1
0
mirror of https://github.com/arduino/Arduino.git synced 2025-02-20 14:54:31 +01:00

Merge pull request #30 from WestfW/master

Significant optiboot upgrade.
This commit is contained in:
David A. Mellis 2011-10-10 09:01:56 -07:00
commit f093cc6970
32 changed files with 3264 additions and 5071 deletions

View File

@ -10,7 +10,7 @@ uno.bootloader.extended_fuses=0x05
uno.bootloader.path=optiboot
uno.bootloader.file=optiboot_atmega328.hex
uno.bootloader.unlock_bits=0x3F
uno.bootloader.lock_bits=0x0F
uno.bootloader.lock_bits=0x2F
uno.build.mcu=atmega328p
uno.build.f_cpu=16000000L
uno.build.core=arduino

View File

@ -19,13 +19,70 @@
# program name should not be changed...
PROGRAM = optiboot
# The default behavior is to build using tools that are in the users
# current path variables, but we can also build using an installed
# Arduino user IDE setup, or the Arduino source tree.
# Uncomment this next lines to build within the arduino environment,
# using the arduino-included avrgcc toolset (mac and pc)
# ENV ?= arduino
# ENV ?= arduinodev
# OS ?= macosx
# OS ?= windows
# enter the parameters for the avrdude isp tool
ISPTOOL = stk500v2
ISPPORT = usb
ISPSPEED = -b 115200
MCU_TARGET = atmega168
LDSECTION = --section-start=.text=0x3e00
LDSECTIONS = -Wl,--section-start=.text=0x3e00 -Wl,--section-start=.version=0x3ffe
# Build environments
# Start of some ugly makefile-isms to allow optiboot to be built
# in several different environments. See the README.TXT file for
# details.
# default
fixpath = $(1)
ifeq ($(ENV), arduino)
# For Arduino, we assume that we're connected to the optiboot directory
# included with the arduino distribution, which means that the full set
# of avr-tools are "right up there" in standard places.
TOOLROOT = ../../../tools
GCCROOT = $(TOOLROOT)/avr/bin/
AVRDUDE_CONF = -C$(TOOLROOT)/avr/etc/avrdude.conf
ifeq ($(OS), windows)
# On windows, SOME of the tool paths will need to have backslashes instead
# of forward slashes (because they use windows cmd.exe for execution instead
# of a unix/mingw shell?) We also have to ensure that a consistent shell
# is used even if a unix shell is installed (ie as part of WINAVR)
fixpath = $(subst /,\,$1)
SHELL = cmd.exe
endif
else ifeq ($(ENV), arduinodev)
# Arduino IDE source code environment. Use the unpacked compilers created
# by the build (you'll need to do "ant build" first.)
ifeq ($(OS), macosx)
TOOLROOT = ../../../../build/macosx/work/Arduino.app/Contents/Resources/Java/hardware/tools
endif
ifeq ($(OS), windows)
TOOLROOT = ../../../../build/windows/work/hardware/tools
endif
GCCROOT = $(TOOLROOT)/avr/bin/
AVRDUDE_CONF = -C$(TOOLROOT)/avr/etc/avrdude.conf
else
GCCROOT =
AVRDUDE_CONF =
endif
#
# End of build environment code.
# the efuse should really be 0xf8; since, however, only the lower
# three bits of that byte are used on the atmega168, avrdude gets
@ -33,14 +90,17 @@ LDSECTION = --section-start=.text=0x3e00
# http://tinker.it/now/2007/02/24/the-tale-of-avrdude-atmega168-and-extended-bits-fuses/
#
# similarly, the lock bits should be 0xff instead of 0x3f (to
# unlock the bootloader section) and 0xcf instead of 0x0f (to
# unlock the bootloader section) and 0xcf instead of 0x2f (to
# lock it), but since the high two bits of the lock byte are
# unused, avrdude would get confused.
ISPFUSES = avrdude -c $(ISPTOOL) -p $(MCU_TARGET) -P $(ISPPORT) $(ISPSPEED) \
-e -u -U lock:w:0x3f:m -U efuse:w:0x$(EFUSE):m -U hfuse:w:0x$(HFUSE):m -U lfuse:w:0x$(LFUSE):m
ISPFLASH = avrdude -c $(ISPTOOL) -p $(MCU_TARGET) -P $(ISPPORT) $(ISPSPEED) \
-U flash:w:$(PROGRAM)_$(TARGET).hex -U lock:w:0x0f:m
ISPFUSES = $(GCCROOT)avrdude $(AVRDUDE_CONF) -c $(ISPTOOL) \
-p $(MCU_TARGET) -P $(ISPPORT) $(ISPSPEED) \
-e -u -U lock:w:0x3f:m -U efuse:w:0x$(EFUSE):m \
-U hfuse:w:0x$(HFUSE):m -U lfuse:w:0x$(LFUSE):m
ISPFLASH = $(GCCROOT)avrdude $(AVRDUDE_CONF) -c $(ISPTOOL) \
-p $(MCU_TARGET) -P $(ISPPORT) $(ISPSPEED) \
-U flash:w:$(PROGRAM)_$(TARGET).hex -U lock:w:0x2f:m
STK500 = "C:\Program Files\Atmel\AVR Tools\STK500\Stk500.exe"
STK500-1 = $(STK500) -e -d$(MCU_TARGET) -pf -vf -if$(PROGRAM)_$(TARGET).hex \
@ -53,15 +113,27 @@ OPTIMIZE = -Os -fno-inline-small-functions -fno-split-wide-types -mshort-calls
DEFS =
LIBS =
CC = avr-gcc
CC = $(GCCROOT)avr-gcc
# Override is only needed by avr-lib build system.
override CFLAGS = -g -Wall $(OPTIMIZE) -mmcu=$(MCU_TARGET) -DF_CPU=$(AVR_FREQ) $(DEFS)
override LDFLAGS = -Wl,$(LDSECTION) -Wl,--relax -nostartfiles
override LDFLAGS = $(LDSECTIONS) -Wl,--relax -Wl,--gc-sections -nostartfiles -nostdlib
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
OBJCOPY = $(GCCROOT)avr-objcopy
OBJDUMP = $(call fixpath,$(GCCROOT)avr-objdump)
SIZE = $(GCCROOT)avr-size
# Test platforms
# Virtual boot block test
virboot328: TARGET = atmega328
virboot328: MCU_TARGET = atmega328p
virboot328: CFLAGS += '-DLED_START_FLASHES=3' '-DBAUD_RATE=115200' '-DVIRTUAL_BOOT'
virboot328: AVR_FREQ = 16000000L
virboot328: LDSECTIONS = -Wl,--section-start=.text=0x7e00 -Wl,--section-start=.version=0x7ffe
virboot328: $(PROGRAM)_atmega328.hex
virboot328: $(PROGRAM)_atmega328.lst
# 20MHz clocked platforms
#
@ -69,6 +141,7 @@ OBJDUMP = avr-objdump
#
pro20: TARGET = pro_20mhz
pro20: MCU_TARGET = atmega168
pro20: CFLAGS += '-DLED_START_FLASHES=3' '-DBAUD_RATE=115200'
pro20: AVR_FREQ = 20000000L
pro20: $(PROGRAM)_pro_20mhz.hex
@ -76,9 +149,12 @@ pro20: $(PROGRAM)_pro_20mhz.lst
pro20_isp: pro20
pro20_isp: TARGET = pro_20mhz
pro20_isp: HFUSE = DD # 2.7V brownout
pro20_isp: LFUSE = C6 # Full swing xtal (20MHz) 258CK/14CK+4.1ms
pro20_isp: EFUSE = 02 # 512 byte boot
# 2.7V brownout
pro20_isp: HFUSE = DD
# Full swing xtal (20MHz) 258CK/14CK+4.1ms
pro20_isp: LFUSE = C6
# 512 byte boot
pro20_isp: EFUSE = 04
pro20_isp: isp
# 16MHz clocked platforms
@ -87,6 +163,7 @@ pro20_isp: isp
#
pro16: TARGET = pro_16MHz
pro16: MCU_TARGET = atmega168
pro16: CFLAGS += '-DLED_START_FLASHES=3' '-DBAUD_RATE=115200'
pro16: AVR_FREQ = 16000000L
pro16: $(PROGRAM)_pro_16MHz.hex
@ -94,14 +171,37 @@ pro16: $(PROGRAM)_pro_16MHz.lst
pro16_isp: pro16
pro16_isp: TARGET = pro_16MHz
pro16_isp: HFUSE = DD # 2.7V brownout
pro16_isp: LFUSE = C6 # Full swing xtal (20MHz) 258CK/14CK+4.1ms
pro16_isp: EFUSE = 02 # 512 byte boot
# 2.7V brownout
pro16_isp: HFUSE = DD
# Full swing xtal (20MHz) 258CK/14CK+4.1ms
pro16_isp: LFUSE = C6
# 512 byte boot
pro16_isp: EFUSE = 04
pro16_isp: isp
# Diecimila and NG use identical bootloaders
# Diecimila, Duemilanove with m168, and NG use identical bootloaders
# Call it "atmega168" for generality and clarity, keep "diecimila" for
# backward compatibility of makefile
#
atmega168: TARGET = atmega168
atmega168: MCU_TARGET = atmega168
atmega168: CFLAGS += '-DLED_START_FLASHES=3' '-DBAUD_RATE=115200'
atmega168: AVR_FREQ = 16000000L
atmega168: $(PROGRAM)_atmega168.hex
atmega168: $(PROGRAM)_atmega168.lst
atmega168_isp: atmega168
atmega168_isp: TARGET = atmega168
# 2.7V brownout
atmega168_isp: HFUSE = DD
# Low power xtal (16MHz) 16KCK/14CK+65ms
atmega168_isp: LFUSE = FF
# 512 byte boot
atmega168_isp: EFUSE = 04
atmega168_isp: isp
diecimila: TARGET = diecimila
diecimila: MCU_TARGET = atmega168
diecimila: CFLAGS += '-DLED_START_FLASHES=3' '-DBAUD_RATE=115200'
diecimila: AVR_FREQ = 16000000L
diecimila: $(PROGRAM)_diecimila.hex
@ -109,85 +209,188 @@ diecimila: $(PROGRAM)_diecimila.lst
diecimila_isp: diecimila
diecimila_isp: TARGET = diecimila
diecimila_isp: HFUSE = DD # 2.7V brownout
diecimila_isp: LFUSE = FF # Low power xtal (16MHz) 16KCK/14CK+65ms
diecimila_isp: EFUSE = 02 # 512 byte boot
# 2.7V brownout
diecimila_isp: HFUSE = DD
# Low power xtal (16MHz) 16KCK/14CK+65ms
diecimila_isp: LFUSE = FF
# 512 byte boot
diecimila_isp: EFUSE = 04
diecimila_isp: isp
atmega328: TARGET = atmega328
atmega328: MCU_TARGET = atmega328p
atmega328: CFLAGS += '-DLED_START_FLASHES=3' '-DBAUD_RATE=115200'
atmega328: AVR_FREQ = 16000000L
atmega328: LDSECTION = --section-start=.text=0x7e00
atmega328: LDSECTIONS = -Wl,--section-start=.text=0x7e00 -Wl,--section-start=.version=0x7ffe
atmega328: $(PROGRAM)_atmega328.hex
atmega328: $(PROGRAM)_atmega328.lst
atmega328_isp: atmega328
atmega328_isp: TARGET = atmega328
atmega328_isp: MCU_TARGET = atmega328p
atmega328_isp: HFUSE = DE # 512 byte boot
atmega328_isp: LFUSE = FF # Low power xtal (16MHz) 16KCK/14CK+65ms
atmega328_isp: EFUSE = 05 # 2.7V brownout
# 512 byte boot, SPIEN
atmega328_isp: HFUSE = DE
# Low power xtal (16MHz) 16KCK/14CK+65ms
atmega328_isp: LFUSE = FF
# 2.7V brownout
atmega328_isp: EFUSE = 05
atmega328_isp: isp
# Sanguino has a minimum boot size of 1024 bytes, so enable extra functions
#
sanguino: TARGET = atmega644p
sanguino: MCU_TARGET = atmega644p
sanguino: CFLAGS += '-DLED_START_FLASHES=3' '-DBAUD_RATE=115200' '-DBIGBOOT'
sanguino: AVR_FREQ = 16000000L
sanguino: LDSECTIONS = -Wl,--section-start=.text=0xfc00
sanguino: $(PROGRAM)_atmega644p.hex
sanguino: $(PROGRAM)_atmega644p.lst
sanguino_isp: sanguino
sanguino_isp: TARGET = atmega644p
sanguino_isp: MCU_TARGET = atmega644p
# 1024 byte boot
sanguino_isp: HFUSE = DE
# Low power xtal (16MHz) 16KCK/14CK+65ms
sanguino_isp: LFUSE = FF
# 2.7V brownout
sanguino_isp: EFUSE = 05
sanguino_isp: isp
# Mega has a minimum boot size of 1024 bytes, so enable extra functions
#mega: TARGET = atmega1280
mega: MCU_TARGET = atmega1280
mega: CFLAGS += '-DLED_START_FLASHES=3' '-DBAUD_RATE=115200' '-DBIGBOOT'
mega: AVR_FREQ = 16000000L
mega: LDSECTIONS = -Wl,--section-start=.text=0x1fc00
mega: $(PROGRAM)_atmega1280.hex
mega: $(PROGRAM)_atmega1280.lst
mega_isp: mega
mega_isp: TARGET = atmega1280
mega_isp: MCU_TARGET = atmega1280
# 1024 byte boot
mega_isp: HFUSE = DE
# Low power xtal (16MHz) 16KCK/14CK+65ms
mega_isp: LFUSE = FF
# 2.7V brownout
mega_isp: EFUSE = 05
mega_isp: isp
# ATmega8
#
atmega8: TARGET = atmega8
atmega8: MCU_TARGET = atmega8
atmega8: CFLAGS += '-DLED_START_FLASHES=3' '-DBAUD_RATE=115200'
atmega8: AVR_FREQ = 16000000L
atmega8: LDSECTIONS = -Wl,--section-start=.text=0x1e00 -Wl,--section-start=.version=0x1ffe
atmega8: $(PROGRAM)_atmega8.hex
atmega8: $(PROGRAM)_atmega8.lst
atmega8_isp: atmega8
atmega8_isp: TARGET = atmega8
atmega8_isp: MCU_TARGET = atmega8
# SPIEN, CKOPT, Bootsize=512B
atmega8_isp: HFUSE = CC
# 2.7V brownout, Low power xtal (16MHz) 16KCK/14CK+65ms
atmega8_isp: LFUSE = BF
atmega8_isp: isp
# ATmega88
#
atmega88: TARGET = atmega88
atmega88: MCU_TARGET = atmega88
atmega88: CFLAGS += '-DLED_START_FLASHES=3' '-DBAUD_RATE=115200'
atmega88: AVR_FREQ = 16000000L
atmega88: LDSECTIONS = -Wl,--section-start=.text=0x1e00 -Wl,--section-start=.version=0x1ffe
atmega88: $(PROGRAM)_atmega88.hex
atmega88: $(PROGRAM)_atmega88.lst
atmega88_isp: atmega88
atmega88_isp: TARGET = atmega88
atmega88_isp: MCU_TARGET = atmega88
# 2.7V brownout
atmega88_isp: HFUSE = DD
# Low power xtal (16MHz) 16KCK/14CK+65ms
atemga88_isp: LFUSE = FF
# 512 byte boot
atmega88_isp: EFUSE = 04
atmega88_isp: isp
# 8MHz clocked platforms
#
# These are capable of 115200 baud
#
lilypad: TARGET = lilypad
lilypad: CFLAGS += '-DLED_START_FLASHES=3' '-DSOFT_UART' '-DBAUD_RATE=115200'
lilypad: MCU_TARGET = atmega168
lilypad: CFLAGS += '-DLED_START_FLASHES=3' '-DBAUD_RATE=115200'
lilypad: AVR_FREQ = 8000000L
lilypad: $(PROGRAM)_lilypad.hex
lilypad: $(PROGRAM)_lilypad.lst
lilypad_isp: lilypad
lilypad_isp: TARGET = lilypad
lilypad_isp: HFUSE = DD # 2.7V brownout
lilypad_isp: LFUSE = E2 # Internal 8MHz osc (8MHz) Slow rising power
lilypad_isp: EFUSE = 02 # 512 byte boot
# 2.7V brownout
lilypad_isp: HFUSE = DD
# Internal 8MHz osc (8MHz) Slow rising power
lilypad_isp: LFUSE = E2
# 512 byte boot
lilypad_isp: EFUSE = 04
lilypad_isp: isp
lilypad_resonator: TARGET = lilypad_resonator
lilypad_resonator: CFLAGS += '-DLED_START_FLASHES=3' '-DSOFT_UART' '-DBAUD_RATE=115200'
lilypad_resonator: MCU_TARGET = atmega168
lilypad_resonator: CFLAGS += '-DLED_START_FLASHES=3' '-DBAUD_RATE=115200'
lilypad_resonator: AVR_FREQ = 8000000L
lilypad_resonator: $(PROGRAM)_lilypad_resonator.hex
lilypad_resonator: $(PROGRAM)_lilypad_resonator.lst
lilypad_resonator_isp: lilypad_resonator
lilypad_resonator_isp: TARGET = lilypad_resonator
lilypad_resonator_isp: HFUSE = DD # 2.7V brownout
lilypad_resonator_isp: LFUSE = C6 # Full swing xtal (20MHz) 258CK/14CK+4.1ms
lilypad_resonator_isp: EFUSE = 02 # 512 byte boot
# 2.7V brownout
lilypad_resonator_isp: HFUSE = DD
# Full swing xtal (20MHz) 258CK/14CK+4.1ms
lilypad_resonator_isp: LFUSE = C6
# 512 byte boot
lilypad_resonator_isp: EFUSE = 04
lilypad_resonator_isp: isp
pro8: TARGET = pro_8MHz
pro8: CFLAGS += '-DLED_START_FLASHES=3' '-DSOFT_UART' '-DBAUD_RATE=115200'
pro8: MCU_TARGET = atmega168
pro8: CFLAGS += '-DLED_START_FLASHES=3' '-DBAUD_RATE=115200'
pro8: AVR_FREQ = 8000000L
pro8: $(PROGRAM)_pro_8MHz.hex
pro8: $(PROGRAM)_pro_8MHz.lst
pro8_isp: pro8
pro8_isp: TARGET = pro_8MHz
pro8_isp: HFUSE = DD # 2.7V brownout
pro8_isp: LFUSE = C6 # Full swing xtal (20MHz) 258CK/14CK+4.1ms
pro8_isp: EFUSE = 02 # 512 byte boot
# 2.7V brownout
pro8_isp: HFUSE = DD
# Full swing xtal (20MHz) 258CK/14CK+4.1ms
pro8_isp: LFUSE = C6
# 512 byte boot
pro8_isp: EFUSE = 04
pro8_isp: isp
atmega328_pro8: TARGET = atmega328_pro_8MHz
atmega328_pro8: MCU_TARGET = atmega328p
atmega328_pro8: CFLAGS += '-DLED_START_FLASHES=3' '-DBAUD_RATE=115200'
atmega328_pro8: AVR_FREQ = 8000000L
atmega328_pro8: LDSECTION = --section-start=.text=0x7e00
atmega328_pro8: LDSECTIONS = -Wl,--section-start=.text=0x7e00 -Wl,--section-start=.version=0x7ffe
atmega328_pro8: $(PROGRAM)_atmega328_pro_8MHz.hex
atmega328_pro8: $(PROGRAM)_atmega328_pro_8MHz.lst
atmega328_pro8_isp: atmega328_pro8
atmega328_pro8_isp: TARGET = atmega328_pro_8MHz
atmega328_pro8_isp: MCU_TARGET = atmega328p
atmega328_pro8_isp: HFUSE = DE # 512 byte boot
atmega328_pro8_isp: LFUSE = FF # Low power xtal (16MHz) 16KCK/14CK+65ms
atmega328_pro8_isp: EFUSE = 05 # 2.7V brownout
# 512 byte boot, SPIEN
atmega328_pro8_isp: HFUSE = DE
# Low power xtal (16MHz) 16KCK/14CK+65ms
atmega328_pro8_isp: LFUSE = FF
# 2.7V brownout
atmega328_pro8_isp: EFUSE = 05
atmega328_pro8_isp: isp
# 1MHz clocked platforms
@ -200,18 +403,26 @@ luminet: MCU_TARGET = attiny84
luminet: CFLAGS += '-DLED_START_FLASHES=3' '-DSOFT_UART' '-DBAUD_RATE=9600'
luminet: CFLAGS += '-DVIRTUAL_BOOT_PARTITION'
luminet: AVR_FREQ = 1000000L
luminet: LDSECTION = --section-start=.text=0x1d00
luminet: LDSECTIONS = -Wl,--section-start=.text=0x1d00 -Wl,--section-start=.version=0x1efe
luminet: $(PROGRAM)_luminet.hex
luminet: $(PROGRAM)_luminet.lst
luminet_isp: luminet
luminet_isp: TARGET = luminet
luminet_isp: MCU_TARGET = attiny84
luminet_isp: HFUSE = DF # Brownout disabled
luminet_isp: LFUSE = 62 # 1MHz internal oscillator, slowly rising power
luminet_isp: EFUSE = FE # Self-programming enable
# Brownout disabled
luminet_isp: HFUSE = DF
# 1MHz internal oscillator, slowly rising power
luminet_isp: LFUSE = 62
# Self-programming enable
luminet_isp: EFUSE = FE
luminet_isp: isp
#
# Generic build instructions
#
#
isp: $(TARGET)
$(ISPFUSES)
$(ISPFLASH)
@ -222,6 +433,7 @@ isp-stk500: $(PROGRAM)_$(TARGET).hex
%.elf: $(OBJ)
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $^ $(LIBS)
$(SIZE) $@
clean:
rm -rf *.o *.elf *.lst *.map *.sym *.lss *.eep *.srec *.bin *.hex
@ -230,10 +442,10 @@ clean:
$(OBJDUMP) -h -S $< > $@
%.hex: %.elf
$(OBJCOPY) -j .text -j .data -O ihex $< $@
$(OBJCOPY) -j .text -j .data -j .version --set-section-flags .version=alloc,load -O ihex $< $@
%.srec: %.elf
$(OBJCOPY) -j .text -j .data -O srec $< $@
$(OBJCOPY) -j .text -j .data -j .version --set-section-flags .version=alloc,load -O srec $< $@
%.bin: %.elf
$(OBJCOPY) -j .text -j .data -O binary $< $@
$(OBJCOPY) -j .text -j .data -j .version --set-section-flags .version=alloc,load -O binary $< $@

View File

@ -0,0 +1,81 @@
This directory contains the Optiboot small bootloader for AVR
microcontrollers, somewhat modified specifically for the Arduino
environment.
Optiboot is more fully described here: http://code.google.com/p/optiboot/
and is the work of Peter Knight (aka Cathedrow), building on work of Jason P
Kyle, Spiff, and Ladyada. Arduino-specific modification are by Bill
Westfield (aka WestfW)
Arduino-specific issues are tracked as part of the Arduino project
at http://code.google.com/p/arduino
------------------------------------------------------------
Building optiboot for Arduino.
Production builds of optiboot for Arduino are done on a Mac in "unix mode"
using CrossPack-AVR-20100115. CrossPack tracks WINAVR (for windows), which
is just a package of avr-gcc and related utilities, so similar builds should
work on Windows or Linux systems.
One of the Arduino-specific changes is modifications to the makefile to
allow building optiboot using only the tools installed as part of the
Arduino environment, or the Arduino source development tree. All three
build procedures should yield identical binaries (.hex files) (although
this may change if compiler versions drift apart between CrossPack and
the Arduino IDE.)
Building Optiboot in the Arduino IDE Install.
Work in the .../hardware/arduino/bootloaders/optiboot/ and use the
"omake <targets>" command, which just generates a command that uses
the arduino-included "make" utility with a command like:
make OS=windows ENV=arduino <targets>
or make OS=macosx ENV=arduino <targets>
On windows, this assumes you're using the windows command shell. If
you're using a cygwin or mingw shell, or have one of those in your
path, the build will probably break due to slash vs backslash issues.
On a Mac, if you have the developer tools installed, you can use the
Apple-supplied version of make.
The makefile uses relative paths ("../../../tools/" and such) to find
the programs it needs, so you need to work in the existing optiboot
directory (or something created at the same "level") for it to work.
Building Optiboot in the Arduino Source Development Install.
In this case, there is no special shell script, and you're assumed to
have "make" installed somewhere in your path.
Build the Arduino source ("ant build") to unpack the tools into the
expected directory.
Work in Arduino/hardware/arduino/bootloaders/optiboot and use
make OS=windows ENV=arduinodev <targets>
or make OS=macosx ENV=arduinodev <targets>
Programming Chips Using the _isp Targets
The CPU targets have corresponding ISP targets that will actuall
program the bootloader into a chip. "atmega328_isp" for the atmega328,
for example. These will set the fuses and lock bits as appropriate as
well as uploading the bootloader code.
The makefiles default to using a USB programmer, but you can use
a serial programmer like ArduinoISP by changing the appropriate
variables when you invoke make:
make ISPTOOL=stk500v1 ISPPORT=/dev/tty.usbserial-A20e1eAN \
ISPSPEED=-b19200 atmega328_isp
The "atmega8_isp" target does not currently work, because the mega8
doesn't have the "extended" fuse that the generic ISP target wants to
pass on to avrdude. You'll need to run avrdude manually.
Standard Targets
I've reduced the pre-built and source-version-controlled targets
(.hex and .lst files included in the git repository) to just the
three basic 16MHz targets: atmega8, atmega16, atmega328.

