TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START
}
else
// send start condition
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);
// wait for read operation to complete
while(TWI_MRX == twi_state){
continue;
}
if (twi_masterBufferIndex < length)
length = twi_masterBufferIndex;
// copy twi buffer to data
for(i = 0; i < length; ++i){
data[i] = twi_masterBuffer[i];
}
return length;
}
/*
* Function twi_writeTo
* Desc attempts to become twi bus master and write a
* series of bytes to a device on the bus
* Input address: 7bit i2c device address
* data: pointer to byte array
* length: number of bytes in array
* wait: boolean indicating to wait for write or not
* sendStop: boolean indicating whether or not to send a stop at the end
* Output 0 .. success
* 1 .. length to long for buffer
* 2 .. address send, NACK received
* 3 .. data send, NACK received
* 4 .. other twi error (lost bus arbitration, bus error, ..)
*/
uint8_t twi_writeTo(uint8_t address, uint8_t* data, uint8_t length, uint8_t wait, uint8_t sendStop)
{
uint8_t i;
// ensure data will fit into buffer
if(TWI_BUFFER_LENGTH < length){
return 1;
}
// wait until twi is ready, become master transmitter
while(TWI_READY != twi_state){
continue;
}
twi_state = TWI_MTX;
twi_sendStop = sendStop;
// reset error state (0xFF.. no error occured)
twi_error = 0xFF;
// initialize buffer iteration vars
twi_masterBufferIndex = 0;
twi_masterBufferLength = length;
// copy data to twi buffer
for(i = 0; i < length; ++i){
twi_masterBuffer[i] = data[i];
}
// build sla+w, slave device address + w bit
twi_slarw = TW_WRITE;
twi_slarw |= address << 1;
// if we're in a repeated start, then we've already sent the START
// in the ISR. Don't do it again.
//
if (true == twi_inRepStart) {
// if we're in the repeated start state, then we've already sent the start,
// (@@@ we hope), and the TWI statemachine is just waiting for the address byte.
// We need to remove ourselves from the repeated start state before we enable interrupts,
// since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning
// up. Also, don't enable the START interrupt. There may be one pending from the
// repeated start that we sent outselves, and that would really confuse things.
twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR
TWDR = twi_slarw;
TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START
}
else
// send start condition
TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE) | _BV(TWSTA); // enable INTs
// wait for write operation to complete
while(wait && (TWI_MTX == twi_state)){
continue;
}
if (twi_error == 0xFF)
return 0; // success
else if (twi_error == TW_MT_SLA_NACK)
return 2; // error: address send, nack received
else if (twi_error == TW_MT_DATA_NACK)
return 3; // error: data send, nack received
else
return 4; // other twi error
}
/*
* Function twi_transmit
* Desc fills slave tx buffer with data
* must be called in slave tx event callback
* Input data: pointer to byte array
* length: number of bytes in array
* Output 1 length too long for buffer
* 2 not slave transmitter
* 0 ok
*/
uint8_t twi_transmit(const uint8_t* data, uint8_t length)
{
uint8_t i;
// ensure data will fit into buffer
if(TWI_BUFFER_LENGTH < length){
return 1;
}
// ensure we are currently a slave transmitter
if(TWI_STX != twi_state){
return 2;
}
// set length and copy data into tx buffer
twi_txBufferLength = length;
for(i = 0; i < length; ++i){
twi_txBuffer[i] = data[i];
}
return 0;
}
/*
* Function twi_attachSlaveRxEvent
* Desc sets function called before a slave read operation
* Input function: callback function to use
* Output none
*/
void twi_attachSlaveRxEvent( void (*function)(uint8_t*, int) )
{
twi_onSlaveReceive = function;
}
/*
* Function twi_attachSlaveTxEvent
* Desc sets function called before a slave write operation
* Input function: callback function to use
* Output none
*/
void twi_attachSlaveTxEvent( void (*function)(void) )
{
twi_onSlaveTransmit = function;
}
/*
* Function twi_reply
* Desc sends byte or readys receive line
* Input ack: byte indicating to ack or to nack
* Output none
*/
void twi_reply(uint8_t ack)
{
// transmit master read ready signal, with or without ack
if(ack){
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT) | _BV(TWEA);
}else{
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT);
}
}
/*
* Function twi_stop
* Desc relinquishes bus master status
* Input none
* Output none
*/
void twi_stop(void)
{
// send stop condition
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTO);
// wait for stop condition to be exectued on bus
// TWINT is not set after a stop condition!
while(TWCR & _BV(TWSTO)){
continue;
}
// update twi state
twi_state = TWI_READY;
}
/*
* Function twi_releaseBus
* Desc releases bus control
* Input none
* Output none
*/
void twi_releaseBus(void)
{
// release bus
TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT);
// update twi state
twi_state = TWI_READY;
}
