mirror of
https://github.com/arduino/Arduino.git
synced 2024-12-01 12:24:14 +01:00
Fixed robot libraries and examples for unified Arduino core
This commit is contained in:
parent
293e46bfb4
commit
ec31a2ee5c
@ -36,6 +36,13 @@
|
||||
#define RXLED0 PORTB |= (1<<0)
|
||||
#define RXLED1 PORTB &= ~(1<<0)
|
||||
|
||||
#define D0 TKD0
|
||||
#define D1 TKD1
|
||||
#define D2 TKD2
|
||||
#define D3 TKD3
|
||||
#define D4 TKD4
|
||||
#define D5 TKD5
|
||||
|
||||
static const uint8_t RX = 0;
|
||||
static const uint8_t TX = 1;
|
||||
static const uint8_t SDA = 2;
|
||||
|
@ -36,6 +36,11 @@
|
||||
#define RXLED0 PORTB |= (1<<0)
|
||||
#define RXLED1 PORTB &= ~(1<<0)
|
||||
|
||||
#define D10 TK1
|
||||
#define D9 TK2
|
||||
#define D8 TK4
|
||||
#define D7 TK3
|
||||
|
||||
static const uint8_t RX = 0;
|
||||
static const uint8_t TX = 1;
|
||||
static const uint8_t SDA = 2;
|
||||
|
777
libraries/RobotIRremote/IRremote.cpp
Normal file
777
libraries/RobotIRremote/IRremote.cpp
Normal file
@ -0,0 +1,777 @@
|
||||
/*
|
||||
* IRremote
|
||||
* Version 0.11 August, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
|
||||
*
|
||||
* Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
|
||||
* Modified by Mitra Ardron <mitra@mitra.biz>
|
||||
* Added Sanyo and Mitsubishi controllers
|
||||
* Modified Sony to spot the repeat codes that some Sony's send
|
||||
*
|
||||
* Interrupt code based on NECIRrcv by Joe Knapp
|
||||
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
|
||||
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
|
||||
*
|
||||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
||||
*/
|
||||
|
||||
#include "IRremote.h"
|
||||
#include "IRremoteInt.h"
|
||||
|
||||
// Provides ISR
|
||||
#include <avr/interrupt.h>
|
||||
|
||||
volatile irparams_t irparams;
|
||||
|
||||
// These versions of MATCH, MATCH_MARK, and MATCH_SPACE are only for debugging.
|
||||
// To use them, set DEBUG in IRremoteInt.h
|
||||
// Normally macros are used for efficiency
|
||||
#ifdef DEBUG
|
||||
int MATCH(int measured, int desired) {
|
||||
Serial.print("Testing: ");
|
||||
Serial.print(TICKS_LOW(desired), DEC);
|
||||
Serial.print(" <= ");
|
||||
Serial.print(measured, DEC);
|
||||
Serial.print(" <= ");
|
||||
Serial.println(TICKS_HIGH(desired), DEC);
|
||||
return measured >= TICKS_LOW(desired) && measured <= TICKS_HIGH(desired);
|
||||
}
|
||||
|
||||
int MATCH_MARK(int measured_ticks, int desired_us) {
|
||||
Serial.print("Testing mark ");
|
||||
Serial.print(measured_ticks * USECPERTICK, DEC);
|
||||
Serial.print(" vs ");
|
||||
Serial.print(desired_us, DEC);
|
||||
Serial.print(": ");
|
||||
Serial.print(TICKS_LOW(desired_us + MARK_EXCESS), DEC);
|
||||
Serial.print(" <= ");
|
||||
Serial.print(measured_ticks, DEC);
|
||||
Serial.print(" <= ");
|
||||
Serial.println(TICKS_HIGH(desired_us + MARK_EXCESS), DEC);
|
||||
return measured_ticks >= TICKS_LOW(desired_us + MARK_EXCESS) && measured_ticks <= TICKS_HIGH(desired_us + MARK_EXCESS);
|
||||
}
|
||||
|
||||
int MATCH_SPACE(int measured_ticks, int desired_us) {
|
||||
Serial.print("Testing space ");
|
||||
Serial.print(measured_ticks * USECPERTICK, DEC);
|
||||
Serial.print(" vs ");
|
||||
Serial.print(desired_us, DEC);
|
||||
Serial.print(": ");
|
||||
Serial.print(TICKS_LOW(desired_us - MARK_EXCESS), DEC);
|
||||
Serial.print(" <= ");
|
||||
Serial.print(measured_ticks, DEC);
|
||||
Serial.print(" <= ");
|
||||
Serial.println(TICKS_HIGH(desired_us - MARK_EXCESS), DEC);
|
||||
return measured_ticks >= TICKS_LOW(desired_us - MARK_EXCESS) && measured_ticks <= TICKS_HIGH(desired_us - MARK_EXCESS);
|
||||
}
|
||||
#else
|
||||
int MATCH(int measured, int desired) {return measured >= TICKS_LOW(desired) && measured <= TICKS_HIGH(desired);}
|
||||
int MATCH_MARK(int measured_ticks, int desired_us) {return MATCH(measured_ticks, (desired_us + MARK_EXCESS));}
|
||||
int MATCH_SPACE(int measured_ticks, int desired_us) {return MATCH(measured_ticks, (desired_us - MARK_EXCESS));}
|
||||
#endif
|
||||
|
||||
IRrecv::IRrecv(int recvpin)
|
||||
{
|
||||
irparams.recvpin = recvpin;
|
||||
irparams.blinkflag = 0;
|
||||
}
|
||||
|
||||
// initialization
|
||||
void IRrecv::enableIRIn() {
|
||||
cli();
|
||||
// setup pulse clock timer interrupt
|
||||
//Prescale /8 (16M/8 = 0.5 microseconds per tick)
|
||||
// Therefore, the timer interval can range from 0.5 to 128 microseconds
|
||||
// depending on the reset value (255 to 0)
|
||||
TIMER_CONFIG_NORMAL();
|
||||
|
||||
//Timer2 Overflow Interrupt Enable
|
||||
TIMER_ENABLE_INTR;
|
||||
|
||||
TIMER_RESET;
|
||||
|
||||
sei(); // enable interrupts
|
||||
|
||||
// initialize state machine variables
|
||||
irparams.rcvstate = STATE_IDLE;
|
||||
irparams.rawlen = 0;
|
||||
|
||||
// set pin modes
|
||||
pinMode(irparams.recvpin, INPUT);
|
||||
}
|
||||
|
||||
// enable/disable blinking of pin 13 on IR processing
|
||||
void IRrecv::blink13(int blinkflag)
|
||||
{
|
||||
irparams.blinkflag = blinkflag;
|
||||
if (blinkflag)
|
||||
pinMode(BLINKLED, OUTPUT);
|
||||
}
|
||||
|
||||
// TIMER2 interrupt code to collect raw data.
|
||||
// Widths of alternating SPACE, MARK are recorded in rawbuf.
|
||||
// Recorded in ticks of 50 microseconds.
|
||||
// rawlen counts the number of entries recorded so far.
|
||||
// First entry is the SPACE between transmissions.
|
||||
// As soon as a SPACE gets long, ready is set, state switches to IDLE, timing of SPACE continues.
|
||||
// As soon as first MARK arrives, gap width is recorded, ready is cleared, and new logging starts
|
||||
ISR(TIMER_INTR_NAME)
|
||||
{
|
||||
TIMER_RESET;
|
||||
|
||||
uint8_t irdata = (uint8_t)digitalRead(irparams.recvpin);
|
||||
|
||||
irparams.timer++; // One more 50us tick
|
||||
if (irparams.rawlen >= RAWBUF) {
|
||||
// Buffer overflow
|
||||
irparams.rcvstate = STATE_STOP;
|
||||
}
|
||||
switch(irparams.rcvstate) {
|
||||
case STATE_IDLE: // In the middle of a gap
|
||||
if (irdata == MARK) {
|
||||
if (irparams.timer < GAP_TICKS) {
|
||||
// Not big enough to be a gap.
|
||||
irparams.timer = 0;
|
||||
}
|
||||
else {
|
||||
// gap just ended, record duration and start recording transmission
|
||||
irparams.rawlen = 0;
|
||||
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
|
||||
irparams.timer = 0;
|
||||
irparams.rcvstate = STATE_MARK;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case STATE_MARK: // timing MARK
|
||||
if (irdata == SPACE) { // MARK ended, record time
|
||||
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
|
||||
irparams.timer = 0;
|
||||
irparams.rcvstate = STATE_SPACE;
|
||||
}
|
||||
break;
|
||||
case STATE_SPACE: // timing SPACE
|
||||
if (irdata == MARK) { // SPACE just ended, record it
|
||||
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
|
||||
irparams.timer = 0;
|
||||
irparams.rcvstate = STATE_MARK;
|
||||
}
|
||||
else { // SPACE
|
||||
if (irparams.timer > GAP_TICKS) {
|
||||
// big SPACE, indicates gap between codes
|
||||
// Mark current code as ready for processing
|
||||
// Switch to STOP
|
||||
// Don't reset timer; keep counting space width
|
||||
irparams.rcvstate = STATE_STOP;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case STATE_STOP: // waiting, measuring gap
|
||||
if (irdata == MARK) { // reset gap timer
|
||||
irparams.timer = 0;
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
if (irparams.blinkflag) {
|
||||
if (irdata == MARK) {
|
||||
BLINKLED_ON(); // turn pin 13 LED on
|
||||
}
|
||||
else {
|
||||
BLINKLED_OFF(); // turn pin 13 LED off
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void IRrecv::resume() {
|
||||
irparams.rcvstate = STATE_IDLE;
|
||||
irparams.rawlen = 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Decodes the received IR message
|
||||
// Returns 0 if no data ready, 1 if data ready.
|
||||
// Results of decoding are stored in results
|
||||
int IRrecv::decode(decode_results *results) {
|
||||
results->rawbuf = irparams.rawbuf;
|
||||
results->rawlen = irparams.rawlen;
|
||||
if (irparams.rcvstate != STATE_STOP) {
|
||||
return ERR;
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
Serial.println("Attempting NEC decode");
|
||||
#endif
|
||||
if (decodeNEC(results)) {
|
||||
return DECODED;
|
||||
}
|
||||
/*
|
||||
#ifdef DEBUG
|
||||
Serial.println("Attempting Sony decode");
|
||||
#endif
|
||||
if (decodeSony(results)) {
|
||||
return DECODED;
|
||||
}*/
|
||||
/*
|
||||
#ifdef DEBUG
|
||||
Serial.println("Attempting Sanyo decode");
|
||||
#endif
|
||||
if (decodeSanyo(results)) {
|
||||
return DECODED;
|
||||
}
|
||||
*/
|
||||
/*
|
||||
#ifdef DEBUG
|
||||
Serial.println("Attempting Mitsubishi decode");
|
||||
#endif
|
||||
if (decodeMitsubishi(results)) {
|
||||
return DECODED;
|
||||
}*/
|
||||
/*
|
||||
#ifdef DEBUG
|
||||
Serial.println("Attempting RC5 decode");
|
||||
#endif
|
||||
if (decodeRC5(results)) {
|
||||
return DECODED;
|
||||
}
|
||||
*/
|
||||
/*
|
||||
#ifdef DEBUG
|
||||
Serial.println("Attempting RC6 decode");
|
||||
#endif
|
||||
if (decodeRC6(results)) {
|
||||
return DECODED;
|
||||
}
|
||||
*/
|
||||
/*
|
||||
#ifdef DEBUG
|
||||
Serial.println("Attempting Panasonic decode");
|
||||
#endif
|
||||
if (decodePanasonic(results)) {
|
||||
return DECODED;
|
||||
}
|
||||
*/
|
||||
/*
|
||||
#ifdef DEBUG
|
||||
Serial.println("Attempting JVC decode");
|
||||
#endif
|
||||
if (decodeJVC(results)) {
|
||||
return DECODED;
|
||||
}*/
|
||||
// decodeHash returns a hash on any input.
|
||||
// Thus, it needs to be last in the list.
|
||||
// If you add any decodes, add them before this.
|
||||
if (decodeHash(results)) {
|
||||
return DECODED;
|
||||
}
|
||||
// Throw away and start over
|
||||
resume();
|
||||
return ERR;
|
||||
}
|
||||
|
||||
|
||||
// NECs have a repeat only 4 items long
|
||||
long IRrecv::decodeNEC(decode_results *results) {
|
||||
long data = 0;
|
||||
int offset = 1; // Skip first space
|
||||
// Initial mark
|
||||
if (!MATCH_MARK(results->rawbuf[offset], NEC_HDR_MARK)) {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
// Check for repeat
|
||||
if (irparams.rawlen == 4 &&
|
||||
MATCH_SPACE(results->rawbuf[offset], NEC_RPT_SPACE) &&
|
||||
MATCH_MARK(results->rawbuf[offset+1], NEC_BIT_MARK)) {
|
||||
results->bits = 0;
|
||||
results->value = REPEAT;
|
||||
results->decode_type = NEC;
|
||||
return DECODED;
|
||||
}
|
||||
if (irparams.rawlen < 2 * NEC_BITS + 4) {
|
||||
return ERR;
|
||||
}
|
||||
// Initial space
|
||||
if (!MATCH_SPACE(results->rawbuf[offset], NEC_HDR_SPACE)) {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
for (int i = 0; i < NEC_BITS; i++) {
|
||||
if (!MATCH_MARK(results->rawbuf[offset], NEC_BIT_MARK)) {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
if (MATCH_SPACE(results->rawbuf[offset], NEC_ONE_SPACE)) {
|
||||
data = (data << 1) | 1;
|
||||
}
|
||||
else if (MATCH_SPACE(results->rawbuf[offset], NEC_ZERO_SPACE)) {
|
||||
data <<= 1;
|
||||
}
|
||||
else {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
}
|
||||
// Success
|
||||
results->bits = NEC_BITS;
|
||||
results->value = data;
|
||||
results->decode_type = NEC;
|
||||
return DECODED;
|
||||
}
|
||||
/*
|
||||
long IRrecv::decodeSony(decode_results *results) {
|
||||
long data = 0;
|
||||
if (irparams.rawlen < 2 * SONY_BITS + 2) {
|
||||
return ERR;
|
||||
}
|
||||
int offset = 0; // Dont skip first space, check its size
|
||||
|
||||
// Some Sony's deliver repeats fast after first
|
||||
// unfortunately can't spot difference from of repeat from two fast clicks
|
||||
if (results->rawbuf[offset] < SONY_DOUBLE_SPACE_USECS) {
|
||||
// Serial.print("IR Gap found: ");
|
||||
results->bits = 0;
|
||||
results->value = REPEAT;
|
||||
results->decode_type = SANYO;
|
||||
return DECODED;
|
||||
}
|
||||
offset++;
|
||||
|
||||
// Initial mark
|
||||
if (!MATCH_MARK(results->rawbuf[offset], SONY_HDR_MARK)) {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
|
||||
while (offset + 1 < irparams.rawlen) {
|
||||
if (!MATCH_SPACE(results->rawbuf[offset], SONY_HDR_SPACE)) {
|
||||
break;
|
||||
}
|
||||
offset++;
|
||||
if (MATCH_MARK(results->rawbuf[offset], SONY_ONE_MARK)) {
|
||||
data = (data << 1) | 1;
|
||||
}
|
||||
else if (MATCH_MARK(results->rawbuf[offset], SONY_ZERO_MARK)) {
|
||||
data <<= 1;
|
||||
}
|
||||
else {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
}
|
||||
|
||||
// Success
|
||||
results->bits = (offset - 1) / 2;
|
||||
if (results->bits < 12) {
|
||||
results->bits = 0;
|
||||
return ERR;
|
||||
}
|
||||
results->value = data;
|
||||
results->decode_type = SONY;
|
||||
return DECODED;
|
||||
}*/
|
||||
|
||||
/*
|
||||
// I think this is a Sanyo decoder - serial = SA 8650B
|
||||
// Looks like Sony except for timings, 48 chars of data and time/space different
|
||||
long IRrecv::decodeSanyo(decode_results *results) {
|
||||
long data = 0;
|
||||
if (irparams.rawlen < 2 * SANYO_BITS + 2) {
|
||||
return ERR;
|
||||
}
|
||||
int offset = 0; // Skip first space
|
||||
// Initial space
|
||||
// Put this back in for debugging - note can't use #DEBUG as if Debug on we don't see the repeat cos of the delay
|
||||
//Serial.print("IR Gap: ");
|
||||
//Serial.println( results->rawbuf[offset]);
|
||||
//Serial.println( "test against:");
|
||||
//Serial.println(results->rawbuf[offset]);
|
||||
|
||||
if (results->rawbuf[offset] < SANYO_DOUBLE_SPACE_USECS) {
|
||||
// Serial.print("IR Gap found: ");
|
||||
results->bits = 0;
|
||||
results->value = REPEAT;
|
||||
results->decode_type = SANYO;
|
||||
return DECODED;
|
||||
}
|
||||
offset++;
|
||||
|
||||
// Initial mark
|
||||
if (!MATCH_MARK(results->rawbuf[offset], SANYO_HDR_MARK)) {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
|
||||
// Skip Second Mark
|
||||
if (!MATCH_MARK(results->rawbuf[offset], SANYO_HDR_MARK)) {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
|
||||
while (offset + 1 < irparams.rawlen) {
|
||||
if (!MATCH_SPACE(results->rawbuf[offset], SANYO_HDR_SPACE)) {
|
||||
break;
|
||||
}
|
||||
offset++;
|
||||
if (MATCH_MARK(results->rawbuf[offset], SANYO_ONE_MARK)) {
|
||||
data = (data << 1) | 1;
|
||||
}
|
||||
else if (MATCH_MARK(results->rawbuf[offset], SANYO_ZERO_MARK)) {
|
||||
data <<= 1;
|
||||
}
|
||||
else {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
}
|
||||
|
||||
// Success
|
||||
results->bits = (offset - 1) / 2;
|
||||
if (results->bits < 12) {
|
||||
results->bits = 0;
|
||||
return ERR;
|
||||
}
|
||||
results->value = data;
|
||||
results->decode_type = SANYO;
|
||||
return DECODED;
|
||||
}
|
||||
*/
|
||||
/*
|
||||
// Looks like Sony except for timings, 48 chars of data and time/space different
|
||||
long IRrecv::decodeMitsubishi(decode_results *results) {
|
||||
// Serial.print("?!? decoding Mitsubishi:");Serial.print(irparams.rawlen); Serial.print(" want "); Serial.println( 2 * MITSUBISHI_BITS + 2);
|
||||
long data = 0;
|
||||
if (irparams.rawlen < 2 * MITSUBISHI_BITS + 2) {
|
||||
return ERR;
|
||||
}
|
||||
int offset = 0; // Skip first space
|
||||
// Initial space
|
||||
// Put this back in for debugging - note can't use #DEBUG as if Debug on we don't see the repeat cos of the delay
|
||||
//Serial.print("IR Gap: ");
|
||||
//Serial.println( results->rawbuf[offset]);
|
||||
//Serial.println( "test against:");
|
||||
//Serial.println(results->rawbuf[offset]);
|
||||
|
||||
// Not seeing double keys from Mitsubishi
|
||||
//if (results->rawbuf[offset] < MITSUBISHI_DOUBLE_SPACE_USECS) {
|
||||
// Serial.print("IR Gap found: ");
|
||||
// results->bits = 0;
|
||||
// results->value = REPEAT;
|
||||
// results->decode_type = MITSUBISHI;
|
||||
// return DECODED;
|
||||
//}
|
||||
|
||||
offset++;
|
||||
|
||||
// Typical
|
||||
// 14200 7 41 7 42 7 42 7 17 7 17 7 18 7 41 7 18 7 17 7 17 7 18 7 41 8 17 7 17 7 18 7 17 7
|
||||
|
||||
// Initial Space
|
||||
if (!MATCH_MARK(results->rawbuf[offset], MITSUBISHI_HDR_SPACE)) {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
while (offset + 1 < irparams.rawlen) {
|
||||
if (MATCH_MARK(results->rawbuf[offset], MITSUBISHI_ONE_MARK)) {
|
||||
data = (data << 1) | 1;
|
||||
}
|
||||
else if (MATCH_MARK(results->rawbuf[offset], MITSUBISHI_ZERO_MARK)) {
|
||||
data <<= 1;
|
||||
}
|
||||
else {
|
||||
// Serial.println("A"); Serial.println(offset); Serial.println(results->rawbuf[offset]);
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
if (!MATCH_SPACE(results->rawbuf[offset], MITSUBISHI_HDR_SPACE)) {
|
||||
// Serial.println("B"); Serial.println(offset); Serial.println(results->rawbuf[offset]);
|
||||
break;
|
||||
}
|
||||
offset++;
|
||||
}
|
||||
|
||||
// Success
|
||||
results->bits = (offset - 1) / 2;
|
||||
if (results->bits < MITSUBISHI_BITS) {
|
||||
results->bits = 0;
|
||||
return ERR;
|
||||
}
|
||||
results->value = data;
|
||||
results->decode_type = MITSUBISHI;
|
||||
return DECODED;
|
||||
}*/
|
||||
|
||||
|
||||
// Gets one undecoded level at a time from the raw buffer.