View File

@ -0,0 +1,848 @@
/* Modified to use out for SPM access
** Peter Knight, Optiboot project http://optiboot.googlecode.com
**
** Todo: Tidy up
**
** "_short" routines execute 1 cycle faster and use 1 less word of flash
** by using "out" instruction instead of "sts".
**
** Additional elpm variants that trust the value of RAMPZ
*/
/* Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007 Eric B. Weddington
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of the copyright holders nor the names of
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. */
/* $Id: boot.h,v 1.27.2.3 2008/09/30 13:58:48 arcanum Exp $ */
#ifndef _AVR_BOOT_H_
#define _AVR_BOOT_H_ 1
/** \file */
/** \defgroup avr_boot <avr/boot.h>: Bootloader Support Utilities
\code
#include <avr/io.h>
#include <avr/boot.h>
\endcode
The macros in this module provide a C language interface to the
bootloader support functionality of certain AVR processors. These
macros are designed to work with all sizes of flash memory.
Global interrupts are not automatically disabled for these macros. It
is left up to the programmer to do this. See the code example below.
Also see the processor datasheet for caveats on having global interrupts
enabled during writing of the Flash.
\note Not all AVR processors provide bootloader support. See your
processor datasheet to see if it provides bootloader support.
\todo From email with Marek: On smaller devices (all except ATmega64/128),
__SPM_REG is in the I/O space, accessible with the shorter "in" and "out"
instructions - since the boot loader has a limited size, this could be an
important optimization.
\par API Usage Example
The following code shows typical usage of the boot API.
\code
#include <inttypes.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
void boot_program_page (uint32_t page, uint8_t *buf)
{
uint16_t i;
uint8_t sreg;
// Disable interrupts.
sreg = SREG;
cli();
eeprom_busy_wait ();
boot_page_erase (page);
boot_spm_busy_wait (); // Wait until the memory is erased.
for (i=0; i<SPM_PAGESIZE; i+=2)
{
// Set up little-endian word.
uint16_t w = *buf++;
w += (*buf++) << 8;
boot_page_fill (page + i, w);
}
boot_page_write (page); // Store buffer in flash page.
boot_spm_busy_wait(); // Wait until the memory is written.
// Reenable RWW-section again. We need this if we want to jump back
// to the application after bootloading.
boot_rww_enable ();
// Re-enable interrupts (if they were ever enabled).
SREG = sreg;
}\endcode */
#include <avr/eeprom.h>
#include <avr/io.h>
#include <inttypes.h>
#include <limits.h>
/* Check for SPM Control Register in processor. */
#if defined (SPMCSR)
# define __SPM_REG SPMCSR
#elif defined (SPMCR)
# define __SPM_REG SPMCR
#else
# error AVR processor does not provide bootloader support!
#endif
/* Check for SPM Enable bit. */
#if defined(SPMEN)
# define __SPM_ENABLE SPMEN
#elif defined(SELFPRGEN)
# define __SPM_ENABLE SELFPRGEN
#else
# error Cannot find SPM Enable bit definition!
#endif
/** \ingroup avr_boot
\def BOOTLOADER_SECTION
Used to declare a function or variable to be placed into a
new section called .bootloader. This section and its contents
can then be relocated to any address (such as the bootloader
NRWW area) at link-time. */
#define BOOTLOADER_SECTION __attribute__ ((section (".bootloader")))
/* Create common bit definitions. */
#ifdef ASB
#define __COMMON_ASB ASB
#else
#define __COMMON_ASB RWWSB
#endif
#ifdef ASRE
#define __COMMON_ASRE ASRE
#else
#define __COMMON_ASRE RWWSRE
#endif
/* Define the bit positions of the Boot Lock Bits. */
#define BLB12 5
#define BLB11 4
#define BLB02 3
#define BLB01 2
/** \ingroup avr_boot
\def boot_spm_interrupt_enable()
Enable the SPM interrupt. */
#define boot_spm_interrupt_enable() (__SPM_REG |= (uint8_t)_BV(SPMIE))
/** \ingroup avr_boot
\def boot_spm_interrupt_disable()
Disable the SPM interrupt. */
#define boot_spm_interrupt_disable() (__SPM_REG &= (uint8_t)~_BV(SPMIE))
/** \ingroup avr_boot
\def boot_is_spm_interrupt()
Check if the SPM interrupt is enabled. */
#define boot_is_spm_interrupt() (__SPM_REG & (uint8_t)_BV(SPMIE))
/** \ingroup avr_boot
\def boot_rww_busy()
Check if the RWW section is busy. */
#define boot_rww_busy() (__SPM_REG & (uint8_t)_BV(__COMMON_ASB))
/** \ingroup avr_boot
\def boot_spm_busy()
Check if the SPM instruction is busy. */
#define boot_spm_busy() (__SPM_REG & (uint8_t)_BV(__SPM_ENABLE))
/** \ingroup avr_boot
\def boot_spm_busy_wait()
Wait while the SPM instruction is busy. */
#define boot_spm_busy_wait() do{}while(boot_spm_busy())
#define __BOOT_PAGE_ERASE (_BV(__SPM_ENABLE) | _BV(PGERS))
#define __BOOT_PAGE_WRITE (_BV(__SPM_ENABLE) | _BV(PGWRT))
#define __BOOT_PAGE_FILL _BV(__SPM_ENABLE)
#define __BOOT_RWW_ENABLE (_BV(__SPM_ENABLE) | _BV(__COMMON_ASRE))
#define __BOOT_LOCK_BITS_SET (_BV(__SPM_ENABLE) | _BV(BLBSET))
#define __boot_page_fill_short(address, data) \
(__extension__({ \
__asm__ __volatile__ \
( \
"movw r0, %3\n\t" \
"out %0, %1\n\t" \
"spm\n\t" \
"clr r1\n\t" \
: \
: "i" (_SFR_IO_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_PAGE_FILL), \
"z" ((uint16_t)address), \
"r" ((uint16_t)data) \
: "r0" \
); \
}))
#define __boot_page_fill_normal(address, data) \
(__extension__({ \
__asm__ __volatile__ \
( \
"movw r0, %3\n\t" \
"sts %0, %1\n\t" \
"spm\n\t" \
"clr r1\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_PAGE_FILL), \
"z" ((uint16_t)address), \
"r" ((uint16_t)data) \
: "r0" \
); \
}))
#define __boot_page_fill_alternate(address, data)\
(__extension__({ \
__asm__ __volatile__ \
( \
"movw r0, %3\n\t" \
"sts %0, %1\n\t" \
"spm\n\t" \
".word 0xffff\n\t" \
"nop\n\t" \
"clr r1\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_PAGE_FILL), \
"z" ((uint16_t)address), \
"r" ((uint16_t)data) \
: "r0" \
); \
}))
#define __boot_page_fill_extended(address, data) \
(__extension__({ \
__asm__ __volatile__ \
( \
"movw r0, %4\n\t" \
"movw r30, %A3\n\t" \
"sts %1, %C3\n\t" \
"sts %0, %2\n\t" \
"spm\n\t" \
"clr r1\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"i" (_SFR_MEM_ADDR(RAMPZ)), \
"r" ((uint8_t)__BOOT_PAGE_FILL), \
"r" ((uint32_t)address), \
"r" ((uint16_t)data) \
: "r0", "r30", "r31" \
); \
}))
#define __boot_page_fill_extended_short(address, data) \
(__extension__({ \
__asm__ __volatile__ \
( \
"movw r0, %4\n\t" \
"movw r30, %A3\n\t" \
"out %1, %C3\n\t" \
"out %0, %2\n\t" \
"spm\n\t" \
"clr r1\n\t" \
: \
: "i" (_SFR_IO_ADDR(__SPM_REG)), \
"i" (_SFR_IO_ADDR(RAMPZ)), \
"r" ((uint8_t)__BOOT_PAGE_FILL), \
"r" ((uint32_t)address), \
"r" ((uint16_t)data) \
: "r0", "r30", "r31" \
); \
}))
#define __boot_page_erase_short(address) \
(__extension__({ \
__asm__ __volatile__ \
( \
"out %0, %1\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_IO_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_PAGE_ERASE), \
"z" ((uint16_t)address) \
); \
}))
#define __boot_page_erase_normal(address) \
(__extension__({ \
__asm__ __volatile__ \
( \
"sts %0, %1\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_PAGE_ERASE), \
"z" ((uint16_t)address) \
); \
}))
#define __boot_page_erase_alternate(address) \
(__extension__({ \
__asm__ __volatile__ \
( \
"sts %0, %1\n\t" \
"spm\n\t" \
".word 0xffff\n\t" \
"nop\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_PAGE_ERASE), \
"z" ((uint16_t)address) \
); \
}))
#define __boot_page_erase_extended(address) \
(__extension__({ \
__asm__ __volatile__ \
( \
"movw r30, %A3\n\t" \
"sts %1, %C3\n\t" \
"sts %0, %2\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"i" (_SFR_MEM_ADDR(RAMPZ)), \
"r" ((uint8_t)__BOOT_PAGE_ERASE), \
"r" ((uint32_t)address) \
: "r30", "r31" \
); \
}))
#define __boot_page_erase_extended_short(address) \
(__extension__({ \
__asm__ __volatile__ \
( \
"movw r30, %A3\n\t" \
"out %1, %C3\n\t" \
"out %0, %2\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_IO_ADDR(__SPM_REG)), \
"i" (_SFR_IO_ADDR(RAMPZ)), \
"r" ((uint8_t)__BOOT_PAGE_ERASE), \
"r" ((uint32_t)address) \
: "r30", "r31" \
); \
}))
#define __boot_page_write_short(address) \
(__extension__({ \
__asm__ __volatile__ \
( \
"out %0, %1\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_IO_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_PAGE_WRITE), \
"z" ((uint16_t)address) \
); \
}))
#define __boot_page_write_normal(address) \
(__extension__({ \
__asm__ __volatile__ \
( \
"sts %0, %1\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_PAGE_WRITE), \
"z" ((uint16_t)address) \
); \
}))
#define __boot_page_write_alternate(address) \
(__extension__({ \
__asm__ __volatile__ \
( \
"sts %0, %1\n\t" \
"spm\n\t" \
".word 0xffff\n\t" \
"nop\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_PAGE_WRITE), \
"z" ((uint16_t)address) \
); \
}))
#define __boot_page_write_extended(address) \
(__extension__({ \
__asm__ __volatile__ \
( \
"movw r30, %A3\n\t" \
"sts %1, %C3\n\t" \
"sts %0, %2\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"i" (_SFR_MEM_ADDR(RAMPZ)), \
"r" ((uint8_t)__BOOT_PAGE_WRITE), \
"r" ((uint32_t)address) \
: "r30", "r31" \
); \
}))
#define __boot_page_write_extended_short(address) \
(__extension__({ \
__asm__ __volatile__ \
( \
"movw r30, %A3\n\t" \
"out %1, %C3\n\t" \
"out %0, %2\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_IO_ADDR(__SPM_REG)), \
"i" (_SFR_IO_ADDR(RAMPZ)), \
"r" ((uint8_t)__BOOT_PAGE_WRITE), \
"r" ((uint32_t)address) \
: "r30", "r31" \
); \
}))
#define __boot_rww_enable_short() \
(__extension__({ \
__asm__ __volatile__ \
( \
"out %0, %1\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_IO_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_RWW_ENABLE) \
); \
}))
#define __boot_rww_enable() \
(__extension__({ \
__asm__ __volatile__ \
( \
"sts %0, %1\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_RWW_ENABLE) \
); \
}))
#define __boot_rww_enable_alternate() \
(__extension__({ \
__asm__ __volatile__ \
( \
"sts %0, %1\n\t" \
"spm\n\t" \
".word 0xffff\n\t" \
"nop\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_RWW_ENABLE) \
); \
}))
/* From the mega16/mega128 data sheets (maybe others):
Bits by SPM To set the Boot Loader Lock bits, write the desired data to
R0, write "X0001001" to SPMCR and execute SPM within four clock cycles
after writing SPMCR. The only accessible Lock bits are the Boot Lock bits
that may prevent the Application and Boot Loader section from any
software update by the MCU.
If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock bit
will be programmed if an SPM instruction is executed within four cycles
after BLBSET and SPMEN (or SELFPRGEN) are set in SPMCR. The Z-pointer is
don't care during this operation, but for future compatibility it is
recommended to load the Z-pointer with $0001 (same as used for reading the
Lock bits). For future compatibility It is also recommended to set bits 7,
6, 1, and 0 in R0 to 1 when writing the Lock bits. When programming the
Lock bits the entire Flash can be read during the operation. */
#define __boot_lock_bits_set_short(lock_bits) \
(__extension__({ \
uint8_t value = (uint8_t)(~(lock_bits)); \
__asm__ __volatile__ \
( \
"ldi r30, 1\n\t" \
"ldi r31, 0\n\t" \
"mov r0, %2\n\t" \
"out %0, %1\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_IO_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_LOCK_BITS_SET), \
"r" (value) \
: "r0", "r30", "r31" \
); \
}))
#define __boot_lock_bits_set(lock_bits) \
(__extension__({ \
uint8_t value = (uint8_t)(~(lock_bits)); \
__asm__ __volatile__ \
( \
"ldi r30, 1\n\t" \
"ldi r31, 0\n\t" \
"mov r0, %2\n\t" \
"sts %0, %1\n\t" \
"spm\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_LOCK_BITS_SET), \
"r" (value) \
: "r0", "r30", "r31" \
); \
}))
#define __boot_lock_bits_set_alternate(lock_bits) \
(__extension__({ \
uint8_t value = (uint8_t)(~(lock_bits)); \
__asm__ __volatile__ \
( \
"ldi r30, 1\n\t" \
"ldi r31, 0\n\t" \
"mov r0, %2\n\t" \
"sts %0, %1\n\t" \
"spm\n\t" \
".word 0xffff\n\t" \
"nop\n\t" \
: \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_LOCK_BITS_SET), \
"r" (value) \
: "r0", "r30", "r31" \
); \
}))
/*
Reading lock and fuse bits:
Similarly to writing the lock bits above, set BLBSET and SPMEN (or
SELFPRGEN) bits in __SPMREG, and then (within four clock cycles) issue an
LPM instruction.
Z address: contents:
0x0000 low fuse bits
0x0001 lock bits
0x0002 extended fuse bits
0x0003 high fuse bits
Sounds confusing, doesn't it?
Unlike the macros in pgmspace.h, no need to care for non-enhanced
cores here as these old cores do not provide SPM support anyway.
*/
/** \ingroup avr_boot
\def GET_LOW_FUSE_BITS
address to read the low fuse bits, using boot_lock_fuse_bits_get
*/
#define GET_LOW_FUSE_BITS (0x0000)
/** \ingroup avr_boot
\def GET_LOCK_BITS
address to read the lock bits, using boot_lock_fuse_bits_get
*/
#define GET_LOCK_BITS (0x0001)
/** \ingroup avr_boot
\def GET_EXTENDED_FUSE_BITS
address to read the extended fuse bits, using boot_lock_fuse_bits_get
*/
#define GET_EXTENDED_FUSE_BITS (0x0002)
/** \ingroup avr_boot
\def GET_HIGH_FUSE_BITS
address to read the high fuse bits, using boot_lock_fuse_bits_get
*/
#define GET_HIGH_FUSE_BITS (0x0003)
/** \ingroup avr_boot
\def boot_lock_fuse_bits_get(address)
Read the lock or fuse bits at \c address.
Parameter \c address can be any of GET_LOW_FUSE_BITS,
GET_LOCK_BITS, GET_EXTENDED_FUSE_BITS, or GET_HIGH_FUSE_BITS.
\note The lock and fuse bits returned are the physical values,
i.e. a bit returned as 0 means the corresponding fuse or lock bit
is programmed.
*/
#define boot_lock_fuse_bits_get_short(address) \
(__extension__({ \
uint8_t __result; \
__asm__ __volatile__ \
( \
"ldi r30, %3\n\t" \
"ldi r31, 0\n\t" \
"out %1, %2\n\t" \
"lpm %0, Z\n\t" \
: "=r" (__result) \
: "i" (_SFR_IO_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_LOCK_BITS_SET), \
"M" (address) \
: "r0", "r30", "r31" \
); \
__result; \
}))
#define boot_lock_fuse_bits_get(address) \
(__extension__({ \
uint8_t __result; \
__asm__ __volatile__ \
( \
"ldi r30, %3\n\t" \
"ldi r31, 0\n\t" \
"sts %1, %2\n\t" \
"lpm %0, Z\n\t" \
: "=r" (__result) \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_LOCK_BITS_SET), \
"M" (address) \
: "r0", "r30", "r31" \
); \
__result; \
}))
/** \ingroup avr_boot
\def boot_signature_byte_get(address)
Read the Signature Row byte at \c address. For some MCU types,
this function can also retrieve the factory-stored oscillator
calibration bytes.
Parameter \c address can be 0-0x1f as documented by the datasheet.
\note The values are MCU type dependent.
*/
#define __BOOT_SIGROW_READ (_BV(__SPM_ENABLE) | _BV(SIGRD))
#define boot_signature_byte_get_short(addr) \
(__extension__({ \
uint16_t __addr16 = (uint16_t)(addr); \
uint8_t __result; \
__asm__ __volatile__ \
( \
"out %1, %2\n\t" \
"lpm %0, Z" "\n\t" \
: "=r" (__result) \
: "i" (_SFR_IO_ADDR(__SPM_REG)), \
"r" ((uint8_t) __BOOT_SIGROW_READ), \
"z" (__addr16) \
); \
__result; \
}))
#define boot_signature_byte_get(addr) \
(__extension__({ \
uint16_t __addr16 = (uint16_t)(addr); \
uint8_t __result; \
__asm__ __volatile__ \
( \
"sts %1, %2\n\t" \
"lpm %0, Z" "\n\t" \
: "=r" (__result) \
: "i" (_SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t) __BOOT_SIGROW_READ), \
"z" (__addr16) \
); \
__result; \
}))
/** \ingroup avr_boot
\def boot_page_fill(address, data)
Fill the bootloader temporary page buffer for flash
address with data word.
\note The address is a byte address. The data is a word. The AVR
writes data to the buffer a word at a time, but addresses the buffer
per byte! So, increment your address by 2 between calls, and send 2
data bytes in a word format! The LSB of the data is written to the lower
address; the MSB of the data is written to the higher address.*/
/** \ingroup avr_boot
\def boot_page_erase(address)
Erase the flash page that contains address.
\note address is a byte address in flash, not a word address. */
/** \ingroup avr_boot
\def boot_page_write(address)
Write the bootloader temporary page buffer
to flash page that contains address.
\note address is a byte address in flash, not a word address. */
/** \ingroup avr_boot
\def boot_rww_enable()
Enable the Read-While-Write memory section. */
/** \ingroup avr_boot
\def boot_lock_bits_set(lock_bits)
Set the bootloader lock bits.
\param lock_bits A mask of which Boot Loader Lock Bits to set.
\note In this context, a 'set bit' will be written to a zero value.
Note also that only BLBxx bits can be programmed by this command.
For example, to disallow the SPM instruction from writing to the Boot
Loader memory section of flash, you would use this macro as such:
\code
boot_lock_bits_set (_BV (BLB11));
\endcode
\note Like any lock bits, the Boot Loader Lock Bits, once set,
cannot be cleared again except by a chip erase which will in turn
also erase the boot loader itself. */
/* Normal versions of the macros use 16-bit addresses.
Extended versions of the macros use 32-bit addresses.
Alternate versions of the macros use 16-bit addresses and require special
instruction sequences after LPM.
FLASHEND is defined in the ioXXXX.h file.
USHRT_MAX is defined in <limits.h>. */
#if defined(__AVR_ATmega161__) || defined(__AVR_ATmega163__) \
|| defined(__AVR_ATmega323__)
/* Alternate: ATmega161/163/323 and 16 bit address */
#define boot_page_fill(address, data) __boot_page_fill_alternate(address, data)
#define boot_page_erase(address) __boot_page_erase_alternate(address)
#define boot_page_write(address) __boot_page_write_alternate(address)
#define boot_rww_enable() __boot_rww_enable_alternate()
#define boot_lock_bits_set(lock_bits) __boot_lock_bits_set_alternate(lock_bits)
#elif (FLASHEND > USHRT_MAX)
/* Extended: >16 bit address */
#define boot_page_fill(address, data) __boot_page_fill_extended_short(address, data)
#define boot_page_erase(address) __boot_page_erase_extended_short(address)
#define boot_page_write(address) __boot_page_write_extended_short(address)
#define boot_rww_enable() __boot_rww_enable_short()
#define boot_lock_bits_set(lock_bits) __boot_lock_bits_set_short(lock_bits)
#else
/* Normal: 16 bit address */
#define boot_page_fill(address, data) __boot_page_fill_short(address, data)
#define boot_page_erase(address) __boot_page_erase_short(address)
#define boot_page_write(address) __boot_page_write_short(address)
#define boot_rww_enable() __boot_rww_enable_short()
#define boot_lock_bits_set(lock_bits) __boot_lock_bits_set_short(lock_bits)
#endif
/** \ingroup avr_boot
Same as boot_page_fill() except it waits for eeprom and spm operations to
complete before filling the page. */
#define boot_page_fill_safe(address, data) \
do { \
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_page_fill(address, data); \
} while (0)
/** \ingroup avr_boot
Same as boot_page_erase() except it waits for eeprom and spm operations to
complete before erasing the page. */
#define boot_page_erase_safe(address) \
do { \
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_page_erase (address); \
} while (0)
/** \ingroup avr_boot
Same as boot_page_write() except it waits for eeprom and spm operations to
complete before writing the page. */
#define boot_page_write_safe(address) \
do { \
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_page_write (address); \
} while (0)
/** \ingroup avr_boot
Same as boot_rww_enable() except waits for eeprom and spm operations to
complete before enabling the RWW mameory. */
#define boot_rww_enable_safe() \
do { \
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_rww_enable(); \
} while (0)
/** \ingroup avr_boot
Same as boot_lock_bits_set() except waits for eeprom and spm operations to
complete before setting the lock bits. */
#define boot_lock_bits_set_safe(lock_bits) \
do { \
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_lock_bits_set (lock_bits); \
} while (0)
#endif /* _AVR_BOOT_H_ */

View File

@ -1,13 +1,20 @@
#!/bin/bash
make clean
#
# The "big three" standard bootloaders.
make atmega8
make atmega168
make atmega328
#
# additional buildable platforms of
# somewhat questionable support level
make lilypad
make lilypad_resonator
make pro8
make pro16
make pro20
make diecimila
make ng
make atmega328
make atmega328_pro8
make sanguino
make mega
make atmega88
make luminet

View File

@ -0,0 +1,2 @@
echo ../../../tools/avr/bin/make OS=macosx ENV=arduino $*
../../../tools/avr/bin/make OS=macosx ENV=arduino $*