SIGNAL(TWI_vect)
{
switch(TW_STATUS){
// All Master
case TW_START: // sent start condition
case TW_REP_START: // sent repeated start condition
// copy device address and r/w bit to output register and ack
TWDR = twi_slarw;
twi_reply(1);
break;
// Master Transmitter
case TW_MT_SLA_ACK: // slave receiver acked address
case TW_MT_DATA_ACK: // slave receiver acked data
// if there is data to send, send it, otherwise stop
if(twi_masterBufferIndex < twi_masterBufferLength){
// copy data to output register and ack
TWDR = twi_masterBuffer[twi_masterBufferIndex++];
twi_reply(1);
}else{
if (twi_sendStop)
twi_stop();
else {
twi_inRepStart = true; // we're gonna send the START
// don't enable the interrupt. We'll generate the start, but we
// avoid handling the interrupt until we're in the next transaction,
// at the point where we would normally issue the start.
TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;
twi_state = TWI_READY;
}
}
break;
case TW_MT_SLA_NACK: // address sent, nack received
twi_error = TW_MT_SLA_NACK;
twi_stop();
break;
case TW_MT_DATA_NACK: // data sent, nack received
twi_error = TW_MT_DATA_NACK;
twi_stop();
break;
case TW_MT_ARB_LOST: // lost bus arbitration
twi_error = TW_MT_ARB_LOST;
twi_releaseBus();
break;
// Master Receiver
case TW_MR_DATA_ACK: // data received, ack sent
// put byte into buffer
twi_masterBuffer[twi_masterBufferIndex++] = TWDR;
case TW_MR_SLA_ACK: // address sent, ack received
// ack if more bytes are expected, otherwise nack
if(twi_masterBufferIndex < twi_masterBufferLength){
twi_reply(1);
}else{
twi_reply(0);
}
break;
case TW_MR_DATA_NACK: // data received, nack sent
// put final byte into buffer
twi_masterBuffer[twi_masterBufferIndex++] = TWDR;
if (twi_sendStop)
twi_stop();
else {
twi_inRepStart = true; // we're gonna send the START
// don't enable the interrupt. We'll generate the start, but we
// avoid handling the interrupt until we're in the next transaction,
// at the point where we would normally issue the start.
TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;
twi_state = TWI_READY;
}
break;
case TW_MR_SLA_NACK: // address sent, nack received
twi_stop();
break;
// TW_MR_ARB_LOST handled by TW_MT_ARB_LOST case
// Slave Receiver
case TW_SR_SLA_ACK: // addressed, returned ack
case TW_SR_GCALL_ACK: // addressed generally, returned ack
case TW_SR_ARB_LOST_SLA_ACK: // lost arbitration, returned ack
case TW_SR_ARB_LOST_GCALL_ACK: // lost arbitration, returned ack
// enter slave receiver mode
twi_state = TWI_SRX;
// indicate that rx buffer can be overwritten and ack
twi_rxBufferIndex = 0;
twi_reply(1);
break;
case TW_SR_DATA_ACK: // data received, returned ack
case TW_SR_GCALL_DATA_ACK: // data received generally, returned ack
// if there is still room in the rx buffer
if(twi_rxBufferIndex < TWI_BUFFER_LENGTH){
// put byte in buffer and ack
twi_rxBuffer[twi_rxBufferIndex++] = TWDR;
twi_reply(1);
}else{
// otherwise nack
twi_reply(0);
}
break;
case TW_SR_STOP: // stop or repeated start condition received
// put a null char after data if there's room
if(twi_rxBufferIndex < TWI_BUFFER_LENGTH){
twi_rxBuffer[twi_rxBufferIndex] = '\0';
}
// sends ack and stops interface for clock stretching
twi_stop();
// callback to user defined callback
twi_onSlaveReceive(twi_rxBuffer, twi_rxBufferIndex);
// since we submit rx buffer to "wire" library, we can reset it
twi_rxBufferIndex = 0;
// ack future responses and leave slave receiver state
twi_releaseBus();
break;
case TW_SR_DATA_NACK: // data received, returned nack
case TW_SR_GCALL_DATA_NACK: // data received generally, returned nack
// nack back at master
twi_reply(0);
break;
// Slave Transmitter
case TW_ST_SLA_ACK: // addressed, returned ack
case TW_ST_ARB_LOST_SLA_ACK: // arbitration lost, returned ack
// enter slave transmitter mode
twi_state = TWI_STX;
// ready the tx buffer index for iteration
twi_txBufferIndex = 0;
// set tx buffer length to be zero, to verify if user changes it
twi_txBufferLength = 0;
// request for txBuffer to be filled and length to be set
// note: user must call twi_transmit(bytes, length) to do this
twi_onSlaveTransmit();
// if they didn't change buffer & length, initialize it
if(0 == twi_txBufferLength){
twi_txBufferLength = 1;
twi_txBuffer[0] = 0x00;
}
// transmit first byte from buffer, fall
case TW_ST_DATA_ACK: // byte sent, ack returned
// copy data to output register
TWDR = twi_txBuffer[twi_txBufferIndex++];
// if there is more to send, ack, otherwise nack
if(twi_txBufferIndex < twi_txBufferLength){
twi_reply(1);
}else{
twi_reply(0);
}
break;
case TW_ST_DATA_NACK: // received nack, we are done
case TW_ST_LAST_DATA: // received ack, but we are done already!
// ack future responses
twi_reply(1);
// leave slave receiver state
twi_state = TWI_READY;
break;
// All
case TW_NO_INFO: // no state information
break;
case TW_BUS_ERROR: // bus error, illegal stop/start
twi_error = TW_BUS_ERROR;
twi_stop();
break;
}
}