|
||||
// The RC5/6 decoding is easier if the data is broken into time intervals.
|
||||
// E.g. if the buffer has MARK for 2 time intervals and SPACE for 1,
|
||||
// successive calls to getRClevel will return MARK, MARK, SPACE.
|
||||
// offset and used are updated to keep track of the current position.
|
||||
// t1 is the time interval for a single bit in microseconds.
|
||||
// Returns -1 for error (measured time interval is not a multiple of t1).
|
||||
int IRrecv::getRClevel(decode_results *results, int *offset, int *used, int t1) {
|
||||
if (*offset >= results->rawlen) {
|
||||
// After end of recorded buffer, assume SPACE.
|
||||
return SPACE;
|
||||
}
|
||||
int width = results->rawbuf[*offset];
|
||||
int val = ((*offset) % 2) ? MARK : SPACE;
|
||||
int correction = (val == MARK) ? MARK_EXCESS : - MARK_EXCESS;
|
||||
|
||||
int avail;
|
||||
if (MATCH(width, t1 + correction)) {
|
||||
avail = 1;
|
||||
}
|
||||
else if (MATCH(width, 2*t1 + correction)) {
|
||||
avail = 2;
|
||||
}
|
||||
else if (MATCH(width, 3*t1 + correction)) {
|
||||
avail = 3;
|
||||
}
|
||||
else {
|
||||
return -1;
|
||||
}
|
||||
|
||||
(*used)++;
|
||||
if (*used >= avail) {
|
||||
*used = 0;
|
||||
(*offset)++;
|
||||
}
|
||||
#ifdef DEBUG
|
||||
if (val == MARK) {
|
||||
Serial.println("MARK");
|
||||
}
|
||||
else {
|
||||
Serial.println("SPACE");
|
||||
}
|
||||
#endif
|
||||
return val;
|
||||
}
|
||||
/*
|
||||
long IRrecv::decodeRC5(decode_results *results) {
|
||||
if (irparams.rawlen < MIN_RC5_SAMPLES + 2) {
|
||||
return ERR;
|
||||
}
|
||||
int offset = 1; // Skip gap space
|
||||
long data = 0;
|
||||
int used = 0;
|
||||
// Get start bits
|
||||
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return ERR;
|
||||
if (getRClevel(results, &offset, &used, RC5_T1) != SPACE) return ERR;
|
||||
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return ERR;
|
||||
int nbits;
|
||||
for (nbits = 0; offset < irparams.rawlen; nbits++) {
|
||||
int levelA = getRClevel(results, &offset, &used, RC5_T1);
|
||||
int levelB = getRClevel(results, &offset, &used, RC5_T1);
|
||||
if (levelA == SPACE && levelB == MARK) {
|
||||
// 1 bit
|
||||
data = (data << 1) | 1;
|
||||
}
|
||||
else if (levelA == MARK && levelB == SPACE) {
|
||||
// zero bit
|
||||
data <<= 1;
|
||||
}
|
||||
else {
|
||||
return ERR;
|
||||
}
|
||||
}
|
||||
|
||||
// Success
|
||||
results->bits = nbits;
|
||||
results->value = data;
|
||||
results->decode_type = RC5;
|
||||
return DECODED;
|
||||
}*/
|
||||
/*
|
||||
long IRrecv::decodeRC6(decode_results *results) {
|
||||
if (results->rawlen < MIN_RC6_SAMPLES) {
|
||||
return ERR;
|
||||
}
|
||||
int offset = 1; // Skip first space
|
||||
// Initial mark
|
||||
if (!MATCH_MARK(results->rawbuf[offset], RC6_HDR_MARK)) {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
if (!MATCH_SPACE(results->rawbuf[offset], RC6_HDR_SPACE)) {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
long data = 0;
|
||||
int used = 0;
|
||||
// Get start bit (1)
|
||||
if (getRClevel(results, &offset, &used, RC6_T1) != MARK) return ERR;
|
||||
if (getRClevel(results, &offset, &used, RC6_T1) != SPACE) return ERR;
|
||||
int nbits;
|
||||
for (nbits = 0; offset < results->rawlen; nbits++) {
|
||||
int levelA, levelB; // Next two levels
|
||||
levelA = getRClevel(results, &offset, &used, RC6_T1);
|
||||
if (nbits == 3) {
|
||||
// T bit is double wide; make sure second half matches
|
||||
if (levelA != getRClevel(results, &offset, &used, RC6_T1)) return ERR;
|
||||
}
|
||||
levelB = getRClevel(results, &offset, &used, RC6_T1);
|
||||
if (nbits == 3) {
|
||||
// T bit is double wide; make sure second half matches
|
||||
if (levelB != getRClevel(results, &offset, &used, RC6_T1)) return ERR;
|
||||
}
|
||||
if (levelA == MARK && levelB == SPACE) { // reversed compared to RC5
|
||||
// 1 bit
|
||||
data = (data << 1) | 1;
|
||||
}
|
||||
else if (levelA == SPACE && levelB == MARK) {
|
||||
// zero bit
|
||||
data <<= 1;
|
||||
}
|
||||
else {
|
||||
return ERR; // Error
|
||||
}
|
||||
}
|
||||
// Success
|
||||
results->bits = nbits;
|
||||
results->value = data;
|
||||
results->decode_type = RC6;
|
||||
return DECODED;
|
||||
}*/
|
||||
/*
|
||||
long IRrecv::decodePanasonic(decode_results *results) {
|
||||
unsigned long long data = 0;
|
||||
int offset = 1;
|
||||
|
||||
if (!MATCH_MARK(results->rawbuf[offset], PANASONIC_HDR_MARK)) {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
if (!MATCH_MARK(results->rawbuf[offset], PANASONIC_HDR_SPACE)) {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
|
||||
// decode address
|
||||
for (int i = 0; i < PANASONIC_BITS; i++) {
|
||||
if (!MATCH_MARK(results->rawbuf[offset++], PANASONIC_BIT_MARK)) {
|
||||
return ERR;
|
||||
}
|
||||
if (MATCH_SPACE(results->rawbuf[offset],PANASONIC_ONE_SPACE)) {
|
||||
data = (data << 1) | 1;
|
||||
} else if (MATCH_SPACE(results->rawbuf[offset],PANASONIC_ZERO_SPACE)) {
|
||||
data <<= 1;
|
||||
} else {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
}
|
||||
results->value = (unsigned long)data;
|
||||
results->panasonicAddress = (unsigned int)(data >> 32);
|
||||
results->decode_type = PANASONIC;
|
||||
results->bits = PANASONIC_BITS;
|
||||
return DECODED;
|
||||
}*/
|
||||
/*
|
||||
long IRrecv::decodeJVC(decode_results *results) {
|
||||
long data = 0;
|
||||
int offset = 1; // Skip first space
|
||||
// Check for repeat
|
||||
if (irparams.rawlen - 1 == 33 &&
|
||||
MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK) &&
|
||||
MATCH_MARK(results->rawbuf[irparams.rawlen-1], JVC_BIT_MARK)) {
|
||||
results->bits = 0;
|
||||
results->value = REPEAT;
|
||||
results->decode_type = JVC;
|
||||
return DECODED;
|
||||
}
|
||||
// Initial mark
|
||||
if (!MATCH_MARK(results->rawbuf[offset], JVC_HDR_MARK)) {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
if (irparams.rawlen < 2 * JVC_BITS + 1 ) {
|
||||
return ERR;
|
||||
}
|
||||
// Initial space
|
||||
if (!MATCH_SPACE(results->rawbuf[offset], JVC_HDR_SPACE)) {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
for (int i = 0; i < JVC_BITS; i++) {
|
||||
if (!MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK)) {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
if (MATCH_SPACE(results->rawbuf[offset], JVC_ONE_SPACE)) {
|
||||
data = (data << 1) | 1;
|
||||
}
|
||||
else if (MATCH_SPACE(results->rawbuf[offset], JVC_ZERO_SPACE)) {
|
||||
data <<= 1;
|
||||
}
|
||||
else {
|
||||
return ERR;
|
||||
}
|
||||
offset++;
|
||||
}
|
||||
//Stop bit
|
||||
if (!MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK)){
|
||||
return ERR;
|
||||
}
|
||||
// Success
|
||||
results->bits = JVC_BITS;
|
||||
results->value = data;
|
||||
results->decode_type = JVC;
|
||||
return DECODED;
|
||||
}*/
|
||||
|
||||
/* -----------------------------------------------------------------------
|
||||
* hashdecode - decode an arbitrary IR code.
|
||||
* Instead of decoding using a standard encoding scheme
|
||||
* (e.g. Sony, NEC, RC5), the code is hashed to a 32-bit value.
|
||||
*
|
||||
* The algorithm: look at the sequence of MARK signals, and see if each one
|
||||
* is shorter (0), the same length (1), or longer (2) than the previous.
|
||||
* Do the same with the SPACE signals. Hszh the resulting sequence of 0's,
|
||||
* 1's, and 2's to a 32-bit value. This will give a unique value for each
|
||||
* different code (probably), for most code systems.
|
||||
*
|
||||
* http://arcfn.com/2010/01/using-arbitrary-remotes-with-arduino.html
|
||||
*/
|
||||
|
||||
// Compare two tick values, returning 0 if newval is shorter,
|
||||
// 1 if newval is equal, and 2 if newval is longer
|
||||
// Use a tolerance of 20%
|
||||
int IRrecv::compare(unsigned int oldval, unsigned int newval) {
|
||||
if (newval < oldval * .8) {
|
||||
return 0;
|
||||
}
|
||||
else if (oldval < newval * .8) {
|
||||
return 2;
|
||||
}
|
||||
else {
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
// Use FNV hash algorithm: http://isthe.com/chongo/tech/comp/fnv/#FNV-param
|
||||
#define FNV_PRIME_32 16777619
|
||||
#define FNV_BASIS_32 2166136261
|
||||
|
||||
/* Converts the raw code values into a 32-bit hash code.
|
||||
* Hopefully this code is unique for each button.
|
||||
* This isn't a "real" decoding, just an arbitrary value.
|
||||
*/
|
||||
long IRrecv::decodeHash(decode_results *results) {
|
||||
// Require at least 6 samples to prevent triggering on noise
|
||||
if (results->rawlen < 6) {
|
||||
return ERR;
|
||||
}
|
||||
long hash = FNV_BASIS_32;
|
||||
for (int i = 1; i+2 < results->rawlen; i++) {
|
||||
int value = compare(results->rawbuf[i], results->rawbuf[i+2]);
|
||||
// Add value into the hash
|
||||
hash = (hash * FNV_PRIME_32) ^ value;
|
||||
}
|
||||
results->value = hash;
|
||||
results->bits = 32;
|
||||
results->decode_type = UNKNOWN;
|
||||
return DECODED;
|
||||
}
|
||||
|
94
libraries/RobotIRremote/IRremote.h
Normal file
94
libraries/RobotIRremote/IRremote.h
Normal file
@ -0,0 +1,94 @@
|
||||
/*
|
||||
* IRremote
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.htm http://arcfn.com
|
||||
* Edited by Mitra to add new controller SANYO
|
||||
*
|
||||
* Interrupt code based on NECIRrcv by Joe Knapp
|
||||
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
|
||||
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
|
||||
*
|
||||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
||||
*/
|
||||
|
||||
#ifndef IRremote_h
|
||||
#define IRremote_h
|
||||
|
||||
// The following are compile-time library options.
|
||||
// If you change them, recompile the library.
|
||||
// If DEBUG is defined, a lot of debugging output will be printed during decoding.
|
||||
// TEST must be defined for the IRtest unittests to work. It will make some
|
||||
// methods virtual, which will be slightly slower, which is why it is optional.
|
||||
// #define DEBUG
|
||||
// #define TEST
|
||||
|
||||
// Results returned from the decoder
|
||||
class decode_results {
|
||||
public:
|
||||
int decode_type; // NEC, SONY, RC5, UNKNOWN
|
||||
unsigned int panasonicAddress; // This is only used for decoding Panasonic data
|
||||
unsigned long value; // Decoded value
|
||||
int bits; // Number of bits in decoded value
|
||||
volatile unsigned int *rawbuf; // Raw intervals in .5 us ticks
|
||||
int rawlen; // Number of records in rawbuf.
|
||||
};
|
||||
|
||||
// Values for decode_type
|
||||
#define NEC 1
|
||||
#define SONY 2
|
||||
#define RC5 3
|
||||
#define RC6 4
|
||||
#define DISH 5
|
||||
#define SHARP 6
|
||||
#define PANASONIC 7
|
||||
#define JVC 8
|
||||
#define SANYO 9
|
||||
#define MITSUBISHI 10
|
||||
#define UNKNOWN -1
|
||||
|
||||
// Decoded value for NEC when a repeat code is received
|
||||
#define REPEAT 0xffffffff
|
||||
|
||||
// main class for receiving IR
|
||||
class IRrecv
|
||||
{
|
||||
public:
|
||||
IRrecv(int recvpin);
|
||||
void blink13(int blinkflag);
|
||||
int decode(decode_results *results);
|
||||
void enableIRIn();
|
||||
void resume();
|
||||
private:
|
||||
// These are called by decode
|
||||
int getRClevel(decode_results *results, int *offset, int *used, int t1);
|
||||
long decodeNEC(decode_results *results);
|
||||
//long decodeSony(decode_results *results);
|
||||
//long decodeSanyo(decode_results *results);
|
||||
//long decodeMitsubishi(decode_results *results);
|
||||
//long decodeRC5(decode_results *results);
|
||||
//long decodeRC6(decode_results *results);
|
||||
//long decodePanasonic(decode_results *results);
|
||||
//long decodeJVC(decode_results *results);
|
||||
long decodeHash(decode_results *results);
|
||||
int compare(unsigned int oldval, unsigned int newval);
|
||||
|
||||
}
|
||||
;
|
||||
|
||||
// Only used for testing; can remove virtual for shorter code
|
||||
#ifdef TEST
|
||||
#define VIRTUAL virtual
|
||||
#else
|
||||
#define VIRTUAL
|
||||
#endif
|
||||
// Some useful constants
|
||||
|
||||
#define USECPERTICK 50 // microseconds per clock interrupt tick
|
||||
#define RAWBUF 100 // Length of raw duration buffer
|
||||
|
||||
// Marks tend to be 100us too long, and spaces 100us too short
|
||||
// when received due to sensor lag.