View File

@ -0,0 +1 @@
..\..\..\tools\avr\utils\bin\make OS=windows ENV=arduino %*

View File

@ -1,6 +1,11 @@
/**********************************************************/
/* Optiboot bootloader for Arduino */
/* */
/* http://optiboot.googlecode.com */
/* */
/* Arduino-maintained version : See README.TXT */
/* http://code.google.com/p/arduino/ */
/* */
/* Heavily optimised bootloader that is faster and */
/* smaller than the Arduino standard bootloader */
/* */
@ -10,6 +15,8 @@
/* Higher baud rate speeds up programming */
/* Written almost entirely in C */
/* Customisable timeout with accurate timeconstant */
/* Optional virtual UART. No hardware UART required. */
/* Optional virtual boot partition for devices without. */
/* */
/* What you lose: */
/* Implements a skeleton STK500 protocol which is */
@ -18,12 +25,19 @@
/* High baud rate breaks compatibility with standard */
/* Arduino flash settings */
/* */
/* Currently supports: */
/* ATmega168 based devices (Diecimila etc) */
/* Fully supported: */
/* ATmega168 based devices (Diecimila etc) */
/* ATmega328P based devices (Duemilanove etc) */
/* */
/* Alpha test */
/* ATmega1280 based devices (Arduino Mega) */
/* */
/* Work in progress: */
/* ATmega644P based devices (Sanguino) */
/* ATtiny84 based devices (Luminet) */
/* */
/* Does not support: */
/* ATmega1280 based devices (eg. Mega) */
/* USB based devices (eg. Teensy) */
/* */
/* Assumptions: */
/* The code makes several assumptions that reduce the */
@ -64,102 +78,123 @@
/* */
/**********************************************************/
/**********************************************************/
/* */
/* Optional defines: */
/* */
/**********************************************************/
/* */
/* BIG_BOOT: */
/* Build a 1k bootloader, not 512 bytes. This turns on */
/* extra functionality. */
/* */
/* BAUD_RATE: */
/* Set bootloader baud rate. */
/* */
/* LUDICROUS_SPEED: */
/* 230400 baud :-) */
/* */
/* SOFT_UART: */
/* Use AVR305 soft-UART instead of hardware UART. */
/* */
/* LED_START_FLASHES: */
/* Number of LED flashes on bootup. */
/* */
/* LED_DATA_FLASH: */
/* Flash LED when transferring data. For boards without */
/* TX or RX LEDs, or for people who like blinky lights. */
/* */
/* SUPPORT_EEPROM: */
/* Support reading and writing from EEPROM. This is not */
/* used by Arduino, so off by default. */
/* */
/* TIMEOUT_MS: */
/* Bootloader timeout period, in milliseconds. */
/* 500,1000,2000,4000,8000 supported. */
/* */
/**********************************************************/
/**********************************************************/
/* Version Numbers! */
/* */
/* Arduino Optiboot now includes this Version number in */
/* the source and object code. */
/* */
/* Version 3 was released as zip from the optiboot */
/* repository and was distributed with Arduino 0022. */
/* Version 4 starts with the arduino repository commit */
/* that brought the arduino repository up-to-date with */
/* the optiboot source tree changes since v3. */
/* */
/**********************************************************/
/**********************************************************/
/* Edit History: */
/* */
/* 4.4 WestfW: add initialization of address to keep */
/* the compiler happy. Change SC'ed targets. */
/* Return the SW version via READ PARAM */
/* 4.3 WestfW: catch framing errors in getch(), so that */
/* AVRISP works without HW kludges. */
/* http://code.google.com/p/arduino/issues/detail?id=368n*/
/* 4.2 WestfW: reduce code size, fix timeouts, change */
/* verifySpace to use WDT instead of appstart */
/* 4.1 WestfW: put version number in binary. */
/**********************************************************/
#define OPTIBOOT_MAJVER 4
#define OPTIBOOT_MINVER 4
#define MAKESTR(a) #a
#define MAKEVER(a, b) MAKESTR(a*256+b)
asm(" .section .version\n"
"optiboot_version: .word " MAKEVER(OPTIBOOT_MAJVER, OPTIBOOT_MINVER) "\n"
" .section .text\n");
#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <avr/boot.h>
//#define LED_DATA_FLASH
// <avr/boot.h> uses sts instructions, but this version uses out instructions
// This saves cycles and program memory.
#include "boot.h"
// We don't use <avr/wdt.h> as those routines have interrupt overhead we don't need.
#include "pin_defs.h"
#include "stk500.h"
#ifndef LED_START_FLASHES
#define LED_START_FLASHES 0
#endif
/* Build-time variables */
/* BAUD_RATE Programming baud rate */
/* LED_NO_FLASHES Number of LED flashes on boot */
/* FLASH_TIME_MS Duration of each LED flash */
/* BOOT_TIMEOUT_MS Serial port wait time before exiting bootloader */
#ifdef LUDICROUS_SPEED
#define BAUD_RATE 230400L
#endif
/* set the UART baud rate */
/* set the UART baud rate defaults */
#ifndef BAUD_RATE
#define BAUD_RATE 19200
#endif
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__)
/* Onboard LED is connected to pin PB5 in Arduino NG, Diecimila, and Duemilanove */
#define LED_DDR DDRB
#define LED_PORT PORTB
#define LED_PIN PINB
#define LED PINB5
/* Ports for soft UART */
#ifdef SOFT_UART
#define UART_PORT PORTD
#define UART_PIN PIND
#define UART_DDR DDRD
#define UART_TX_BIT 1
#define UART_RX_BIT 0
#if F_CPU >= 8000000L
#define BAUD_RATE 115200L // Highest rate Avrdude win32 will support
#elsif F_CPU >= 1000000L
#define BAUD_RATE 9600L // 19200 also supported, but with significant error
#elsif F_CPU >= 128000L
#define BAUD_RATE 4800L // Good for 128kHz internal RC
#else
#define BAUD_RATE 1200L // Good even at 32768Hz
#endif
#endif
#if defined(__AVR_ATtiny84__)
/* Onboard LED is connected to pin PB5 in Arduino NG, Diecimila, and Duemilanove */
#define LED_DDR DDRA
#define LED_PORT PORTA
#define LED_PIN PINA
#define LED PINA4
/* Ports for soft UART - left port only for now*/
#ifdef SOFT_UART
#define UART_PORT PORTA
#define UART_PIN PINA
#define UART_DDR DDRA
#define UART_TX_BIT 2
#define UART_RX_BIT 3
/* Switch in soft UART for hard baud rates */
#if (F_CPU/BAUD_RATE) > 280 // > 57600 for 16MHz
#ifndef SOFT_UART
#define SOFT_UART
#endif
#endif
/* STK500 constants list, from AVRDUDE */
#define STK_OK 0x10
#define STK_FAILED 0x11 // Not used
#define STK_UNKNOWN 0x12 // Not used
#define STK_NODEVICE 0x13 // Not used
#define STK_INSYNC 0x14 // ' '
#define STK_NOSYNC 0x15 // Not used
#define ADC_CHANNEL_ERROR 0x16 // Not used
#define ADC_MEASURE_OK 0x17 // Not used
#define PWM_CHANNEL_ERROR 0x18 // Not used
#define PWM_ADJUST_OK 0x19 // Not used
#define CRC_EOP 0x20 // 'SPACE'
#define STK_GET_SYNC 0x30 // '0'
#define STK_GET_SIGN_ON 0x31 // '1'
#define STK_SET_PARAMETER 0x40 // '@'
#define STK_GET_PARAMETER 0x41 // 'A'
#define STK_SET_DEVICE 0x42 // 'B'
#define STK_SET_DEVICE_EXT 0x45 // 'E'
#define STK_ENTER_PROGMODE 0x50 // 'P'
#define STK_LEAVE_PROGMODE 0x51 // 'Q'
#define STK_CHIP_ERASE 0x52 // 'R'
#define STK_CHECK_AUTOINC 0x53 // 'S'
#define STK_LOAD_ADDRESS 0x55 // 'U'
#define STK_UNIVERSAL 0x56 // 'V'
#define STK_PROG_FLASH 0x60 // '`'
#define STK_PROG_DATA 0x61 // 'a'
#define STK_PROG_FUSE 0x62 // 'b'
#define STK_PROG_LOCK 0x63 // 'c'
#define STK_PROG_PAGE 0x64 // 'd'
#define STK_PROG_FUSE_EXT 0x65 // 'e'
#define STK_READ_FLASH 0x70 // 'p'
#define STK_READ_DATA 0x71 // 'q'
#define STK_READ_FUSE 0x72 // 'r'
#define STK_READ_LOCK 0x73 // 's'
#define STK_READ_PAGE 0x74 // 't'
#define STK_READ_SIGN 0x75 // 'u'
#define STK_READ_OSCCAL 0x76 // 'v'
#define STK_READ_FUSE_EXT 0x77 // 'w'
#define STK_READ_OSCCAL_EXT 0x78 // 'x'
/* Watchdog settings */
#define WATCHDOG_OFF (0)
#define WATCHDOG_16MS (_BV(WDE))
@ -170,8 +205,10 @@
#define WATCHDOG_500MS (_BV(WDP2) | _BV(WDP0) | _BV(WDE))
#define WATCHDOG_1S (_BV(WDP2) | _BV(WDP1) | _BV(WDE))
#define WATCHDOG_2S (_BV(WDP2) | _BV(WDP1) | _BV(WDP0) | _BV(WDE))
#define WATCHDOG_4S (_BV(WDE3) | _BV(WDE))
#define WATCHDOG_8S (_BV(WDE3) | _BV(WDE0) | _BV(WDE))
#ifndef __AVR_ATmega8__
#define WATCHDOG_4S (_BV(WDP3) | _BV(WDE))
#define WATCHDOG_8S (_BV(WDP3) | _BV(WDP0) | _BV(WDE))
#endif
/* Function Prototypes */
/* The main function is in init9, which removes the interrupt vector table */
@ -191,18 +228,48 @@ void uartDelay() __attribute__ ((naked));
#endif
void appStart() __attribute__ ((naked));
#if defined(__AVR_ATmega168__)
#define RAMSTART (0x100)
#define NRWWSTART (0x3800)
#elif defined(__AVR_ATmega328P__)
#define RAMSTART (0x100)
#define NRWWSTART (0x7000)
#elif defined (__AVR_ATmega644P__)
#define RAMSTART (0x100)
#define NRWWSTART (0xE000)
#elif defined(__AVR_ATtiny84__)
#define RAMSTART (0x100)
#define NRWWSTART (0x0000)
#elif defined(__AVR_ATmega1280__)
#define RAMSTART (0x200)
#define NRWWSTART (0xE000)
#elif defined(__AVR_ATmega8__) || defined(__AVR_ATmega88__)
#define RAMSTART (0x100)
#define NRWWSTART (0x1800)
#endif
/* C zero initialises all global variables. However, that requires */
/* These definitions are NOT zero initialised, but that doesn't matter */
/* This allows us to drop the zero init code, saving us memory */
#define buff ((uint8_t*)(0x100))
#define address (*(uint16_t*)(0x200))
#define length (*(uint8_t*)(0x202))
#define buff ((uint8_t*)(RAMSTART))
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4))
#define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6))
#endif
/* main program starts here */
int main(void) {
uint8_t ch;
/*
* Making these local and in registers prevents the need for initializing
* them, and also saves space because code no longer stores to memory.
* (initializing address keeps the compiler happy, but isn't really
* necessary, and uses 4 bytes of flash.)
*/
register uint16_t address = 0;
register uint8_t length;
// After the zero init loop, this is the first code to run.
//
// This code makes the following assumptions:
@ -212,20 +279,9 @@ int main(void) {
//
// If not, uncomment the following instructions:
// cli();
// SP=RAMEND; // This is done by hardware reset
asm volatile ("clr __zero_reg__");
uint8_t ch;
#if LED_START_FLASHES > 0
// Set up Timer 1 for timeout counter
TCCR1B = _BV(CS12) | _BV(CS10); // div 1024
#endif
#ifndef SOFT_UART
UCSR0A = _BV(U2X0); //Double speed mode USART0
UCSR0B = _BV(RXEN0) | _BV(TXEN0);
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
#ifdef __AVR_ATmega8__
SP=RAMEND; // This is done by hardware reset
#endif
// Adaboot no-wait mod
@ -233,8 +289,26 @@ int main(void) {
MCUSR = 0;
if (!(ch & _BV(EXTRF))) appStart();
#if LED_START_FLASHES > 0
// Set up Timer 1 for timeout counter
TCCR1B = _BV(CS12) | _BV(CS10); // div 1024
#endif
#ifndef SOFT_UART
#ifdef __AVR_ATmega8__
UCSRA = _BV(U2X); //Double speed mode USART
UCSRB = _BV(RXEN) | _BV(TXEN); // enable Rx & Tx
UCSRC = _BV(URSEL) | _BV(UCSZ1) | _BV(UCSZ0); // config USART; 8N1
UBRRL = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
#else
UCSR0A = _BV(U2X0); //Double speed mode USART0
UCSR0B = _BV(RXEN0) | _BV(TXEN0);
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
#endif
#endif
// Set up watchdog to trigger after 500ms
watchdogConfig(WATCHDOG_500MS);
watchdogConfig(WATCHDOG_1S);
/* Set LED pin as output */
LED_DDR |= _BV(LED);
@ -255,9 +329,22 @@ int main(void) {
ch = getch();
if(ch == STK_GET_PARAMETER) {
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
putch(0x03);
unsigned char which = getch();
verifySpace();
if (which == 0x82) {
/*
* Send optiboot version as "minor SW version"
*/
putch(OPTIBOOT_MINVER);
} else if (which == 0x81) {
putch(OPTIBOOT_MAJVER);
} else {
/*
* GET PARAMETER returns a generic 0x03 reply for
* other parameters - enough to keep Avrdude happy
*/
putch(0x03);
}
}
else if(ch == STK_SET_DEVICE) {
// SET DEVICE is ignored
@ -269,9 +356,15 @@ int main(void) {
}
else if(ch == STK_LOAD_ADDRESS) {
// LOAD ADDRESS
address = getch();
address = (address & 0xff) | (getch() << 8);
address += address; // Convert from word address to byte address
uint16_t newAddress;
newAddress = getch();
newAddress = (newAddress & 0xff) | (getch() << 8);
#ifdef RAMPZ
// Transfer top bit to RAMPZ
RAMPZ = (newAddress & 0x8000) ? 1 : 0;
#endif
newAddress += newAddress; // Convert from word address to byte address
address = newAddress;
verifySpace();
}
else if(ch == STK_UNIVERSAL) {
@ -279,25 +372,31 @@ int main(void) {
getNch(4);
putch(0x00);
}
/* Write memory, length is big endian and is in bytes */
/* Write memory, length is big endian and is in bytes */
else if(ch == STK_PROG_PAGE) {
// PROGRAM PAGE - we support flash programming only, not EEPROM
uint8_t *bufPtr;
uint16_t addrPtr;
getLen();
getch(); /* getlen() */
length = getch();
getch();
// Immediately start page erase - this will 4.5ms
boot_page_erase((uint16_t)(void*)address);
// If we are in RWW section, immediately start page erase
if (address < NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address);
// While that is going on, read in page contents
bufPtr = buff;
do *bufPtr++ = getch();
while (--length);
// If we are in NRWW section, page erase has to be delayed until now.
// Todo: Take RAMPZ into account
if (address >= NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address);
// Read command terminator, start reply
verifySpace();
// If only a partial page is to be programmed, the erase might not be complete.
// So check that here
boot_spm_busy_wait();
@ -310,10 +409,10 @@ int main(void) {
// Move RESET vector to WDT vector
uint16_t vect = buff[0] | (buff[1]<<8);
rstVect = vect;
wdtVect = buff[10] | (buff[11]<<8);
wdtVect = buff[8] | (buff[9]<<8);
vect -= 4; // Instruction is a relative jump (rjmp), so recalculate.
buff[10] = vect & 0xff;
buff[11] = vect >> 8;
buff[8] = vect & 0xff;
buff[9] = vect >> 8;
// Add jump to bootloader at RESET vector
buff[0] = 0x7f;
@ -329,12 +428,12 @@ int main(void) {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
boot_page_fill((uint16_t)(void*)addrPtr,a);
__boot_page_fill_short((uint16_t)(void*)addrPtr,a);
addrPtr += 2;
} while (--ch);
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
__boot_page_write_short((uint16_t)(void*)address);
boot_spm_busy_wait();
#if defined(RWWSRE)
@ -346,22 +445,37 @@ int main(void) {
/* Read memory block mode, length is big endian. */
else if(ch == STK_READ_PAGE) {
// READ PAGE - we only read flash
getLen();
getch(); /* getlen() */
length = getch();
getch();
verifySpace();
#ifdef VIRTUAL_BOOT_PARTITION
do {
// Undo vector patch in bottom page so verify passes
if (address == 0) ch=rstVect & 0xff;
else if (address == 1) ch=rstVect >> 8;
else if (address == 10) ch=wdtVect & 0xff;
else if (address == 11) ch=wdtVect >> 8;
else if (address == 8) ch=wdtVect & 0xff;
else if (address == 9) ch=wdtVect >> 8;
else ch = pgm_read_byte_near(address);
address++;
putch(ch);
} while (--length);
#else
#ifdef __AVR_ATmega1280__
// do putch(pgm_read_byte_near(address++));
// while (--length);
do {
uint8_t result;
__asm__ ("elpm %0,Z\n":"=r"(result):"z"(address));
putch(result);
address++;
}
while (--length);
#else
do putch(pgm_read_byte_near(address++));
while (--length);
#endif
#endif
}
@ -419,11 +533,13 @@ void putch(char ch) {
uint8_t getch(void) {
uint8_t ch;
watchdogReset();
#ifdef LED_DATA_FLASH
#ifdef __AVR_ATmega8__
LED_PORT ^= _BV(LED);
#else
LED_PIN |= _BV(LED);
#endif
#endif
#ifdef SOFT_UART
__asm__ __volatile__ (
@ -434,7 +550,7 @@ uint8_t getch(void) {
" rcall uartDelay\n" // Wait 1 bit period
" clc\n"
" sbic %[uartPin],%[uartBit]\n"
" sec\n"
" sec\n"
" dec %[bitCnt]\n"
" breq 3f\n"
" ror %[ch]\n"
@ -450,19 +566,37 @@ uint8_t getch(void) {
"r25"
);
#else
while(!(UCSR0A & _BV(RXC0)));
while(!(UCSR0A & _BV(RXC0)))
;
if (!(UCSR0A & _BV(FE0))) {
/*
* A Framing Error indicates (probably) that something is talking
* to us at the wrong bit rate. Assume that this is because it
* expects to be talking to the application, and DON'T reset the
* watchdog. This should cause the bootloader to abort and run
* the application "soon", if it keeps happening. (Note that we
* don't care that an invalid char is returned...)
*/
watchdogReset();
}
ch = UDR0;
#endif
#ifdef LED_DATA_FLASH
#ifdef __AVR_ATmega8__
LED_PORT ^= _BV(LED);
#else
LED_PIN |= _BV(LED);
#endif
#endif
return ch;
}
#ifdef SOFT_UART
//#define UART_B_VALUE (((F_CPU/BAUD_RATE)-23)/6)
// AVR350 equation: #define UART_B_VALUE (((F_CPU/BAUD_RATE)-23)/6)
// Adding 3 to numerator simulates nearest rounding for more accurate baud rates
#define UART_B_VALUE (((F_CPU/BAUD_RATE)-20)/6)
#if UART_B_VALUE > 255
#error Baud rate too slow for soft UART
@ -485,7 +619,11 @@ void getNch(uint8_t count) {
}
void verifySpace() {
if (getch() != CRC_EOP) appStart();
if (getch() != CRC_EOP) {
watchdogConfig(WATCHDOG_16MS); // shorten WD timeout
while (1) // and busy-loop so that WD causes
; // a reset and app start.
}
putch(STK_INSYNC);
}
@ -495,18 +633,16 @@ void flash_led(uint8_t count) {
TCNT1 = -(F_CPU/(1024*16));
TIFR1 = _BV(TOV1);
while(!(TIFR1 & _BV(TOV1)));
#ifdef __AVR_ATmega8__
LED_PORT ^= _BV(LED);
#else
LED_PIN |= _BV(LED);
#endif
watchdogReset();
} while (--count);
}
#endif
uint8_t getLen() {
getch();
length = getch();
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
@ -524,7 +660,7 @@ void appStart() {
__asm__ __volatile__ (
#ifdef VIRTUAL_BOOT_PARTITION
// Jump to WDT vector
"ldi r30,5\n"
"ldi r30,4\n"
"clr r31\n"
#else
// Jump to RST vector

View File

@ -0,0 +1,35 @@
:103E0000112484B714BE81FFF0D085E08093810037
:103E100082E08093C00088E18093C10086E08093B7
:103E2000C20080E18093C4008EE0C9D0259A86E06C
:103E300020E33CEF91E0309385002093840096BB13
:103E4000B09BFECF1D9AA8958150A9F7CC24DD2404
:103E500088248394B5E0AB2EA1E19A2EF3E0BF2E27
:103E6000A2D0813461F49FD0082FAFD0023811F076
:103E7000013811F484E001C083E08DD089C0823420
:103E800011F484E103C0853419F485E0A6D080C024
:103E9000853579F488D0E82EFF2485D0082F10E0EE
:103EA000102F00270E291F29000F111F8ED0680127
:103EB0006FC0863521F484E090D080E0DECF843678
:103EC00009F040C070D06FD0082F6DD080E0C816C8
:103ED00088E3D80618F4F601B7BEE895C0E0D1E053
:103EE00062D089930C17E1F7F0E0CF16F8E3DF0614
:103EF00018F0F601B7BEE89568D007B600FCFDCF14
:103F0000A601A0E0B1E02C9130E011968C911197C0
:103F100090E0982F8827822B932B1296FA010C01A0
:103F200087BEE89511244E5F5F4FF1E0A038BF07D0
:103F300051F7F601A7BEE89507B600FCFDCF97BE86
:103F4000E89526C08437B1F42ED02DD0F82E2BD092
:103F50003CD0F601EF2C8F010F5F1F4F84911BD0D7
:103F6000EA94F801C1F70894C11CD11CFA94CF0C53
:103F7000D11C0EC0853739F428D08EE10CD084E9ED
:103F80000AD086E07ACF813511F488E018D01DD0B0
:103F900080E101D065CF982F8091C00085FFFCCFD4
:103FA0009093C60008958091C00087FFFCCF809158
:103FB000C00084FD01C0A8958091C6000895E0E688
:103FC000F0E098E1908380830895EDDF803219F06E
:103FD00088E0F5DFFFCF84E1DECF1F93182FE3DF0A
:103FE0001150E9F7F2DF1F91089580E0E8DFEE2736
:043FF000FF2709940A
:023FFE000404B9
:0400000300003E00BB
:00000001FF