View File

@ -0,0 +1,53 @@
/*
twi.h - TWI/I2C library for Wiring & Arduino
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef twi_h
#define twi_h
#include <inttypes.h>
//#define ATMEGA8
#ifndef TWI_FREQ
#define TWI_FREQ 100000L
#endif
#ifndef TWI_BUFFER_LENGTH
#define TWI_BUFFER_LENGTH 32
#endif
#define TWI_READY 0
#define TWI_MRX 1
#define TWI_MTX 2
#define TWI_SRX 3
#define TWI_STX 4
void twi_init(void);
void twi_setAddress(uint8_t);
uint8_t twi_readFrom(uint8_t, uint8_t*, uint8_t, uint8_t);
uint8_t twi_writeTo(uint8_t, uint8_t*, uint8_t, uint8_t, uint8_t);
uint8_t twi_transmit(const uint8_t*, uint8_t);
void twi_attachSlaveRxEvent( void (*)(uint8_t*, int) );
void twi_attachSlaveTxEvent( void (*)(void) );
void twi_reply(uint8_t);
void twi_stop(void);
void twi_releaseBus(void);
#endif

View File

@ -0,0 +1,265 @@
#include "ArduinoRobotMotorBoard.h"
#include "EasyTransfer2.h"
#include "Multiplexer.h"
#include "LineFollow.h"
RobotMotorBoard::RobotMotorBoard(){
//LineFollow::LineFollow();
}
/*void RobotMotorBoard::beginIRReceiver(){
IRrecv::enableIRIn();
}*/
void RobotMotorBoard::begin(){
//initialze communication
Serial1.begin(9600);
messageIn.begin(&Serial1);
messageOut.begin(&Serial1);
//init MUX
uint8_t MuxPins[]={MUXA,MUXB,MUXC};
this->IRs.begin(MuxPins,MUX_IN,3);
pinMode(MUXI,INPUT);
digitalWrite(MUXI,LOW);
isPaused=false;
}
void RobotMotorBoard::process(){
if(isPaused)return;//skip process if the mode is paused
if(mode==MODE_SIMPLE){
//Serial.println("s");
//do nothing? Simple mode is just about getting commands
}else if(mode==MODE_LINE_FOLLOW){
//do line following stuff here.
LineFollow::runLineFollow();
}else if(mode==MODE_ADJUST_MOTOR){
//Serial.println('a');
//motorAdjustment=analogRead(POT);
//setSpeed(255,255);
//delay(100);
}
}
void RobotMotorBoard::pauseMode(bool onOff){
if(onOff){
isPaused=true;
}else{
isPaused=false;
}
stopCurrentActions();
}
void RobotMotorBoard::parseCommand(){
uint8_t modeName;
uint8_t codename;
int value;
int speedL;
int speedR;
if(this->messageIn.receiveData()){
//Serial.println("data received");
uint8_t command=messageIn.readByte();
//Serial.println(command);
switch(command){
case COMMAND_SWITCH_MODE:
modeName=messageIn.readByte();
setMode(modeName);
break;
case COMMAND_RUN:
if(mode==MODE_LINE_FOLLOW)break;//in follow line mode, the motor does not follow commands
speedL=messageIn.readInt();
speedR=messageIn.readInt();
motorsWrite(speedL,speedR);
break;
case COMMAND_MOTORS_STOP:
motorsStop();
break;
case COMMAND_ANALOG_WRITE:
codename=messageIn.readByte();
value=messageIn.readInt();
_analogWrite(codename,value);
break;
case COMMAND_DIGITAL_WRITE:
codename=messageIn.readByte();
value=messageIn.readByte();
_digitalWrite(codename,value);
break;
case COMMAND_ANALOG_READ:
codename=messageIn.readByte();
_analogRead(codename);
break;
case COMMAND_DIGITAL_READ:
codename=messageIn.readByte();
_digitalRead(codename);
break;
case COMMAND_READ_IR:
_readIR();
break;
case COMMAND_READ_TRIM:
_readTrim();
break;
case COMMAND_PAUSE_MODE:
pauseMode(messageIn.readByte());//onOff state
break;
case COMMAND_LINE_FOLLOW_CONFIG:
LineFollow::config(
messageIn.readByte(), //KP
messageIn.readByte(), //KD
messageIn.readByte(), //robotSpeed