|
||||
#define MARK_EXCESS 100
|
||||
|
||||
#endif
|
446
libraries/RobotIRremote/IRremoteInt.h
Normal file
446
libraries/RobotIRremote/IRremoteInt.h
Normal file
@ -0,0 +1,446 @@
|
||||
/*
|
||||
* IRremote
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
|
||||
*
|
||||
* Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
|
||||
*
|
||||
* Interrupt code based on NECIRrcv by Joe Knapp
|
||||
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
|
||||
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
|
||||
*
|
||||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
||||
*/
|
||||
|
||||
#ifndef IRremoteint_h
|
||||
#define IRremoteint_h
|
||||
|
||||
#if defined(ARDUINO) && ARDUINO >= 100
|
||||
#include <Arduino.h>
|
||||
#else
|
||||
#include <WProgram.h>
|
||||
#endif
|
||||
|
||||
// define which timer to use
|
||||
//
|
||||
// Uncomment the timer you wish to use on your board. If you
|
||||
// are using another library which uses timer2, you have options
|
||||
// to switch IRremote to use a different timer.
|
||||
|
||||
// Arduino Mega
|
||||
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
//#define IR_USE_TIMER1 // tx = pin 11
|
||||
#define IR_USE_TIMER2 // tx = pin 9
|
||||
//#define IR_USE_TIMER3 // tx = pin 5
|
||||
//#define IR_USE_TIMER4 // tx = pin 6
|
||||
//#define IR_USE_TIMER5 // tx = pin 46
|
||||
|
||||
// Teensy 1.0
|
||||
#elif defined(__AVR_AT90USB162__)
|
||||
#define IR_USE_TIMER1 // tx = pin 17
|
||||
|
||||
// Teensy 2.0
|
||||
#elif defined(__AVR_ATmega32U4__)
|
||||
//#define IR_USE_TIMER1 // tx = pin 14
|
||||
//#define IR_USE_TIMER3 // tx = pin 9
|
||||
#define IR_USE_TIMER4_HS // tx = pin 10
|
||||
|
||||
// Teensy++ 1.0 & 2.0
|
||||
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
|
||||
//#define IR_USE_TIMER1 // tx = pin 25
|
||||
#define IR_USE_TIMER2 // tx = pin 1
|
||||
//#define IR_USE_TIMER3 // tx = pin 16
|
||||
|
||||
// Sanguino
|
||||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
|
||||
//#define IR_USE_TIMER1 // tx = pin 13
|
||||
#define IR_USE_TIMER2 // tx = pin 14
|
||||
|
||||
// Atmega8
|
||||
#elif defined(__AVR_ATmega8P__) || defined(__AVR_ATmega8__)
|
||||
#define IR_USE_TIMER1 // tx = pin 9
|
||||
|
||||
// Arduino Duemilanove, Diecimila, LilyPad, Mini, Fio, etc
|
||||
#else
|
||||
//#define IR_USE_TIMER1 // tx = pin 9
|
||||
#define IR_USE_TIMER2 // tx = pin 3
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef F_CPU
|
||||
#define SYSCLOCK F_CPU // main Arduino clock
|
||||
#else
|
||||
#define SYSCLOCK 16000000 // main Arduino clock
|
||||
#endif
|
||||
|
||||
#define ERR 0
|
||||
#define DECODED 1
|
||||
|
||||
|
||||
// defines for setting and clearing register bits
|
||||
#ifndef cbi
|
||||
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
||||
#endif
|
||||
#ifndef sbi
|
||||
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
||||
#endif
|
||||
|
||||
// Pulse parms are *50-100 for the Mark and *50+100 for the space
|
||||
// First MARK is the one after the long gap
|
||||
// pulse parameters in usec
|
||||
#define NEC_HDR_MARK 9000
|
||||
#define NEC_HDR_SPACE 4500
|
||||
#define NEC_BIT_MARK 560
|
||||
#define NEC_ONE_SPACE 1600
|
||||
#define NEC_ZERO_SPACE 560
|
||||
#define NEC_RPT_SPACE 2250
|
||||
|
||||
#define SONY_HDR_MARK 2400
|
||||
#define SONY_HDR_SPACE 600
|
||||
#define SONY_ONE_MARK 1200
|
||||
#define SONY_ZERO_MARK 600
|
||||
#define SONY_RPT_LENGTH 45000
|
||||
#define SONY_DOUBLE_SPACE_USECS 500 // usually ssee 713 - not using ticks as get number wrapround
|
||||
|
||||
// SA 8650B
|
||||
#define SANYO_HDR_MARK 3500 // seen range 3500
|
||||
#define SANYO_HDR_SPACE 950 // seen 950
|
||||
#define SANYO_ONE_MARK 2400 // seen 2400
|
||||
#define SANYO_ZERO_MARK 700 // seen 700
|
||||
#define SANYO_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
|
||||
#define SANYO_RPT_LENGTH 45000
|
||||
|
||||
// Mitsubishi RM 75501
|
||||
// 14200 7 41 7 42 7 42 7 17 7 17 7 18 7 41 7 18 7 17 7 17 7 18 7 41 8 17 7 17 7 18 7 17 7
|
||||
|
||||
// #define MITSUBISHI_HDR_MARK 250 // seen range 3500
|
||||
#define MITSUBISHI_HDR_SPACE 350 // 7*50+100
|
||||
#define MITSUBISHI_ONE_MARK 1950 // 41*50-100
|
||||
#define MITSUBISHI_ZERO_MARK 750 // 17*50-100
|
||||
// #define MITSUBISHI_DOUBLE_SPACE_USECS 800 // usually ssee 713 - not using ticks as get number wrapround
|
||||
// #define MITSUBISHI_RPT_LENGTH 45000
|
||||
|
||||
|
||||
#define RC5_T1 889
|
||||
#define RC5_RPT_LENGTH 46000
|
||||
|
||||
#define RC6_HDR_MARK 2666
|
||||
#define RC6_HDR_SPACE 889
|
||||
#define RC6_T1 444
|
||||
#define RC6_RPT_LENGTH 46000
|
||||
|
||||
#define SHARP_BIT_MARK 245
|
||||
#define SHARP_ONE_SPACE 1805
|
||||
#define SHARP_ZERO_SPACE 795
|
||||
#define SHARP_GAP 600000
|
||||
#define SHARP_TOGGLE_MASK 0x3FF
|
||||
#define SHARP_RPT_SPACE 3000
|
||||
|
||||
#define DISH_HDR_MARK 400
|
||||
#define DISH_HDR_SPACE 6100
|
||||
#define DISH_BIT_MARK 400
|
||||
#define DISH_ONE_SPACE 1700
|
||||
#define DISH_ZERO_SPACE 2800
|
||||
#define DISH_RPT_SPACE 6200
|
||||
#define DISH_TOP_BIT 0x8000
|
||||
|
||||
#define PANASONIC_HDR_MARK 3502
|
||||
#define PANASONIC_HDR_SPACE 1750
|
||||
#define PANASONIC_BIT_MARK 502
|
||||
#define PANASONIC_ONE_SPACE 1244
|
||||
#define PANASONIC_ZERO_SPACE 400
|
||||
|
||||
#define JVC_HDR_MARK 8000
|
||||
#define JVC_HDR_SPACE 4000
|
||||
#define JVC_BIT_MARK 600
|
||||
#define JVC_ONE_SPACE 1600
|
||||
#define JVC_ZERO_SPACE 550
|
||||
#define JVC_RPT_LENGTH 60000
|
||||
|
||||
#define SHARP_BITS 15
|
||||
#define DISH_BITS 16
|
||||
|
||||
#define TOLERANCE 25 // percent tolerance in measurements
|
||||
#define LTOL (1.0 - TOLERANCE/100.)
|
||||
#define UTOL (1.0 + TOLERANCE/100.)
|
||||
|
||||
#define _GAP 5000 // Minimum map between transmissions
|
||||
#define GAP_TICKS (_GAP/USECPERTICK)
|
||||
|
||||
#define TICKS_LOW(us) (int) (((us)*LTOL/USECPERTICK))
|
||||
#define TICKS_HIGH(us) (int) (((us)*UTOL/USECPERTICK + 1))
|
||||
|
||||
// receiver states
|
||||
#define STATE_IDLE 2
|
||||
#define STATE_MARK 3
|
||||
#define STATE_SPACE 4
|
||||
#define STATE_STOP 5
|
||||
|
||||
// information for the interrupt handler
|
||||
typedef struct {
|
||||
uint8_t recvpin; // pin for IR data from detector
|
||||
uint8_t rcvstate; // state machine
|
||||
uint8_t blinkflag; // TRUE to enable blinking of pin 13 on IR processing
|
||||
unsigned int timer; // state timer, counts 50uS ticks.
|
||||
unsigned int rawbuf[RAWBUF]; // raw data
|
||||
uint8_t rawlen; // counter of entries in rawbuf
|
||||
}
|
||||
irparams_t;
|
||||
|
||||
// Defined in IRremote.cpp
|
||||
extern volatile irparams_t irparams;
|
||||
|
||||
// IR detector output is active low
|
||||
#define MARK 0
|
||||
#define SPACE 1
|
||||
|
||||
#define TOPBIT 0x80000000
|
||||
|
||||
#define NEC_BITS 32
|
||||
#define SONY_BITS 12
|
||||
#define SANYO_BITS 12
|
||||
#define MITSUBISHI_BITS 16
|
||||
#define MIN_RC5_SAMPLES 11
|
||||
#define MIN_RC6_SAMPLES 1
|
||||
#define PANASONIC_BITS 48
|
||||
#define JVC_BITS 16
|
||||
|
||||
|
||||
|
||||
|
||||
// defines for timer2 (8 bits)
|
||||
#if defined(IR_USE_TIMER2)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR2A |= _BV(COM2B1))
|
||||
#define TIMER_DISABLE_PWM (TCCR2A &= ~(_BV(COM2B1)))
|
||||
#define TIMER_ENABLE_INTR (TIMSK2 = _BV(OCIE2A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK2 = 0)
|
||||
#define TIMER_INTR_NAME TIMER2_COMPA_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint8_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR2A = _BV(WGM20); \
|
||||
TCCR2B = _BV(WGM22) | _BV(CS20); \
|
||||
OCR2A = pwmval; \
|
||||
OCR2B = pwmval / 3; \
|
||||
})
|
||||
#define TIMER_COUNT_TOP (SYSCLOCK * USECPERTICK / 1000000)
|
||||
#if (TIMER_COUNT_TOP < 256)
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR2A = _BV(WGM21); \
|
||||
TCCR2B = _BV(CS20); \
|
||||
OCR2A = TIMER_COUNT_TOP; \
|
||||
TCNT2 = 0; \
|
||||
})
|
||||
#else
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR2A = _BV(WGM21); \
|
||||
TCCR2B = _BV(CS21); \
|
||||
OCR2A = TIMER_COUNT_TOP / 8; \
|
||||
TCNT2 = 0; \
|
||||
})
|
||||
#endif
|
||||
#if defined(CORE_OC2B_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC2B_PIN /* Teensy */
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define TIMER_PWM_PIN 9 /* Arduino Mega */
|
||||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
|
||||
#define TIMER_PWM_PIN 14 /* Sanguino */
|
||||
#else
|
||||
#define TIMER_PWM_PIN 3 /* Arduino Duemilanove, Diecimila, LilyPad, etc */
|
||||
#endif
|
||||
|
||||
|
||||
// defines for timer1 (16 bits)
|
||||
#elif defined(IR_USE_TIMER1)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR1A |= _BV(COM1A1))
|
||||
#define TIMER_DISABLE_PWM (TCCR1A &= ~(_BV(COM1A1)))
|
||||
#if defined(__AVR_ATmega8P__) || defined(__AVR_ATmega8__)
|
||||
#define TIMER_ENABLE_INTR (TIMSK = _BV(OCIE1A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK = 0)
|
||||
#else
|
||||
#define TIMER_ENABLE_INTR (TIMSK1 = _BV(OCIE1A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK1 = 0)
|
||||
#endif
|
||||
#define TIMER_INTR_NAME TIMER1_COMPA_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR1A = _BV(WGM11); \
|
||||
TCCR1B = _BV(WGM13) | _BV(CS10); \
|
||||
ICR1 = pwmval; \
|
||||
OCR1A = pwmval / 3; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR1A = 0; \
|
||||
TCCR1B = _BV(WGM12) | _BV(CS10); \
|
||||
OCR1A = SYSCLOCK * USECPERTICK / 1000000; \
|
||||
TCNT1 = 0; \
|
||||
})
|
||||
#if defined(CORE_OC1A_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC1A_PIN /* Teensy */
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define TIMER_PWM_PIN 11 /* Arduino Mega */
|
||||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
|
||||
#define TIMER_PWM_PIN 13 /* Sanguino */
|
||||
#else
|
||||
#define TIMER_PWM_PIN 9 /* Arduino Duemilanove, Diecimila, LilyPad, etc */
|
||||
#endif
|
||||
|
||||
|
||||
// defines for timer3 (16 bits)
|
||||
#elif defined(IR_USE_TIMER3)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR3A |= _BV(COM3A1))
|
||||
#define TIMER_DISABLE_PWM (TCCR3A &= ~(_BV(COM3A1)))
|
||||
#define TIMER_ENABLE_INTR (TIMSK3 = _BV(OCIE3A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK3 = 0)
|
||||
#define TIMER_INTR_NAME TIMER3_COMPA_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR3A = _BV(WGM31); \
|
||||
TCCR3B = _BV(WGM33) | _BV(CS30); \
|
||||
ICR3 = pwmval; \
|
||||
OCR3A = pwmval / 3; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR3A = 0; \
|
||||
TCCR3B = _BV(WGM32) | _BV(CS30); \
|
||||
OCR3A = SYSCLOCK * USECPERTICK / 1000000; \
|
||||
TCNT3 = 0; \
|
||||
})
|
||||
#if defined(CORE_OC3A_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC3A_PIN /* Teensy */
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define TIMER_PWM_PIN 5 /* Arduino Mega */
|
||||
#else
|
||||
#error "Please add OC3A pin number here\n"
|
||||
#endif
|
||||
|
||||
|
||||
// defines for timer4 (10 bits, high speed option)
|
||||
#elif defined(IR_USE_TIMER4_HS)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
|
||||
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
|
||||
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(TOIE4))
|
||||
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
|
||||
#define TIMER_INTR_NAME TIMER4_OVF_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR4A = (1<<PWM4A); \
|
||||
TCCR4B = _BV(CS40); \
|
||||
TCCR4C = 0; \
|
||||
TCCR4D = (1<<WGM40); \
|
||||
TCCR4E = 0; \
|
||||
TC4H = pwmval >> 8; \
|
||||
OCR4C = pwmval; \
|
||||
TC4H = (pwmval / 3) >> 8; \
|
||||
OCR4A = (pwmval / 3) & 255; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR4A = 0; \
|
||||
TCCR4B = _BV(CS40); \
|
||||
TCCR4C = 0; \
|
||||
TCCR4D = 0; \
|
||||
TCCR4E = 0; \
|
||||
TC4H = (SYSCLOCK * USECPERTICK / 1000000) >> 8; \
|
||||
OCR4C = (SYSCLOCK * USECPERTICK / 1000000) & 255; \
|
||||
TC4H = 0; \
|
||||
TCNT4 = 0; \
|
||||
})
|
||||
#if defined(CORE_OC4A_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC4A_PIN /* Teensy */
|
||||
#elif defined(__AVR_ATmega32U4__)
|
||||
#define TIMER_PWM_PIN 13 /* Leonardo */
|
||||
#else
|
||||
#error "Please add OC4A pin number here\n"
|
||||
#endif
|
||||
|
||||
|
||||
// defines for timer4 (16 bits)
|
||||
#elif defined(IR_USE_TIMER4)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR4A |= _BV(COM4A1))
|
||||
#define TIMER_DISABLE_PWM (TCCR4A &= ~(_BV(COM4A1)))
|
||||
#define TIMER_ENABLE_INTR (TIMSK4 = _BV(OCIE4A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK4 = 0)
|
||||
#define TIMER_INTR_NAME TIMER4_COMPA_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR4A = _BV(WGM41); \
|
||||
TCCR4B = _BV(WGM43) | _BV(CS40); \
|
||||
ICR4 = pwmval; \
|
||||
OCR4A = pwmval / 3; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR4A = 0; \
|
||||
TCCR4B = _BV(WGM42) | _BV(CS40); \
|
||||
OCR4A = SYSCLOCK * USECPERTICK / 1000000; \
|
||||
TCNT4 = 0; \
|
||||
})
|
||||
#if defined(CORE_OC4A_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC4A_PIN
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define TIMER_PWM_PIN 6 /* Arduino Mega */
|
||||
#else
|
||||
#error "Please add OC4A pin number here\n"
|
||||
#endif
|
||||
|
||||
|
||||
// defines for timer5 (16 bits)
|
||||
#elif defined(IR_USE_TIMER5)
|
||||
#define TIMER_RESET
|
||||
#define TIMER_ENABLE_PWM (TCCR5A |= _BV(COM5A1))
|
||||
#define TIMER_DISABLE_PWM (TCCR5A &= ~(_BV(COM5A1)))
|
||||
#define TIMER_ENABLE_INTR (TIMSK5 = _BV(OCIE5A))
|
||||
#define TIMER_DISABLE_INTR (TIMSK5 = 0)
|
||||
#define TIMER_INTR_NAME TIMER5_COMPA_vect
|
||||
#define TIMER_CONFIG_KHZ(val) ({ \
|
||||
const uint16_t pwmval = SYSCLOCK / 2000 / (val); \
|
||||
TCCR5A = _BV(WGM51); \
|
||||
TCCR5B = _BV(WGM53) | _BV(CS50); \
|
||||
ICR5 = pwmval; \
|
||||
OCR5A = pwmval / 3; \
|
||||
})
|
||||
#define TIMER_CONFIG_NORMAL() ({ \
|
||||
TCCR5A = 0; \
|
||||
TCCR5B = _BV(WGM52) | _BV(CS50); \
|
||||
OCR5A = SYSCLOCK * USECPERTICK / 1000000; \
|
||||
TCNT5 = 0; \
|
||||
})
|
||||
#if defined(CORE_OC5A_PIN)
|
||||
#define TIMER_PWM_PIN CORE_OC5A_PIN
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define TIMER_PWM_PIN 46 /* Arduino Mega */
|
||||
#else
|
||||
#error "Please add OC5A pin number here\n"
|
||||
#endif
|
||||
|
||||
|
||||
#else // unknown timer
|
||||
#error "Internal code configuration error, no known IR_USE_TIMER# defined\n"
|
||||
#endif
|
||||
|
||||
|
||||
// defines for blinking the LED
|
||||
#if defined(CORE_LED0_PIN)
|
||||
#define BLINKLED CORE_LED0_PIN
|
||||
#define BLINKLED_ON() (digitalWrite(CORE_LED0_PIN, HIGH))
|
||||
#define BLINKLED_OFF() (digitalWrite(CORE_LED0_PIN, LOW))
|
||||
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
|
||||
#define BLINKLED 13
|
||||
#define BLINKLED_ON() (PORTB |= B10000000)
|
||||
#define BLINKLED_OFF() (PORTB &= B01111111)
|
||||
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
|
||||
#define BLINKLED 0
|
||||
#define BLINKLED_ON() (PORTD |= B00000001)
|
||||
#define BLINKLED_OFF() (PORTD &= B11111110)
|
||||
#else
|
||||
#define BLINKLED 13
|
||||
#define BLINKLED_ON() (PORTB |= B00100000)
|
||||
#define BLINKLED_OFF() (PORTB &= B11011111)
|
||||
#endif
|
||||
|
||||
#endif
|
23
libraries/RobotIRremote/IRremoteTools.cpp
Normal file
23
libraries/RobotIRremote/IRremoteTools.cpp
Normal file
@ -0,0 +1,23 @@
|
||||
#include "IRremote.h"
|
||||
#include "IRremoteTools.h"
|
||||
#include <Arduino.h>
|
||||
|
||||
int RECV_PIN = TKD2; // the pin the IR receiver is connected to
|
||||
IRrecv irrecv(RECV_PIN); // an instance of the IR receiver object
|
||||
decode_results results; // container for received IR codes
|
||||
|
||||
void beginIRremote(){
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
}
|
||||
|
||||
bool IRrecived(){
|
||||
return irrecv.decode(&results);
|
||||
}
|
||||
|
||||
void resumeIRremote(){
|
||||
irrecv.resume(); // resume receiver
|
||||
}
|
||||
|
||||
unsigned long getIRresult(){
|
||||
return results.value;
|
||||
}
|
12
libraries/RobotIRremote/IRremoteTools.h
Normal file
12
libraries/RobotIRremote/IRremoteTools.h
Normal file
@ -0,0 +1,12 @@
|
||||
#ifndef IRREMOTETOOLS_H
|
||||
#define IRREMOTETOOLS_H
|
||||
|
||||
extern void beginIRremote();
|
||||
|
||||
extern bool IRrecived();
|
||||
|
||||
extern void resumeIRremote();
|
||||
|
||||
extern unsigned long getIRresult();
|
||||
|
||||
#endif
|
458
libraries/RobotIRremote/LICENSE.txt
Normal file
458
libraries/RobotIRremote/LICENSE.txt
Normal file
@ -0,0 +1,458 @@
|
||||
|
||||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
Version 2.1, February 1999
|
||||
|
||||
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
[This is the first released version of the Lesser GPL. It also counts
|
||||
as the successor of the GNU Library Public License, version 2, hence
|
||||
the version number 2.1.]