View File

@ -0,0 +1,598 @@
optiboot_atmega168.elf: file format elf32-avr
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 000001f4 00003e00 00003e00 00000054 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .version 00000002 00003ffe 00003ffe 00000248 2**0
CONTENTS, READONLY
2 .debug_aranges 00000028 00000000 00000000 0000024a 2**0
CONTENTS, READONLY, DEBUGGING
3 .debug_pubnames 0000005f 00000000 00000000 00000272 2**0
CONTENTS, READONLY, DEBUGGING
4 .debug_info 000002a8 00000000 00000000 000002d1 2**0
CONTENTS, READONLY, DEBUGGING
5 .debug_abbrev 00000178 00000000 00000000 00000579 2**0
CONTENTS, READONLY, DEBUGGING
6 .debug_line 00000488 00000000 00000000 000006f1 2**0
CONTENTS, READONLY, DEBUGGING
7 .debug_frame 00000080 00000000 00000000 00000b7c 2**2
CONTENTS, READONLY, DEBUGGING
8 .debug_str 0000014f 00000000 00000000 00000bfc 2**0
CONTENTS, READONLY, DEBUGGING
9 .debug_loc 000002d8 00000000 00000000 00000d4b 2**0
CONTENTS, READONLY, DEBUGGING
10 .debug_ranges 00000078 00000000 00000000 00001023 2**0
CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:
00003e00 <main>:
#define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4))
#define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6))
#endif
/* main program starts here */
int main(void) {
3e00: 11 24 eor r1, r1
#ifdef __AVR_ATmega8__
SP=RAMEND; // This is done by hardware reset
#endif
// Adaboot no-wait mod
ch = MCUSR;
3e02: 84 b7 in r24, 0x34 ; 52
MCUSR = 0;
3e04: 14 be out 0x34, r1 ; 52
if (!(ch & _BV(EXTRF))) appStart();
3e06: 81 ff sbrs r24, 1
3e08: f0 d0 rcall .+480 ; 0x3fea <appStart>
#if LED_START_FLASHES > 0
// Set up Timer 1 for timeout counter
TCCR1B = _BV(CS12) | _BV(CS10); // div 1024
3e0a: 85 e0 ldi r24, 0x05 ; 5
3e0c: 80 93 81 00 sts 0x0081, r24
UCSRA = _BV(U2X); //Double speed mode USART
UCSRB = _BV(RXEN) | _BV(TXEN); // enable Rx & Tx
UCSRC = _BV(URSEL) | _BV(UCSZ1) | _BV(UCSZ0); // config USART; 8N1
UBRRL = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
#else
UCSR0A = _BV(U2X0); //Double speed mode USART0
3e10: 82 e0 ldi r24, 0x02 ; 2
3e12: 80 93 c0 00 sts 0x00C0, r24
UCSR0B = _BV(RXEN0) | _BV(TXEN0);
3e16: 88 e1 ldi r24, 0x18 ; 24
3e18: 80 93 c1 00 sts 0x00C1, r24
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
3e1c: 86 e0 ldi r24, 0x06 ; 6
3e1e: 80 93 c2 00 sts 0x00C2, r24
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
3e22: 80 e1 ldi r24, 0x10 ; 16
3e24: 80 93 c4 00 sts 0x00C4, r24
#endif
#endif
// Set up watchdog to trigger after 500ms
watchdogConfig(WATCHDOG_1S);
3e28: 8e e0 ldi r24, 0x0E ; 14
3e2a: c9 d0 rcall .+402 ; 0x3fbe <watchdogConfig>
/* Set LED pin as output */
LED_DDR |= _BV(LED);
3e2c: 25 9a sbi 0x04, 5 ; 4
3e2e: 86 e0 ldi r24, 0x06 ; 6
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e30: 20 e3 ldi r18, 0x30 ; 48
3e32: 3c ef ldi r19, 0xFC ; 252
TIFR1 = _BV(TOV1);
3e34: 91 e0 ldi r25, 0x01 ; 1
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e36: 30 93 85 00 sts 0x0085, r19
3e3a: 20 93 84 00 sts 0x0084, r18
TIFR1 = _BV(TOV1);
3e3e: 96 bb out 0x16, r25 ; 22
while(!(TIFR1 & _BV(TOV1)));
3e40: b0 9b sbis 0x16, 0 ; 22
3e42: fe cf rjmp .-4 ; 0x3e40 <main+0x40>
#ifdef __AVR_ATmega8__
LED_PORT ^= _BV(LED);
#else
LED_PIN |= _BV(LED);
3e44: 1d 9a sbi 0x03, 5 ; 3
}
#endif
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3e46: a8 95 wdr
LED_PORT ^= _BV(LED);
#else
LED_PIN |= _BV(LED);
#endif
watchdogReset();
} while (--count);
3e48: 81 50 subi r24, 0x01 ; 1
3e4a: a9 f7 brne .-22 ; 0x3e36 <main+0x36>
3e4c: cc 24 eor r12, r12
3e4e: dd 24 eor r13, r13
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
__boot_page_fill_short((uint16_t)(void*)addrPtr,a);
3e50: 88 24 eor r8, r8
3e52: 83 94 inc r8
addrPtr += 2;
} while (--ch);
// Write from programming buffer
__boot_page_write_short((uint16_t)(void*)address);
3e54: b5 e0 ldi r27, 0x05 ; 5
3e56: ab 2e mov r10, r27
boot_spm_busy_wait();
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3e58: a1 e1 ldi r26, 0x11 ; 17
3e5a: 9a 2e mov r9, r26
do *bufPtr++ = getch();
while (--length);
// If we are in NRWW section, page erase has to be delayed until now.
// Todo: Take RAMPZ into account
if (address >= NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address);
3e5c: f3 e0 ldi r31, 0x03 ; 3
3e5e: bf 2e mov r11, r31
#endif
/* Forever loop */
for (;;) {
/* get character from UART */
ch = getch();
3e60: a2 d0 rcall .+324 ; 0x3fa6 <getch>
if(ch == STK_GET_PARAMETER) {
3e62: 81 34 cpi r24, 0x41 ; 65
3e64: 61 f4 brne .+24 ; 0x3e7e <main+0x7e>
unsigned char which = getch();
3e66: 9f d0 rcall .+318 ; 0x3fa6 <getch>
3e68: 08 2f mov r16, r24
verifySpace();
3e6a: af d0 rcall .+350 ; 0x3fca <verifySpace>
if (which == 0x82) {
3e6c: 02 38 cpi r16, 0x82 ; 130
3e6e: 11 f0 breq .+4 ; 0x3e74 <main+0x74>
/*
* Send optiboot version as "minor SW version"
*/
putch(OPTIBOOT_MINVER);
} else if (which == 0x81) {
3e70: 01 38 cpi r16, 0x81 ; 129
3e72: 11 f4 brne .+4 ; 0x3e78 <main+0x78>
putch(OPTIBOOT_MAJVER);
3e74: 84 e0 ldi r24, 0x04 ; 4
3e76: 01 c0 rjmp .+2 ; 0x3e7a <main+0x7a>
} else {
/*
* GET PARAMETER returns a generic 0x03 reply for
* other parameters - enough to keep Avrdude happy
*/
putch(0x03);
3e78: 83 e0 ldi r24, 0x03 ; 3
3e7a: 8d d0 rcall .+282 ; 0x3f96 <putch>
3e7c: 89 c0 rjmp .+274 ; 0x3f90 <main+0x190>
}
}
else if(ch == STK_SET_DEVICE) {
3e7e: 82 34 cpi r24, 0x42 ; 66
3e80: 11 f4 brne .+4 ; 0x3e86 <main+0x86>
// SET DEVICE is ignored
getNch(20);
3e82: 84 e1 ldi r24, 0x14 ; 20
3e84: 03 c0 rjmp .+6 ; 0x3e8c <main+0x8c>
}
else if(ch == STK_SET_DEVICE_EXT) {
3e86: 85 34 cpi r24, 0x45 ; 69
3e88: 19 f4 brne .+6 ; 0x3e90 <main+0x90>
// SET DEVICE EXT is ignored
getNch(5);
3e8a: 85 e0 ldi r24, 0x05 ; 5
3e8c: a6 d0 rcall .+332 ; 0x3fda <getNch>
3e8e: 80 c0 rjmp .+256 ; 0x3f90 <main+0x190>
}
else if(ch == STK_LOAD_ADDRESS) {
3e90: 85 35 cpi r24, 0x55 ; 85
3e92: 79 f4 brne .+30 ; 0x3eb2 <main+0xb2>
// LOAD ADDRESS
uint16_t newAddress;
newAddress = getch();
3e94: 88 d0 rcall .+272 ; 0x3fa6 <getch>
newAddress = (newAddress & 0xff) | (getch() << 8);
3e96: e8 2e mov r14, r24
3e98: ff 24 eor r15, r15
3e9a: 85 d0 rcall .+266 ; 0x3fa6 <getch>
3e9c: 08 2f mov r16, r24
3e9e: 10 e0 ldi r17, 0x00 ; 0
3ea0: 10 2f mov r17, r16
3ea2: 00 27 eor r16, r16
3ea4: 0e 29 or r16, r14
3ea6: 1f 29 or r17, r15
#ifdef RAMPZ
// Transfer top bit to RAMPZ
RAMPZ = (newAddress & 0x8000) ? 1 : 0;
#endif
newAddress += newAddress; // Convert from word address to byte address
3ea8: 00 0f add r16, r16
3eaa: 11 1f adc r17, r17
address = newAddress;
verifySpace();
3eac: 8e d0 rcall .+284 ; 0x3fca <verifySpace>
3eae: 68 01 movw r12, r16
3eb0: 6f c0 rjmp .+222 ; 0x3f90 <main+0x190>
}
else if(ch == STK_UNIVERSAL) {
3eb2: 86 35 cpi r24, 0x56 ; 86
3eb4: 21 f4 brne .+8 ; 0x3ebe <main+0xbe>
// UNIVERSAL command is ignored
getNch(4);
3eb6: 84 e0 ldi r24, 0x04 ; 4
3eb8: 90 d0 rcall .+288 ; 0x3fda <getNch>
putch(0x00);
3eba: 80 e0 ldi r24, 0x00 ; 0
3ebc: de cf rjmp .-68 ; 0x3e7a <main+0x7a>
}
/* Write memory, length is big endian and is in bytes */
else if(ch == STK_PROG_PAGE) {
3ebe: 84 36 cpi r24, 0x64 ; 100
3ec0: 09 f0 breq .+2 ; 0x3ec4 <main+0xc4>
3ec2: 40 c0 rjmp .+128 ; 0x3f44 <main+0x144>
// PROGRAM PAGE - we support flash programming only, not EEPROM
uint8_t *bufPtr;
uint16_t addrPtr;
getch(); /* getlen() */
3ec4: 70 d0 rcall .+224 ; 0x3fa6 <getch>
length = getch();
3ec6: 6f d0 rcall .+222 ; 0x3fa6 <getch>
3ec8: 08 2f mov r16, r24
getch();
3eca: 6d d0 rcall .+218 ; 0x3fa6 <getch>
// If we are in RWW section, immediately start page erase
if (address < NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address);
3ecc: 80 e0 ldi r24, 0x00 ; 0
3ece: c8 16 cp r12, r24
3ed0: 88 e3 ldi r24, 0x38 ; 56
3ed2: d8 06 cpc r13, r24
3ed4: 18 f4 brcc .+6 ; 0x3edc <main+0xdc>
3ed6: f6 01 movw r30, r12
3ed8: b7 be out 0x37, r11 ; 55
3eda: e8 95 spm
3edc: c0 e0 ldi r28, 0x00 ; 0
3ede: d1 e0 ldi r29, 0x01 ; 1
// While that is going on, read in page contents
bufPtr = buff;
do *bufPtr++ = getch();
3ee0: 62 d0 rcall .+196 ; 0x3fa6 <getch>
3ee2: 89 93 st Y+, r24
while (--length);
3ee4: 0c 17 cp r16, r28
3ee6: e1 f7 brne .-8 ; 0x3ee0 <main+0xe0>
// If we are in NRWW section, page erase has to be delayed until now.
// Todo: Take RAMPZ into account
if (address >= NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address);
3ee8: f0 e0 ldi r31, 0x00 ; 0
3eea: cf 16 cp r12, r31
3eec: f8 e3 ldi r31, 0x38 ; 56
3eee: df 06 cpc r13, r31
3ef0: 18 f0 brcs .+6 ; 0x3ef8 <main+0xf8>
3ef2: f6 01 movw r30, r12
3ef4: b7 be out 0x37, r11 ; 55
3ef6: e8 95 spm
// Read command terminator, start reply
verifySpace();
3ef8: 68 d0 rcall .+208 ; 0x3fca <verifySpace>
// If only a partial page is to be programmed, the erase might not be complete.
// So check that here
boot_spm_busy_wait();
3efa: 07 b6 in r0, 0x37 ; 55
3efc: 00 fc sbrc r0, 0
3efe: fd cf rjmp .-6 ; 0x3efa <main+0xfa>
3f00: a6 01 movw r20, r12
3f02: a0 e0 ldi r26, 0x00 ; 0
3f04: b1 e0 ldi r27, 0x01 ; 1
bufPtr = buff;
addrPtr = (uint16_t)(void*)address;
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
3f06: 2c 91 ld r18, X
3f08: 30 e0 ldi r19, 0x00 ; 0
a |= (*bufPtr++) << 8;
3f0a: 11 96 adiw r26, 0x01 ; 1
3f0c: 8c 91 ld r24, X
3f0e: 11 97 sbiw r26, 0x01 ; 1
3f10: 90 e0 ldi r25, 0x00 ; 0
3f12: 98 2f mov r25, r24
3f14: 88 27 eor r24, r24
3f16: 82 2b or r24, r18
3f18: 93 2b or r25, r19
#define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4))
#define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6))
#endif
/* main program starts here */
int main(void) {
3f1a: 12 96 adiw r26, 0x02 ; 2
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
__boot_page_fill_short((uint16_t)(void*)addrPtr,a);
3f1c: fa 01 movw r30, r20
3f1e: 0c 01 movw r0, r24
3f20: 87 be out 0x37, r8 ; 55
3f22: e8 95 spm
3f24: 11 24 eor r1, r1
addrPtr += 2;
3f26: 4e 5f subi r20, 0xFE ; 254
3f28: 5f 4f sbci r21, 0xFF ; 255
} while (--ch);
3f2a: f1 e0 ldi r31, 0x01 ; 1
3f2c: a0 38 cpi r26, 0x80 ; 128
3f2e: bf 07 cpc r27, r31
3f30: 51 f7 brne .-44 ; 0x3f06 <main+0x106>
// Write from programming buffer
__boot_page_write_short((uint16_t)(void*)address);
3f32: f6 01 movw r30, r12
3f34: a7 be out 0x37, r10 ; 55
3f36: e8 95 spm
boot_spm_busy_wait();
3f38: 07 b6 in r0, 0x37 ; 55
3f3a: 00 fc sbrc r0, 0
3f3c: fd cf rjmp .-6 ; 0x3f38 <main+0x138>
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3f3e: 97 be out 0x37, r9 ; 55
3f40: e8 95 spm
3f42: 26 c0 rjmp .+76 ; 0x3f90 <main+0x190>
#endif
}
/* Read memory block mode, length is big endian. */
else if(ch == STK_READ_PAGE) {
3f44: 84 37 cpi r24, 0x74 ; 116
3f46: b1 f4 brne .+44 ; 0x3f74 <main+0x174>
// READ PAGE - we only read flash
getch(); /* getlen() */
3f48: 2e d0 rcall .+92 ; 0x3fa6 <getch>
length = getch();
3f4a: 2d d0 rcall .+90 ; 0x3fa6 <getch>
3f4c: f8 2e mov r15, r24
getch();
3f4e: 2b d0 rcall .+86 ; 0x3fa6 <getch>
verifySpace();
3f50: 3c d0 rcall .+120 ; 0x3fca <verifySpace>
3f52: f6 01 movw r30, r12
3f54: ef 2c mov r14, r15
putch(result);
address++;
}
while (--length);
#else
do putch(pgm_read_byte_near(address++));
3f56: 8f 01 movw r16, r30
3f58: 0f 5f subi r16, 0xFF ; 255
3f5a: 1f 4f sbci r17, 0xFF ; 255
3f5c: 84 91 lpm r24, Z+
3f5e: 1b d0 rcall .+54 ; 0x3f96 <putch>
while (--length);
3f60: ea 94 dec r14
3f62: f8 01 movw r30, r16
3f64: c1 f7 brne .-16 ; 0x3f56 <main+0x156>
#define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4))
#define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6))
#endif
/* main program starts here */
int main(void) {
3f66: 08 94 sec
3f68: c1 1c adc r12, r1
3f6a: d1 1c adc r13, r1
3f6c: fa 94 dec r15
3f6e: cf 0c add r12, r15
3f70: d1 1c adc r13, r1
3f72: 0e c0 rjmp .+28 ; 0x3f90 <main+0x190>
#endif
#endif
}
/* Get device signature bytes */
else if(ch == STK_READ_SIGN) {
3f74: 85 37 cpi r24, 0x75 ; 117
3f76: 39 f4 brne .+14 ; 0x3f86 <main+0x186>
// READ SIGN - return what Avrdude wants to hear
verifySpace();
3f78: 28 d0 rcall .+80 ; 0x3fca <verifySpace>
putch(SIGNATURE_0);
3f7a: 8e e1 ldi r24, 0x1E ; 30
3f7c: 0c d0 rcall .+24 ; 0x3f96 <putch>
putch(SIGNATURE_1);
3f7e: 84 e9 ldi r24, 0x94 ; 148
3f80: 0a d0 rcall .+20 ; 0x3f96 <putch>
putch(SIGNATURE_2);
3f82: 86 e0 ldi r24, 0x06 ; 6
3f84: 7a cf rjmp .-268 ; 0x3e7a <main+0x7a>
}
else if (ch == 'Q') {
3f86: 81 35 cpi r24, 0x51 ; 81
3f88: 11 f4 brne .+4 ; 0x3f8e <main+0x18e>
// Adaboot no-wait mod
watchdogConfig(WATCHDOG_16MS);
3f8a: 88 e0 ldi r24, 0x08 ; 8
3f8c: 18 d0 rcall .+48 ; 0x3fbe <watchdogConfig>
verifySpace();
}
else {
// This covers the response to commands like STK_ENTER_PROGMODE
verifySpace();
3f8e: 1d d0 rcall .+58 ; 0x3fca <verifySpace>
}
putch(STK_OK);
3f90: 80 e1 ldi r24, 0x10 ; 16
3f92: 01 d0 rcall .+2 ; 0x3f96 <putch>
3f94: 65 cf rjmp .-310 ; 0x3e60 <main+0x60>
00003f96 <putch>:
}
}
void putch(char ch) {
3f96: 98 2f mov r25, r24
#ifndef SOFT_UART
while (!(UCSR0A & _BV(UDRE0)));
3f98: 80 91 c0 00 lds r24, 0x00C0
3f9c: 85 ff sbrs r24, 5
3f9e: fc cf rjmp .-8 ; 0x3f98 <putch+0x2>
UDR0 = ch;
3fa0: 90 93 c6 00 sts 0x00C6, r25
[uartBit] "I" (UART_TX_BIT)
:
"r25"
);
#endif
}
3fa4: 08 95 ret
00003fa6 <getch>:
[uartBit] "I" (UART_RX_BIT)
:
"r25"
);
#else
while(!(UCSR0A & _BV(RXC0)))
3fa6: 80 91 c0 00 lds r24, 0x00C0
3faa: 87 ff sbrs r24, 7
3fac: fc cf rjmp .-8 ; 0x3fa6 <getch>
;
if (!(UCSR0A & _BV(FE0))) {
3fae: 80 91 c0 00 lds r24, 0x00C0
3fb2: 84 fd sbrc r24, 4
3fb4: 01 c0 rjmp .+2 ; 0x3fb8 <getch+0x12>
}
#endif
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3fb6: a8 95 wdr
* don't care that an invalid char is returned...)
*/
watchdogReset();
}
ch = UDR0;
3fb8: 80 91 c6 00 lds r24, 0x00C6
LED_PIN |= _BV(LED);
#endif
#endif
return ch;
}
3fbc: 08 95 ret
00003fbe <watchdogConfig>:
"wdr\n"
);
}
void watchdogConfig(uint8_t x) {
WDTCSR = _BV(WDCE) | _BV(WDE);
3fbe: e0 e6 ldi r30, 0x60 ; 96
3fc0: f0 e0 ldi r31, 0x00 ; 0
3fc2: 98 e1 ldi r25, 0x18 ; 24
3fc4: 90 83 st Z, r25
WDTCSR = x;
3fc6: 80 83 st Z, r24
}
3fc8: 08 95 ret
00003fca <verifySpace>:
do getch(); while (--count);
verifySpace();
}
void verifySpace() {
if (getch() != CRC_EOP) {
3fca: ed df rcall .-38 ; 0x3fa6 <getch>
3fcc: 80 32 cpi r24, 0x20 ; 32
3fce: 19 f0 breq .+6 ; 0x3fd6 <verifySpace+0xc>
watchdogConfig(WATCHDOG_16MS); // shorten WD timeout
3fd0: 88 e0 ldi r24, 0x08 ; 8
3fd2: f5 df rcall .-22 ; 0x3fbe <watchdogConfig>
3fd4: ff cf rjmp .-2 ; 0x3fd4 <verifySpace+0xa>
while (1) // and busy-loop so that WD causes
; // a reset and app start.
}
putch(STK_INSYNC);
3fd6: 84 e1 ldi r24, 0x14 ; 20
}
3fd8: de cf rjmp .-68 ; 0x3f96 <putch>
00003fda <getNch>:
::[count] "M" (UART_B_VALUE)
);
}
#endif
void getNch(uint8_t count) {
3fda: 1f 93 push r17
3fdc: 18 2f mov r17, r24
do getch(); while (--count);
3fde: e3 df rcall .-58 ; 0x3fa6 <getch>
3fe0: 11 50 subi r17, 0x01 ; 1
3fe2: e9 f7 brne .-6 ; 0x3fde <getNch+0x4>
verifySpace();
3fe4: f2 df rcall .-28 ; 0x3fca <verifySpace>
}
3fe6: 1f 91 pop r17
3fe8: 08 95 ret
00003fea <appStart>:
WDTCSR = _BV(WDCE) | _BV(WDE);
WDTCSR = x;
}
void appStart() {
watchdogConfig(WATCHDOG_OFF);
3fea: 80 e0 ldi r24, 0x00 ; 0
3fec: e8 df rcall .-48 ; 0x3fbe <watchdogConfig>
__asm__ __volatile__ (
3fee: ee 27 eor r30, r30
3ff0: ff 27 eor r31, r31
3ff2: 09 94 ijmp

View File

@ -1,33 +1,35 @@
:107E0000112485E08093810082E08093C00088E1A6
:107E10008093C10086E08093C20080E18093C4001B
:107E200084B714BE81FFD0D08DE0C8D0259A86E0FB
:107E0000112484B714BE81FFF0D085E080938100F7
:107E100082E08093C00088E18093C10086E0809377
:107E2000C20080E18093C4008EE0C9D0259A86E02C
:107E300020E33CEF91E0309385002093840096BBD3
:107E4000B09BFECF1D9AA8958150A9F7DD24D3944D
:107E5000A5E0EA2EF1E1FF2EA4D0813421F481E0E7
:107E6000BED083E024C0823411F484E103C08534A1
:107E700019F485E0B4D08AC08535A1F492D0082FDA
:107E800010E010930102009300028BD090E0982F35
:107E90008827802B912B880F991F90930102809344
:107EA000000273C0863529F484E099D080E071D057
:107EB0006DC0843609F043C07CD0E0910002F0919F
:107EC000010283E080935700E895C0E0D1E069D0DB
:107ED0008993809102028150809302028823B9F72E
:107EE00078D007B600FCFDCF40910002509101020E
:107EF000A0E0B1E02C9130E011968C91119790E0C8
:107F0000982F8827822B932B1296FA010C01D0927E
:107F10005700E89511244E5F5F4FF1E0A038BF078E
:107F200049F7E0910002F0910102E0925700E895D4
:107F300007B600FCFDCFF0925700E89527C08437C4
:107F4000B9F437D046D0E0910002F09101023196A9
:107F5000F0930102E09300023197E4918E2F19D043
:107F600080910202815080930202882361F70EC043
:107F7000853739F42ED08EE10CD085E90AD08FE018
:107F800096CF813511F488E019D023D080E101D05B
:107F900063CF982F8091C00085FFFCCF9093C600DF
:107FA0000895A8958091C00087FFFCCF8091C600FE
:107FB0000895F7DFF6DF80930202F3CFE0E6F0E00A
:107FC00098E190838083089580E0F8DFEE27FF2713
:107FD0000994E7DF803209F0F7DF84E1DACF1F93FD
:0E7FE000182FDFDF1150E9F7F4DF1F9108952D
:107E4000B09BFECF1D9AA8958150A9F7CC24DD24C4
:107E500088248394B5E0AB2EA1E19A2EF3E0BF2EE7
:107E6000A2D0813461F49FD0082FAFD0023811F036
:107E7000013811F484E001C083E08DD089C08234E0
:107E800011F484E103C0853419F485E0A6D080C0E4
:107E9000853579F488D0E82EFF2485D0082F10E0AE
:107EA000102F00270E291F29000F111F8ED06801E7
:107EB0006FC0863521F484E090D080E0DECF843638
:107EC00009F040C070D06FD0082F6DD080E0C81688
:107ED00080E7D80618F4F601B7BEE895C0E0D1E017
:107EE00062D089930C17E1F7F0E0CF16F0E7DF06D8
:107EF00018F0F601B7BEE89568D007B600FCFDCFD4
:107F0000A601A0E0B1E02C9130E011968C91119780
:107F100090E0982F8827822B932B1296FA010C0160
:107F200087BEE89511244E5F5F4FF1E0A038BF0790
:107F300051F7F601A7BEE89507B600FCFDCF97BE46
:107F4000E89526C08437B1F42ED02DD0F82E2BD052
:107F50003CD0F601EF2C8F010F5F1F4F84911BD097
:107F6000EA94F801C1F70894C11CD11CFA94CF0C13
:107F7000D11C0EC0853739F428D08EE10CD085E9AC
:107F80000AD08FE07ACF813511F488E018D01DD067
:107F900080E101D065CF982F8091C00085FFFCCF94
:107FA0009093C60008958091C00087FFFCCF809118
:107FB000C00084FD01C0A8958091C6000895E0E648
:107FC000F0E098E1908380830895EDDF803219F02E
:107FD00088E0F5DFFFCF84E1DECF1F93182FE3DFCA
:107FE0001150E9F7F2DF1F91089580E0E8DFEE27F6
:047FF000FF270994CA
:027FFE00040479
:0400000300007E007B
:00000001FF