messageIn.readByte() //IntegrationTime
);
break;
}
}
//delay(5);
}
uint8_t RobotMotorBoard::parseCodename(uint8_t codename){
switch(codename){
case B_TK1:
return TK1;
case B_TK2:
return TK2;
case B_TK3:
return TK3;
case B_TK4:
return TK4;
}
}
uint8_t RobotMotorBoard::codenameToAPin(uint8_t codename){
switch(codename){
case B_TK1:
return A0;
case B_TK2:
return A1;
case B_TK3:
return A6;
case B_TK4:
return A11;
}
}
void RobotMotorBoard::setMode(uint8_t mode){
if(mode==MODE_LINE_FOLLOW){
LineFollow::calibIRs();
}
/*if(mode==SET_MOTOR_ADJUSTMENT){
save_motor_adjustment_to_EEPROM();
}
*/
/*if(mode==MODE_IR_CONTROL){
beginIRReceiver();
}*/
this->mode=mode;
//stopCurrentActions();//If line following, this should stop the motors
}
void RobotMotorBoard::stopCurrentActions(){
motorsStop();
//motorsWrite(0,0);
}
void RobotMotorBoard::motorsWrite(int speedL, int speedR){
/*Serial.print(speedL);
Serial.print(" ");
Serial.println(speedR);*/
//motor adjustment, using percentage
_refreshMotorAdjustment();
if(motorAdjustment<0){
speedR*=(1+motorAdjustment);
}else{
speedL*=(1-motorAdjustment);
}
if(speedL>0){
analogWrite(IN_A1,speedL);
analogWrite(IN_A2,0);
}else{
analogWrite(IN_A1,0);
analogWrite(IN_A2,-speedL);
}
if(speedR>0){
analogWrite(IN_B1,speedR);
analogWrite(IN_B2,0);
}else{
analogWrite(IN_B1,0);
analogWrite(IN_B2,-speedR);
}
}
void RobotMotorBoard::motorsWritePct(int speedLpct, int speedRpct){
//speedLpct, speedRpct ranges from -100 to 100
motorsWrite(speedLpct*2.55,speedRpct*2.55);
}
void RobotMotorBoard::motorsStop(){
analogWrite(IN_A1,255);
analogWrite(IN_A2,255);
analogWrite(IN_B1,255);
analogWrite(IN_B2,255);
}
/*
*
*
* Input and Output ports
*
*
*/
void RobotMotorBoard::_digitalWrite(uint8_t codename,bool value){
uint8_t pin=parseCodename(codename);
digitalWrite(pin,value);
}
void RobotMotorBoard::_analogWrite(uint8_t codename,int value){
//There's no PWM available on motor board
}
void RobotMotorBoard::_digitalRead(uint8_t codename){
uint8_t pin=parseCodename(codename);
bool value=digitalRead(pin);
messageOut.writeByte(COMMAND_DIGITAL_READ_RE);
messageOut.writeByte(codename);
messageOut.writeByte(value);
messageOut.sendData();
}
void RobotMotorBoard::_analogRead(uint8_t codename){
uint8_t pin=codenameToAPin(codename);
int value=analogRead(pin);
messageOut.writeByte(COMMAND_ANALOG_READ_RE);
messageOut.writeByte(codename);
messageOut.writeInt(value);
messageOut.sendData();
}
int RobotMotorBoard::IRread(uint8_t num){
IRs.selectPin(num-1); //To make consistant with the pins labeled on the board
return IRs.getAnalogValue();
}
void RobotMotorBoard::_readIR(){
//Serial.println("readIR");
int value;
messageOut.writeByte(COMMAND_READ_IR_RE);
for(int i=1;i<6;i++){
value=IRread(i);
messageOut.writeInt(value);
}
messageOut.sendData();
}
void RobotMotorBoard::_readTrim(){
int value=analogRead(TRIM);
messageOut.writeByte(COMMAND_READ_TRIM_RE);
messageOut.writeInt(value);
messageOut.sendData();
}
void RobotMotorBoard::_refreshMotorAdjustment(){
motorAdjustment=map(analogRead(TRIM),0,1023,-30,30)/100.0;
}
void RobotMotorBoard::reportActionDone(){
setMode(MODE_SIMPLE);
messageOut.writeByte(COMMAND_ACTION_DONE);
messageOut.sendData();
}
RobotMotorBoard RobotMotor=RobotMotorBoard();