|
||||
|
||||
Preamble
|
||||
|
||||
The licenses for most software are designed to take away your
|
||||
freedom to share and change it. By contrast, the GNU General Public
|
||||
Licenses are intended to guarantee your freedom to share and change
|
||||
free software--to make sure the software is free for all its users.
|
||||
|
||||
This license, the Lesser General Public License, applies to some
|
||||
specially designated software packages--typically libraries--of the
|
||||
Free Software Foundation and other authors who decide to use it. You
|
||||
can use it too, but we suggest you first think carefully about whether
|
||||
this license or the ordinary General Public License is the better
|
||||
strategy to use in any particular case, based on the explanations below.
|
||||
|
||||
When we speak of free software, we are referring to freedom of use,
|
||||
not price. Our General Public Licenses are designed to make sure that
|
||||
you have the freedom to distribute copies of free software (and charge
|
||||
for this service if you wish); that you receive source code or can get
|
||||
it if you want it; that you can change the software and use pieces of
|
||||
it in new free programs; and that you are informed that you can do
|
||||
these things.
|
||||
|
||||
To protect your rights, we need to make restrictions that forbid
|
||||
distributors to deny you these rights or to ask you to surrender these
|
||||
rights. These restrictions translate to certain responsibilities for
|
||||
you if you distribute copies of the library or if you modify it.
|
||||
|
||||
For example, if you distribute copies of the library, whether gratis
|
||||
or for a fee, you must give the recipients all the rights that we gave
|
||||
you. You must make sure that they, too, receive or can get the source
|
||||
code. If you link other code with the library, you must provide
|
||||
complete object files to the recipients, so that they can relink them
|
||||
with the library after making changes to the library and recompiling
|
||||
it. And you must show them these terms so they know their rights.
|
||||
|
||||
We protect your rights with a two-step method: (1) we copyright the
|
||||
library, and (2) we offer you this license, which gives you legal
|
||||
permission to copy, distribute and/or modify the library.
|
||||
|
||||
To protect each distributor, we want to make it very clear that
|
||||
there is no warranty for the free library. Also, if the library is
|
||||
modified by someone else and passed on, the recipients should know
|
||||
that what they have is not the original version, so that the original
|
||||
author's reputation will not be affected by problems that might be
|
||||
introduced by others.
|
||||
|
||||
Finally, software patents pose a constant threat to the existence of
|
||||
any free program. We wish to make sure that a company cannot
|
||||
effectively restrict the users of a free program by obtaining a
|
||||
restrictive license from a patent holder. Therefore, we insist that
|
||||
any patent license obtained for a version of the library must be
|
||||
consistent with the full freedom of use specified in this license.
|
||||
|
||||
Most GNU software, including some libraries, is covered by the
|
||||
ordinary GNU General Public License. This license, the GNU Lesser
|
||||
General Public License, applies to certain designated libraries, and
|
||||
is quite different from the ordinary General Public License. We use
|
||||
this license for certain libraries in order to permit linking those
|
||||
libraries into non-free programs.
|
||||
|
||||
When a program is linked with a library, whether statically or using
|
||||
a shared library, the combination of the two is legally speaking a
|
||||
combined work, a derivative of the original library. The ordinary
|
||||
General Public License therefore permits such linking only if the
|
||||
entire combination fits its criteria of freedom. The Lesser General
|
||||
Public License permits more lax criteria for linking other code with
|
||||
the library.
|
||||
|
||||
We call this license the "Lesser" General Public License because it
|
||||
does Less to protect the user's freedom than the ordinary General
|
||||
Public License. It also provides other free software developers Less
|
||||
of an advantage over competing non-free programs. These disadvantages
|
||||
are the reason we use the ordinary General Public License for many
|
||||
libraries. However, the Lesser license provides advantages in certain
|
||||
special circumstances.
|
||||
|
||||
For example, on rare occasions, there may be a special need to
|
||||
encourage the widest possible use of a certain library, so that it becomes
|
||||
a de-facto standard. To achieve this, non-free programs must be
|
||||
allowed to use the library. A more frequent case is that a free
|
||||
library does the same job as widely used non-free libraries. In this
|
||||
case, there is little to gain by limiting the free library to free
|
||||
software only, so we use the Lesser General Public License.
|
||||
|
||||
In other cases, permission to use a particular library in non-free
|
||||
programs enables a greater number of people to use a large body of
|
||||
free software. For example, permission to use the GNU C Library in
|
||||
non-free programs enables many more people to use the whole GNU
|
||||
operating system, as well as its variant, the GNU/Linux operating
|
||||
system.
|
||||
|
||||
Although the Lesser General Public License is Less protective of the
|
||||
users' freedom, it does ensure that the user of a program that is
|
||||
linked with the Library has the freedom and the wherewithal to run
|
||||
that program using a modified version of the Library.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow. Pay close attention to the difference between a
|
||||
"work based on the library" and a "work that uses the library". The
|
||||
former contains code derived from the library, whereas the latter must
|
||||
be combined with the library in order to run.
|
||||
|
||||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
|
||||
0. This License Agreement applies to any software library or other
|
||||
program which contains a notice placed by the copyright holder or
|
||||
other authorized party saying it may be distributed under the terms of
|
||||
this Lesser General Public License (also called "this License").
|
||||
Each licensee is addressed as "you".
|
||||
|
||||
A "library" means a collection of software functions and/or data
|
||||
prepared so as to be conveniently linked with application programs
|
||||
(which use some of those functions and data) to form executables.
|
||||
|
||||
The "Library", below, refers to any such software library or work
|
||||
which has been distributed under these terms. A "work based on the
|
||||
Library" means either the Library or any derivative work under
|
||||
copyright law: that is to say, a work containing the Library or a
|
||||
portion of it, either verbatim or with modifications and/or translated
|
||||
straightforwardly into another language. (Hereinafter, translation is
|
||||
included without limitation in the term "modification".)
|
||||
|
||||
"Source code" for a work means the preferred form of the work for
|
||||
making modifications to it. For a library, complete source code means
|
||||
all the source code for all modules it contains, plus any associated
|
||||
interface definition files, plus the scripts used to control compilation
|
||||
and installation of the library.
|
||||
|
||||
Activities other than copying, distribution and modification are not
|
||||
covered by this License; they are outside its scope. The act of
|
||||
running a program using the Library is not restricted, and output from
|
||||
such a program is covered only if its contents constitute a work based
|
||||
on the Library (independent of the use of the Library in a tool for
|
||||
writing it). Whether that is true depends on what the Library does
|
||||
and what the program that uses the Library does.
|
||||
|
||||
1. You may copy and distribute verbatim copies of the Library's
|
||||
complete source code as you receive it, in any medium, provided that
|
||||
you conspicuously and appropriately publish on each copy an
|
||||
appropriate copyright notice and disclaimer of warranty; keep intact
|
||||
all the notices that refer to this License and to the absence of any
|
||||
warranty; and distribute a copy of this License along with the
|
||||
Library.
|
||||
|
||||
You may charge a fee for the physical act of transferring a copy,
|
||||
and you may at your option offer warranty protection in exchange for a
|
||||
fee.
|
||||
|
||||
2. You may modify your copy or copies of the Library or any portion
|
||||
of it, thus forming a work based on the Library, and copy and
|
||||
distribute such modifications or work under the terms of Section 1
|
||||
above, provided that you also meet all of these conditions:
|
||||
|
||||
a) The modified work must itself be a software library.
|
||||
|
||||
b) You must cause the files modified to carry prominent notices
|
||||
stating that you changed the files and the date of any change.
|
||||
|
||||
c) You must cause the whole of the work to be licensed at no
|
||||
charge to all third parties under the terms of this License.
|
||||
|
||||
d) If a facility in the modified Library refers to a function or a
|
||||
table of data to be supplied by an application program that uses
|
||||
the facility, other than as an argument passed when the facility
|
||||
is invoked, then you must make a good faith effort to ensure that,
|
||||
in the event an application does not supply such function or
|
||||
table, the facility still operates, and performs whatever part of
|
||||
its purpose remains meaningful.
|
||||
|
||||
(For example, a function in a library to compute square roots has
|
||||
a purpose that is entirely well-defined independent of the
|
||||
application. Therefore, Subsection 2d requires that any
|
||||
application-supplied function or table used by this function must
|
||||
be optional: if the application does not supply it, the square
|
||||
root function must still compute square roots.)
|
||||
|
||||
These requirements apply to the modified work as a whole. If
|
||||
identifiable sections of that work are not derived from the Library,
|
||||
and can be reasonably considered independent and separate works in
|
||||
themselves, then this License, and its terms, do not apply to those
|
||||
sections when you distribute them as separate works. But when you
|
||||
distribute the same sections as part of a whole which is a work based
|
||||
on the Library, the distribution of the whole must be on the terms of
|
||||
this License, whose permissions for other licensees extend to the
|
||||
entire whole, and thus to each and every part regardless of who wrote
|
||||
it.
|
||||
|
||||
Thus, it is not the intent of this section to claim rights or contest
|
||||
your rights to work written entirely by you; rather, the intent is to
|
||||
exercise the right to control the distribution of derivative or
|
||||
collective works based on the Library.
|
||||
|
||||
In addition, mere aggregation of another work not based on the Library
|
||||
with the Library (or with a work based on the Library) on a volume of
|
||||
a storage or distribution medium does not bring the other work under
|
||||
the scope of this License.
|
||||
|
||||
3. You may opt to apply the terms of the ordinary GNU General Public
|
||||
License instead of this License to a given copy of the Library. To do
|
||||
this, you must alter all the notices that refer to this License, so
|
||||
that they refer to the ordinary GNU General Public License, version 2,
|
||||
instead of to this License. (If a newer version than version 2 of the
|
||||
ordinary GNU General Public License has appeared, then you can specify
|
||||
that version instead if you wish.) Do not make any other change in
|
||||
these notices.
|
||||
|
||||
Once this change is made in a given copy, it is irreversible for
|
||||
that copy, so the ordinary GNU General Public License applies to all
|
||||
subsequent copies and derivative works made from that copy.
|
||||
|
||||
This option is useful when you wish to copy part of the code of
|
||||
the Library into a program that is not a library.
|
||||
|
||||
4. You may copy and distribute the Library (or a portion or
|
||||
derivative of it, under Section 2) in object code or executable form
|
||||
under the terms of Sections 1 and 2 above provided that you accompany
|
||||
it with the complete corresponding machine-readable source code, which
|
||||
must be distributed under the terms of Sections 1 and 2 above on a
|
||||
medium customarily used for software interchange.
|
||||
|
||||
If distribution of object code is made by offering access to copy
|
||||
from a designated place, then offering equivalent access to copy the
|
||||
source code from the same place satisfies the requirement to
|
||||
distribute the source code, even though third parties are not
|
||||
compelled to copy the source along with the object code.
|
||||
|
||||
5. A program that contains no derivative of any portion of the
|
||||
Library, but is designed to work with the Library by being compiled or
|
||||
linked with it, is called a "work that uses the Library". Such a
|
||||
work, in isolation, is not a derivative work of the Library, and
|
||||
therefore falls outside the scope of this License.
|
||||
|
||||
However, linking a "work that uses the Library" with the Library
|
||||
creates an executable that is a derivative of the Library (because it
|
||||
contains portions of the Library), rather than a "work that uses the
|
||||
library". The executable is therefore covered by this License.
|
||||
Section 6 states terms for distribution of such executables.
|
||||
|
||||
When a "work that uses the Library" uses material from a header file
|
||||
that is part of the Library, the object code for the work may be a
|
||||
derivative work of the Library even though the source code is not.
|
||||
Whether this is true is especially significant if the work can be
|
||||
linked without the Library, or if the work is itself a library. The
|
||||
threshold for this to be true is not precisely defined by law.
|
||||
|
||||
If such an object file uses only numerical parameters, data
|
||||
structure layouts and accessors, and small macros and small inline
|
||||
functions (ten lines or less in length), then the use of the object
|
||||
file is unrestricted, regardless of whether it is legally a derivative
|
||||
work. (Executables containing this object code plus portions of the
|
||||
Library will still fall under Section 6.)
|
||||
|
||||
Otherwise, if the work is a derivative of the Library, you may
|
||||
distribute the object code for the work under the terms of Section 6.
|
||||
Any executables containing that work also fall under Section 6,
|
||||
whether or not they are linked directly with the Library itself.
|
||||
|
||||
6. As an exception to the Sections above, you may also combine or
|
||||
link a "work that uses the Library" with the Library to produce a
|
||||
work containing portions of the Library, and distribute that work
|
||||
under terms of your choice, provided that the terms permit
|
||||
modification of the work for the customer's own use and reverse
|
||||
engineering for debugging such modifications.
|
||||
|
||||
You must give prominent notice with each copy of the work that the
|
||||
Library is used in it and that the Library and its use are covered by
|
||||
this License. You must supply a copy of this License. If the work
|
||||
during execution displays copyright notices, you must include the
|
||||
copyright notice for the Library among them, as well as a reference
|
||||
directing the user to the copy of this License. Also, you must do one
|
||||
of these things:
|
||||
|
||||
a) Accompany the work with the complete corresponding
|
||||
machine-readable source code for the Library including whatever
|
||||
changes were used in the work (which must be distributed under
|
||||
Sections 1 and 2 above); and, if the work is an executable linked
|
||||
with the Library, with the complete machine-readable "work that
|
||||
uses the Library", as object code and/or source code, so that the
|
||||
user can modify the Library and then relink to produce a modified
|
||||
executable containing the modified Library. (It is understood
|
||||
that the user who changes the contents of definitions files in the
|
||||
Library will not necessarily be able to recompile the application
|
||||
to use the modified definitions.)
|
||||
|
||||
b) Use a suitable shared library mechanism for linking with the
|
||||
Library. A suitable mechanism is one that (1) uses at run time a
|
||||
copy of the library already present on the user's computer system,
|
||||
rather than copying library functions into the executable, and (2)
|
||||
will operate properly with a modified version of the library, if
|
||||
the user installs one, as long as the modified version is
|
||||
interface-compatible with the version that the work was made with.
|
||||
|
||||
c) Accompany the work with a written offer, valid for at
|
||||
least three years, to give the same user the materials
|
||||
specified in Subsection 6a, above, for a charge no more
|
||||
than the cost of performing this distribution.
|
||||
|
||||
d) If distribution of the work is made by offering access to copy
|
||||
from a designated place, offer equivalent access to copy the above
|
||||
specified materials from the same place.
|
||||
|
||||
e) Verify that the user has already received a copy of these
|
||||
materials or that you have already sent this user a copy.
|
||||
|
||||
For an executable, the required form of the "work that uses the
|
||||
Library" must include any data and utility programs needed for
|
||||
reproducing the executable from it. However, as a special exception,
|
||||
the materials to be distributed need not include anything that is
|
||||
normally distributed (in either source or binary form) with the major
|
||||
components (compiler, kernel, and so on) of the operating system on
|
||||
which the executable runs, unless that component itself accompanies
|
||||
the executable.