View File

@ -3,74 +3,81 @@ optiboot_atmega328.elf: file format elf32-avr
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 000001ee 00007e00 00007e00 00000054 2**1
0 .text 000001f4 00007e00 00007e00 00000054 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .debug_aranges 00000028 00000000 00000000 00000242 2**0
1 .version 00000002 00007ffe 00007ffe 00000248 2**0
CONTENTS, READONLY
2 .debug_aranges 00000028 00000000 00000000 0000024a 2**0
CONTENTS, READONLY, DEBUGGING
2 .debug_pubnames 0000006a 00000000 00000000 0000026a 2**0
3 .debug_pubnames 0000005f 00000000 00000000 00000272 2**0
CONTENTS, READONLY, DEBUGGING
3 .debug_info 00000269 00000000 00000000 000002d4 2**0
4 .debug_info 000002a8 00000000 00000000 000002d1 2**0
CONTENTS, READONLY, DEBUGGING
4 .debug_abbrev 00000196 00000000 00000000 0000053d 2**0
5 .debug_abbrev 00000178 00000000 00000000 00000579 2**0
CONTENTS, READONLY, DEBUGGING
5 .debug_line 000003db 00000000 00000000 000006d3 2**0
6 .debug_line 00000488 00000000 00000000 000006f1 2**0
CONTENTS, READONLY, DEBUGGING
6 .debug_frame 00000090 00000000 00000000 00000ab0 2**2
7 .debug_frame 00000080 00000000 00000000 00000b7c 2**2
CONTENTS, READONLY, DEBUGGING
7 .debug_str 00000124 00000000 00000000 00000b40 2**0
8 .debug_str 0000014f 00000000 00000000 00000bfc 2**0
CONTENTS, READONLY, DEBUGGING
8 .debug_loc 000001d1 00000000 00000000 00000c64 2**0
9 .debug_loc 000002d8 00000000 00000000 00000d4b 2**0
CONTENTS, READONLY, DEBUGGING
9 .debug_ranges 00000068 00000000 00000000 00000e35 2**0
10 .debug_ranges 00000078 00000000 00000000 00001023 2**0
CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:
00007e00 <main>:
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4))
#define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6))
#endif
/* main program starts here */
int main(void) {
7e00: 11 24 eor r1, r1
uint8_t ch;
#if LED_START_FLASHES > 0
// Set up Timer 1 for timeout counter
TCCR1B = _BV(CS12) | _BV(CS10); // div 1024
7e02: 85 e0 ldi r24, 0x05 ; 5
7e04: 80 93 81 00 sts 0x0081, r24
#endif
#ifndef SOFT_UART
UCSR0A = _BV(U2X0); //Double speed mode USART0
7e08: 82 e0 ldi r24, 0x02 ; 2
7e0a: 80 93 c0 00 sts 0x00C0, r24
UCSR0B = _BV(RXEN0) | _BV(TXEN0);
7e0e: 88 e1 ldi r24, 0x18 ; 24
7e10: 80 93 c1 00 sts 0x00C1, r24
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
7e14: 86 e0 ldi r24, 0x06 ; 6
7e16: 80 93 c2 00 sts 0x00C2, r24
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
7e1a: 80 e1 ldi r24, 0x10 ; 16
7e1c: 80 93 c4 00 sts 0x00C4, r24
#ifdef __AVR_ATmega8__
SP=RAMEND; // This is done by hardware reset
#endif
// Adaboot no-wait mod
ch = MCUSR;
7e20: 84 b7 in r24, 0x34 ; 52
7e02: 84 b7 in r24, 0x34 ; 52
MCUSR = 0;
7e22: 14 be out 0x34, r1 ; 52
7e04: 14 be out 0x34, r1 ; 52
if (!(ch & _BV(EXTRF))) appStart();
7e24: 81 ff sbrs r24, 1
7e26: d0 d0 rcall .+416 ; 0x7fc8 <appStart>
7e06: 81 ff sbrs r24, 1
7e08: f0 d0 rcall .+480 ; 0x7fea <appStart>
#if LED_START_FLASHES > 0
// Set up Timer 1 for timeout counter
TCCR1B = _BV(CS12) | _BV(CS10); // div 1024
7e0a: 85 e0 ldi r24, 0x05 ; 5
7e0c: 80 93 81 00 sts 0x0081, r24
UCSRA = _BV(U2X); //Double speed mode USART
UCSRB = _BV(RXEN) | _BV(TXEN); // enable Rx & Tx
UCSRC = _BV(URSEL) | _BV(UCSZ1) | _BV(UCSZ0); // config USART; 8N1
UBRRL = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
#else
UCSR0A = _BV(U2X0); //Double speed mode USART0
7e10: 82 e0 ldi r24, 0x02 ; 2
7e12: 80 93 c0 00 sts 0x00C0, r24
UCSR0B = _BV(RXEN0) | _BV(TXEN0);
7e16: 88 e1 ldi r24, 0x18 ; 24
7e18: 80 93 c1 00 sts 0x00C1, r24
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
7e1c: 86 e0 ldi r24, 0x06 ; 6
7e1e: 80 93 c2 00 sts 0x00C2, r24
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
7e22: 80 e1 ldi r24, 0x10 ; 16
7e24: 80 93 c4 00 sts 0x00C4, r24
#endif
#endif
// Set up watchdog to trigger after 500ms
watchdogConfig(WATCHDOG_500MS);
7e28: 8d e0 ldi r24, 0x0D ; 13
7e2a: c8 d0 rcall .+400 ; 0x7fbc <watchdogConfig>
watchdogConfig(WATCHDOG_1S);
7e28: 8e e0 ldi r24, 0x0E ; 14
7e2a: c9 d0 rcall .+402 ; 0x7fbe <watchdogConfig>
/* Set LED pin as output */
LED_DDR |= _BV(LED);
@ -99,426 +106,493 @@ void flash_led(uint8_t count) {
while(!(TIFR1 & _BV(TOV1)));
7e40: b0 9b sbis 0x16, 0 ; 22
7e42: fe cf rjmp .-4 ; 0x7e40 <main+0x40>
#ifdef __AVR_ATmega8__
LED_PORT ^= _BV(LED);
#else
LED_PIN |= _BV(LED);
7e44: 1d 9a sbi 0x03, 5 ; 3
return getch();
}
#endif
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
7e46: a8 95 wdr
TCNT1 = -(F_CPU/(1024*16));
TIFR1 = _BV(TOV1);
while(!(TIFR1 & _BV(TOV1)));
LED_PORT ^= _BV(LED);
#else
LED_PIN |= _BV(LED);
#endif
watchdogReset();
} while (--count);
7e48: 81 50 subi r24, 0x01 ; 1
7e4a: a9 f7 brne .-22 ; 0x7e36 <main+0x36>
/* get character from UART */
ch = getch();
if(ch == STK_GET_PARAMETER) {
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
7e4c: dd 24 eor r13, r13
7e4e: d3 94 inc r13
boot_page_fill((uint16_t)(void*)addrPtr,a);
7e4c: cc 24 eor r12, r12
7e4e: dd 24 eor r13, r13
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
__boot_page_fill_short((uint16_t)(void*)addrPtr,a);
7e50: 88 24 eor r8, r8
7e52: 83 94 inc r8
addrPtr += 2;
} while (--ch);
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
7e50: a5 e0 ldi r26, 0x05 ; 5
7e52: ea 2e mov r14, r26
__boot_page_write_short((uint16_t)(void*)address);
7e54: b5 e0 ldi r27, 0x05 ; 5
7e56: ab 2e mov r10, r27
boot_spm_busy_wait();
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
7e54: f1 e1 ldi r31, 0x11 ; 17
7e56: ff 2e mov r15, r31
7e58: a1 e1 ldi r26, 0x11 ; 17
7e5a: 9a 2e mov r9, r26
do *bufPtr++ = getch();
while (--length);
// If we are in NRWW section, page erase has to be delayed until now.
// Todo: Take RAMPZ into account
if (address >= NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address);
7e5c: f3 e0 ldi r31, 0x03 ; 3
7e5e: bf 2e mov r11, r31
#endif
/* Forever loop */
for (;;) {
/* get character from UART */
ch = getch();
7e58: a4 d0 rcall .+328 ; 0x7fa2 <getch>
7e60: a2 d0 rcall .+324 ; 0x7fa6 <getch>
if(ch == STK_GET_PARAMETER) {
7e5a: 81 34 cpi r24, 0x41 ; 65
7e5c: 21 f4 brne .+8 ; 0x7e66 <main+0x66>
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
7e5e: 81 e0 ldi r24, 0x01 ; 1
7e60: be d0 rcall .+380 ; 0x7fde <verifySpace+0xc>
putch(0x03);
7e62: 83 e0 ldi r24, 0x03 ; 3
7e64: 24 c0 rjmp .+72 ; 0x7eae <main+0xae>
7e62: 81 34 cpi r24, 0x41 ; 65
7e64: 61 f4 brne .+24 ; 0x7e7e <main+0x7e>
unsigned char which = getch();
7e66: 9f d0 rcall .+318 ; 0x7fa6 <getch>
7e68: 08 2f mov r16, r24
verifySpace();
7e6a: af d0 rcall .+350 ; 0x7fca <verifySpace>
if (which == 0x82) {
7e6c: 02 38 cpi r16, 0x82 ; 130
7e6e: 11 f0 breq .+4 ; 0x7e74 <main+0x74>
/*
* Send optiboot version as "minor SW version"
*/
putch(OPTIBOOT_MINVER);
} else if (which == 0x81) {
7e70: 01 38 cpi r16, 0x81 ; 129
7e72: 11 f4 brne .+4 ; 0x7e78 <main+0x78>
putch(OPTIBOOT_MAJVER);
7e74: 84 e0 ldi r24, 0x04 ; 4
7e76: 01 c0 rjmp .+2 ; 0x7e7a <main+0x7a>
} else {
/*
* GET PARAMETER returns a generic 0x03 reply for
* other parameters - enough to keep Avrdude happy
*/
putch(0x03);
7e78: 83 e0 ldi r24, 0x03 ; 3
7e7a: 8d d0 rcall .+282 ; 0x7f96 <putch>
7e7c: 89 c0 rjmp .+274 ; 0x7f90 <main+0x190>
}
}
else if(ch == STK_SET_DEVICE) {
7e66: 82 34 cpi r24, 0x42 ; 66
7e68: 11 f4 brne .+4 ; 0x7e6e <main+0x6e>
7e7e: 82 34 cpi r24, 0x42 ; 66
7e80: 11 f4 brne .+4 ; 0x7e86 <main+0x86>
// SET DEVICE is ignored
getNch(20);
7e6a: 84 e1 ldi r24, 0x14 ; 20
7e6c: 03 c0 rjmp .+6 ; 0x7e74 <main+0x74>
7e82: 84 e1 ldi r24, 0x14 ; 20
7e84: 03 c0 rjmp .+6 ; 0x7e8c <main+0x8c>
}
else if(ch == STK_SET_DEVICE_EXT) {
7e6e: 85 34 cpi r24, 0x45 ; 69
7e70: 19 f4 brne .+6 ; 0x7e78 <main+0x78>
7e86: 85 34 cpi r24, 0x45 ; 69
7e88: 19 f4 brne .+6 ; 0x7e90 <main+0x90>
// SET DEVICE EXT is ignored
getNch(5);
7e72: 85 e0 ldi r24, 0x05 ; 5
7e74: b4 d0 rcall .+360 ; 0x7fde <verifySpace+0xc>
7e76: 8a c0 rjmp .+276 ; 0x7f8c <main+0x18c>
7e8a: 85 e0 ldi r24, 0x05 ; 5
7e8c: a6 d0 rcall .+332 ; 0x7fda <getNch>
7e8e: 80 c0 rjmp .+256 ; 0x7f90 <main+0x190>
}
else if(ch == STK_LOAD_ADDRESS) {
7e78: 85 35 cpi r24, 0x55 ; 85
7e7a: a1 f4 brne .+40 ; 0x7ea4 <main+0xa4>
7e90: 85 35 cpi r24, 0x55 ; 85
7e92: 79 f4 brne .+30 ; 0x7eb2 <main+0xb2>
// LOAD ADDRESS
address = getch();
7e7c: 92 d0 rcall .+292 ; 0x7fa2 <getch>
7e7e: 08 2f mov r16, r24
7e80: 10 e0 ldi r17, 0x00 ; 0
7e82: 10 93 01 02 sts 0x0201, r17
7e86: 00 93 00 02 sts 0x0200, r16
address = (address & 0xff) | (getch() << 8);
7e8a: 8b d0 rcall .+278 ; 0x7fa2 <getch>
7e8c: 90 e0 ldi r25, 0x00 ; 0
7e8e: 98 2f mov r25, r24
7e90: 88 27 eor r24, r24
7e92: 80 2b or r24, r16
7e94: 91 2b or r25, r17
address += address; // Convert from word address to byte address
7e96: 88 0f add r24, r24
7e98: 99 1f adc r25, r25
7e9a: 90 93 01 02 sts 0x0201, r25
7e9e: 80 93 00 02 sts 0x0200, r24
7ea2: 73 c0 rjmp .+230 ; 0x7f8a <main+0x18a>
uint16_t newAddress;
newAddress = getch();
7e94: 88 d0 rcall .+272 ; 0x7fa6 <getch>
newAddress = (newAddress & 0xff) | (getch() << 8);
7e96: e8 2e mov r14, r24
7e98: ff 24 eor r15, r15
7e9a: 85 d0 rcall .+266 ; 0x7fa6 <getch>
7e9c: 08 2f mov r16, r24
7e9e: 10 e0 ldi r17, 0x00 ; 0
7ea0: 10 2f mov r17, r16
7ea2: 00 27 eor r16, r16
7ea4: 0e 29 or r16, r14
7ea6: 1f 29 or r17, r15
#ifdef RAMPZ
// Transfer top bit to RAMPZ
RAMPZ = (newAddress & 0x8000) ? 1 : 0;
#endif
newAddress += newAddress; // Convert from word address to byte address
7ea8: 00 0f add r16, r16
7eaa: 11 1f adc r17, r17
address = newAddress;
verifySpace();
7eac: 8e d0 rcall .+284 ; 0x7fca <verifySpace>
7eae: 68 01 movw r12, r16
7eb0: 6f c0 rjmp .+222 ; 0x7f90 <main+0x190>
}
else if(ch == STK_UNIVERSAL) {
7ea4: 86 35 cpi r24, 0x56 ; 86
7ea6: 29 f4 brne .+10 ; 0x7eb2 <main+0xb2>
7eb2: 86 35 cpi r24, 0x56 ; 86
7eb4: 21 f4 brne .+8 ; 0x7ebe <main+0xbe>
// UNIVERSAL command is ignored
getNch(4);
7ea8: 84 e0 ldi r24, 0x04 ; 4
7eaa: 99 d0 rcall .+306 ; 0x7fde <verifySpace+0xc>
7eb6: 84 e0 ldi r24, 0x04 ; 4
7eb8: 90 d0 rcall .+288 ; 0x7fda <getNch>
putch(0x00);
7eac: 80 e0 ldi r24, 0x00 ; 0
7eae: 71 d0 rcall .+226 ; 0x7f92 <putch>
7eb0: 6d c0 rjmp .+218 ; 0x7f8c <main+0x18c>
7eba: 80 e0 ldi r24, 0x00 ; 0
7ebc: de cf rjmp .-68 ; 0x7e7a <main+0x7a>
}
/* Write memory, length is big endian and is in bytes */
/* Write memory, length is big endian and is in bytes */
else if(ch == STK_PROG_PAGE) {
7eb2: 84 36 cpi r24, 0x64 ; 100
7eb4: 09 f0 breq .+2 ; 0x7eb8 <main+0xb8>
7eb6: 43 c0 rjmp .+134 ; 0x7f3e <main+0x13e>
7ebe: 84 36 cpi r24, 0x64 ; 100
7ec0: 09 f0 breq .+2 ; 0x7ec4 <main+0xc4>
7ec2: 40 c0 rjmp .+128 ; 0x7f44 <main+0x144>
// PROGRAM PAGE - we support flash programming only, not EEPROM
uint8_t *bufPtr;
uint16_t addrPtr;
getLen();
7eb8: 7c d0 rcall .+248 ; 0x7fb2 <getLen>
getch(); /* getlen() */
7ec4: 70 d0 rcall .+224 ; 0x7fa6 <getch>
length = getch();
7ec6: 6f d0 rcall .+222 ; 0x7fa6 <getch>
7ec8: 08 2f mov r16, r24
getch();
7eca: 6d d0 rcall .+218 ; 0x7fa6 <getch>
// Immediately start page erase - this will 4.5ms
boot_page_erase((uint16_t)(void*)address);
7eba: e0 91 00 02 lds r30, 0x0200
7ebe: f0 91 01 02 lds r31, 0x0201
7ec2: 83 e0 ldi r24, 0x03 ; 3
7ec4: 80 93 57 00 sts 0x0057, r24
7ec8: e8 95 spm
7eca: c0 e0 ldi r28, 0x00 ; 0
7ecc: d1 e0 ldi r29, 0x01 ; 1
// If we are in RWW section, immediately start page erase
if (address < NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address);
7ecc: 80 e0 ldi r24, 0x00 ; 0
7ece: c8 16 cp r12, r24
7ed0: 80 e7 ldi r24, 0x70 ; 112
7ed2: d8 06 cpc r13, r24
7ed4: 18 f4 brcc .+6 ; 0x7edc <main+0xdc>
7ed6: f6 01 movw r30, r12
7ed8: b7 be out 0x37, r11 ; 55
7eda: e8 95 spm
7edc: c0 e0 ldi r28, 0x00 ; 0
7ede: d1 e0 ldi r29, 0x01 ; 1
// While that is going on, read in page contents
bufPtr = buff;
do *bufPtr++ = getch();
7ece: 69 d0 rcall .+210 ; 0x7fa2 <getch>
7ed0: 89 93 st Y+, r24
7ee0: 62 d0 rcall .+196 ; 0x7fa6 <getch>
7ee2: 89 93 st Y+, r24
while (--length);
7ed2: 80 91 02 02 lds r24, 0x0202
7ed6: 81 50 subi r24, 0x01 ; 1
7ed8: 80 93 02 02 sts 0x0202, r24
7edc: 88 23 and r24, r24
7ede: b9 f7 brne .-18 ; 0x7ece <main+0xce>
7ee4: 0c 17 cp r16, r28
7ee6: e1 f7 brne .-8 ; 0x7ee0 <main+0xe0>
// If we are in NRWW section, page erase has to be delayed until now.
// Todo: Take RAMPZ into account
if (address >= NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address);
7ee8: f0 e0 ldi r31, 0x00 ; 0
7eea: cf 16 cp r12, r31
7eec: f0 e7 ldi r31, 0x70 ; 112
7eee: df 06 cpc r13, r31
7ef0: 18 f0 brcs .+6 ; 0x7ef8 <main+0xf8>
7ef2: f6 01 movw r30, r12
7ef4: b7 be out 0x37, r11 ; 55
7ef6: e8 95 spm
// Read command terminator, start reply
verifySpace();
7ee0: 78 d0 rcall .+240 ; 0x7fd2 <verifySpace>
7ef8: 68 d0 rcall .+208 ; 0x7fca <verifySpace>
// If only a partial page is to be programmed, the erase might not be complete.
// So check that here
boot_spm_busy_wait();
7ee2: 07 b6 in r0, 0x37 ; 55
7ee4: 00 fc sbrc r0, 0
7ee6: fd cf rjmp .-6 ; 0x7ee2 <main+0xe2>
}
#endif
// Copy buffer into programming buffer
7efa: 07 b6 in r0, 0x37 ; 55
7efc: 00 fc sbrc r0, 0
7efe: fd cf rjmp .-6 ; 0x7efa <main+0xfa>
7f00: a6 01 movw r20, r12
7f02: a0 e0 ldi r26, 0x00 ; 0
7f04: b1 e0 ldi r27, 0x01 ; 1
bufPtr = buff;
addrPtr = (uint16_t)(void*)address;
7ee8: 40 91 00 02 lds r20, 0x0200
7eec: 50 91 01 02 lds r21, 0x0201
7ef0: a0 e0 ldi r26, 0x00 ; 0
7ef2: b1 e0 ldi r27, 0x01 ; 1
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
7ef4: 2c 91 ld r18, X
7ef6: 30 e0 ldi r19, 0x00 ; 0
7f06: 2c 91 ld r18, X
7f08: 30 e0 ldi r19, 0x00 ; 0
a |= (*bufPtr++) << 8;
7ef8: 11 96 adiw r26, 0x01 ; 1
7efa: 8c 91 ld r24, X
7efc: 11 97 sbiw r26, 0x01 ; 1
7efe: 90 e0 ldi r25, 0x00 ; 0
7f00: 98 2f mov r25, r24
7f02: 88 27 eor r24, r24
7f04: 82 2b or r24, r18
7f06: 93 2b or r25, r19
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
7f0a: 11 96 adiw r26, 0x01 ; 1
7f0c: 8c 91 ld r24, X
7f0e: 11 97 sbiw r26, 0x01 ; 1
7f10: 90 e0 ldi r25, 0x00 ; 0
7f12: 98 2f mov r25, r24
7f14: 88 27 eor r24, r24
7f16: 82 2b or r24, r18
7f18: 93 2b or r25, r19
#define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4))
#define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6))
#endif
/* main program starts here */
int main(void) {
7f08: 12 96 adiw r26, 0x02 ; 2
7f1a: 12 96 adiw r26, 0x02 ; 2
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
boot_page_fill((uint16_t)(void*)addrPtr,a);
7f0a: fa 01 movw r30, r20
7f0c: 0c 01 movw r0, r24
7f0e: d0 92 57 00 sts 0x0057, r13
7f12: e8 95 spm
7f14: 11 24 eor r1, r1
__boot_page_fill_short((uint16_t)(void*)addrPtr,a);
7f1c: fa 01 movw r30, r20
7f1e: 0c 01 movw r0, r24
7f20: 87 be out 0x37, r8 ; 55
7f22: e8 95 spm
7f24: 11 24 eor r1, r1
addrPtr += 2;
7f16: 4e 5f subi r20, 0xFE ; 254
7f18: 5f 4f sbci r21, 0xFF ; 255
7f26: 4e 5f subi r20, 0xFE ; 254
7f28: 5f 4f sbci r21, 0xFF ; 255
} while (--ch);
7f1a: f1 e0 ldi r31, 0x01 ; 1
7f1c: a0 38 cpi r26, 0x80 ; 128
7f1e: bf 07 cpc r27, r31
7f20: 49 f7 brne .-46 ; 0x7ef4 <main+0xf4>
7f2a: f1 e0 ldi r31, 0x01 ; 1
7f2c: a0 38 cpi r26, 0x80 ; 128
7f2e: bf 07 cpc r27, r31
7f30: 51 f7 brne .-44 ; 0x7f06 <main+0x106>
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
7f22: e0 91 00 02 lds r30, 0x0200
7f26: f0 91 01 02 lds r31, 0x0201
7f2a: e0 92 57 00 sts 0x0057, r14
7f2e: e8 95 spm
__boot_page_write_short((uint16_t)(void*)address);
7f32: f6 01 movw r30, r12
7f34: a7 be out 0x37, r10 ; 55
7f36: e8 95 spm
boot_spm_busy_wait();
7f30: 07 b6 in r0, 0x37 ; 55
7f32: 00 fc sbrc r0, 0
7f34: fd cf rjmp .-6 ; 0x7f30 <main+0x130>
7f38: 07 b6 in r0, 0x37 ; 55
7f3a: 00 fc sbrc r0, 0
7f3c: fd cf rjmp .-6 ; 0x7f38 <main+0x138>
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
7f36: f0 92 57 00 sts 0x0057, r15
7f3a: e8 95 spm
7f3c: 27 c0 rjmp .+78 ; 0x7f8c <main+0x18c>
7f3e: 97 be out 0x37, r9 ; 55
7f40: e8 95 spm
7f42: 26 c0 rjmp .+76 ; 0x7f90 <main+0x190>
#endif
}
/* Read memory block mode, length is big endian. */
else if(ch == STK_READ_PAGE) {
7f3e: 84 37 cpi r24, 0x74 ; 116
7f40: b9 f4 brne .+46 ; 0x7f70 <main+0x170>
7f44: 84 37 cpi r24, 0x74 ; 116
7f46: b1 f4 brne .+44 ; 0x7f74 <main+0x174>
// READ PAGE - we only read flash
getLen();
7f42: 37 d0 rcall .+110 ; 0x7fb2 <getLen>
getch(); /* getlen() */
7f48: 2e d0 rcall .+92 ; 0x7fa6 <getch>
length = getch();
7f4a: 2d d0 rcall .+90 ; 0x7fa6 <getch>
7f4c: f8 2e mov r15, r24
getch();
7f4e: 2b d0 rcall .+86 ; 0x7fa6 <getch>
verifySpace();
7f44: 46 d0 rcall .+140 ; 0x7fd2 <verifySpace>
else ch = pgm_read_byte_near(address);
7f50: 3c d0 rcall .+120 ; 0x7fca <verifySpace>
7f52: f6 01 movw r30, r12
7f54: ef 2c mov r14, r15
putch(result);
address++;
putch(ch);
} while (--length);
}
while (--length);
#else
do putch(pgm_read_byte_near(address++));
7f46: e0 91 00 02 lds r30, 0x0200
7f4a: f0 91 01 02 lds r31, 0x0201
7f4e: 31 96 adiw r30, 0x01 ; 1
7f50: f0 93 01 02 sts 0x0201, r31
7f54: e0 93 00 02 sts 0x0200, r30
7f58: 31 97 sbiw r30, 0x01 ; 1
7f5a: e4 91 lpm r30, Z+
7f5c: 8e 2f mov r24, r30
7f5e: 19 d0 rcall .+50 ; 0x7f92 <putch>
7f56: 8f 01 movw r16, r30
7f58: 0f 5f subi r16, 0xFF ; 255
7f5a: 1f 4f sbci r17, 0xFF ; 255
7f5c: 84 91 lpm r24, Z+
7f5e: 1b d0 rcall .+54 ; 0x7f96 <putch>
while (--length);
7f60: 80 91 02 02 lds r24, 0x0202
7f64: 81 50 subi r24, 0x01 ; 1
7f66: 80 93 02 02 sts 0x0202, r24
7f6a: 88 23 and r24, r24
7f6c: 61 f7 brne .-40 ; 0x7f46 <main+0x146>
7f6e: 0e c0 rjmp .+28 ; 0x7f8c <main+0x18c>
7f60: ea 94 dec r14
7f62: f8 01 movw r30, r16
7f64: c1 f7 brne .-16 ; 0x7f56 <main+0x156>
#define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4))
#define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6))
#endif
/* main program starts here */
int main(void) {
7f66: 08 94 sec
7f68: c1 1c adc r12, r1
7f6a: d1 1c adc r13, r1
7f6c: fa 94 dec r15
7f6e: cf 0c add r12, r15
7f70: d1 1c adc r13, r1
7f72: 0e c0 rjmp .+28 ; 0x7f90 <main+0x190>
#endif
#endif
}
/* Get device signature bytes */
else if(ch == STK_READ_SIGN) {
7f70: 85 37 cpi r24, 0x75 ; 117
7f72: 39 f4 brne .+14 ; 0x7f82 <main+0x182>
7f74: 85 37 cpi r24, 0x75 ; 117
7f76: 39 f4 brne .+14 ; 0x7f86 <main+0x186>
// READ SIGN - return what Avrdude wants to hear
verifySpace();
7f74: 2e d0 rcall .+92 ; 0x7fd2 <verifySpace>
7f78: 28 d0 rcall .+80 ; 0x7fca <verifySpace>
putch(SIGNATURE_0);
7f76: 8e e1 ldi r24, 0x1E ; 30
7f78: 0c d0 rcall .+24 ; 0x7f92 <putch>
7f7a: 8e e1 ldi r24, 0x1E ; 30
7f7c: 0c d0 rcall .+24 ; 0x7f96 <putch>
putch(SIGNATURE_1);
7f7a: 85 e9 ldi r24, 0x95 ; 149
7f7c: 0a d0 rcall .+20 ; 0x7f92 <putch>
7f7e: 85 e9 ldi r24, 0x95 ; 149
7f80: 0a d0 rcall .+20 ; 0x7f96 <putch>
putch(SIGNATURE_2);
7f7e: 8f e0 ldi r24, 0x0F ; 15
7f80: 96 cf rjmp .-212 ; 0x7eae <main+0xae>
7f82: 8f e0 ldi r24, 0x0F ; 15
7f84: 7a cf rjmp .-268 ; 0x7e7a <main+0x7a>
}
else if (ch == 'Q') {
7f82: 81 35 cpi r24, 0x51 ; 81
7f84: 11 f4 brne .+4 ; 0x7f8a <main+0x18a>
7f86: 81 35 cpi r24, 0x51 ; 81
7f88: 11 f4 brne .+4 ; 0x7f8e <main+0x18e>
// Adaboot no-wait mod
watchdogConfig(WATCHDOG_16MS);
7f86: 88 e0 ldi r24, 0x08 ; 8
7f88: 19 d0 rcall .+50 ; 0x7fbc <watchdogConfig>
7f8a: 88 e0 ldi r24, 0x08 ; 8
7f8c: 18 d0 rcall .+48 ; 0x7fbe <watchdogConfig>
verifySpace();
}
else {
// This covers the response to commands like STK_ENTER_PROGMODE
verifySpace();
7f8a: 23 d0 rcall .+70 ; 0x7fd2 <verifySpace>
7f8e: 1d d0 rcall .+58 ; 0x7fca <verifySpace>
}
putch(STK_OK);
7f8c: 80 e1 ldi r24, 0x10 ; 16
7f8e: 01 d0 rcall .+2 ; 0x7f92 <putch>
7f90: 63 cf rjmp .-314 ; 0x7e58 <main+0x58>
7f90: 80 e1 ldi r24, 0x10 ; 16
7f92: 01 d0 rcall .+2 ; 0x7f96 <putch>
7f94: 65 cf rjmp .-310 ; 0x7e60 <main+0x60>
00007f92 <putch>:
00007f96 <putch>:
}
}
void putch(char ch) {
7f92: 98 2f mov r25, r24
7f96: 98 2f mov r25, r24
#ifndef SOFT_UART
while (!(UCSR0A & _BV(UDRE0)));
7f94: 80 91 c0 00 lds r24, 0x00C0
7f98: 85 ff sbrs r24, 5
7f9a: fc cf rjmp .-8 ; 0x7f94 <putch+0x2>
7f98: 80 91 c0 00 lds r24, 0x00C0
7f9c: 85 ff sbrs r24, 5
7f9e: fc cf rjmp .-8 ; 0x7f98 <putch+0x2>
UDR0 = ch;
7f9c: 90 93 c6 00 sts 0x00C6, r25
7fa0: 90 93 c6 00 sts 0x00C6, r25
[uartBit] "I" (UART_TX_BIT)
:
"r25"
);
#endif
}
7fa0: 08 95 ret
7fa4: 08 95 ret
00007fa2 <getch>:
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
7fa2: a8 95 wdr
00007fa6 <getch>:
[uartBit] "I" (UART_RX_BIT)
:
"r25"
);
#else
while(!(UCSR0A & _BV(RXC0)));
7fa4: 80 91 c0 00 lds r24, 0x00C0
7fa8: 87 ff sbrs r24, 7
7faa: fc cf rjmp .-8 ; 0x7fa4 <getch+0x2>
while(!(UCSR0A & _BV(RXC0)))
7fa6: 80 91 c0 00 lds r24, 0x00C0
7faa: 87 ff sbrs r24, 7
7fac: fc cf rjmp .-8 ; 0x7fa6 <getch>
;
if (!(UCSR0A & _BV(FE0))) {
7fae: 80 91 c0 00 lds r24, 0x00C0
7fb2: 84 fd sbrc r24, 4
7fb4: 01 c0 rjmp .+2 ; 0x7fb8 <getch+0x12>
}
#endif
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
7fb6: a8 95 wdr
* don't care that an invalid char is returned...)
*/
watchdogReset();
}
ch = UDR0;
7fac: 80 91 c6 00 lds r24, 0x00C6
#ifdef LED_DATA_FLASH
7fb8: 80 91 c6 00 lds r24, 0x00C6
LED_PIN |= _BV(LED);
#endif
#endif
return ch;
}
7fb0: 08 95 ret
7fbc: 08 95 ret
00007fb2 <getLen>:
} while (--count);
}
#endif
uint8_t getLen() {
getch();
7fb2: f7 df rcall .-18 ; 0x7fa2 <getch>
length = getch();
7fb4: f6 df rcall .-20 ; 0x7fa2 <getch>
7fb6: 80 93 02 02 sts 0x0202, r24
return getch();
}
7fba: f3 cf rjmp .-26 ; 0x7fa2 <getch>
00007fbc <watchdogConfig>:
00007fbe <watchdogConfig>:
"wdr\n"
);
}
void watchdogConfig(uint8_t x) {
WDTCSR = _BV(WDCE) | _BV(WDE);
7fbc: e0 e6 ldi r30, 0x60 ; 96
7fbe: f0 e0 ldi r31, 0x00 ; 0
7fc0: 98 e1 ldi r25, 0x18 ; 24
7fc2: 90 83 st Z, r25
7fbe: e0 e6 ldi r30, 0x60 ; 96
7fc0: f0 e0 ldi r31, 0x00 ; 0
7fc2: 98 e1 ldi r25, 0x18 ; 24
7fc4: 90 83 st Z, r25
WDTCSR = x;
7fc4: 80 83 st Z, r24
7fc6: 80 83 st Z, r24
}
7fc6: 08 95 ret
7fc8: 08 95 ret
00007fc8 <appStart>:
void appStart() {
watchdogConfig(WATCHDOG_OFF);
7fc8: 80 e0 ldi r24, 0x00 ; 0
7fca: f8 df rcall .-16 ; 0x7fbc <watchdogConfig>
__asm__ __volatile__ (
7fcc: ee 27 eor r30, r30
7fce: ff 27 eor r31, r31
7fd0: 09 94 ijmp
00007fd2 <verifySpace>:
00007fca <verifySpace>:
do getch(); while (--count);
verifySpace();
}
void verifySpace() {
if (getch() != CRC_EOP) appStart();
7fd2: e7 df rcall .-50 ; 0x7fa2 <getch>
7fd4: 80 32 cpi r24, 0x20 ; 32
7fd6: 09 f0 breq .+2 ; 0x7fda <verifySpace+0x8>
7fd8: f7 df rcall .-18 ; 0x7fc8 <appStart>
if (getch() != CRC_EOP) {
7fca: ed df rcall .-38 ; 0x7fa6 <getch>
7fcc: 80 32 cpi r24, 0x20 ; 32
7fce: 19 f0 breq .+6 ; 0x7fd6 <verifySpace+0xc>
watchdogConfig(WATCHDOG_16MS); // shorten WD timeout
7fd0: 88 e0 ldi r24, 0x08 ; 8
7fd2: f5 df rcall .-22 ; 0x7fbe <watchdogConfig>
7fd4: ff cf rjmp .-2 ; 0x7fd4 <verifySpace+0xa>
while (1) // and busy-loop so that WD causes
; // a reset and app start.
}
putch(STK_INSYNC);
7fda: 84 e1 ldi r24, 0x14 ; 20
7fd6: 84 e1 ldi r24, 0x14 ; 20
}
7fdc: da cf rjmp .-76 ; 0x7f92 <putch>
7fd8: de cf rjmp .-68 ; 0x7f96 <putch>
00007fda <getNch>:
::[count] "M" (UART_B_VALUE)
);
}
#endif
void getNch(uint8_t count) {
7fde: 1f 93 push r17
7fe0: 18 2f mov r17, r24
00007fe2 <getNch>:
7fda: 1f 93 push r17
7fdc: 18 2f mov r17, r24
do getch(); while (--count);
7fe2: df df rcall .-66 ; 0x7fa2 <getch>
7fe4: 11 50 subi r17, 0x01 ; 1
7fe6: e9 f7 brne .-6 ; 0x7fe2 <getNch>
7fde: e3 df rcall .-58 ; 0x7fa6 <getch>
7fe0: 11 50 subi r17, 0x01 ; 1
7fe2: e9 f7 brne .-6 ; 0x7fde <getNch+0x4>
verifySpace();
7fe8: f4 df rcall .-24 ; 0x7fd2 <verifySpace>
7fe4: f2 df rcall .-28 ; 0x7fca <verifySpace>
}
7fea: 1f 91 pop r17
7fec: 08 95 ret
7fe6: 1f 91 pop r17
7fe8: 08 95 ret
00007fea <appStart>:
WDTCSR = _BV(WDCE) | _BV(WDE);
WDTCSR = x;
}
void appStart() {
watchdogConfig(WATCHDOG_OFF);
7fea: 80 e0 ldi r24, 0x00 ; 0
7fec: e8 df rcall .-48 ; 0x7fbe <watchdogConfig>
__asm__ __volatile__ (
7fee: ee 27 eor r30, r30
7ff0: ff 27 eor r31, r31
7ff2: 09 94 ijmp