View File

@ -0,0 +1,125 @@
#ifndef ArduinoRobot_h
#define ArduinoRobot_h
#include "EasyTransfer2.h"
#include "Multiplexer.h"
#include "LineFollow.h"
//#include "IRremote.h"
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
//Command code
#define COMMAND_SWITCH_MODE 0
#define COMMAND_RUN 10
#define COMMAND_MOTORS_STOP 11
#define COMMAND_ANALOG_WRITE 20
#define COMMAND_DIGITAL_WRITE 30
#define COMMAND_ANALOG_READ 40
#define COMMAND_ANALOG_READ_RE 41
#define COMMAND_DIGITAL_READ 50
#define COMMAND_DIGITAL_READ_RE 51
#define COMMAND_READ_IR 60
#define COMMAND_READ_IR_RE 61
#define COMMAND_ACTION_DONE 70
#define COMMAND_READ_TRIM 80
#define COMMAND_READ_TRIM_RE 81
#define COMMAND_PAUSE_MODE 90
#define COMMAND_LINE_FOLLOW_CONFIG 100
//component codename
#define CN_LEFT_MOTOR 0
#define CN_RIGHT_MOTOR 1
#define CN_IR 2
//motor board modes
#define MODE_SIMPLE 0
#define MODE_LINE_FOLLOW 1
#define MODE_ADJUST_MOTOR 2
#define MODE_IR_CONTROL 3
//bottom TKs, just for communication purpose
#define B_TK1 201
#define B_TK2 202
#define B_TK3 203
#define B_TK4 204
/*
A message structure will be:
switch mode (2):
byte COMMAND_SWITCH_MODE, byte mode
run (5):
byte COMMAND_RUN, int speedL, int speedR
analogWrite (3):
byte COMMAND_ANALOG_WRITE, byte codename, byte value;
digitalWrite (3):
byte COMMAND_DIGITAL_WRITE, byte codename, byte value;
analogRead (2):
byte COMMAND_ANALOG_READ, byte codename;
analogRead _return_ (4):
byte COMMAND_ANALOG_READ_RE, byte codename, int value;
digitalRead (2):
byte COMMAND_DIGITAL_READ, byte codename;
digitalRead _return_ (4):
byte COMMAND_DIGITAL_READ_RE, byte codename, int value;
read IR (1):
byte COMMAND_READ_IR;
read IR _return_ (9):
byte COMMAND_READ_IR_RE, int valueA, int valueB, int valueC, int valueD;
*/
class RobotMotorBoard:public LineFollow{
public:
RobotMotorBoard();
void begin();
void process();
void parseCommand();
int IRread(uint8_t num);
void setMode(uint8_t mode);
void pauseMode(bool onOff);
void motorsWrite(int speedL, int speedR);
void motorsWritePct(int speedLpct, int speedRpct);//write motor values in percentage
void motorsStop();
private:
float motorAdjustment;//-1.0 ~ 1.0, whether left is lowered or right is lowered
//convert codename to actual pins
uint8_t parseCodename(uint8_t codename);
uint8_t codenameToAPin(uint8_t codename);
void stopCurrentActions();
//void sendCommand(byte command,byte codename,int value);
void _analogWrite(uint8_t codename, int value);
void _digitalWrite(uint8_t codename, bool value);
void _analogRead(uint8_t codename);
void _digitalRead(uint8_t codename);
void _readIR();
void _readTrim();
void _refreshMotorAdjustment();
Multiplexer IRs;
uint8_t mode;
uint8_t isPaused;
EasyTransfer2 messageIn;
EasyTransfer2 messageOut;
//Line Following
void reportActionDone();
};
extern RobotMotorBoard RobotMotor;
#endif