|
||||
|
||||
It may happen that this requirement contradicts the license
|
||||
restrictions of other proprietary libraries that do not normally
|
||||
accompany the operating system. Such a contradiction means you cannot
|
||||
use both them and the Library together in an executable that you
|
||||
distribute.
|
||||
|
||||
7. You may place library facilities that are a work based on the
|
||||
Library side-by-side in a single library together with other library
|
||||
facilities not covered by this License, and distribute such a combined
|
||||
library, provided that the separate distribution of the work based on
|
||||
the Library and of the other library facilities is otherwise
|
||||
permitted, and provided that you do these two things:
|
||||
|
||||
a) Accompany the combined library with a copy of the same work
|
||||
based on the Library, uncombined with any other library
|
||||
facilities. This must be distributed under the terms of the
|
||||
Sections above.
|
||||
|
||||
b) Give prominent notice with the combined library of the fact
|
||||
that part of it is a work based on the Library, and explaining
|
||||
where to find the accompanying uncombined form of the same work.
|
||||
|
||||
8. You may not copy, modify, sublicense, link with, or distribute
|
||||
the Library except as expressly provided under this License. Any
|
||||
attempt otherwise to copy, modify, sublicense, link with, or
|
||||
distribute the Library is void, and will automatically terminate your
|
||||
rights under this License. However, parties who have received copies,
|
||||
or rights, from you under this License will not have their licenses
|
||||
terminated so long as such parties remain in full compliance.
|
||||
|
||||
9. You are not required to accept this License, since you have not
|
||||
signed it. However, nothing else grants you permission to modify or
|
||||
distribute the Library or its derivative works. These actions are
|
||||
prohibited by law if you do not accept this License. Therefore, by
|
||||
modifying or distributing the Library (or any work based on the
|
||||
Library), you indicate your acceptance of this License to do so, and
|
||||
all its terms and conditions for copying, distributing or modifying
|
||||
the Library or works based on it.
|
||||
|
||||
10. Each time you redistribute the Library (or any work based on the
|
||||
Library), the recipient automatically receives a license from the
|
||||
original licensor to copy, distribute, link with or modify the Library
|
||||
subject to these terms and conditions. You may not impose any further
|
||||
restrictions on the recipients' exercise of the rights granted herein.
|
||||
You are not responsible for enforcing compliance by third parties with
|
||||
this License.
|
||||
|
||||
11. If, as a consequence of a court judgment or allegation of patent
|
||||
infringement or for any other reason (not limited to patent issues),
|
||||
conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot
|
||||
distribute so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you
|
||||
may not distribute the Library at all. For example, if a patent
|
||||
license would not permit royalty-free redistribution of the Library by
|
||||
all those who receive copies directly or indirectly through you, then
|
||||
the only way you could satisfy both it and this License would be to
|
||||
refrain entirely from distribution of the Library.
|
||||
|
||||
If any portion of this section is held invalid or unenforceable under any
|
||||
particular circumstance, the balance of the section is intended to apply,
|
||||
and the section as a whole is intended to apply in other circumstances.
|
||||
|
||||
It is not the purpose of this section to induce you to infringe any
|
||||
patents or other property right claims or to contest validity of any
|
||||
such claims; this section has the sole purpose of protecting the
|
||||
integrity of the free software distribution system which is
|
||||
implemented by public license practices. Many people have made
|
||||
generous contributions to the wide range of software distributed
|
||||
through that system in reliance on consistent application of that
|
||||
system; it is up to the author/donor to decide if he or she is willing
|
||||
to distribute software through any other system and a licensee cannot
|
||||
impose that choice.
|
||||
|
||||
This section is intended to make thoroughly clear what is believed to
|
||||
be a consequence of the rest of this License.
|
||||
|
||||
12. If the distribution and/or use of the Library is restricted in
|
||||
certain countries either by patents or by copyrighted interfaces, the
|
||||
original copyright holder who places the Library under this License may add
|
||||
an explicit geographical distribution limitation excluding those countries,
|
||||
so that distribution is permitted only in or among countries not thus
|
||||
excluded. In such case, this License incorporates the limitation as if
|
||||
written in the body of this License.
|
||||
|
||||
13. The Free Software Foundation may publish revised and/or new
|
||||
versions of the Lesser General Public License from time to time.
|
||||
Such new versions will be similar in spirit to the present version,
|
||||
but may differ in detail to address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Library
|
||||
specifies a version number of this License which applies to it and
|
||||
"any later version", you have the option of following the terms and
|
||||
conditions either of that version or of any later version published by
|
||||
the Free Software Foundation. If the Library does not specify a
|
||||
license version number, you may choose any version ever published by
|
||||
the Free Software Foundation.
|
||||
|
||||
14. If you wish to incorporate parts of the Library into other free
|
||||
programs whose distribution conditions are incompatible with these,
|
||||
write to the author to ask for permission. For software which is
|
||||
copyrighted by the Free Software Foundation, write to the Free
|
||||
Software Foundation; we sometimes make exceptions for this. Our
|
||||
decision will be guided by the two goals of preserving the free status
|
||||
of all derivatives of our free software and of promoting the sharing
|
||||
and reuse of software generally.
|
||||
|
||||
NO WARRANTY
|
||||
|
||||
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
|
||||
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
|
||||
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
|
||||
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
|
||||
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
|
||||
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
|
||||
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
|
||||
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
|
||||
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
|
||||
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
|
||||
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
|
||||
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
|
||||
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
|
||||
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
|
||||
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
||||
DAMAGES.
|
||||
|
167
libraries/RobotIRremote/examples/IRrecord/IRrecord.ino
Normal file
167
libraries/RobotIRremote/examples/IRrecord/IRrecord.ino
Normal file
@ -0,0 +1,167 @@
|
||||
/*
|
||||
* IRrecord: record and play back IR signals as a minimal
|
||||
* An IR detector/demodulator must be connected to the input RECV_PIN.
|
||||
* An IR LED must be connected to the output PWM pin 3.
|
||||
* A button must be connected to the input BUTTON_PIN; this is the
|
||||
* send button.
|
||||
* A visible LED can be connected to STATUS_PIN to provide status.
|
||||
*
|
||||
* The logic is:
|
||||
* If the button is pressed, send the IR code.
|
||||
* If an IR code is received, record it.
|
||||
*
|
||||
* Version 0.11 September, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int RECV_PIN = 11;
|
||||
int BUTTON_PIN = 12;
|
||||
int STATUS_PIN = 13;
|
||||
|
||||
IRrecv irrecv(RECV_PIN);
|
||||
IRsend irsend;
|
||||
|
||||
decode_results results;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
pinMode(BUTTON_PIN, INPUT);
|
||||
pinMode(STATUS_PIN, OUTPUT);
|
||||
}
|
||||
|
||||
// Storage for the recorded code
|
||||
int codeType = -1; // The type of code
|
||||
unsigned long codeValue; // The code value if not raw
|
||||
unsigned int rawCodes[RAWBUF]; // The durations if raw
|
||||
int codeLen; // The length of the code
|
||||
int toggle = 0; // The RC5/6 toggle state
|
||||
|
||||
// Stores the code for later playback
|
||||
// Most of this code is just logging
|
||||
void storeCode(decode_results *results) {
|
||||
codeType = results->decode_type;
|
||||
int count = results->rawlen;
|
||||
if (codeType == UNKNOWN) {
|
||||
Serial.println("Received unknown code, saving as raw");
|
||||
codeLen = results->rawlen - 1;
|
||||
// To store raw codes:
|
||||
// Drop first value (gap)
|
||||
// Convert from ticks to microseconds
|
||||
// Tweak marks shorter, and spaces longer to cancel out IR receiver distortion
|
||||
for (int i = 1; i <= codeLen; i++) {
|
||||
if (i % 2) {
|
||||
// Mark
|
||||
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK - MARK_EXCESS;
|
||||
Serial.print(" m");
|
||||
}
|
||||
else {
|
||||
// Space
|
||||
rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK + MARK_EXCESS;
|
||||
Serial.print(" s");
|
||||
}
|
||||
Serial.print(rawCodes[i - 1], DEC);
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
else {
|
||||
if (codeType == NEC) {
|
||||
Serial.print("Received NEC: ");
|
||||
if (results->value == REPEAT) {
|
||||
// Don't record a NEC repeat value as that's useless.
|
||||
Serial.println("repeat; ignoring.");
|
||||
return;
|
||||
}
|
||||
}
|
||||
else if (codeType == SONY) {
|
||||
Serial.print("Received SONY: ");
|
||||
}
|
||||
else if (codeType == RC5) {
|
||||
Serial.print("Received RC5: ");
|
||||
}
|
||||
else if (codeType == RC6) {
|
||||
Serial.print("Received RC6: ");
|
||||
}
|
||||
else {
|
||||
Serial.print("Unexpected codeType ");
|
||||
Serial.print(codeType, DEC);
|
||||
Serial.println("");
|
||||
}
|
||||
Serial.println(results->value, HEX);
|
||||
codeValue = results->value;
|
||||
codeLen = results->bits;
|
||||
}
|
||||
}
|
||||
|
||||
void sendCode(int repeat) {
|
||||
if (codeType == NEC) {
|
||||
if (repeat) {
|
||||
irsend.sendNEC(REPEAT, codeLen);
|
||||
Serial.println("Sent NEC repeat");
|
||||
}
|
||||
else {
|
||||
irsend.sendNEC(codeValue, codeLen);
|
||||
Serial.print("Sent NEC ");
|
||||
Serial.println(codeValue, HEX);
|
||||
}
|
||||
}
|
||||
else if (codeType == SONY) {
|
||||
irsend.sendSony(codeValue, codeLen);
|
||||
Serial.print("Sent Sony ");
|
||||
Serial.println(codeValue, HEX);
|
||||
}
|
||||
else if (codeType == RC5 || codeType == RC6) {
|
||||
if (!repeat) {
|
||||
// Flip the toggle bit for a new button press
|
||||
toggle = 1 - toggle;
|
||||
}
|
||||
// Put the toggle bit into the code to send
|
||||
codeValue = codeValue & ~(1 << (codeLen - 1));
|
||||
codeValue = codeValue | (toggle << (codeLen - 1));
|
||||
if (codeType == RC5) {
|
||||
Serial.print("Sent RC5 ");
|
||||
Serial.println(codeValue, HEX);
|
||||
irsend.sendRC5(codeValue, codeLen);
|
||||
}
|
||||
else {
|
||||
irsend.sendRC6(codeValue, codeLen);
|
||||
Serial.print("Sent RC6 ");
|
||||
Serial.println(codeValue, HEX);
|
||||
}
|
||||
}
|
||||
else if (codeType == UNKNOWN /* i.e. raw */) {
|
||||
// Assume 38 KHz
|
||||
irsend.sendRaw(rawCodes, codeLen, 38);
|
||||
Serial.println("Sent raw");
|
||||
}
|
||||
}
|
||||
|
||||
int lastButtonState;
|
||||
|
||||
void loop() {
|
||||
// If button pressed, send the code.
|
||||
int buttonState = digitalRead(BUTTON_PIN);
|
||||
if (lastButtonState == HIGH && buttonState == LOW) {
|
||||
Serial.println("Released");
|
||||
irrecv.enableIRIn(); // Re-enable receiver
|
||||
}
|
||||
|
||||
if (buttonState) {
|
||||
Serial.println("Pressed, sending");
|
||||
digitalWrite(STATUS_PIN, HIGH);
|
||||
sendCode(lastButtonState == buttonState);
|
||||
digitalWrite(STATUS_PIN, LOW);
|
||||
delay(50); // Wait a bit between retransmissions
|
||||
}
|
||||
else if (irrecv.decode(&results)) {
|
||||
digitalWrite(STATUS_PIN, HIGH);
|
||||
storeCode(&results);
|
||||
irrecv.resume(); // resume receiver
|
||||
digitalWrite(STATUS_PIN, LOW);
|
||||
}
|
||||
lastButtonState = buttonState;
|
||||
}
|
28
libraries/RobotIRremote/examples/IRrecvDemo/IRrecvDemo.ino
Normal file
28
libraries/RobotIRremote/examples/IRrecvDemo/IRrecvDemo.ino
Normal file
@ -0,0 +1,28 @@
|
||||
/*
|
||||
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
|
||||
* An IR detector/demodulator must be connected to the input RECV_PIN.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int RECV_PIN = 11;
|
||||
|
||||
IRrecv irrecv(RECV_PIN);
|
||||
|
||||
decode_results results;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
}
|
||||
|
||||
void loop() {
|
||||
if (irrecv.decode(&results)) {
|
||||
Serial.println(results.value, HEX);
|
||||
irrecv.resume(); // Receive the next value
|
||||
}
|
||||
}
|
81
libraries/RobotIRremote/examples/IRrecvDump/IRrecvDump.ino
Normal file
81
libraries/RobotIRremote/examples/IRrecvDump/IRrecvDump.ino
Normal file
@ -0,0 +1,81 @@
|
||||
/*
|
||||
* IRremote: IRrecvDump - dump details of IR codes with IRrecv
|
||||
* An IR detector/demodulator must be connected to the input RECV_PIN.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int RECV_PIN = 11;
|
||||
|
||||
IRrecv irrecv(RECV_PIN);
|
||||
|
||||
decode_results results;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
}
|
||||
|
||||
// Dumps out the decode_results structure.
|
||||
// Call this after IRrecv::decode()
|
||||
// void * to work around compiler issue
|
||||
//void dump(void *v) {
|
||||
// decode_results *results = (decode_results *)v
|
||||
void dump(decode_results *results) {
|
||||
int count = results->rawlen;
|
||||
if (results->decode_type == UNKNOWN) {
|
||||
Serial.print("Unknown encoding: ");
|
||||
}
|
||||
else if (results->decode_type == NEC) {
|
||||
Serial.print("Decoded NEC: ");
|
||||
}
|
||||
else if (results->decode_type == SONY) {
|
||||
Serial.print("Decoded SONY: ");
|
||||
}
|
||||
else if (results->decode_type == RC5) {
|
||||
Serial.print("Decoded RC5: ");
|
||||
}
|
||||
else if (results->decode_type == RC6) {
|
||||
Serial.print("Decoded RC6: ");
|
||||
}
|
||||
else if (results->decode_type == PANASONIC) {
|
||||
Serial.print("Decoded PANASONIC - Address: ");
|
||||
Serial.print(results->panasonicAddress,HEX);
|
||||
Serial.print(" Value: ");
|
||||
}
|
||||
else if (results->decode_type == JVC) {
|
||||
Serial.print("Decoded JVC: ");
|
||||
}
|
||||
Serial.print(results->value, HEX);
|
||||
Serial.print(" (");
|
||||
Serial.print(results->bits, DEC);
|
||||
Serial.println(" bits)");
|
||||
Serial.print("Raw (");
|
||||
Serial.print(count, DEC);
|
||||
Serial.print("): ");
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
if ((i % 2) == 1) {
|
||||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
else {
|
||||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
Serial.print(" ");
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
|
||||
void loop() {
|
||||
if (irrecv.decode(&results)) {
|
||||
Serial.println(results.value, HEX);
|
||||
dump(&results);
|
||||
irrecv.resume(); // Receive the next value
|
||||
}
|
||||
}
|
85
libraries/RobotIRremote/examples/IRrelay/IRrelay.ino
Normal file
85
libraries/RobotIRremote/examples/IRrelay/IRrelay.ino
Normal file
@ -0,0 +1,85 @@
|
||||
/*
|
||||
* IRremote: IRrecvDemo - demonstrates receiving IR codes with IRrecv
|
||||
* An IR detector/demodulator must be connected to the input RECV_PIN.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int RECV_PIN = 11;
|
||||
int RELAY_PIN = 4;
|
||||
|
||||
IRrecv irrecv(RECV_PIN);
|
||||
decode_results results;
|
||||
|
||||
// Dumps out the decode_results structure.
|
||||
// Call this after IRrecv::decode()
|
||||
// void * to work around compiler issue
|
||||
//void dump(void *v) {
|
||||
// decode_results *results = (decode_results *)v
|
||||
void dump(decode_results *results) {
|
||||
int count = results->rawlen;
|
||||
if (results->decode_type == UNKNOWN) {
|
||||
Serial.println("Could not decode message");
|
||||
}
|
||||
else {
|
||||
if (results->decode_type == NEC) {
|
||||
Serial.print("Decoded NEC: ");
|
||||
}
|
||||
else if (results->decode_type == SONY) {
|
||||
Serial.print("Decoded SONY: ");
|
||||
}
|
||||
else if (results->decode_type == RC5) {
|
||||
Serial.print("Decoded RC5: ");
|
||||
}
|
||||
else if (results->decode_type == RC6) {
|
||||
Serial.print("Decoded RC6: ");
|
||||
}
|
||||
Serial.print(results->value, HEX);
|
||||
Serial.print(" (");
|
||||
Serial.print(results->bits, DEC);
|
||||
Serial.println(" bits)");
|
||||
}
|
||||
Serial.print("Raw (");
|
||||
Serial.print(count, DEC);
|
||||
Serial.print("): ");
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
if ((i % 2) == 1) {
|
||||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
else {
|
||||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
Serial.print(" ");
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
void setup()
|
||||
{
|
||||
pinMode(RELAY_PIN, OUTPUT);
|
||||
pinMode(13, OUTPUT);
|
||||
Serial.begin(9600);
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
}
|
||||
|
||||
int on = 0;
|
||||
unsigned long last = millis();
|
||||
|
||||
void loop() {
|
||||
if (irrecv.decode(&results)) {
|
||||
// If it's been at least 1/4 second since the last
|
||||
// IR received, toggle the relay
|
||||
if (millis() - last > 250) {
|
||||
on = !on;
|
||||
digitalWrite(RELAY_PIN, on ? HIGH : LOW);
|
||||
digitalWrite(13, on ? HIGH : LOW);
|
||||
dump(&results);
|
||||
}
|
||||
last = millis();
|
||||
irrecv.resume(); // Receive the next value
|
||||
}
|
||||
}
|
25
libraries/RobotIRremote/examples/IRsendDemo/IRsendDemo.ino
Normal file
25
libraries/RobotIRremote/examples/IRsendDemo/IRsendDemo.ino
Normal file
@ -0,0 +1,25 @@
|
||||
/*
|
||||
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
|
||||
* An IR LED must be connected to Arduino PWM pin 3.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
IRsend irsend;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
}
|
||||
|
||||
void loop() {
|
||||
if (Serial.read() != -1) {
|
||||
for (int i = 0; i < 3; i++) {
|
||||
irsend.sendSony(0xa90, 12); // Sony TV power code
|
||||
delay(40);
|
||||
}
|
||||
}
|
||||
}
|
190
libraries/RobotIRremote/examples/IRtest/IRtest.ino
Normal file
190
libraries/RobotIRremote/examples/IRtest/IRtest.ino
Normal file
@ -0,0 +1,190 @@
|
||||
/*
|
||||
* IRremote: IRtest unittest
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*
|
||||
* Note: to run these tests, edit IRremote/IRremote.h to add "#define TEST"
|
||||
* You must then recompile the library by removing IRremote.o and restarting
|
||||
* the arduino IDE.