View File

@ -1,33 +0,0 @@
:107E000085E08093810082E08093C00088E18093C8
:107E1000C10086E08093C20088E08093C40084B7EC
:107E200014BE81FFD0D08DE0C8D0259A86E028E12D
:107E30003EEF91E0309385002093840096BBB09B89
:107E4000FECF1D9AA8958150A9F7DD24D394A5E013
:107E5000EA2EF1E1FF2EA4D0813421F481E0BED0DE
:107E600083E024C0823411F484E103C0853419F422
:107E700085E0B4D08AC08535A1F492D0082F10E0F7
:107E800010930102009300028BD090E0982F882776
:107E9000802B912B880F991F9093010280930002F1
:107EA00073C0863529F484E099D080E071D06DC02C
:107EB000843609F043C07CD0E0910002F0910102C9
:107EC00083E080935700E895C0E0D1E069D08993C2
:107ED000809102028150809302028823B9F778D002
:107EE00007B600FCFDCF4091000250910102A0E0D6
:107EF000B1E02C9130E011968C91119790E0982F81
:107F00008827822B932B1296FA010C01D0925700EE
:107F1000E89511244E5F5F4FF1E0A038BF0749F7A5
:107F2000E0910002F0910102E0925700E89507B657
:107F300000FCFDCFF0925700E89527C08437B9F4D4
:107F400037D046D0E0910002F09101023196F093D3
:107F50000102E09300023197E4918E2F19D08091B5
:107F60000202815080930202882361F70EC0853798
:107F700039F42ED08EE10CD085E90AD08FE096CF6F
:107F8000813511F488E019D023D080E101D063CF8E
:107F9000982F8091C00085FFFCCF9093C600089574
:107FA000A8958091C00087FFFCCF8091C6000895FE
:107FB000F7DFF6DF80930202F3CFE0E6F0E098E12E
:107FC00090838083089580E0F8DFEE27FF270994EF
:107FD000E7DF803209F0F7DF84E1DACF1F93182F53
:0C7FE000DFDF1150E9F7F4DF1F91089576
:0400000300007E007B
:00000001FF

View File

@ -1,520 +0,0 @@
optiboot_atmega328_pro_8MHz.elf: file format elf32-avr
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 000001ec 00007e00 00007e00 00000054 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .debug_aranges 00000028 00000000 00000000 00000240 2**0
CONTENTS, READONLY, DEBUGGING
2 .debug_pubnames 0000006a 00000000 00000000 00000268 2**0
CONTENTS, READONLY, DEBUGGING
3 .debug_info 00000269 00000000 00000000 000002d2 2**0
CONTENTS, READONLY, DEBUGGING
4 .debug_abbrev 00000196 00000000 00000000 0000053b 2**0
CONTENTS, READONLY, DEBUGGING
5 .debug_line 000003d3 00000000 00000000 000006d1 2**0
CONTENTS, READONLY, DEBUGGING
6 .debug_frame 00000090 00000000 00000000 00000aa4 2**2
CONTENTS, READONLY, DEBUGGING
7 .debug_str 00000135 00000000 00000000 00000b34 2**0
CONTENTS, READONLY, DEBUGGING
8 .debug_loc 000001d1 00000000 00000000 00000c69 2**0
CONTENTS, READONLY, DEBUGGING
9 .debug_ranges 00000068 00000000 00000000 00000e3a 2**0
CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:
00007e00 <main>:
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
7e00: 85 e0 ldi r24, 0x05 ; 5
7e02: 80 93 81 00 sts 0x0081, r24
#if LED_START_FLASHES > 0
// Set up Timer 1 for timeout counter
TCCR1B = _BV(CS12) | _BV(CS10); // div 1024
#endif
#ifndef SOFT_UART
UCSR0A = _BV(U2X0); //Double speed mode USART0
7e06: 82 e0 ldi r24, 0x02 ; 2
7e08: 80 93 c0 00 sts 0x00C0, r24
UCSR0B = _BV(RXEN0) | _BV(TXEN0);
7e0c: 88 e1 ldi r24, 0x18 ; 24
7e0e: 80 93 c1 00 sts 0x00C1, r24
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
7e12: 86 e0 ldi r24, 0x06 ; 6
7e14: 80 93 c2 00 sts 0x00C2, r24
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
7e18: 88 e0 ldi r24, 0x08 ; 8
7e1a: 80 93 c4 00 sts 0x00C4, r24
#endif
// Adaboot no-wait mod
ch = MCUSR;
7e1e: 84 b7 in r24, 0x34 ; 52
MCUSR = 0;
7e20: 14 be out 0x34, r1 ; 52
if (!(ch & _BV(EXTRF))) appStart();
7e22: 81 ff sbrs r24, 1
7e24: d0 d0 rcall .+416 ; 0x7fc6 <appStart>
// Set up watchdog to trigger after 500ms
watchdogConfig(WATCHDOG_500MS);
7e26: 8d e0 ldi r24, 0x0D ; 13
7e28: c8 d0 rcall .+400 ; 0x7fba <watchdogConfig>
/* Set LED pin as output */
LED_DDR |= _BV(LED);
7e2a: 25 9a sbi 0x04, 5 ; 4
7e2c: 86 e0 ldi r24, 0x06 ; 6
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
7e2e: 28 e1 ldi r18, 0x18 ; 24
7e30: 3e ef ldi r19, 0xFE ; 254
TIFR1 = _BV(TOV1);
7e32: 91 e0 ldi r25, 0x01 ; 1
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
7e34: 30 93 85 00 sts 0x0085, r19
7e38: 20 93 84 00 sts 0x0084, r18
TIFR1 = _BV(TOV1);
7e3c: 96 bb out 0x16, r25 ; 22
while(!(TIFR1 & _BV(TOV1)));
7e3e: b0 9b sbis 0x16, 0 ; 22
7e40: fe cf rjmp .-4 ; 0x7e3e <main+0x3e>
LED_PIN |= _BV(LED);
7e42: 1d 9a sbi 0x03, 5 ; 3
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
7e44: a8 95 wdr
TCNT1 = -(F_CPU/(1024*16));
TIFR1 = _BV(TOV1);
while(!(TIFR1 & _BV(TOV1)));
LED_PIN |= _BV(LED);
watchdogReset();
} while (--count);
7e46: 81 50 subi r24, 0x01 ; 1
7e48: a9 f7 brne .-22 ; 0x7e34 <main+0x34>
/* get character from UART */
ch = getch();
if(ch == STK_GET_PARAMETER) {
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
7e4a: dd 24 eor r13, r13
7e4c: d3 94 inc r13
boot_page_fill((uint16_t)(void*)addrPtr,a);
addrPtr += 2;
} while (--ch);
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
7e4e: a5 e0 ldi r26, 0x05 ; 5
7e50: ea 2e mov r14, r26
boot_spm_busy_wait();
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
7e52: f1 e1 ldi r31, 0x11 ; 17
7e54: ff 2e mov r15, r31
#endif
/* Forever loop */
for (;;) {
/* get character from UART */
ch = getch();
7e56: a4 d0 rcall .+328 ; 0x7fa0 <getch>
if(ch == STK_GET_PARAMETER) {
7e58: 81 34 cpi r24, 0x41 ; 65
7e5a: 21 f4 brne .+8 ; 0x7e64 <main+0x64>
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
7e5c: 81 e0 ldi r24, 0x01 ; 1
7e5e: be d0 rcall .+380 ; 0x7fdc <verifySpace+0xc>
putch(0x03);
7e60: 83 e0 ldi r24, 0x03 ; 3
7e62: 24 c0 rjmp .+72 ; 0x7eac <main+0xac>
}
else if(ch == STK_SET_DEVICE) {
7e64: 82 34 cpi r24, 0x42 ; 66
7e66: 11 f4 brne .+4 ; 0x7e6c <main+0x6c>
// SET DEVICE is ignored
getNch(20);
7e68: 84 e1 ldi r24, 0x14 ; 20
7e6a: 03 c0 rjmp .+6 ; 0x7e72 <main+0x72>
}
else if(ch == STK_SET_DEVICE_EXT) {
7e6c: 85 34 cpi r24, 0x45 ; 69
7e6e: 19 f4 brne .+6 ; 0x7e76 <main+0x76>
// SET DEVICE EXT is ignored
getNch(5);
7e70: 85 e0 ldi r24, 0x05 ; 5
7e72: b4 d0 rcall .+360 ; 0x7fdc <verifySpace+0xc>
7e74: 8a c0 rjmp .+276 ; 0x7f8a <main+0x18a>
}
else if(ch == STK_LOAD_ADDRESS) {
7e76: 85 35 cpi r24, 0x55 ; 85
7e78: a1 f4 brne .+40 ; 0x7ea2 <main+0xa2>
// LOAD ADDRESS
address = getch();
7e7a: 92 d0 rcall .+292 ; 0x7fa0 <getch>
7e7c: 08 2f mov r16, r24
7e7e: 10 e0 ldi r17, 0x00 ; 0
7e80: 10 93 01 02 sts 0x0201, r17
7e84: 00 93 00 02 sts 0x0200, r16
address = (address & 0xff) | (getch() << 8);
7e88: 8b d0 rcall .+278 ; 0x7fa0 <getch>
7e8a: 90 e0 ldi r25, 0x00 ; 0
7e8c: 98 2f mov r25, r24
7e8e: 88 27 eor r24, r24
7e90: 80 2b or r24, r16
7e92: 91 2b or r25, r17
address += address; // Convert from word address to byte address
7e94: 88 0f add r24, r24
7e96: 99 1f adc r25, r25
7e98: 90 93 01 02 sts 0x0201, r25
7e9c: 80 93 00 02 sts 0x0200, r24
7ea0: 73 c0 rjmp .+230 ; 0x7f88 <main+0x188>
verifySpace();
}
else if(ch == STK_UNIVERSAL) {
7ea2: 86 35 cpi r24, 0x56 ; 86
7ea4: 29 f4 brne .+10 ; 0x7eb0 <main+0xb0>
// UNIVERSAL command is ignored
getNch(4);
7ea6: 84 e0 ldi r24, 0x04 ; 4
7ea8: 99 d0 rcall .+306 ; 0x7fdc <verifySpace+0xc>
putch(0x00);
7eaa: 80 e0 ldi r24, 0x00 ; 0
7eac: 71 d0 rcall .+226 ; 0x7f90 <putch>
7eae: 6d c0 rjmp .+218 ; 0x7f8a <main+0x18a>
}
/* Write memory, length is big endian and is in bytes */
else if(ch == STK_PROG_PAGE) {
7eb0: 84 36 cpi r24, 0x64 ; 100
7eb2: 09 f0 breq .+2 ; 0x7eb6 <main+0xb6>
7eb4: 43 c0 rjmp .+134 ; 0x7f3c <main+0x13c>
// PROGRAM PAGE - we support flash programming only, not EEPROM
uint8_t *bufPtr;
uint16_t addrPtr;
getLen();
7eb6: 7c d0 rcall .+248 ; 0x7fb0 <getLen>
// Immediately start page erase - this will 4.5ms
boot_page_erase((uint16_t)(void*)address);
7eb8: e0 91 00 02 lds r30, 0x0200
7ebc: f0 91 01 02 lds r31, 0x0201
7ec0: 83 e0 ldi r24, 0x03 ; 3
7ec2: 80 93 57 00 sts 0x0057, r24
7ec6: e8 95 spm
7ec8: c0 e0 ldi r28, 0x00 ; 0
7eca: d1 e0 ldi r29, 0x01 ; 1
// While that is going on, read in page contents
bufPtr = buff;
do *bufPtr++ = getch();
7ecc: 69 d0 rcall .+210 ; 0x7fa0 <getch>
7ece: 89 93 st Y+, r24
while (--length);
7ed0: 80 91 02 02 lds r24, 0x0202
7ed4: 81 50 subi r24, 0x01 ; 1
7ed6: 80 93 02 02 sts 0x0202, r24
7eda: 88 23 and r24, r24
7edc: b9 f7 brne .-18 ; 0x7ecc <main+0xcc>
// Read command terminator, start reply
verifySpace();
7ede: 78 d0 rcall .+240 ; 0x7fd0 <verifySpace>
// If only a partial page is to be programmed, the erase might not be complete.
// So check that here
boot_spm_busy_wait();
7ee0: 07 b6 in r0, 0x37 ; 55
7ee2: 00 fc sbrc r0, 0
7ee4: fd cf rjmp .-6 ; 0x7ee0 <main+0xe0>
}
#endif
// Copy buffer into programming buffer
bufPtr = buff;
addrPtr = (uint16_t)(void*)address;
7ee6: 40 91 00 02 lds r20, 0x0200
7eea: 50 91 01 02 lds r21, 0x0201
7eee: a0 e0 ldi r26, 0x00 ; 0
7ef0: b1 e0 ldi r27, 0x01 ; 1
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
7ef2: 2c 91 ld r18, X
7ef4: 30 e0 ldi r19, 0x00 ; 0
a |= (*bufPtr++) << 8;
7ef6: 11 96 adiw r26, 0x01 ; 1
7ef8: 8c 91 ld r24, X
7efa: 11 97 sbiw r26, 0x01 ; 1
7efc: 90 e0 ldi r25, 0x00 ; 0
7efe: 98 2f mov r25, r24
7f00: 88 27 eor r24, r24
7f02: 82 2b or r24, r18
7f04: 93 2b or r25, r19
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
7f06: 12 96 adiw r26, 0x02 ; 2
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
boot_page_fill((uint16_t)(void*)addrPtr,a);
7f08: fa 01 movw r30, r20
7f0a: 0c 01 movw r0, r24
7f0c: d0 92 57 00 sts 0x0057, r13
7f10: e8 95 spm
7f12: 11 24 eor r1, r1
addrPtr += 2;
7f14: 4e 5f subi r20, 0xFE ; 254
7f16: 5f 4f sbci r21, 0xFF ; 255
} while (--ch);
7f18: f1 e0 ldi r31, 0x01 ; 1
7f1a: a0 38 cpi r26, 0x80 ; 128
7f1c: bf 07 cpc r27, r31
7f1e: 49 f7 brne .-46 ; 0x7ef2 <main+0xf2>
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
7f20: e0 91 00 02 lds r30, 0x0200
7f24: f0 91 01 02 lds r31, 0x0201
7f28: e0 92 57 00 sts 0x0057, r14
7f2c: e8 95 spm
boot_spm_busy_wait();
7f2e: 07 b6 in r0, 0x37 ; 55
7f30: 00 fc sbrc r0, 0
7f32: fd cf rjmp .-6 ; 0x7f2e <main+0x12e>
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
7f34: f0 92 57 00 sts 0x0057, r15
7f38: e8 95 spm
7f3a: 27 c0 rjmp .+78 ; 0x7f8a <main+0x18a>
#endif
}
/* Read memory block mode, length is big endian. */
else if(ch == STK_READ_PAGE) {
7f3c: 84 37 cpi r24, 0x74 ; 116
7f3e: b9 f4 brne .+46 ; 0x7f6e <main+0x16e>
// READ PAGE - we only read flash
getLen();
7f40: 37 d0 rcall .+110 ; 0x7fb0 <getLen>
verifySpace();
7f42: 46 d0 rcall .+140 ; 0x7fd0 <verifySpace>
else ch = pgm_read_byte_near(address);
address++;
putch(ch);
} while (--length);
#else
do putch(pgm_read_byte_near(address++));
7f44: e0 91 00 02 lds r30, 0x0200
7f48: f0 91 01 02 lds r31, 0x0201
7f4c: 31 96 adiw r30, 0x01 ; 1
7f4e: f0 93 01 02 sts 0x0201, r31
7f52: e0 93 00 02 sts 0x0200, r30
7f56: 31 97 sbiw r30, 0x01 ; 1
7f58: e4 91 lpm r30, Z+
7f5a: 8e 2f mov r24, r30
7f5c: 19 d0 rcall .+50 ; 0x7f90 <putch>
while (--length);
7f5e: 80 91 02 02 lds r24, 0x0202
7f62: 81 50 subi r24, 0x01 ; 1
7f64: 80 93 02 02 sts 0x0202, r24
7f68: 88 23 and r24, r24
7f6a: 61 f7 brne .-40 ; 0x7f44 <main+0x144>
7f6c: 0e c0 rjmp .+28 ; 0x7f8a <main+0x18a>
#endif
}
/* Get device signature bytes */
else if(ch == STK_READ_SIGN) {
7f6e: 85 37 cpi r24, 0x75 ; 117
7f70: 39 f4 brne .+14 ; 0x7f80 <main+0x180>
// READ SIGN - return what Avrdude wants to hear
verifySpace();
7f72: 2e d0 rcall .+92 ; 0x7fd0 <verifySpace>
putch(SIGNATURE_0);
7f74: 8e e1 ldi r24, 0x1E ; 30
7f76: 0c d0 rcall .+24 ; 0x7f90 <putch>
putch(SIGNATURE_1);
7f78: 85 e9 ldi r24, 0x95 ; 149
7f7a: 0a d0 rcall .+20 ; 0x7f90 <putch>
putch(SIGNATURE_2);
7f7c: 8f e0 ldi r24, 0x0F ; 15
7f7e: 96 cf rjmp .-212 ; 0x7eac <main+0xac>
}
else if (ch == 'Q') {
7f80: 81 35 cpi r24, 0x51 ; 81
7f82: 11 f4 brne .+4 ; 0x7f88 <main+0x188>
// Adaboot no-wait mod
watchdogConfig(WATCHDOG_16MS);
7f84: 88 e0 ldi r24, 0x08 ; 8
7f86: 19 d0 rcall .+50 ; 0x7fba <watchdogConfig>
verifySpace();
}
else {
// This covers the response to commands like STK_ENTER_PROGMODE
verifySpace();
7f88: 23 d0 rcall .+70 ; 0x7fd0 <verifySpace>
}
putch(STK_OK);
7f8a: 80 e1 ldi r24, 0x10 ; 16
7f8c: 01 d0 rcall .+2 ; 0x7f90 <putch>
7f8e: 63 cf rjmp .-314 ; 0x7e56 <main+0x56>
00007f90 <putch>:
}
}
void putch(char ch) {
7f90: 98 2f mov r25, r24
#ifndef SOFT_UART
while (!(UCSR0A & _BV(UDRE0)));
7f92: 80 91 c0 00 lds r24, 0x00C0
7f96: 85 ff sbrs r24, 5
7f98: fc cf rjmp .-8 ; 0x7f92 <putch+0x2>
UDR0 = ch;
7f9a: 90 93 c6 00 sts 0x00C6, r25
[uartBit] "I" (UART_TX_BIT)
:
"r25"
);
#endif
}
7f9e: 08 95 ret
00007fa0 <getch>:
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
7fa0: a8 95 wdr
[uartBit] "I" (UART_RX_BIT)
:
"r25"
);
#else
while(!(UCSR0A & _BV(RXC0)));
7fa2: 80 91 c0 00 lds r24, 0x00C0
7fa6: 87 ff sbrs r24, 7
7fa8: fc cf rjmp .-8 ; 0x7fa2 <getch+0x2>
ch = UDR0;
7faa: 80 91 c6 00 lds r24, 0x00C6
#ifdef LED_DATA_FLASH
LED_PIN |= _BV(LED);
#endif
return ch;
}
7fae: 08 95 ret
00007fb0 <getLen>:
} while (--count);
}
#endif
uint8_t getLen() {
getch();
7fb0: f7 df rcall .-18 ; 0x7fa0 <getch>
length = getch();
7fb2: f6 df rcall .-20 ; 0x7fa0 <getch>
7fb4: 80 93 02 02 sts 0x0202, r24
return getch();
}
7fb8: f3 cf rjmp .-26 ; 0x7fa0 <getch>
00007fba <watchdogConfig>:
"wdr\n"
);
}
void watchdogConfig(uint8_t x) {
WDTCSR = _BV(WDCE) | _BV(WDE);
7fba: e0 e6 ldi r30, 0x60 ; 96
7fbc: f0 e0 ldi r31, 0x00 ; 0
7fbe: 98 e1 ldi r25, 0x18 ; 24
7fc0: 90 83 st Z, r25
WDTCSR = x;
7fc2: 80 83 st Z, r24
}
7fc4: 08 95 ret
00007fc6 <appStart>:
void appStart() {
watchdogConfig(WATCHDOG_OFF);
7fc6: 80 e0 ldi r24, 0x00 ; 0
7fc8: f8 df rcall .-16 ; 0x7fba <watchdogConfig>
__asm__ __volatile__ (
7fca: ee 27 eor r30, r30
7fcc: ff 27 eor r31, r31
7fce: 09 94 ijmp
00007fd0 <verifySpace>:
do getch(); while (--count);
verifySpace();
}
void verifySpace() {
if (getch() != CRC_EOP) appStart();
7fd0: e7 df rcall .-50 ; 0x7fa0 <getch>
7fd2: 80 32 cpi r24, 0x20 ; 32
7fd4: 09 f0 breq .+2 ; 0x7fd8 <verifySpace+0x8>
7fd6: f7 df rcall .-18 ; 0x7fc6 <appStart>
putch(STK_INSYNC);
7fd8: 84 e1 ldi r24, 0x14 ; 20
}
7fda: da cf rjmp .-76 ; 0x7f90 <putch>
::[count] "M" (UART_B_VALUE)
);
}
#endif
void getNch(uint8_t count) {
7fdc: 1f 93 push r17
7fde: 18 2f mov r17, r24
00007fe0 <getNch>:
do getch(); while (--count);
7fe0: df df rcall .-66 ; 0x7fa0 <getch>
7fe2: 11 50 subi r17, 0x01 ; 1
7fe4: e9 f7 brne .-6 ; 0x7fe0 <getNch>
verifySpace();
7fe6: f4 df rcall .-24 ; 0x7fd0 <verifySpace>
}
7fe8: 1f 91 pop r17
7fea: 08 95 ret