View File

@ -0,0 +1,152 @@
#include "EasyTransfer2.h"
//Captures address and size of struct
void EasyTransfer2::begin(HardwareSerial *theSerial){
_serial = theSerial;
//dynamic creation of rx parsing buffer in RAM
//rx_buffer = (uint8_t*) malloc(size);
resetData();
}
void EasyTransfer2::writeByte(uint8_t dat){
if(position<20)
data[position++]=dat;
size++;
}
void EasyTransfer2::writeInt(int dat){
if(position<19){
data[position++]=dat>>8;
data[position++]=dat;
size+=2;
}
}
uint8_t EasyTransfer2::readByte(){
if(position>=size)return 0;
return data[position++];
}
int EasyTransfer2::readInt(){
if(position+1>=size)return 0;
int dat_1=data[position++]<<8;
int dat_2=data[position++];
int dat= dat_1 | dat_2;
return dat;
}
void EasyTransfer2::resetData(){
for(int i=0;i<20;i++){
data[i]=0;
}
size=0;
position=0;
}
//Sends out struct in binary, with header, length info and checksum
void EasyTransfer2::sendData(){
uint8_t CS = size;
_serial->write(0x06);
_serial->write(0x85);
_serial->write(size);
for(int i = 0; i<size; i++){
CS^=*(data+i);
_serial->write(*(data+i));
//Serial.print(*(data+i));
//Serial.print(",");
}
//Serial.println("");
_serial->write(CS);
resetData();
}
boolean EasyTransfer2::receiveData(){
//start off by looking for the header bytes. If they were already found in a previous call, skip it.
if(rx_len == 0){
//this size check may be redundant due to the size check below, but for now I'll leave it the way it is.
if(_serial->available() >= 3){
//this will block until a 0x06 is found or buffer size becomes less then 3.
while(_serial->read() != 0x06) {
//This will trash any preamble junk in the serial buffer
//but we need to make sure there is enough in the buffer to process while we trash the rest
//if the buffer becomes too empty, we will escape and try again on the next call
if(_serial->available() < 3)
return false;
}
//Serial.println("head");
if (_serial->read() == 0x85){
rx_len = _serial->read();
//Serial.print("rx_len:");
//Serial.println(rx_len);
resetData();
//make sure the binary structs on both Arduinos are the same size.
/*if(rx_len != size){
rx_len = 0;
return false;
}*/
}
}
//Serial.println("nothing");
}
//we get here if we already found the header bytes, the struct size matched what we know, and now we are byte aligned.
if(rx_len != 0){
while(_serial->available() && rx_array_inx <= rx_len){
data[rx_array_inx++] = _serial->read();
}
if(rx_len == (rx_array_inx-1)){
//seem to have got whole message
//last uint8_t is CS
calc_CS = rx_len;
//Serial.print("len:");
//Serial.println(rx_len);
for (int i = 0; i<rx_len; i++){
calc_CS^=data[i];
//Serial.print("m");
//Serial.print(data[i]);
//Serial.print(",");
}
//Serial.println();
//Serial.print(data[rx_array_inx-1]);
//Serial.print(" ");
//Serial.println(calc_CS);
if(calc_CS == data[rx_array_inx-1]){//CS good
//resetData();
//memcpy(data,d,rx_len);
for(int i=0;i<20;i++){
//Serial.print(data[i]);
//Serial.print(",");
}
//Serial.println("");
size=rx_len;
rx_len = 0;
rx_array_inx = 0;
return true;
}
else{
//Serial.println("CS");
resetData();
//failed checksum, need to clear this out anyway
rx_len = 0;
rx_array_inx = 0;
return false;
}
}
}
//Serial.print(rx_len);
//Serial.print(" ");
//Serial.print(rx_array_inx);
//Serial.print(" ");
//Serial.println("Short");
return false;
}