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
#include <IRremoteInt.h>
|
||||
|
||||
// Dumps out the decode_results structure.
|
||||
// Call this after IRrecv::decode()
|
||||
// void * to work around compiler issue
|
||||
//void dump(void *v) {
|
||||
// decode_results *results = (decode_results *)v
|
||||
void dump(decode_results *results) {
|
||||
int count = results->rawlen;
|
||||
if (results->decode_type == UNKNOWN) {
|
||||
Serial.println("Could not decode message");
|
||||
}
|
||||
else {
|
||||
if (results->decode_type == NEC) {
|
||||
Serial.print("Decoded NEC: ");
|
||||
}
|
||||
else if (results->decode_type == SONY) {
|
||||
Serial.print("Decoded SONY: ");
|
||||
}
|
||||
else if (results->decode_type == RC5) {
|
||||
Serial.print("Decoded RC5: ");
|
||||
}
|
||||
else if (results->decode_type == RC6) {
|
||||
Serial.print("Decoded RC6: ");
|
||||
}
|
||||
Serial.print(results->value, HEX);
|
||||
Serial.print(" (");
|
||||
Serial.print(results->bits, DEC);
|
||||
Serial.println(" bits)");
|
||||
}
|
||||
Serial.print("Raw (");
|
||||
Serial.print(count, DEC);
|
||||
Serial.print("): ");
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
if ((i % 2) == 1) {
|
||||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
else {
|
||||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
Serial.print(" ");
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
IRrecv irrecv(0);
|
||||
decode_results results;
|
||||
|
||||
class IRsendDummy :
|
||||
public IRsend
|
||||
{
|
||||
public:
|
||||
// For testing, just log the marks/spaces
|
||||
#define SENDLOG_LEN 128
|
||||
int sendlog[SENDLOG_LEN];
|
||||
int sendlogcnt;
|
||||
IRsendDummy() :
|
||||
IRsend() {
|
||||
}
|
||||
void reset() {
|
||||
sendlogcnt = 0;
|
||||
}
|
||||
void mark(int time) {
|
||||
sendlog[sendlogcnt] = time;
|
||||
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
|
||||
}
|
||||
void space(int time) {
|
||||
sendlog[sendlogcnt] = -time;
|
||||
if (sendlogcnt < SENDLOG_LEN) sendlogcnt++;
|
||||
}
|
||||
// Copies the dummy buf into the interrupt buf
|
||||
void useDummyBuf() {
|
||||
int last = SPACE;
|
||||
irparams.rcvstate = STATE_STOP;
|
||||
irparams.rawlen = 1; // Skip the gap
|
||||
for (int i = 0 ; i < sendlogcnt; i++) {
|
||||
if (sendlog[i] < 0) {
|
||||
if (last == MARK) {
|
||||
// New space
|
||||
irparams.rawbuf[irparams.rawlen++] = (-sendlog[i] - MARK_EXCESS) / USECPERTICK;
|
||||
last = SPACE;
|
||||
}
|
||||
else {
|
||||
// More space
|
||||
irparams.rawbuf[irparams.rawlen - 1] += -sendlog[i] / USECPERTICK;
|
||||
}
|
||||
}
|
||||
else if (sendlog[i] > 0) {
|
||||
if (last == SPACE) {
|
||||
// New mark
|
||||
irparams.rawbuf[irparams.rawlen++] = (sendlog[i] + MARK_EXCESS) / USECPERTICK;
|
||||
last = MARK;
|
||||
}
|
||||
else {
|
||||
// More mark
|
||||
irparams.rawbuf[irparams.rawlen - 1] += sendlog[i] / USECPERTICK;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (irparams.rawlen % 2) {
|
||||
irparams.rawlen--; // Remove trailing space
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
IRsendDummy irsenddummy;
|
||||
|
||||
void verify(unsigned long val, int bits, int type) {
|
||||
irsenddummy.useDummyBuf();
|
||||
irrecv.decode(&results);
|
||||
Serial.print("Testing ");
|
||||
Serial.print(val, HEX);
|
||||
if (results.value == val && results.bits == bits && results.decode_type == type) {
|
||||
Serial.println(": OK");
|
||||
}
|
||||
else {
|
||||
Serial.println(": Error");
|
||||
dump(&results);
|
||||
}
|
||||
}
|
||||
|
||||
void testNEC(unsigned long val, int bits) {
|
||||
irsenddummy.reset();
|
||||
irsenddummy.sendNEC(val, bits);
|
||||
verify(val, bits, NEC);
|
||||
}
|
||||
void testSony(unsigned long val, int bits) {
|
||||
irsenddummy.reset();
|
||||
irsenddummy.sendSony(val, bits);
|
||||
verify(val, bits, SONY);
|
||||
}
|
||||
void testRC5(unsigned long val, int bits) {
|
||||
irsenddummy.reset();
|
||||
irsenddummy.sendRC5(val, bits);
|
||||
verify(val, bits, RC5);
|
||||
}
|
||||
void testRC6(unsigned long val, int bits) {
|
||||
irsenddummy.reset();
|
||||
irsenddummy.sendRC6(val, bits);
|
||||
verify(val, bits, RC6);
|
||||
}
|
||||
|
||||
void test() {
|
||||
Serial.println("NEC tests");
|
||||
testNEC(0x00000000, 32);
|
||||
testNEC(0xffffffff, 32);
|
||||
testNEC(0xaaaaaaaa, 32);
|
||||
testNEC(0x55555555, 32);
|
||||
testNEC(0x12345678, 32);
|
||||
Serial.println("Sony tests");
|
||||
testSony(0xfff, 12);
|
||||
testSony(0x000, 12);
|
||||
testSony(0xaaa, 12);
|
||||
testSony(0x555, 12);
|
||||
testSony(0x123, 12);
|
||||
Serial.println("RC5 tests");
|
||||
testRC5(0xfff, 12);
|
||||
testRC5(0x000, 12);
|
||||
testRC5(0xaaa, 12);
|
||||
testRC5(0x555, 12);
|
||||
testRC5(0x123, 12);
|
||||
Serial.println("RC6 tests");
|
||||
testRC6(0xfffff, 20);
|
||||
testRC6(0x00000, 20);
|
||||
testRC6(0xaaaaa, 20);
|
||||
testRC6(0x55555, 20);
|
||||
testRC6(0x12345, 20);
|
||||
}
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
test();
|
||||
}
|
||||
|
||||
void loop() {
|
||||
}
|
290
libraries/RobotIRremote/examples/IRtest2/IRtest2.ino
Normal file
290
libraries/RobotIRremote/examples/IRtest2/IRtest2.ino
Normal file
@ -0,0 +1,290 @@
|
||||
/*
|
||||
* Test send/receive functions of IRremote, using a pair of Arduinos.
|
||||
*
|
||||
* Arduino #1 should have an IR LED connected to the send pin (3).
|
||||
* Arduino #2 should have an IR detector/demodulator connected to the
|
||||
* receive pin (11) and a visible LED connected to pin 3.
|
||||
*
|
||||
* The cycle:
|
||||
* Arduino #1 will wait 2 seconds, then run through the tests.
|
||||
* It repeats this forever.
|
||||
* Arduino #2 will wait for at least one second of no signal
|
||||
* (to synchronize with #1). It will then wait for the same test
|
||||
* signals. It will log all the status to the serial port. It will
|
||||
* also indicate status through the LED, which will flash each time a test
|
||||
* is completed. If there is an error, it will light up for 5 seconds.
|
||||
*
|
||||
* The test passes if the LED flashes 19 times, pauses, and then repeats.
|
||||
* The test fails if the LED lights for 5 seconds.
|
||||
*
|
||||
* The test software automatically decides which board is the sender and which is
|
||||
* the receiver by looking for an input on the send pin, which will indicate
|
||||
* the sender. You should hook the serial port to the receiver for debugging.
|
||||
*
|
||||
* Copyright 2010 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
*/
|
||||
|
||||
#include <IRremote.h>
|
||||
|
||||
int RECV_PIN = 11;
|
||||
int LED_PIN = 3;
|
||||
|
||||
IRrecv irrecv(RECV_PIN);
|
||||
IRsend irsend;
|
||||
|
||||
decode_results results;
|
||||
|
||||
#define RECEIVER 1
|
||||
#define SENDER 2
|
||||
#define ERROR 3
|
||||
|
||||
int mode;
|
||||
|
||||
void setup()
|
||||
{
|
||||
Serial.begin(9600);
|
||||
// Check RECV_PIN to decide if we're RECEIVER or SENDER
|
||||
if (digitalRead(RECV_PIN) == HIGH) {
|
||||
mode = RECEIVER;
|
||||
irrecv.enableIRIn();
|
||||
pinMode(LED_PIN, OUTPUT);
|
||||
digitalWrite(LED_PIN, LOW);
|
||||
Serial.println("Receiver mode");
|
||||
}
|
||||
else {
|
||||
mode = SENDER;
|
||||
Serial.println("Sender mode");
|
||||
}
|
||||
}
|
||||
|
||||
// Wait for the gap between tests, to synchronize with
|
||||
// the sender.
|
||||
// Specifically, wait for a signal followed by a gap of at last gap ms.
|
||||
void waitForGap(int gap) {
|
||||
Serial.println("Waiting for gap");
|
||||
while (1) {
|
||||
while (digitalRead(RECV_PIN) == LOW) {
|
||||
}
|
||||
unsigned long time = millis();
|
||||
while (digitalRead(RECV_PIN) == HIGH) {
|
||||
if (millis() - time > gap) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Dumps out the decode_results structure.
|
||||
// Call this after IRrecv::decode()
|
||||
void dump(decode_results *results) {
|
||||
int count = results->rawlen;
|
||||
if (results->decode_type == UNKNOWN) {
|
||||
Serial.println("Could not decode message");
|
||||
}
|
||||
else {
|
||||
if (results->decode_type == NEC) {
|
||||
Serial.print("Decoded NEC: ");
|
||||
}
|
||||
else if (results->decode_type == SONY) {
|
||||
Serial.print("Decoded SONY: ");
|
||||
}
|
||||
else if (results->decode_type == RC5) {
|
||||
Serial.print("Decoded RC5: ");
|
||||
}
|
||||
else if (results->decode_type == RC6) {
|
||||
Serial.print("Decoded RC6: ");
|
||||
}
|
||||
Serial.print(results->value, HEX);
|
||||
Serial.print(" (");
|
||||
Serial.print(results->bits, DEC);
|
||||
Serial.println(" bits)");
|
||||
}
|
||||
Serial.print("Raw (");
|
||||
Serial.print(count, DEC);
|
||||
Serial.print("): ");
|
||||
|
||||
for (int i = 0; i < count; i++) {
|
||||
if ((i % 2) == 1) {
|
||||
Serial.print(results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
else {
|
||||
Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);
|
||||
}
|
||||
Serial.print(" ");
|
||||
}
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
|
||||
// Test send or receive.
|
||||
// If mode is SENDER, send a code of the specified type, value, and bits
|
||||
// If mode is RECEIVER, receive a code and verify that it is of the
|
||||
// specified type, value, and bits. For success, the LED is flashed;
|
||||
// for failure, the mode is set to ERROR.
|
||||
// The motivation behind this method is that the sender and the receiver
|
||||
// can do the same test calls, and the mode variable indicates whether
|
||||
// to send or receive.
|
||||
void test(char *label, int type, unsigned long value, int bits) {
|
||||
if (mode == SENDER) {
|
||||
Serial.println(label);
|
||||
if (type == NEC) {
|
||||
irsend.sendNEC(value, bits);
|
||||
}
|
||||
else if (type == SONY) {
|
||||
irsend.sendSony(value, bits);
|
||||
}
|
||||
else if (type == RC5) {
|
||||
irsend.sendRC5(value, bits);
|
||||
}
|
||||
else if (type == RC6) {
|
||||
irsend.sendRC6(value, bits);
|
||||
}
|
||||
else {
|
||||
Serial.print(label);
|
||||
Serial.println("Bad type!");
|
||||
}
|
||||
delay(200);
|
||||
}
|
||||
else if (mode == RECEIVER) {
|
||||
irrecv.resume(); // Receive the next value
|
||||
unsigned long max_time = millis() + 30000;
|
||||
Serial.print(label);
|
||||
|
||||
// Wait for decode or timeout
|
||||
while (!irrecv.decode(&results)) {
|
||||
if (millis() > max_time) {
|
||||
Serial.println("Timeout receiving data");
|
||||
mode = ERROR;
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (type == results.decode_type && value == results.value && bits == results.bits) {
|
||||
Serial.println (": OK");
|
||||
digitalWrite(LED_PIN, HIGH);
|
||||
delay(20);
|
||||
digitalWrite(LED_PIN, LOW);
|
||||
}
|
||||
else {
|
||||
Serial.println(": BAD");
|
||||
dump(&results);
|
||||
mode = ERROR;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Test raw send or receive. This is similar to the test method,
|
||||
// except it send/receives raw data.
|
||||
void testRaw(char *label, unsigned int *rawbuf, int rawlen) {
|
||||
if (mode == SENDER) {
|
||||
Serial.println(label);
|
||||
irsend.sendRaw(rawbuf, rawlen, 38 /* kHz */);
|
||||
delay(200);
|
||||
}
|
||||
else if (mode == RECEIVER ) {
|
||||
irrecv.resume(); // Receive the next value
|
||||
unsigned long max_time = millis() + 30000;
|
||||
Serial.print(label);
|
||||
|
||||
// Wait for decode or timeout
|
||||
while (!irrecv.decode(&results)) {
|
||||
if (millis() > max_time) {
|
||||
Serial.println("Timeout receiving data");
|
||||
mode = ERROR;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Received length has extra first element for gap
|
||||
if (rawlen != results.rawlen - 1) {
|
||||
Serial.print("Bad raw length ");
|
||||
Serial.println(results.rawlen, DEC);
|
||||
mode = ERROR;
|
||||
return;
|
||||
}
|
||||
for (int i = 0; i < rawlen; i++) {
|
||||
long got = results.rawbuf[i+1] * USECPERTICK;
|
||||
// Adjust for extra duration of marks
|
||||
if (i % 2 == 0) {
|
||||
got -= MARK_EXCESS;
|
||||
}
|
||||
else {
|
||||
got += MARK_EXCESS;
|
||||
}
|
||||
// See if close enough, within 25%
|
||||
if (rawbuf[i] * 1.25 < got || got * 1.25 < rawbuf[i]) {
|
||||
Serial.println(": BAD");
|
||||
dump(&results);
|
||||
mode = ERROR;
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
Serial.println (": OK");
|
||||
digitalWrite(LED_PIN, HIGH);
|
||||
delay(20);
|
||||
digitalWrite(LED_PIN, LOW);
|
||||
}
|
||||
}
|
||||
|
||||
// This is the raw data corresponding to NEC 0x12345678
|
||||
unsigned int sendbuf[] = { /* NEC format */
|
||||
9000, 4500,
|
||||
560, 560, 560, 560, 560, 560, 560, 1690, /* 1 */
|
||||
560, 560, 560, 560, 560, 1690, 560, 560, /* 2 */
|
||||
560, 560, 560, 560, 560, 1690, 560, 1690, /* 3 */
|
||||
560, 560, 560, 1690, 560, 560, 560, 560, /* 4 */
|
||||
560, 560, 560, 1690, 560, 560, 560, 1690, /* 5 */
|
||||
560, 560, 560, 1690, 560, 1690, 560, 560, /* 6 */
|
||||
560, 560, 560, 1690, 560, 1690, 560, 1690, /* 7 */
|
||||
560, 1690, 560, 560, 560, 560, 560, 560, /* 8 */
|
||||
560};
|
||||
|
||||
void loop() {
|
||||
if (mode == SENDER) {
|
||||
delay(2000); // Delay for more than gap to give receiver a better chance to sync.
|
||||
}
|
||||
else if (mode == RECEIVER) {
|
||||
waitForGap(1000);
|
||||
}
|
||||
else if (mode == ERROR) {
|
||||
// Light up for 5 seconds for error
|
||||
digitalWrite(LED_PIN, HIGH);
|
||||
delay(5000);
|
||||
digitalWrite(LED_PIN, LOW);
|
||||
mode = RECEIVER; // Try again
|
||||
return;
|
||||
}
|
||||
|
||||
// The test suite.
|
||||
test("SONY1", SONY, 0x123, 12);
|
||||
test("SONY2", SONY, 0x000, 12);
|
||||
test("SONY3", SONY, 0xfff, 12);
|
||||
test("SONY4", SONY, 0x12345, 20);
|
||||
test("SONY5", SONY, 0x00000, 20);
|
||||
test("SONY6", SONY, 0xfffff, 20);
|
||||
test("NEC1", NEC, 0x12345678, 32);
|
||||
test("NEC2", NEC, 0x00000000, 32);
|
||||
test("NEC3", NEC, 0xffffffff, 32);
|
||||
test("NEC4", NEC, REPEAT, 32);
|
||||
test("RC51", RC5, 0x12345678, 32);
|
||||
test("RC52", RC5, 0x0, 32);
|
||||
test("RC53", RC5, 0xffffffff, 32);
|
||||
test("RC61", RC6, 0x12345678, 32);
|
||||
test("RC62", RC6, 0x0, 32);
|
||||
test("RC63", RC6, 0xffffffff, 32);
|
||||
|
||||
// Tests of raw sending and receiving.