View File

@ -0,0 +1,33 @@
:101E000011248FE594E09EBF8DBF84B714BE81FF7F
:101E1000E2D085E08EBD82E08BB988E18AB986E8A0
:101E200080BD80E189B98EE0C2D0BD9A96E020E302
:101E30003CEF54E040E23DBD2CBD58BF08B602FE69
:101E4000FDCF88B3842788BBA8959150A1F7CC24F7
:101E5000DD2488248394B5E0AB2EA1E19A2EF3E033
:101E6000BF2E9ED0813461F49BD0082FA4D00238BD
:101E700011F0013811F484E001C083E08DD089C0F5
:101E8000823411F484E103C0853419F485E09BD0D9
:101E900080C0853579F484D0E82EFF2481D0082FC6
:101EA00010E0102F00270E291F29000F111F83D0CB
:101EB00068016FC0863521F484E085D080E0DECFF4
:101EC000843609F040C06CD06BD0082F69D080E018
:101ED000C81688E1D80618F4F601B7BEE895C0E048
:101EE000D1E05ED089930C17E1F7F0E0CF16F8E16E
:101EF000DF0618F0F601B7BEE8955DD007B600FC26
:101F0000FDCFA601A0E0B1E02C9130E011968C91BC
:101F1000119790E0982F8827822B932B1296FA0125
:101F20000C0187BEE89511244E5F5F4FF1E0A034AD
:101F3000BF0751F7F601A7BEE89507B600FCFDCF35
:101F400097BEE89526C08437B1F42AD029D0F82E60
:101F500027D031D0F601EF2C8F010F5F1F4F8491F6
:101F60001BD0EA94F801C1F70894C11CD11CFA9463
:101F7000CF0CD11C0EC0853739F41DD08EE10CD0AA
:101F800083E90AD087E07ACF813511F488E00FD059
:101F900012D080E101D065CF5D9BFECF8CB9089552
:101FA0005F9BFECF5C9901C0A8958CB1089598E124
:101FB00091BD81BD0895F4DF803219F088E0F7DF2C
:101FC000FFCF84E1E9CF1F93182FEADF1150E9F723
:101FD000F2DF1F91089580E0EADFEE27FF270994E2
:021FFE000404D9
:0400000300001E00DB
:00000001FF

View File

@ -0,0 +1,604 @@
optiboot_atmega8.elf: file format elf32-avr
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 000001e0 00001e00 00001e00 00000054 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .version 00000002 00001ffe 00001ffe 00000234 2**0
CONTENTS, READONLY
2 .debug_aranges 00000028 00000000 00000000 00000236 2**0
CONTENTS, READONLY, DEBUGGING
3 .debug_pubnames 0000005f 00000000 00000000 0000025e 2**0
CONTENTS, READONLY, DEBUGGING
4 .debug_info 000002a6 00000000 00000000 000002bd 2**0
CONTENTS, READONLY, DEBUGGING
5 .debug_abbrev 00000169 00000000 00000000 00000563 2**0
CONTENTS, READONLY, DEBUGGING
6 .debug_line 00000498 00000000 00000000 000006cc 2**0
CONTENTS, READONLY, DEBUGGING
7 .debug_frame 00000080 00000000 00000000 00000b64 2**2
CONTENTS, READONLY, DEBUGGING
8 .debug_str 0000014f 00000000 00000000 00000be4 2**0
CONTENTS, READONLY, DEBUGGING
9 .debug_loc 000002ba 00000000 00000000 00000d33 2**0
CONTENTS, READONLY, DEBUGGING
10 .debug_ranges 00000078 00000000 00000000 00000fed 2**0
CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:
00001e00 <main>:
#define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4))
#define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6))
#endif
/* main program starts here */
int main(void) {
1e00: 11 24 eor r1, r1
//
// If not, uncomment the following instructions:
// cli();
asm volatile ("clr __zero_reg__");
#ifdef __AVR_ATmega8__
SP=RAMEND; // This is done by hardware reset
1e02: 8f e5 ldi r24, 0x5F ; 95
1e04: 94 e0 ldi r25, 0x04 ; 4
1e06: 9e bf out 0x3e, r25 ; 62
1e08: 8d bf out 0x3d, r24 ; 61
#endif
// Adaboot no-wait mod
ch = MCUSR;
1e0a: 84 b7 in r24, 0x34 ; 52
MCUSR = 0;
1e0c: 14 be out 0x34, r1 ; 52
if (!(ch & _BV(EXTRF))) appStart();
1e0e: 81 ff sbrs r24, 1
1e10: e2 d0 rcall .+452 ; 0x1fd6 <appStart>
#if LED_START_FLASHES > 0
// Set up Timer 1 for timeout counter
TCCR1B = _BV(CS12) | _BV(CS10); // div 1024
1e12: 85 e0 ldi r24, 0x05 ; 5
1e14: 8e bd out 0x2e, r24 ; 46
#endif
#ifndef SOFT_UART
#ifdef __AVR_ATmega8__
UCSRA = _BV(U2X); //Double speed mode USART
1e16: 82 e0 ldi r24, 0x02 ; 2
1e18: 8b b9 out 0x0b, r24 ; 11
UCSRB = _BV(RXEN) | _BV(TXEN); // enable Rx & Tx
1e1a: 88 e1 ldi r24, 0x18 ; 24
1e1c: 8a b9 out 0x0a, r24 ; 10
UCSRC = _BV(URSEL) | _BV(UCSZ1) | _BV(UCSZ0); // config USART; 8N1
1e1e: 86 e8 ldi r24, 0x86 ; 134
1e20: 80 bd out 0x20, r24 ; 32
UBRRL = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
1e22: 80 e1 ldi r24, 0x10 ; 16
1e24: 89 b9 out 0x09, r24 ; 9
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
#endif
#endif
// Set up watchdog to trigger after 500ms
watchdogConfig(WATCHDOG_1S);
1e26: 8e e0 ldi r24, 0x0E ; 14
1e28: c2 d0 rcall .+388 ; 0x1fae <watchdogConfig>
/* Set LED pin as output */
LED_DDR |= _BV(LED);
1e2a: bd 9a sbi 0x17, 5 ; 23
1e2c: 96 e0 ldi r25, 0x06 ; 6
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
1e2e: 20 e3 ldi r18, 0x30 ; 48
1e30: 3c ef ldi r19, 0xFC ; 252
TIFR1 = _BV(TOV1);
1e32: 54 e0 ldi r21, 0x04 ; 4
while(!(TIFR1 & _BV(TOV1)));
#ifdef __AVR_ATmega8__
LED_PORT ^= _BV(LED);
1e34: 40 e2 ldi r20, 0x20 ; 32
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
1e36: 3d bd out 0x2d, r19 ; 45
1e38: 2c bd out 0x2c, r18 ; 44
TIFR1 = _BV(TOV1);
1e3a: 58 bf out 0x38, r21 ; 56
while(!(TIFR1 & _BV(TOV1)));
1e3c: 08 b6 in r0, 0x38 ; 56
1e3e: 02 fe sbrs r0, 2
1e40: fd cf rjmp .-6 ; 0x1e3c <main+0x3c>
#ifdef __AVR_ATmega8__
LED_PORT ^= _BV(LED);
1e42: 88 b3 in r24, 0x18 ; 24
1e44: 84 27 eor r24, r20
1e46: 88 bb out 0x18, r24 ; 24
}
#endif
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
1e48: a8 95 wdr
LED_PORT ^= _BV(LED);
#else
LED_PIN |= _BV(LED);
#endif
watchdogReset();
} while (--count);
1e4a: 91 50 subi r25, 0x01 ; 1
1e4c: a1 f7 brne .-24 ; 0x1e36 <main+0x36>
1e4e: cc 24 eor r12, r12
1e50: dd 24 eor r13, r13
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
__boot_page_fill_short((uint16_t)(void*)addrPtr,a);
1e52: 88 24 eor r8, r8
1e54: 83 94 inc r8
addrPtr += 2;
} while (--ch);
// Write from programming buffer
__boot_page_write_short((uint16_t)(void*)address);
1e56: b5 e0 ldi r27, 0x05 ; 5
1e58: ab 2e mov r10, r27
boot_spm_busy_wait();
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
1e5a: a1 e1 ldi r26, 0x11 ; 17
1e5c: 9a 2e mov r9, r26
do *bufPtr++ = getch();
while (--length);
// If we are in NRWW section, page erase has to be delayed until now.
// Todo: Take RAMPZ into account
if (address >= NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address);
1e5e: f3 e0 ldi r31, 0x03 ; 3
1e60: bf 2e mov r11, r31
#endif
/* Forever loop */
for (;;) {
/* get character from UART */
ch = getch();
1e62: 9e d0 rcall .+316 ; 0x1fa0 <getch>
if(ch == STK_GET_PARAMETER) {
1e64: 81 34 cpi r24, 0x41 ; 65
1e66: 61 f4 brne .+24 ; 0x1e80 <main+0x80>
unsigned char which = getch();
1e68: 9b d0 rcall .+310 ; 0x1fa0 <getch>
1e6a: 08 2f mov r16, r24
verifySpace();
1e6c: a4 d0 rcall .+328 ; 0x1fb6 <verifySpace>
if (which == 0x82) {
1e6e: 02 38 cpi r16, 0x82 ; 130
1e70: 11 f0 breq .+4 ; 0x1e76 <main+0x76>
/*
* Send optiboot version as "minor SW version"
*/
putch(OPTIBOOT_MINVER);
} else if (which == 0x81) {
1e72: 01 38 cpi r16, 0x81 ; 129
1e74: 11 f4 brne .+4 ; 0x1e7a <main+0x7a>
putch(OPTIBOOT_MAJVER);
1e76: 84 e0 ldi r24, 0x04 ; 4
1e78: 01 c0 rjmp .+2 ; 0x1e7c <main+0x7c>
} else {
/*
* GET PARAMETER returns a generic 0x03 reply for
* other parameters - enough to keep Avrdude happy
*/
putch(0x03);
1e7a: 83 e0 ldi r24, 0x03 ; 3
1e7c: 8d d0 rcall .+282 ; 0x1f98 <putch>
1e7e: 89 c0 rjmp .+274 ; 0x1f92 <main+0x192>
}
}
else if(ch == STK_SET_DEVICE) {
1e80: 82 34 cpi r24, 0x42 ; 66
1e82: 11 f4 brne .+4 ; 0x1e88 <main+0x88>
// SET DEVICE is ignored
getNch(20);
1e84: 84 e1 ldi r24, 0x14 ; 20
1e86: 03 c0 rjmp .+6 ; 0x1e8e <main+0x8e>
}
else if(ch == STK_SET_DEVICE_EXT) {
1e88: 85 34 cpi r24, 0x45 ; 69
1e8a: 19 f4 brne .+6 ; 0x1e92 <main+0x92>
// SET DEVICE EXT is ignored
getNch(5);
1e8c: 85 e0 ldi r24, 0x05 ; 5
1e8e: 9b d0 rcall .+310 ; 0x1fc6 <getNch>
1e90: 80 c0 rjmp .+256 ; 0x1f92 <main+0x192>
}
else if(ch == STK_LOAD_ADDRESS) {
1e92: 85 35 cpi r24, 0x55 ; 85
1e94: 79 f4 brne .+30 ; 0x1eb4 <main+0xb4>
// LOAD ADDRESS
uint16_t newAddress;
newAddress = getch();
1e96: 84 d0 rcall .+264 ; 0x1fa0 <getch>
newAddress = (newAddress & 0xff) | (getch() << 8);
1e98: e8 2e mov r14, r24
1e9a: ff 24 eor r15, r15
1e9c: 81 d0 rcall .+258 ; 0x1fa0 <getch>
1e9e: 08 2f mov r16, r24
1ea0: 10 e0 ldi r17, 0x00 ; 0
1ea2: 10 2f mov r17, r16
1ea4: 00 27 eor r16, r16
1ea6: 0e 29 or r16, r14
1ea8: 1f 29 or r17, r15
#ifdef RAMPZ
// Transfer top bit to RAMPZ
RAMPZ = (newAddress & 0x8000) ? 1 : 0;
#endif
newAddress += newAddress; // Convert from word address to byte address
1eaa: 00 0f add r16, r16
1eac: 11 1f adc r17, r17
address = newAddress;
verifySpace();
1eae: 83 d0 rcall .+262 ; 0x1fb6 <verifySpace>
1eb0: 68 01 movw r12, r16
1eb2: 6f c0 rjmp .+222 ; 0x1f92 <main+0x192>
}
else if(ch == STK_UNIVERSAL) {
1eb4: 86 35 cpi r24, 0x56 ; 86
1eb6: 21 f4 brne .+8 ; 0x1ec0 <main+0xc0>
// UNIVERSAL command is ignored
getNch(4);
1eb8: 84 e0 ldi r24, 0x04 ; 4
1eba: 85 d0 rcall .+266 ; 0x1fc6 <getNch>
putch(0x00);
1ebc: 80 e0 ldi r24, 0x00 ; 0
1ebe: de cf rjmp .-68 ; 0x1e7c <main+0x7c>
}
/* Write memory, length is big endian and is in bytes */
else if(ch == STK_PROG_PAGE) {
1ec0: 84 36 cpi r24, 0x64 ; 100
1ec2: 09 f0 breq .+2 ; 0x1ec6 <main+0xc6>
1ec4: 40 c0 rjmp .+128 ; 0x1f46 <main+0x146>
// PROGRAM PAGE - we support flash programming only, not EEPROM
uint8_t *bufPtr;
uint16_t addrPtr;
getch(); /* getlen() */
1ec6: 6c d0 rcall .+216 ; 0x1fa0 <getch>
length = getch();
1ec8: 6b d0 rcall .+214 ; 0x1fa0 <getch>
1eca: 08 2f mov r16, r24
getch();
1ecc: 69 d0 rcall .+210 ; 0x1fa0 <getch>
// If we are in RWW section, immediately start page erase
if (address < NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address);
1ece: 80 e0 ldi r24, 0x00 ; 0
1ed0: c8 16 cp r12, r24
1ed2: 88 e1 ldi r24, 0x18 ; 24
1ed4: d8 06 cpc r13, r24
1ed6: 18 f4 brcc .+6 ; 0x1ede <main+0xde>
1ed8: f6 01 movw r30, r12
1eda: b7 be out 0x37, r11 ; 55
1edc: e8 95 spm
1ede: c0 e0 ldi r28, 0x00 ; 0
1ee0: d1 e0 ldi r29, 0x01 ; 1
// While that is going on, read in page contents
bufPtr = buff;
do *bufPtr++ = getch();
1ee2: 5e d0 rcall .+188 ; 0x1fa0 <getch>
1ee4: 89 93 st Y+, r24
while (--length);
1ee6: 0c 17 cp r16, r28
1ee8: e1 f7 brne .-8 ; 0x1ee2 <main+0xe2>
// If we are in NRWW section, page erase has to be delayed until now.
// Todo: Take RAMPZ into account
if (address >= NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address);
1eea: f0 e0 ldi r31, 0x00 ; 0
1eec: cf 16 cp r12, r31
1eee: f8 e1 ldi r31, 0x18 ; 24
1ef0: df 06 cpc r13, r31
1ef2: 18 f0 brcs .+6 ; 0x1efa <main+0xfa>
1ef4: f6 01 movw r30, r12
1ef6: b7 be out 0x37, r11 ; 55
1ef8: e8 95 spm
// Read command terminator, start reply
verifySpace();
1efa: 5d d0 rcall .+186 ; 0x1fb6 <verifySpace>
// If only a partial page is to be programmed, the erase might not be complete.
// So check that here
boot_spm_busy_wait();
1efc: 07 b6 in r0, 0x37 ; 55
1efe: 00 fc sbrc r0, 0
1f00: fd cf rjmp .-6 ; 0x1efc <main+0xfc>
1f02: a6 01 movw r20, r12
1f04: a0 e0 ldi r26, 0x00 ; 0
1f06: b1 e0 ldi r27, 0x01 ; 1
bufPtr = buff;
addrPtr = (uint16_t)(void*)address;
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
1f08: 2c 91 ld r18, X
1f0a: 30 e0 ldi r19, 0x00 ; 0
a |= (*bufPtr++) << 8;
1f0c: 11 96 adiw r26, 0x01 ; 1
1f0e: 8c 91 ld r24, X
1f10: 11 97 sbiw r26, 0x01 ; 1
1f12: 90 e0 ldi r25, 0x00 ; 0
1f14: 98 2f mov r25, r24
1f16: 88 27 eor r24, r24
1f18: 82 2b or r24, r18
1f1a: 93 2b or r25, r19
#define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4))
#define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6))
#endif
/* main program starts here */
int main(void) {
1f1c: 12 96 adiw r26, 0x02 ; 2
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
__boot_page_fill_short((uint16_t)(void*)addrPtr,a);
1f1e: fa 01 movw r30, r20
1f20: 0c 01 movw r0, r24
1f22: 87 be out 0x37, r8 ; 55
1f24: e8 95 spm
1f26: 11 24 eor r1, r1
addrPtr += 2;
1f28: 4e 5f subi r20, 0xFE ; 254
1f2a: 5f 4f sbci r21, 0xFF ; 255
} while (--ch);
1f2c: f1 e0 ldi r31, 0x01 ; 1
1f2e: a0 34 cpi r26, 0x40 ; 64
1f30: bf 07 cpc r27, r31
1f32: 51 f7 brne .-44 ; 0x1f08 <main+0x108>
// Write from programming buffer
__boot_page_write_short((uint16_t)(void*)address);
1f34: f6 01 movw r30, r12
1f36: a7 be out 0x37, r10 ; 55
1f38: e8 95 spm
boot_spm_busy_wait();
1f3a: 07 b6 in r0, 0x37 ; 55
1f3c: 00 fc sbrc r0, 0
1f3e: fd cf rjmp .-6 ; 0x1f3a <main+0x13a>
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
1f40: 97 be out 0x37, r9 ; 55
1f42: e8 95 spm
1f44: 26 c0 rjmp .+76 ; 0x1f92 <main+0x192>
#endif
}
/* Read memory block mode, length is big endian. */
else if(ch == STK_READ_PAGE) {
1f46: 84 37 cpi r24, 0x74 ; 116
1f48: b1 f4 brne .+44 ; 0x1f76 <main+0x176>
// READ PAGE - we only read flash
getch(); /* getlen() */
1f4a: 2a d0 rcall .+84 ; 0x1fa0 <getch>
length = getch();
1f4c: 29 d0 rcall .+82 ; 0x1fa0 <getch>
1f4e: f8 2e mov r15, r24
getch();
1f50: 27 d0 rcall .+78 ; 0x1fa0 <getch>
verifySpace();
1f52: 31 d0 rcall .+98 ; 0x1fb6 <verifySpace>
1f54: f6 01 movw r30, r12
1f56: ef 2c mov r14, r15
putch(result);
address++;
}
while (--length);
#else
do putch(pgm_read_byte_near(address++));
1f58: 8f 01 movw r16, r30
1f5a: 0f 5f subi r16, 0xFF ; 255
1f5c: 1f 4f sbci r17, 0xFF ; 255
1f5e: 84 91 lpm r24, Z+
1f60: 1b d0 rcall .+54 ; 0x1f98 <putch>
while (--length);
1f62: ea 94 dec r14
1f64: f8 01 movw r30, r16
1f66: c1 f7 brne .-16 ; 0x1f58 <main+0x158>
#define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4))
#define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6))
#endif
/* main program starts here */
int main(void) {
1f68: 08 94 sec
1f6a: c1 1c adc r12, r1
1f6c: d1 1c adc r13, r1
1f6e: fa 94 dec r15
1f70: cf 0c add r12, r15
1f72: d1 1c adc r13, r1
1f74: 0e c0 rjmp .+28 ; 0x1f92 <main+0x192>
#endif
#endif
}
/* Get device signature bytes */
else if(ch == STK_READ_SIGN) {
1f76: 85 37 cpi r24, 0x75 ; 117
1f78: 39 f4 brne .+14 ; 0x1f88 <main+0x188>
// READ SIGN - return what Avrdude wants to hear
verifySpace();
1f7a: 1d d0 rcall .+58 ; 0x1fb6 <verifySpace>
putch(SIGNATURE_0);
1f7c: 8e e1 ldi r24, 0x1E ; 30
1f7e: 0c d0 rcall .+24 ; 0x1f98 <putch>
putch(SIGNATURE_1);
1f80: 83 e9 ldi r24, 0x93 ; 147
1f82: 0a d0 rcall .+20 ; 0x1f98 <putch>
putch(SIGNATURE_2);
1f84: 87 e0 ldi r24, 0x07 ; 7
1f86: 7a cf rjmp .-268 ; 0x1e7c <main+0x7c>
}
else if (ch == 'Q') {
1f88: 81 35 cpi r24, 0x51 ; 81
1f8a: 11 f4 brne .+4 ; 0x1f90 <main+0x190>
// Adaboot no-wait mod
watchdogConfig(WATCHDOG_16MS);
1f8c: 88 e0 ldi r24, 0x08 ; 8
1f8e: 0f d0 rcall .+30 ; 0x1fae <watchdogConfig>
verifySpace();
}
else {
// This covers the response to commands like STK_ENTER_PROGMODE
verifySpace();
1f90: 12 d0 rcall .+36 ; 0x1fb6 <verifySpace>
}
putch(STK_OK);
1f92: 80 e1 ldi r24, 0x10 ; 16
1f94: 01 d0 rcall .+2 ; 0x1f98 <putch>
1f96: 65 cf rjmp .-310 ; 0x1e62 <main+0x62>
00001f98 <putch>:
}
}
void putch(char ch) {
#ifndef SOFT_UART
while (!(UCSR0A & _BV(UDRE0)));
1f98: 5d 9b sbis 0x0b, 5 ; 11
1f9a: fe cf rjmp .-4 ; 0x1f98 <putch>
UDR0 = ch;
1f9c: 8c b9 out 0x0c, r24 ; 12
[uartBit] "I" (UART_TX_BIT)
:
"r25"
);
#endif
}
1f9e: 08 95 ret
00001fa0 <getch>:
[uartBit] "I" (UART_RX_BIT)
:
"r25"
);
#else
while(!(UCSR0A & _BV(RXC0)))
1fa0: 5f 9b sbis 0x0b, 7 ; 11
1fa2: fe cf rjmp .-4 ; 0x1fa0 <getch>
;
if (!(UCSR0A & _BV(FE0))) {
1fa4: 5c 99 sbic 0x0b, 4 ; 11
1fa6: 01 c0 rjmp .+2 ; 0x1faa <getch+0xa>
}
#endif
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
1fa8: a8 95 wdr
* don't care that an invalid char is returned...)
*/
watchdogReset();
}
ch = UDR0;
1faa: 8c b1 in r24, 0x0c ; 12
LED_PIN |= _BV(LED);
#endif
#endif
return ch;
}
1fac: 08 95 ret
00001fae <watchdogConfig>:
"wdr\n"
);
}
void watchdogConfig(uint8_t x) {
WDTCSR = _BV(WDCE) | _BV(WDE);
1fae: 98 e1 ldi r25, 0x18 ; 24
1fb0: 91 bd out 0x21, r25 ; 33
WDTCSR = x;
1fb2: 81 bd out 0x21, r24 ; 33
}
1fb4: 08 95 ret
00001fb6 <verifySpace>:
do getch(); while (--count);
verifySpace();
}
void verifySpace() {
if (getch() != CRC_EOP) {
1fb6: f4 df rcall .-24 ; 0x1fa0 <getch>
1fb8: 80 32 cpi r24, 0x20 ; 32
1fba: 19 f0 breq .+6 ; 0x1fc2 <verifySpace+0xc>
watchdogConfig(WATCHDOG_16MS); // shorten WD timeout
1fbc: 88 e0 ldi r24, 0x08 ; 8
1fbe: f7 df rcall .-18 ; 0x1fae <watchdogConfig>
1fc0: ff cf rjmp .-2 ; 0x1fc0 <verifySpace+0xa>
while (1) // and busy-loop so that WD causes
; // a reset and app start.
}
putch(STK_INSYNC);
1fc2: 84 e1 ldi r24, 0x14 ; 20
}
1fc4: e9 cf rjmp .-46 ; 0x1f98 <putch>
00001fc6 <getNch>:
::[count] "M" (UART_B_VALUE)
);
}
#endif
void getNch(uint8_t count) {
1fc6: 1f 93 push r17
1fc8: 18 2f mov r17, r24
do getch(); while (--count);
1fca: ea df rcall .-44 ; 0x1fa0 <getch>
1fcc: 11 50 subi r17, 0x01 ; 1
1fce: e9 f7 brne .-6 ; 0x1fca <getNch+0x4>
verifySpace();
1fd0: f2 df rcall .-28 ; 0x1fb6 <verifySpace>
}
1fd2: 1f 91 pop r17
1fd4: 08 95 ret
00001fd6 <appStart>:
WDTCSR = _BV(WDCE) | _BV(WDE);
WDTCSR = x;
}
void appStart() {
watchdogConfig(WATCHDOG_OFF);
1fd6: 80 e0 ldi r24, 0x00 ; 0
1fd8: ea df rcall .-44 ; 0x1fae <watchdogConfig>
__asm__ __volatile__ (
1fda: ee 27 eor r30, r30
1fdc: ff 27 eor r31, r31
1fde: 09 94 ijmp