View File

@ -0,0 +1,76 @@
/******************************************************************
* EasyTransfer Arduino Library
* details and example sketch:
* http://www.billporter.info/easytransfer-arduino-library/
*
* Brought to you by:
* Bill Porter
* www.billporter.info
*
* See Readme for other info and version history
*
*
*This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
<http://www.gnu.org/licenses/>
*
*This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.
*To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or
*send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
******************************************************************/
#ifndef EasyTransfer2_h
#define EasyTransfer2_h
//make it a little prettier on the front end.
#define details(name) (byte*)&name,sizeof(name)
//Not neccessary, but just in case.
#if ARDUINO > 22
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "HardwareSerial.h"
//#include <NewSoftSerial.h>
#include <math.h>
#include <stdio.h>
#include <stdint.h>
#include <avr/io.h>
class EasyTransfer2 {
public:
void begin(HardwareSerial *theSerial);
//void begin(uint8_t *, uint8_t, NewSoftSerial *theSerial);
void sendData();
boolean receiveData();
void writeByte(uint8_t dat);
void writeInt(int dat);
uint8_t readByte();
int readInt();
private:
HardwareSerial *_serial;
void resetData();
uint8_t data[20]; //data storage, for both read and send
uint8_t position;
uint8_t size; //size of data in bytes. Both for read and send
//uint8_t * address; //address of struct
//uint8_t size; //size of struct
//uint8_t * rx_buffer; //address for temporary storage and parsing buffer
//uint8_t rx_buffer[20];
uint8_t rx_array_inx; //index for RX parsing buffer
uint8_t rx_len; //RX packet length according to the packet
uint8_t calc_CS; //calculated Chacksum
};
#endif

View File

@ -0,0 +1,40 @@
#ifndef LINE_FOLLOW_H
#define LINE_FOLLOW_H
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
class LineFollow{
public:
LineFollow();
void calibIRs();
void runLineFollow();
void config(uint8_t KP, uint8_t KD, uint8_t robotSpeed, uint8_t intergrationTime);
//These are all pure virtual functions, pure VF needs pure specifier "=0"
//virtual void motorsWrite(int speedL, int speedR)=0;
virtual void motorsWritePct(int speedLpct, int speedRpct)=0;
virtual void motorsStop()=0;
virtual int IRread(uint8_t num)=0;
protected:
virtual void reportActionDone()=0;
private:
void doCalibration(int speedPct, int time);
void ajusta_niveles();
uint8_t KP;
uint8_t KD;
uint8_t robotSpeed; //percentage
uint8_t intergrationTime;
int lectura_sensor[5], last_error, acu;
int sensor_blanco[5];
int sensor_negro[5];
};
#endif

View File

@ -0,0 +1,37 @@
#include "Multiplexer.h"
void Multiplexer::begin(uint8_t* selectors, uint8_t Z, uint8_t length){
for(uint8_t i=0;i<length;i++){
this->selectors[i]=selectors[i];
pinMode(selectors[i],OUTPUT);
}
this->length=length;
this->pin_Z=Z;
pinMode(pin_Z,INPUT);
}
void Multiplexer::selectPin(uint8_t num){
for(uint8_t i=0;i<length;i++){
//Serial.print(bitRead(num,i));
digitalWrite(selectors[i],bitRead(num,i));
}
//Serial.println("");
}
int Multiplexer::getAnalogValue(){
return analogRead(pin_Z);
}
bool Multiplexer::getDigitalValue(){
return digitalRead(pin_Z);
}
int Multiplexer::getAnalogValueAt(uint8_t num){
selectPin(num);
return getAnalogValue();
}
bool Multiplexer::getDigitalValueAt(uint8_t num){
selectPin(num);
return getDigitalValue();
}

View File

@ -0,0 +1,24 @@
#ifndef Multiplexer_h
#define Multiplexer_h
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
class Multiplexer{
public:
void begin(uint8_t* selectors, uint8_t Z, uint8_t length);
void selectPin(uint8_t num);
int getAnalogValue();
int getAnalogValueAt(uint8_t num);
bool getDigitalValue();
bool getDigitalValueAt(uint8_t num);
private:
uint8_t selectors[4];
uint8_t pin_Z;
uint8_t length;
};
#endif

View File

@ -0,0 +1,26 @@
/* Motor Board IR Array Test
This example of the Arduno robot's motor board returns the
values read fron the 5 infrared sendors on the bottom of
the robot.
*/
// include the motor board header
#include <ArduinoRobotMotorBoard.h>
String bar; // string for storing the informaton
void setup(){
// start serial communication
Serial.begin(9600);
// initialize the library
RobotMotor.begin();
}
void loop(){
bar=String(""); // empty the string
// read the sensors and add them to the string
bar=bar+RobotMotor.readIR(0)+' '+RobotMotor.readIR(1)+' '+RobotMotor.readIR(2)+' '+RobotMotor.readIR(3)+' '+RobotMotor.readIR(4);
// print out the values
Serial.println(bar);
delay(100);
}