|
||||
// First test sending raw and receiving raw.
|
||||
// Then test sending raw and receiving decoded NEC
|
||||
// Then test sending NEC and receiving raw
|
||||
testRaw("RAW1", sendbuf, 67);
|
||||
if (mode == SENDER) {
|
||||
testRaw("RAW2", sendbuf, 67);
|
||||
test("RAW3", NEC, 0x12345678, 32);
|
||||
}
|
||||
else {
|
||||
test("RAW2", NEC, 0x12345678, 32);
|
||||
testRaw("RAW3", sendbuf, 67);
|
||||
}
|
||||
}
|
@ -0,0 +1,29 @@
|
||||
/*
|
||||
* IRremote: IRsendDemo - demonstrates sending IR codes with IRsend
|
||||
* An IR LED must be connected to Arduino PWM pin 3.
|
||||
* Version 0.1 July, 2009
|
||||
* Copyright 2009 Ken Shirriff
|
||||
* http://arcfn.com
|
||||
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
|
||||
*/
|
||||
#include <IRremote.h>
|
||||
|
||||
#define PanasonicAddress 0x4004 // Panasonic address (Pre data)
|
||||
#define PanasonicPower 0x100BCBD // Panasonic Power button
|
||||
|
||||
#define JVCPower 0xC5E8
|
||||
|
||||
IRsend irsend;
|
||||
|
||||
void setup()
|
||||
{
|
||||
}
|
||||
|
||||
void loop() {
|
||||
irsend.sendPanasonic(PanasonicAddress,PanasonicPower); // This should turn your TV on and off
|
||||
|
||||
irsend.sendJVC(JVCPower, 16,0); // hex value, 16 bits, no repeat
|
||||
delayMicroseconds(50); // see http://www.sbprojects.com/knowledge/ir/jvc.php for information
|
||||
irsend.sendJVC(JVCPower, 16,1); // hex value, 16 bits, repeat
|
||||
delayMicroseconds(50);
|
||||
}
|
50
libraries/RobotIRremote/keywords.txt
Normal file
50
libraries/RobotIRremote/keywords.txt
Normal file
@ -0,0 +1,50 @@
|
||||
#######################################
|
||||
# Syntax Coloring Map For IRremote
|
||||
#######################################
|
||||
|
||||
#######################################
|
||||
# Datatypes (KEYWORD1)
|
||||
#######################################
|
||||
|
||||
decode_results KEYWORD1
|
||||
IRrecv KEYWORD1
|
||||
IRsend KEYWORD1
|
||||
|
||||
#######################################
|
||||
# Methods and Functions (KEYWORD2)
|
||||
#######################################
|
||||
|
||||
blink13 KEYWORD2
|
||||
decode KEYWORD2
|
||||
enableIRIn KEYWORD2
|
||||
resume KEYWORD2
|
||||
enableIROut KEYWORD2
|
||||
sendNEC KEYWORD2
|
||||
sendSony KEYWORD2
|
||||
sendSanyo KEYWORD2
|
||||
sendMitsubishi KEYWORD2
|
||||
sendRaw KEYWORD2
|
||||
sendRC5 KEYWORD2
|
||||
sendRC6 KEYWORD2
|
||||
sendDISH KEYWORD2
|
||||
sendSharp KEYWORD2
|
||||
sendPanasonic KEYWORD2
|
||||
sendJVC KEYWORD2
|
||||
|
||||
#
|
||||
#######################################
|
||||
# Constants (LITERAL1)
|
||||
#######################################
|
||||
|
||||
NEC LITERAL1
|
||||
SONY LITERAL1
|
||||
SANYO LITERAL1
|
||||
MITSUBISHI LITERAL1
|
||||
RC5 LITERAL1
|
||||
RC6 LITERAL1
|
||||
DISH LITERAL1
|
||||
SHARP LITERAL1
|
||||
PANASONIC LITERAL1
|
||||
JVC LITERAL1
|
||||
UNKNOWN LITERAL1
|
||||
REPEAT LITERAL1
|
14
libraries/RobotIRremote/readme
Normal file
14
libraries/RobotIRremote/readme
Normal file
@ -0,0 +1,14 @@
|
||||
This is the IRremote library for the Arduino.
|
||||
|
||||
To download from github (http://github.com/shirriff/Arduino-IRremote), click on the "Downloads" link in the upper right, click "Download as zip", and get a zip file. Unzip it and rename the directory shirriff-Arduino-IRremote-nnn to IRremote
|
||||
|
||||
To install, move the downloaded IRremote directory to:
|
||||
arduino-1.x/libraries/IRremote
|
||||
where arduino-1.x is your Arduino installation directory
|
||||
|
||||
After installation you should have files such as:
|
||||
arduino-1.x/libraries/IRremote/IRremote.cpp
|
||||
|
||||
For details on the library see the Wiki on github or the blog post http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
|
||||
|
||||
Copyright 2009-2012 Ken Shirriff
|
@ -85,12 +85,26 @@
|
||||
#define TK6 106
|
||||
#define TK7 107
|
||||
|
||||
#define M0 TK0
|
||||
#define M1 TK1
|
||||
#define M2 TK2
|
||||
#define M3 TK3
|
||||
#define M4 TK4
|
||||
#define M5 TK5
|
||||
#define M6 TK6
|
||||
#define M7 TK7
|
||||
|
||||
//bottom TKs, just for communication purpose
|
||||
#define B_TK1 201
|
||||
#define B_TK2 202
|
||||
#define B_TK3 203
|
||||
#define B_TK4 204
|
||||
|
||||
#define D10 B_TK1
|
||||
#define D9 B_TK2
|
||||
#define D8 B_TK4
|
||||
#define D7 B_TK3
|
||||
|
||||
//bottom IRs, for communication purpose
|
||||
#define B_IR0 210
|
||||
#define B_IR1 211
|
||||
|
@ -43,7 +43,7 @@ void setup() {
|
||||
// These are some general values that work for line following
|
||||
// uncomment one or the other to see the different behaviors of the robot
|
||||
// Robot.lineFollowConfig(11, 5, 50, 10);
|
||||
Robot.lineFollowConfig(14, 9, 50, 10);
|
||||
Robot.lineFollowConfig(11, 7, 60, 5);
|
||||
|
||||
//set the motor board into line-follow mode
|
||||
Robot.setMode(MODE_LINE_FOLLOW);
|
||||
|
@ -56,7 +56,10 @@ void renderUI() {
|
||||
Robot.rect(73, 38, 13, 13); // up
|
||||
Robot.circle(79, 64, 6); // middle
|
||||
Robot.rect(73, 78, 13, 13); // down
|
||||
Robot.circle(26, 116, 18); // knob
|
||||
|
||||
//draw the knob
|
||||
Robot.noFill();
|
||||
Robot.circle(26, 116, 17); // knob
|
||||
|
||||
//draw the vertical bargraph
|
||||
int fullPart=map(pitch, 200, 2000, 0, 58); //length of filled bargraph
|
||||
@ -136,31 +139,27 @@ void keyDown(int keyCode) {
|
||||
oldKey = keyCode;
|
||||
}
|
||||
|
||||
//Draw a circle according to value
|
||||
//of the knob.
|
||||
void drawKnob(int val) {
|
||||
static int x = 0, y = 0, val_old = 0;
|
||||
// radian number, -3.14 to 3.14
|
||||
float ang = map(val, 0, 1023, -PI*1000, PI*1000) / 1000.0;
|
||||
static int val_old;
|
||||
int r=map(val,0,1023,1,15);
|
||||
|
||||
// erase the old line
|
||||
if (val_old != val) {
|
||||
//Only updates when the
|
||||
//value changes.
|
||||
if(val_old!=r){
|
||||
Robot.noFill();
|
||||
|
||||
//erase the old circle
|
||||
Robot.stroke(255, 255, 255);
|
||||
Robot.line(26, 116, x, y);
|
||||
}
|
||||
Robot.circle(26,116,r+1);
|
||||
|
||||
//draw the new circle
|
||||
Robot.stroke(255, 0, 255);
|
||||
Robot.circle(26,116,r);
|
||||
|
||||
// the following lines avoid a glitch in the TFT library
|
||||
// that seems to appear when drawing a vertical line
|
||||
if (val < 1011 && val > 265 || val < 253) {
|
||||
//a bit math for drawing the hand inside the clock
|
||||
x = 16*sin(ang)+26;
|
||||
y = 16*cos(ang)+116;
|
||||
}
|
||||
if (val > 265 && val < 253) {
|
||||
x = 10; y = 116;
|
||||
}
|
||||
if (val >= 1011) {
|
||||
x = 27; y = 100;
|
||||
}
|
||||
Robot.stroke(0, 0, 0);
|
||||
Robot.line(26, 116, x, y);
|
||||
val_old = val;
|
||||
|
||||
val_old=r;
|
||||
}
|
||||
}
|
||||
|
@ -1,103 +1,38 @@
|
||||
/* 6 Wheel Calibration
|
||||
|
||||
Use this sketch to calibrate the wheels in your robot.
|
||||
Your robot should drive as straight as possible when
|
||||
putting both motors at the same speed.
|
||||
|
||||
Run the software and follow the on-screen instructions.
|
||||
Use the trimmer on the motor board to make sure the
|
||||
robot is working at its best!
|
||||
Circuit:
|
||||
* Arduino Robot
|
||||
|
||||
created 1 May 2013
|
||||
by X. Yang
|
||||
modified 12 May 2013
|
||||
by D. Cuartielles
|
||||
|
||||
This example is in the public domain
|
||||
*
|
||||
* Use this sketch to calibrate the wheels in your robot.
|
||||
* Your robot should drive as straight as possible when
|
||||
* putting both motors at the same speed.
|
||||
*
|
||||
* Run the software and follow the on-screen instructions.
|
||||
* Use the trimmer on the bottom board to make sure the
|
||||
* robot is working at its best!
|
||||
*
|
||||
* (c) 2013 X. Yang
|
||||
*/
|
||||
#include "scripts_library.h"
|
||||
|
||||
#include <ArduinoRobot.h> // inport the robot librsry
|
||||
// import the utility library
|
||||
// a description of its funtionality is below
|
||||
#include <utility/RobotTextManager.h>
|
||||
|
||||
// arrays to hold the text for instructions
|
||||
char script1[] ="Wheel Calibration";
|
||||
char script2[] ="1. Put Robot on a\n flat surface";
|
||||
char script3[] ="2. Adjust speed with the knob on top";
|
||||
char script4[] ="3. If robot goes\n straight, it's done";
|
||||
char script5[] ="4. Use screwdriver\n on the bottom trim";
|
||||
char script6[] ="- Robot turns left,\n screw it clockwise;";
|
||||
char script7[] ="- Turns right, screw it ct-colockwise;";
|
||||
char script8[] ="5. Repeat 4 until\n going straight";
|
||||
|
||||
int speedRobot; //robot speed
|
||||
int calibrationValue; //value for calibrate difference between wheels
|
||||
#include <ArduinoRobot.h>
|
||||
|
||||
void setup(){
|
||||
//necessary initialization sequence
|
||||
Serial.begin(9600);
|
||||
Robot.begin();
|
||||
Robot.beginTFT();
|
||||
Robot.beginSD();
|
||||
|
||||
// left and top margin for displaying text
|
||||
// see below for a description of this
|
||||
textManager.setMargin(5,5);
|
||||
// write all instructions at once
|
||||
writeAllscript();
|
||||
Robot.setTextWrap(false);
|
||||
Robot.displayLogos();
|
||||
|
||||
writeAllScripts();
|
||||
|
||||
}
|
||||
void loop(){
|
||||
//Control the robot's speed with knob on top
|
||||
int speedRobot=map(Robot.knobRead(),0,1023,-255,255);
|
||||
Robot.motorsWrite(speedRobot,speedRobot);
|
||||
int val=map(Robot.knobRead(),0,1023,-255,255);
|
||||
Serial.println(val);
|
||||
Robot.motorsWrite(val,val);
|
||||
|
||||
//read value of the pot on motor baord,to clibrate the wheels
|
||||
int calibrationValue=map(Robot.trimRead(),0,1023,-30,30);
|
||||
// print the values to the screen
|
||||
Robot.debugPrint(calibrationValue,110,145);
|
||||
int WC=map(Robot.trimRead(),0,1023,-20,20);
|
||||
Robot.debugPrint(WC,108,149);
|
||||
delay(40);
|
||||
|
||||
}
|
||||
|
||||
void writeAllscript(){
|
||||
//prints 8 scripts one after another
|
||||
textManager.writeText(0,0,script1);
|
||||
textManager.writeText(1,0,script2);
|
||||
textManager.writeText(3,0,script3);
|
||||
textManager.writeText(5,0,script4);
|
||||
textManager.writeText(7,0,script5);
|
||||
textManager.writeText(9,0,script6);
|
||||
textManager.writeText(11,0,script7);
|
||||
textManager.writeText(13,0,script8);
|
||||
}
|
||||
|
||||
/**
|
||||
textManager mostly contains helper functions for
|
||||
R06_Wheel_Calibration and R01_Hello_User.
|
||||
|
||||
textManager.setMargin(margin_left, margin_top):
|
||||
Configure the left and top margin for text
|
||||
display. The margins will be used by
|
||||
textManager.writeText().
|
||||
Parameters:
|
||||
margin_left, margin_top: int, the margin values
|
||||
from the top and left side of the screen.
|
||||
Returns:
|
||||
none
|
||||
|
||||
textManager.writeText(line,column,text):
|
||||
Display text on the specific line and column.
|
||||
It's different from Robot.text() which
|
||||
uses pixels for positioning the text.
|
||||
Parameters:
|
||||
line:int, which line is the text displayed. Each line
|
||||
is 10px high.
|
||||
column:int, which column is the text displayed. Each
|
||||
column is 8px wide.
|
||||
text:a char array(string) of the text to be displayed.
|
||||
Returns:
|
||||
none
|
||||
*/
|
||||
|
@ -0,0 +1,43 @@
|
||||
#include <avr/pgmspace.h>
|
||||
#include <ArduinoRobot.h>
|
||||
|
||||
prog_char script1[] PROGMEM="Wheel Calibration\n";
|
||||
prog_char script2[] PROGMEM="1. Put Robot on a flat surface\n";
|
||||
prog_char script3[] PROGMEM="2. Adjust speed with the knob on top\n";
|
||||
prog_char script4[] PROGMEM="3. If robot goes straight, it's done\n";
|
||||
prog_char script5[] PROGMEM="4. Use screwdriver on the trim on bottom\n";
|
||||
prog_char script6[] PROGMEM="Robot turns left, screw it clockwise;\n";
|
||||
prog_char script7[] PROGMEM="Turns right, screw it ct-colockwise;\n";
|
||||
prog_char script8[] PROGMEM="5. Repeat 4 until going straight\n";
|
||||
|
||||
char buffer[42];//must be longer than text
|
||||
|
||||
PROGMEM const char *scripts[]={
|
||||
script1,
|
||||
script2,
|
||||
script3,
|
||||
script4,
|
||||
script5,
|
||||
script6,
|
||||
script7,
|
||||
script8,
|
||||
};
|
||||
|
||||
void getPGMtext(int seq){
|
||||
strcpy_P(buffer,(char*)pgm_read_word(&(scripts[seq])));
|
||||
}
|
||||
|
||||
void writePGMtext(int seq){
|
||||
getPGMtext(seq);
|
||||
Robot.print(buffer);
|
||||
}
|
||||
|
||||
void writeScript(int seq){
|
||||
writePGMtext(seq);
|
||||
}
|
||||
|
||||
void writeAllScripts(){
|
||||
for(int i=0;i<8;i++){
|
||||
writeScript(i);
|
||||
}
|
||||
}
|
@ -4,7 +4,7 @@
|
||||
distance sensor, it's capable of detecting and avoiding
|
||||
obstacles, never bumping into walls again!
|
||||
|
||||
You'll need to attach an untrasonic range finder to TK1.
|
||||
You'll need to attach an untrasonic range finder to M1.
|
||||
|
||||
Circuit:
|
||||
* Arduino Robot
|
||||
@ -21,7 +21,7 @@
|
||||
// include the robot library
|
||||
#include <ArduinoRobot.h>
|
||||
|
||||
int sensorPin = TK1; // pin is used by the sensor
|
||||
int sensorPin = M1; // pin is used by the sensor
|
||||
|
||||
void setup() {
|
||||
// initialize the Robot, SD card, and display
|
||||
|
@ -1,35 +1,15 @@
|
||||
/* 08 Remote Control
|
||||
|
||||
*******************
|
||||
***
|
||||
***This example code is in an experimental state.
|
||||
***You are welcome to try this with your robot,
|
||||
***and no harm will come to it. We will provide a
|
||||
***detailed description of an updated version of this
|
||||
***in a future update
|
||||
***
|
||||
*** For this example to work you need:
|
||||
***
|
||||
*** - download and install the IR-Remote library by Ken Shirriff
|
||||
*** to be found at https://github.com/shirriff/Arduino-IRremote
|
||||
*** - get a Sony remote control
|
||||
***
|
||||
*** This example will be updated soon, come back to the Robot
|
||||
*** page on the Arduino server for updates!!
|
||||
***
|
||||
*******************
|
||||
|
||||
If you connect a IR receiver to the robot,
|
||||
you can control it like you control a TV set.
|
||||
Using a Sony compatiable remote control,
|
||||
map some buttons to different actions.
|
||||
You can make the robot move around without
|
||||
even touching it!
|
||||
you can control it like a RC car.
|
||||
Using the remote control comes with sensor
|
||||
pack, You can make the robot move around
|
||||
without even touching it!
|
||||
|
||||
Circuit:
|
||||
* Arduino Robot
|
||||
* Connect the IRreceiver to TDK2
|
||||
* Sony compatible remote control
|
||||
* Connect the IRreceiver to D2
|
||||
* Remote control from Robot sensor pack
|
||||
|
||||
based on the IRremote library
|
||||
by Ken Shirriff
|
||||
@ -45,79 +25,67 @@
|
||||
|
||||
// include the necessary libraries
|
||||
#include <IRremote.h>
|
||||
#include <IRremoteTools.h>
|
||||
#include <ArduinoRobot.h>
|
||||
|
||||
// Define a few commands from your remote control
|
||||
#define IR_CODE_FORWARD 0x2C9B
|
||||
#define IR_CODE_BACKWARDS 0x6C9B
|
||||
#define IR_CODE_TURN_LEFT 0xD4B8F
|
||||
#define IR_CODE_TURN_RIGHT 0x34B8F
|
||||
#define IR_CODE_FORWARD 284154405
|
||||
#define IR_CODE_BACKWARDS 284113605
|
||||
#define IR_CODE_TURN_LEFT 284129925
|
||||
#define IR_CODE_TURN_RIGHT 284127885
|
||||
#define IR_CODE_CONTINUE -1
|
||||
|
||||
int RECV_PIN = TKD2; // the pin the IR receiver is connected to
|
||||
IRrecv irrecv(RECV_PIN); // an instance of the IR receiver object
|
||||
decode_results results; // container for received IR codes
|
||||
boolean isActing=false; //If the robot is executing command from remote
|
||||
long timer;
|
||||
const long TIME_OUT=150;
|
||||
|
||||
void setup() {
|
||||
// initialize the Robot, SD card, display, and speaker
|
||||
Serial.begin(9600);
|
||||
Robot.begin();
|
||||
Robot.beginTFT();
|
||||
Robot.beginSD();
|
||||
|
||||
// print some text to the screen
|
||||
Robot.stroke(0, 0, 0);
|
||||
Robot.text("Remote Control code:", 5, 5);
|
||||
Robot.text("Command:", 5, 26);
|
||||
irrecv.enableIRIn(); // Start the receiver
|
||||
beginIRremote(); // Start the receiver
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// if there is an IR command, process it
|
||||
if (irrecv.decode(&results)) {
|
||||
if (IRrecived()) {
|
||||
processResult();
|
||||
irrecv.resume(); // resume receiver
|
||||
}
|
||||
resumeIRremote(); // resume receiver
|
||||
}
|
||||
|
||||
void processResult() {
|
||||
unsigned long res = results.value;
|
||||
// print the value to the screen
|
||||
Robot.debugPrint(res, 5, 15);
|
||||
|
||||
if(res == IR_CODE_FORWARD || res == IR_CODE_BACKWARDS || res == IR_CODE_TURN_LEFT || res == IR_CODE_TURN_RIGHT) {
|
||||
Robot.fill(255, 255, 255);
|
||||
Robot.stroke(255, 255, 255);
|
||||
|
||||
Robot.rect(5, 36, 55, 10);
|
||||
}
|
||||
switch(results.value){
|
||||
case IR_CODE_FORWARD:
|
||||
Robot.stroke(0, 0, 0);
|
||||
Robot.text("Forward", 5, 36);
|
||||
Robot.motorsWrite(255, 255);
|
||||
delay(300);
|
||||
//If the robot does not receive any command, stop it
|
||||
if(isActing && (millis()-timer>=TIME_OUT)){
|
||||
Robot.motorsStop();
|
||||
isActing=false;
|
||||
}
|
||||
}
|
||||
void processResult() {
|
||||
unsigned long res = getIRresult();
|
||||
switch(res){
|
||||
case IR_CODE_FORWARD:
|
||||
changeAction(1,1); //Move the robot forward
|
||||
break;
|
||||
case IR_CODE_BACKWARDS:
|
||||
Robot.stroke(0, 0, 0);
|
||||
Robot.text("Backwards", 5, 36);
|
||||
Robot.motorsWrite(-255, -255);
|
||||
delay(300);
|
||||
Robot.motorsStop();
|
||||
changeAction(-1,-1); //Move the robot backwards
|
||||
break;
|
||||
case IR_CODE_TURN_LEFT:
|
||||
Robot.stroke(0, 0, 0);
|
||||
Robot.text("Left", 5, 36);
|
||||
Robot.motorsWrite(-255, 255);
|
||||
delay(100);
|
||||
Robot.motorsStop();
|
||||
changeAction(-0.5,0.5); //Turn the robot left
|
||||
break;
|
||||
case IR_CODE_TURN_RIGHT:
|
||||
Robot.stroke(0, 0, 0);
|
||||
Robot.text("Right", 5, 36);
|
||||
Robot.motorsWrite(255, -255);
|
||||
delay(100);
|
||||
Robot.motorsStop();
|
||||
changeAction(0.5,-0.5); //Turn the robot Right
|
||||
break;
|
||||
case IR_CODE_CONTINUE:
|
||||
timer=millis(); //Continue the last action, reset timer
|
||||
break;
|
||||
}
|
||||
}
|
||||
void changeAction(float directionLeft, float directionRight){
|
||||
Robot.motorsWrite(255*directionLeft, 255*directionRight);
|
||||
timer=millis();
|
||||
isActing=true;
|
||||
}
|
||||
|
||||
|
@ -55,7 +55,7 @@ void setup(){
|
||||
// use this to calibrate the line following algorithm
|
||||
// uncomment one or the other to see the different behaviors of the robot
|
||||
// Robot.lineFollowConfig(11, 5, 50, 10);
|
||||
Robot.lineFollowConfig(14, 9, 50, 10);
|
||||
Robot.lineFollowConfig(11, 7, 60, 5);
|
||||
|
||||
// run the rescue sequence
|
||||
rescueSequence();
|
||||
|
@ -27,15 +27,11 @@ void setup(){
|
||||
//necessary initialization sequence
|
||||
Robot.begin();
|
||||
Robot.beginTFT();
|
||||
Robot.beginSpeaker(32000);
|
||||
Robot.beginSD();
|
||||
|
||||
// show the logos from the SD card
|
||||
Robot.displayLogos();
|
||||
|
||||
// play the music file
|
||||
Robot.playFile("menu.sqm");
|
||||
|
||||
// clear the screen
|
||||
Robot.clearScreen();
|
||||
|
||||
|
@ -5,9 +5,9 @@
|
||||
reads/writes from/to them. Uncomment the different lines inside
|
||||
the loop to test the different possibilities.
|
||||
|
||||
The TK inputs on the Control Board are multiplexed and therefore
|
||||
it is not recommended to use them as outputs. The TKD pins on the
|
||||
Control Board as well as the TK pins on the Motor Board go directly
|
||||
The M inputs on the Control Board are multiplexed and therefore
|
||||
it is not recommended to use them as outputs. The D pins on the
|
||||
Control Board as well as the D pins on the Motor Board go directly
|
||||
to the microcontroller and therefore can be used both as inputs
|
||||
and outputs.
|
||||
|
||||
@ -25,9 +25,9 @@
|
||||
#include <ArduinoRobot.h>
|
||||
|
||||
// use arrays to store the names of the pins to be read
|
||||
uint8_t arr[] = { TK0, TK1, TK2, TK3, TK4, TK5, TK6, TK7 };
|
||||
uint8_t arr2[] = { TKD0, TKD1, TKD2, TKD3, TKD4, TKD5 };
|
||||
uint8_t arr3[] = { B_TK1, B_TK2, B_TK3, B_TK4 };
|
||||
uint8_t arr[] = { M0, M1, M2, M3, M4, M5, M6, M7 };
|
||||
uint8_t arr2[] = { D0, D1, D2, D3, D4, D5 };
|
||||
uint8_t arr3[] = { D7, D8, D9, D10 };
|
||||
|
||||
void setup(){
|
||||
// initialize the robot
|
||||
@ -38,34 +38,34 @@ void setup(){
|
||||
}
|
||||
|
||||
void loop(){
|
||||
// read all the TK inputs at the Motor Board as analog
|
||||
analogReadB_TKs();
|
||||
// read all the D inputs at the Motor Board as analog
|
||||
//analogReadB_Ds();
|
||||
|
||||
// read all the TK inputs at the Motor Board as digital
|
||||
//digitalReadB_TKs();
|
||||
// read all the D inputs at the Motor Board as digital
|
||||
//digitalReadB_Ds();
|
||||
|
||||
// read all the TK inputs at the Control Board as analog
|
||||
//analogReadTKs();
|
||||
// read all the M inputs at the Control Board as analog
|
||||
//analogReadMs();
|
||||
|
||||
// read all the TK inputs at the Control Board as digital
|
||||
//digitalReadTKs();
|
||||
// read all the M inputs at the Control Board as digital
|
||||
//digitalReadMs();
|
||||
|
||||
// read all the TKD inputs at the Control Board as analog
|
||||
//analogReadTKDs();
|
||||
// read all the D inputs at the Control Board as analog
|
||||
analogReadT_Ds();
|
||||
|
||||
// read all the TKD inputs at the Control Board as digital
|
||||
//digitalReadTKDs();
|
||||
// read all the D inputs at the Control Board as digital
|
||||
//digitalReadT_Ds();
|
||||
|
||||
// write all the TK outputs at the Motor Board as digital
|
||||
//digitalWriteB_TKs();
|
||||
// write all the D outputs at the Motor Board as digital
|
||||
//digitalWriteB_Ds();
|
||||
|
||||
// write all the TKD outputs at the Control Board as digital
|
||||
//digitalWriteTKDs();
|
||||
delay(5);
|
||||
// write all the D outputs at the Control Board as digital
|
||||
//digitalWriteT_Ds();
|
||||
delay(40);
|
||||
}
|
||||
|
||||
// read all TK inputs on the Control Board as analog inputs
|
||||
void analogReadTKs() {
|
||||
// read all M inputs on the Control Board as analog inputs
|
||||
void analogReadMs() {
|
||||
for(int i=0;i<8;i++) {
|
||||
Serial.print(Robot.analogRead(arr[i]));
|
||||
Serial.print(",");
|
||||
@ -73,8 +73,8 @@ void analogReadTKs() {
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
// read all TK inputs on the Control Board as digital inputs
|
||||
void digitalReadTKs() {
|
||||
// read all M inputs on the Control Board as digital inputs
|
||||
void digitalReadMs() {
|
||||
for(int i=0;i<8;i++) {
|
||||
Serial.print(Robot.digitalRead(arr[i]));
|
||||
Serial.print(",");
|
||||
@ -82,8 +82,8 @@ void digitalReadTKs() {
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
// read all TKD inputs on the Control Board as analog inputs
|
||||
void analogReadTKDs() {
|
||||
// read all D inputs on the Control Board as analog inputs
|
||||
void analogReadT_Ds() {
|
||||
for(int i=0; i<6; i++) {
|
||||
Serial.print(Robot.analogRead(arr2[i]));
|
||||
Serial.print(",");
|
||||
@ -91,8 +91,8 @@ void analogReadTKDs() {
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
// read all TKD inputs on the Control Board as digital inputs
|
||||
void digitalReadTKDs() {
|
||||
// read all D inputs on the Control Board as digital inputs
|
||||
void digitalReadT_Ds() {
|
||||
for(int i=0; i<6; i++) {
|
||||
Serial.print(Robot.digitalRead(arr2[i]));
|
||||
Serial.print(",");
|
||||
@ -100,8 +100,8 @@ void digitalReadTKDs() {
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
// write all TKD outputs on the Control Board as digital outputs
|
||||
void digitalWriteTKDs() {
|
||||
// write all D outputs on the Control Board as digital outputs
|
||||
void digitalWriteT_Ds() {
|
||||
// turn all the pins on
|
||||
for(int i=0; i<6; i++) {
|
||||
Robot.digitalWrite(arr2[i], HIGH);
|
||||
@ -115,8 +115,8 @@ void digitalWriteTKDs() {
|
||||
delay(500);
|
||||
}
|
||||
|
||||
// write all TK outputs on the Motor Board as digital outputs
|
||||
void digitalWriteB_TKs() {
|
||||
// write all D outputs on the Motor Board as digital outputs
|
||||
void digitalWriteB_Ds() {
|
||||
// turn all the pins on
|
||||
for(int i=0; i<4; i++) {
|
||||
Robot.digitalWrite(arr3[i], HIGH);
|
||||
@ -130,8 +130,8 @@ void digitalWriteB_TKs() {
|
||||
delay(500);
|
||||
}
|
||||
|
||||
// read all TK inputs on the Motor Board as analog inputs
|
||||
void analogReadB_TKs() {
|
||||
// read all D inputs on the Motor Board as analog inputs
|
||||
void analogReadB_Ds() {
|
||||
for(int i=0; i<4; i++) {
|
||||
Serial.print(Robot.analogRead(arr3[i]));
|
||||
Serial.print(",");
|
||||
@ -139,8 +139,8 @@ void analogReadB_TKs() {
|
||||
Serial.println("");
|
||||
}
|
||||
|
||||
// read all TKD inputs on the Motor Board as digital inputs
|
||||
void digitalReadB_TKs() {
|
||||
// read all D inputs on the Motor Board as digital inputs
|
||||
void digitalReadB_Ds() {
|
||||
for(int i=0; i<4; i++) {
|
||||
Serial.print(Robot.digitalRead(arr3[i]));
|
||||
Serial.print(",");
|
||||
|
@ -23,7 +23,7 @@ void setup() {
|
||||
Robot.begin();
|
||||
|
||||
// initialize the robot's screen
|
||||
Robot.beginLCD();
|
||||
Robot.beginTFT();
|
||||
}
|
||||
|
||||
void loop() {
|
||||
@ -31,14 +31,14 @@ void loop() {
|
||||
value=Robot.analogRead(TK4);
|
||||
|
||||
// write the sensor value on the screen
|
||||
Robot.fill(0, 255, 0);
|
||||
Robot.stroke(0, 255, 0);
|
||||
Robot.textSize(1);
|
||||
Robot.text(value, 0, 0);
|
||||
|
||||
delay(500);
|
||||
|
||||
// erase the previous text on the screen
|
||||
Robot.fill(255, 255, 255);
|
||||
Robot.stroke(255, 255, 255);
|
||||
Robot.textSize(1);
|
||||
Robot.text(value, 0, 0);
|
||||
}
|
||||
|
@ -230,16 +230,20 @@ void RobotMotorBoard::_analogRead(uint8_t codename){
|
||||
messageOut.sendData();
|
||||
}
|
||||
int RobotMotorBoard::IRread(uint8_t num){
|
||||
IRs.selectPin(num-1); //To make consistant with the pins labeled on the board
|
||||
return _IRread(num-1); //To make consistant with the pins labeled on the board
|
||||
}
|
||||
|
||||
int RobotMotorBoard::_IRread(uint8_t num){
|
||||
IRs.selectPin(num);
|
||||
return IRs.getAnalogValue();
|
||||
}
|
||||
|
||||
|
||||
void RobotMotorBoard::_readIR(){
|
||||
//Serial.println("readIR");
|
||||
int value;
|
||||
messageOut.writeByte(COMMAND_READ_IR_RE);
|
||||
for(int i=1;i<6;i++){
|
||||
value=IRread(i);
|
||||
for(int i=0;i<5;i++){
|
||||
value=_IRread(i);
|
||||
messageOut.writeInt(value);
|
||||
}
|
||||
messageOut.sendData();
|
||||
|
@ -105,6 +105,7 @@ class RobotMotorBoard:public LineFollow{
|
||||
void _digitalWrite(uint8_t codename, bool value);
|
||||
void _analogRead(uint8_t codename);
|
||||
void _digitalRead(uint8_t codename);
|
||||
int _IRread(uint8_t num);
|
||||
void _readIR();
|
||||
void _readTrim();
|
||||
|
||||
|
@ -19,7 +19,7 @@ class LineFollow{
|
||||
//virtual void motorsWrite(int speedL, int speedR)=0;
|
||||
virtual void motorsWritePct(int speedLpct, int speedRpct)=0;
|
||||
virtual void motorsStop()=0;
|
||||
virtual int IRread(uint8_t num)=0;
|
||||
virtual int _IRread(uint8_t num)=0;
|
||||
protected:
|
||||
virtual void reportActionDone()=0;
|
||||
|
||||
|
@ -19,7 +19,7 @@ void setup(){
|
||||
void loop(){
|
||||
bar=String(""); // empty the string
|
||||
// read the sensors and add them to the string
|
||||
bar=bar+RobotMotor.readIR(0)+' '+RobotMotor.readIR(1)+' '+RobotMotor.readIR(2)+' '+RobotMotor.readIR(3)+' '+RobotMotor.readIR(4);
|
||||
bar=bar+RobotMotor.IRread(1)+' '+RobotMotor.IRread(2)+' '+RobotMotor.IRread(3)+' '+RobotMotor.IRread(4)+' '+RobotMotor.IRread(5);
|
||||
// print out the values
|
||||
Serial.println(bar);
|
||||
delay(100);
|
||||
|
@ -79,7 +79,7 @@ void LineFollow::calibIRs(){
|
||||
void LineFollow::runLineFollow(){
|
||||
for(int count=0; count<5; count++)
|
||||
{
|
||||
lectura_sensor[count]=map(IRread(count),sensor_negro[count],sensor_blanco[count],0,127);
|
||||
lectura_sensor[count]=map(_IRread(count),sensor_negro[count],sensor_blanco[count],0,127);
|
||||
acu+=lectura_sensor[count];
|
||||
}
|
||||
|
||||
@ -135,7 +135,7 @@ void LineFollow::ajusta_niveles()
|
||||
int lectura=0;
|
||||
|
||||
for(int count=0; count<5; count++){
|
||||
lectura=IRread(count);
|
||||
lectura=_IRread(count);
|
||||
|
||||
if (lectura > sensor_blanco[count])
|
||||
sensor_blanco[count]=lectura;
|
||||
|
Loading…
Reference in New Issue
Block a user