View File

@ -0,0 +1,18 @@
/* Motor Core
This code for the Arduino Robot's motor board
is the stock firmware. program the motor board with
this sketch whenever you want to return the motor
board to its default state.
*/
#include <ArduinoRobotMotorBoard.h>
void setup(){
RobotMotor.begin();
}
void loop(){
RobotMotor.parseCommand();
RobotMotor.process();
}

View File

@ -0,0 +1,152 @@
//#include <ArduinoRobotMotorBoard.h>
#include "LineFollow.h"
//#define KP 19 //0.1 units
//#define KD 14
//#define ROBOT_SPEED 100 //percentage
//#define KP 11
//#define KD 5
//#define ROBOT_SPEED 50
//#define INTEGRATION_TIME 10 //En ms
/*uint8_t KP=11;
uint8_t KD=5;
uint8_t robotSpeed=50; //percentage
uint8_t intergrationTime=10;*/
#define NIVEL_PARA_LINEA 50
/*int lectura_sensor[5], last_error=0, acu=0;
//Estos son los arrays que hay que rellenar con los valores de los sensores
//de suelo sobre blanco y negro.
int sensor_blanco[]={
0,0,0,0,0};
int sensor_negro[]={
1023,1023,1023,1023,1023};
*/
//unsigned long time;
//void mueve_robot(int vel_izq, int vel_der);
//void para_robot();
//void doCalibration(int speedPct, int time);
//void ajusta_niveles(); //calibrate values
LineFollow::LineFollow(){
/*KP=11;
KD=5;
robotSpeed=50; //percentage
intergrationTime=10;*/
config(11,5,50,10);
for(int i=0;i<5;i++){
sensor_blanco[i]=0;
sensor_negro[i]=1023;
}
}
void LineFollow::config(uint8_t KP, uint8_t KD, uint8_t robotSpeed, uint8_t intergrationTime){
this->KP=KP;
this->KD=KD;
this->robotSpeed=robotSpeed;
this->intergrationTime=intergrationTime;
/*Serial.print("LFC: ");
Serial.print(KP);
Serial.print(' ');
Serial.print(KD);
Serial.print(' ');
Serial.print(robotSpeed);
Serial.print(' ');
Serial.println(intergrationTime);*/
}
void LineFollow::calibIRs(){
static bool isInited=false;//So only init once
if(isInited)return ;
delay(1000);
doCalibration(30,500);
doCalibration(-30,800);
doCalibration(30,500);
delay(1000);
isInited=true;
}
void LineFollow::runLineFollow(){
for(int count=0; count<5; count++)
{
lectura_sensor[count]=map(IRread(count),sensor_negro[count],sensor_blanco[count],0,127);
acu+=lectura_sensor[count];
}
//Serial.println(millis());
if (acu > NIVEL_PARA_LINEA)
{
acu/=5;
int error = ((lectura_sensor[0]<<6)+(lectura_sensor[1]<<5)-(lectura_sensor[3]<<5)-(lectura_sensor[4]<<6))/acu;
error = constrain(error,-100,100);
//Calculamos la correcion de velocidad mediante un filtro PD
int vel = (error * KP)/10 + (error-last_error)*KD;
last_error = error;
//Corregimos la velocidad de avance con el error de salida del filtro PD
int motor_left = constrain((robotSpeed + vel),-100,100);
int motor_right =constrain((robotSpeed - vel),-100,100);
//Movemos el robot
//motorsWritePct(motor_left,motor_right);
motorsWritePct(motor_left,motor_right);
//Esperamos un poquito a que el robot reaccione
delay(intergrationTime);
}
else
{
//Hemos encontrado una linea negra
//perpendicular a nuestro camino
//paramos el robot
motorsStop();
//y detenemos la ejecución del programa
//while(true);
reportActionDone();
//setMode(MODE_SIMPLE);
}
}
void LineFollow::doCalibration(int speedPct, int time){
motorsWritePct(speedPct, -speedPct);
unsigned long beginTime = millis();
while((millis()-beginTime)<time)
ajusta_niveles();
motorsStop();
}
void LineFollow::ajusta_niveles()
{
int lectura=0;
for(int count=0; count<5; count++){
lectura=IRread(count);
if (lectura > sensor_blanco[count])
sensor_blanco[count]=lectura;
if (lectura < sensor_negro[count])
sensor_negro[count]=lectura;
}
}