View File

@ -1,33 +0,0 @@
:103E000085E08093810082E08093C00088E1809308
:103E1000C10086E08093C20080E18093C40084B733
:103E200014BE81FFD0D08DE0C8D0259A86E020E373
:103E30003CEF91E0309385002093840096BBB09BCB
:103E4000FECF1D9AA8958150A9F7DD24D394A5E053
:103E5000EA2EF1E1FF2EA4D0813421F481E0BED01E
:103E600083E024C0823411F484E103C0853419F462
:103E700085E0B4D08AC08535A1F492D0082F10E037
:103E800010930102009300028BD090E0982F8827B6
:103E9000802B912B880F991F909301028093000231
:103EA00073C0863529F484E099D080E071D06DC06C
:103EB000843609F043C07CD0E0910002F091010209
:103EC00083E080935700E895C0E0D1E069D0899302
:103ED000809102028150809302028823B9F778D042
:103EE00007B600FCFDCF4091000250910102A0E016
:103EF000B1E02C9130E011968C91119790E0982FC1
:103F00008827822B932B1296FA010C01D09257002E
:103F1000E89511244E5F5F4FF1E0A038BF0749F7E5
:103F2000E0910002F0910102E0925700E89507B697
:103F300000FCFDCFF0925700E89527C08437B9F414
:103F400037D046D0E0910002F09101023196F09313
:103F50000102E09300023197E4918E2F19D08091F5
:103F60000202815080930202882361F70EC08537D8
:103F700039F42ED08EE10CD084E90AD086E096CFB9
:103F8000813511F488E019D023D080E101D063CFCE
:103F9000982F8091C00085FFFCCF9093C6000895B4
:103FA000A8958091C00087FFFCCF8091C60008953E
:103FB000F7DFF6DF80930202F3CFE0E6F0E098E16E
:103FC00090838083089580E0F8DFEE27FF2709942F
:103FD000E7DF803209F0F7DF84E1DACF1F93182F93
:0C3FE000DFDF1150E9F7F4DF1F910895B6
:0400000300003E00BB
:00000001FF

View File

@ -1,520 +0,0 @@
optiboot_diecimila.elf: file format elf32-avr
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 000001ec 00003e00 00003e00 00000054 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .debug_aranges 00000028 00000000 00000000 00000240 2**0
CONTENTS, READONLY, DEBUGGING
2 .debug_pubnames 0000006a 00000000 00000000 00000268 2**0
CONTENTS, READONLY, DEBUGGING
3 .debug_info 00000269 00000000 00000000 000002d2 2**0
CONTENTS, READONLY, DEBUGGING
4 .debug_abbrev 00000196 00000000 00000000 0000053b 2**0
CONTENTS, READONLY, DEBUGGING
5 .debug_line 000003d3 00000000 00000000 000006d1 2**0
CONTENTS, READONLY, DEBUGGING
6 .debug_frame 00000090 00000000 00000000 00000aa4 2**2
CONTENTS, READONLY, DEBUGGING
7 .debug_str 00000135 00000000 00000000 00000b34 2**0
CONTENTS, READONLY, DEBUGGING
8 .debug_loc 000001d1 00000000 00000000 00000c69 2**0
CONTENTS, READONLY, DEBUGGING
9 .debug_ranges 00000068 00000000 00000000 00000e3a 2**0
CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:
00003e00 <main>:
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
3e00: 85 e0 ldi r24, 0x05 ; 5
3e02: 80 93 81 00 sts 0x0081, r24
#if LED_START_FLASHES > 0
// Set up Timer 1 for timeout counter
TCCR1B = _BV(CS12) | _BV(CS10); // div 1024
#endif
#ifndef SOFT_UART
UCSR0A = _BV(U2X0); //Double speed mode USART0
3e06: 82 e0 ldi r24, 0x02 ; 2
3e08: 80 93 c0 00 sts 0x00C0, r24
UCSR0B = _BV(RXEN0) | _BV(TXEN0);
3e0c: 88 e1 ldi r24, 0x18 ; 24
3e0e: 80 93 c1 00 sts 0x00C1, r24
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
3e12: 86 e0 ldi r24, 0x06 ; 6
3e14: 80 93 c2 00 sts 0x00C2, r24
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
3e18: 80 e1 ldi r24, 0x10 ; 16
3e1a: 80 93 c4 00 sts 0x00C4, r24
#endif
// Adaboot no-wait mod
ch = MCUSR;
3e1e: 84 b7 in r24, 0x34 ; 52
MCUSR = 0;
3e20: 14 be out 0x34, r1 ; 52
if (!(ch & _BV(EXTRF))) appStart();
3e22: 81 ff sbrs r24, 1
3e24: d0 d0 rcall .+416 ; 0x3fc6 <appStart>
// Set up watchdog to trigger after 500ms
watchdogConfig(WATCHDOG_500MS);
3e26: 8d e0 ldi r24, 0x0D ; 13
3e28: c8 d0 rcall .+400 ; 0x3fba <watchdogConfig>
/* Set LED pin as output */
LED_DDR |= _BV(LED);
3e2a: 25 9a sbi 0x04, 5 ; 4
3e2c: 86 e0 ldi r24, 0x06 ; 6
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e2e: 20 e3 ldi r18, 0x30 ; 48
3e30: 3c ef ldi r19, 0xFC ; 252
TIFR1 = _BV(TOV1);
3e32: 91 e0 ldi r25, 0x01 ; 1
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e34: 30 93 85 00 sts 0x0085, r19
3e38: 20 93 84 00 sts 0x0084, r18
TIFR1 = _BV(TOV1);
3e3c: 96 bb out 0x16, r25 ; 22
while(!(TIFR1 & _BV(TOV1)));
3e3e: b0 9b sbis 0x16, 0 ; 22
3e40: fe cf rjmp .-4 ; 0x3e3e <main+0x3e>
LED_PIN |= _BV(LED);
3e42: 1d 9a sbi 0x03, 5 ; 3
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3e44: a8 95 wdr
TCNT1 = -(F_CPU/(1024*16));
TIFR1 = _BV(TOV1);
while(!(TIFR1 & _BV(TOV1)));
LED_PIN |= _BV(LED);
watchdogReset();
} while (--count);
3e46: 81 50 subi r24, 0x01 ; 1
3e48: a9 f7 brne .-22 ; 0x3e34 <main+0x34>
/* get character from UART */
ch = getch();
if(ch == STK_GET_PARAMETER) {
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
3e4a: dd 24 eor r13, r13
3e4c: d3 94 inc r13
boot_page_fill((uint16_t)(void*)addrPtr,a);
addrPtr += 2;
} while (--ch);
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
3e4e: a5 e0 ldi r26, 0x05 ; 5
3e50: ea 2e mov r14, r26
boot_spm_busy_wait();
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3e52: f1 e1 ldi r31, 0x11 ; 17
3e54: ff 2e mov r15, r31
#endif
/* Forever loop */
for (;;) {
/* get character from UART */
ch = getch();
3e56: a4 d0 rcall .+328 ; 0x3fa0 <getch>
if(ch == STK_GET_PARAMETER) {
3e58: 81 34 cpi r24, 0x41 ; 65
3e5a: 21 f4 brne .+8 ; 0x3e64 <main+0x64>
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
3e5c: 81 e0 ldi r24, 0x01 ; 1
3e5e: be d0 rcall .+380 ; 0x3fdc <verifySpace+0xc>
putch(0x03);
3e60: 83 e0 ldi r24, 0x03 ; 3
3e62: 24 c0 rjmp .+72 ; 0x3eac <main+0xac>
}
else if(ch == STK_SET_DEVICE) {
3e64: 82 34 cpi r24, 0x42 ; 66
3e66: 11 f4 brne .+4 ; 0x3e6c <main+0x6c>
// SET DEVICE is ignored
getNch(20);
3e68: 84 e1 ldi r24, 0x14 ; 20
3e6a: 03 c0 rjmp .+6 ; 0x3e72 <main+0x72>
}
else if(ch == STK_SET_DEVICE_EXT) {
3e6c: 85 34 cpi r24, 0x45 ; 69
3e6e: 19 f4 brne .+6 ; 0x3e76 <main+0x76>
// SET DEVICE EXT is ignored
getNch(5);
3e70: 85 e0 ldi r24, 0x05 ; 5
3e72: b4 d0 rcall .+360 ; 0x3fdc <verifySpace+0xc>
3e74: 8a c0 rjmp .+276 ; 0x3f8a <main+0x18a>
}
else if(ch == STK_LOAD_ADDRESS) {
3e76: 85 35 cpi r24, 0x55 ; 85
3e78: a1 f4 brne .+40 ; 0x3ea2 <main+0xa2>
// LOAD ADDRESS
address = getch();
3e7a: 92 d0 rcall .+292 ; 0x3fa0 <getch>
3e7c: 08 2f mov r16, r24
3e7e: 10 e0 ldi r17, 0x00 ; 0
3e80: 10 93 01 02 sts 0x0201, r17
3e84: 00 93 00 02 sts 0x0200, r16
address = (address & 0xff) | (getch() << 8);
3e88: 8b d0 rcall .+278 ; 0x3fa0 <getch>
3e8a: 90 e0 ldi r25, 0x00 ; 0
3e8c: 98 2f mov r25, r24
3e8e: 88 27 eor r24, r24
3e90: 80 2b or r24, r16
3e92: 91 2b or r25, r17
address += address; // Convert from word address to byte address
3e94: 88 0f add r24, r24
3e96: 99 1f adc r25, r25
3e98: 90 93 01 02 sts 0x0201, r25
3e9c: 80 93 00 02 sts 0x0200, r24
3ea0: 73 c0 rjmp .+230 ; 0x3f88 <main+0x188>
verifySpace();
}
else if(ch == STK_UNIVERSAL) {
3ea2: 86 35 cpi r24, 0x56 ; 86
3ea4: 29 f4 brne .+10 ; 0x3eb0 <main+0xb0>
// UNIVERSAL command is ignored
getNch(4);
3ea6: 84 e0 ldi r24, 0x04 ; 4
3ea8: 99 d0 rcall .+306 ; 0x3fdc <verifySpace+0xc>
putch(0x00);
3eaa: 80 e0 ldi r24, 0x00 ; 0
3eac: 71 d0 rcall .+226 ; 0x3f90 <putch>
3eae: 6d c0 rjmp .+218 ; 0x3f8a <main+0x18a>
}
/* Write memory, length is big endian and is in bytes */
else if(ch == STK_PROG_PAGE) {
3eb0: 84 36 cpi r24, 0x64 ; 100
3eb2: 09 f0 breq .+2 ; 0x3eb6 <main+0xb6>
3eb4: 43 c0 rjmp .+134 ; 0x3f3c <main+0x13c>
// PROGRAM PAGE - we support flash programming only, not EEPROM
uint8_t *bufPtr;
uint16_t addrPtr;
getLen();
3eb6: 7c d0 rcall .+248 ; 0x3fb0 <getLen>
// Immediately start page erase - this will 4.5ms
boot_page_erase((uint16_t)(void*)address);
3eb8: e0 91 00 02 lds r30, 0x0200
3ebc: f0 91 01 02 lds r31, 0x0201
3ec0: 83 e0 ldi r24, 0x03 ; 3
3ec2: 80 93 57 00 sts 0x0057, r24
3ec6: e8 95 spm
3ec8: c0 e0 ldi r28, 0x00 ; 0
3eca: d1 e0 ldi r29, 0x01 ; 1
// While that is going on, read in page contents
bufPtr = buff;
do *bufPtr++ = getch();
3ecc: 69 d0 rcall .+210 ; 0x3fa0 <getch>
3ece: 89 93 st Y+, r24
while (--length);
3ed0: 80 91 02 02 lds r24, 0x0202
3ed4: 81 50 subi r24, 0x01 ; 1
3ed6: 80 93 02 02 sts 0x0202, r24
3eda: 88 23 and r24, r24
3edc: b9 f7 brne .-18 ; 0x3ecc <main+0xcc>
// Read command terminator, start reply
verifySpace();
3ede: 78 d0 rcall .+240 ; 0x3fd0 <verifySpace>
// If only a partial page is to be programmed, the erase might not be complete.
// So check that here
boot_spm_busy_wait();
3ee0: 07 b6 in r0, 0x37 ; 55
3ee2: 00 fc sbrc r0, 0
3ee4: fd cf rjmp .-6 ; 0x3ee0 <main+0xe0>
}
#endif
// Copy buffer into programming buffer
bufPtr = buff;
addrPtr = (uint16_t)(void*)address;
3ee6: 40 91 00 02 lds r20, 0x0200
3eea: 50 91 01 02 lds r21, 0x0201
3eee: a0 e0 ldi r26, 0x00 ; 0
3ef0: b1 e0 ldi r27, 0x01 ; 1
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
3ef2: 2c 91 ld r18, X
3ef4: 30 e0 ldi r19, 0x00 ; 0
a |= (*bufPtr++) << 8;
3ef6: 11 96 adiw r26, 0x01 ; 1
3ef8: 8c 91 ld r24, X
3efa: 11 97 sbiw r26, 0x01 ; 1
3efc: 90 e0 ldi r25, 0x00 ; 0
3efe: 98 2f mov r25, r24
3f00: 88 27 eor r24, r24
3f02: 82 2b or r24, r18
3f04: 93 2b or r25, r19
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
3f06: 12 96 adiw r26, 0x02 ; 2
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
boot_page_fill((uint16_t)(void*)addrPtr,a);
3f08: fa 01 movw r30, r20
3f0a: 0c 01 movw r0, r24
3f0c: d0 92 57 00 sts 0x0057, r13
3f10: e8 95 spm
3f12: 11 24 eor r1, r1
addrPtr += 2;
3f14: 4e 5f subi r20, 0xFE ; 254
3f16: 5f 4f sbci r21, 0xFF ; 255
} while (--ch);
3f18: f1 e0 ldi r31, 0x01 ; 1
3f1a: a0 38 cpi r26, 0x80 ; 128
3f1c: bf 07 cpc r27, r31
3f1e: 49 f7 brne .-46 ; 0x3ef2 <main+0xf2>
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
3f20: e0 91 00 02 lds r30, 0x0200
3f24: f0 91 01 02 lds r31, 0x0201
3f28: e0 92 57 00 sts 0x0057, r14
3f2c: e8 95 spm
boot_spm_busy_wait();
3f2e: 07 b6 in r0, 0x37 ; 55
3f30: 00 fc sbrc r0, 0
3f32: fd cf rjmp .-6 ; 0x3f2e <main+0x12e>
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3f34: f0 92 57 00 sts 0x0057, r15
3f38: e8 95 spm
3f3a: 27 c0 rjmp .+78 ; 0x3f8a <main+0x18a>
#endif
}
/* Read memory block mode, length is big endian. */
else if(ch == STK_READ_PAGE) {
3f3c: 84 37 cpi r24, 0x74 ; 116
3f3e: b9 f4 brne .+46 ; 0x3f6e <main+0x16e>
// READ PAGE - we only read flash
getLen();
3f40: 37 d0 rcall .+110 ; 0x3fb0 <getLen>
verifySpace();
3f42: 46 d0 rcall .+140 ; 0x3fd0 <verifySpace>
else ch = pgm_read_byte_near(address);
address++;
putch(ch);
} while (--length);
#else
do putch(pgm_read_byte_near(address++));
3f44: e0 91 00 02 lds r30, 0x0200
3f48: f0 91 01 02 lds r31, 0x0201
3f4c: 31 96 adiw r30, 0x01 ; 1
3f4e: f0 93 01 02 sts 0x0201, r31
3f52: e0 93 00 02 sts 0x0200, r30
3f56: 31 97 sbiw r30, 0x01 ; 1
3f58: e4 91 lpm r30, Z+
3f5a: 8e 2f mov r24, r30
3f5c: 19 d0 rcall .+50 ; 0x3f90 <putch>
while (--length);
3f5e: 80 91 02 02 lds r24, 0x0202
3f62: 81 50 subi r24, 0x01 ; 1
3f64: 80 93 02 02 sts 0x0202, r24
3f68: 88 23 and r24, r24
3f6a: 61 f7 brne .-40 ; 0x3f44 <main+0x144>
3f6c: 0e c0 rjmp .+28 ; 0x3f8a <main+0x18a>
#endif
}
/* Get device signature bytes */
else if(ch == STK_READ_SIGN) {
3f6e: 85 37 cpi r24, 0x75 ; 117
3f70: 39 f4 brne .+14 ; 0x3f80 <main+0x180>
// READ SIGN - return what Avrdude wants to hear
verifySpace();
3f72: 2e d0 rcall .+92 ; 0x3fd0 <verifySpace>
putch(SIGNATURE_0);
3f74: 8e e1 ldi r24, 0x1E ; 30
3f76: 0c d0 rcall .+24 ; 0x3f90 <putch>
putch(SIGNATURE_1);
3f78: 84 e9 ldi r24, 0x94 ; 148
3f7a: 0a d0 rcall .+20 ; 0x3f90 <putch>
putch(SIGNATURE_2);
3f7c: 86 e0 ldi r24, 0x06 ; 6
3f7e: 96 cf rjmp .-212 ; 0x3eac <main+0xac>
}
else if (ch == 'Q') {
3f80: 81 35 cpi r24, 0x51 ; 81
3f82: 11 f4 brne .+4 ; 0x3f88 <main+0x188>
// Adaboot no-wait mod
watchdogConfig(WATCHDOG_16MS);
3f84: 88 e0 ldi r24, 0x08 ; 8
3f86: 19 d0 rcall .+50 ; 0x3fba <watchdogConfig>
verifySpace();
}
else {
// This covers the response to commands like STK_ENTER_PROGMODE
verifySpace();
3f88: 23 d0 rcall .+70 ; 0x3fd0 <verifySpace>
}
putch(STK_OK);
3f8a: 80 e1 ldi r24, 0x10 ; 16
3f8c: 01 d0 rcall .+2 ; 0x3f90 <putch>
3f8e: 63 cf rjmp .-314 ; 0x3e56 <main+0x56>
00003f90 <putch>:
}
}
void putch(char ch) {
3f90: 98 2f mov r25, r24
#ifndef SOFT_UART
while (!(UCSR0A & _BV(UDRE0)));
3f92: 80 91 c0 00 lds r24, 0x00C0
3f96: 85 ff sbrs r24, 5
3f98: fc cf rjmp .-8 ; 0x3f92 <putch+0x2>
UDR0 = ch;
3f9a: 90 93 c6 00 sts 0x00C6, r25
[uartBit] "I" (UART_TX_BIT)
:
"r25"
);
#endif
}
3f9e: 08 95 ret
00003fa0 <getch>:
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3fa0: a8 95 wdr
[uartBit] "I" (UART_RX_BIT)
:
"r25"
);
#else
while(!(UCSR0A & _BV(RXC0)));
3fa2: 80 91 c0 00 lds r24, 0x00C0
3fa6: 87 ff sbrs r24, 7
3fa8: fc cf rjmp .-8 ; 0x3fa2 <getch+0x2>
ch = UDR0;
3faa: 80 91 c6 00 lds r24, 0x00C6
#ifdef LED_DATA_FLASH
LED_PIN |= _BV(LED);
#endif
return ch;
}
3fae: 08 95 ret
00003fb0 <getLen>:
} while (--count);
}
#endif
uint8_t getLen() {
getch();
3fb0: f7 df rcall .-18 ; 0x3fa0 <getch>
length = getch();
3fb2: f6 df rcall .-20 ; 0x3fa0 <getch>
3fb4: 80 93 02 02 sts 0x0202, r24
return getch();
}
3fb8: f3 cf rjmp .-26 ; 0x3fa0 <getch>
00003fba <watchdogConfig>:
"wdr\n"
);
}
void watchdogConfig(uint8_t x) {
WDTCSR = _BV(WDCE) | _BV(WDE);
3fba: e0 e6 ldi r30, 0x60 ; 96
3fbc: f0 e0 ldi r31, 0x00 ; 0
3fbe: 98 e1 ldi r25, 0x18 ; 24
3fc0: 90 83 st Z, r25
WDTCSR = x;
3fc2: 80 83 st Z, r24
}
3fc4: 08 95 ret
00003fc6 <appStart>:
void appStart() {
watchdogConfig(WATCHDOG_OFF);
3fc6: 80 e0 ldi r24, 0x00 ; 0
3fc8: f8 df rcall .-16 ; 0x3fba <watchdogConfig>
__asm__ __volatile__ (
3fca: ee 27 eor r30, r30
3fcc: ff 27 eor r31, r31
3fce: 09 94 ijmp
00003fd0 <verifySpace>:
do getch(); while (--count);
verifySpace();
}
void verifySpace() {
if (getch() != CRC_EOP) appStart();
3fd0: e7 df rcall .-50 ; 0x3fa0 <getch>
3fd2: 80 32 cpi r24, 0x20 ; 32
3fd4: 09 f0 breq .+2 ; 0x3fd8 <verifySpace+0x8>
3fd6: f7 df rcall .-18 ; 0x3fc6 <appStart>
putch(STK_INSYNC);
3fd8: 84 e1 ldi r24, 0x14 ; 20
}
3fda: da cf rjmp .-76 ; 0x3f90 <putch>
::[count] "M" (UART_B_VALUE)
);
}
#endif
void getNch(uint8_t count) {
3fdc: 1f 93 push r17
3fde: 18 2f mov r17, r24
00003fe0 <getNch>:
do getch(); while (--count);
3fe0: df df rcall .-66 ; 0x3fa0 <getch>
3fe2: 11 50 subi r17, 0x01 ; 1
3fe4: e9 f7 brne .-6 ; 0x3fe0 <getNch>
verifySpace();
3fe6: f4 df rcall .-24 ; 0x3fd0 <verifySpace>
}
3fe8: 1f 91 pop r17
3fea: 08 95 ret

View File

@ -1,34 +0,0 @@
:103E000085E08093810084B714BE81FFE4D08DE00B
:103E1000DCD0259A519A86E028E13EEF91E030937C
:103E200085002093840096BBB09BFECF1D9AA89579
:103E30008150A9F7DD24D394A5E0EA2EF1E1FF2E0D
:103E4000ABD0813421F481E0D1D083E024C082342E
:103E500011F484E103C0853419F485E0C7D08AC029
:103E60008535A1F499D0082F10E01093010200933A
:103E7000000292D090E0982F8827802B912B880FFA
:103E8000991F909301028093000273C0863529F434
:103E900084E0ACD080E071D06DC0843609F043C0BE
:103EA0008FD0E0910002F091010283E080935700EF
:103EB000E895C0E0D1E070D08993809102028150F2
:103EC000809302028823B9F78BD007B600FCFDCFA0
:103ED0004091000250910102A0E0B1E02C9130E04D
:103EE00011968C91119790E0982F8827822B932B15
:103EF0001296FA010C01D0925700E89511244E5FFA
:103F00005F4FF1E0A038BF0749F7E0910002F09160
:103F10000102E0925700E89507B600FCFDCFF09251
:103F20005700E89527C08437B9F44AD059D0E091BA
:103F30000002F09101023196F0930102E093000239
:103F40003197E4918E2F19D0809102028150809395
:103F50000202882361F70EC0853739F441D08EE123
:103F60000CD084E90AD086E096CF813511F488E040
:103F70002CD036D080E101D063CF2AE030E08095AC
:103F8000089410F4599802C0599A000015D014D022
:103F900086952A95B1F70895A89529E030E04899CB
:103FA000FECF0AD009D008D08894489908942A9561
:103FB00011F08795F7CF089598E09A95F1F7089555
:103FC000EBDFEADF80930202E7CFE0E6F0E098E182
:103FD00090838083089580E0F8DFEE27FF2709941F
:103FE000DBDF803209F0F7DF84E1C7CF1F93182FA2
:0C3FF000D3DF1150E9F7F4DF1F910895B2
:0400000300003E00BB
:00000001FF

View File

@ -1,533 +0,0 @@
optiboot_lilypad.elf: file format elf32-avr
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 000001fc 00003e00 00003e00 00000054 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .debug_aranges 00000028 00000000 00000000 00000250 2**0
CONTENTS, READONLY, DEBUGGING
2 .debug_pubnames 00000078 00000000 00000000 00000278 2**0
CONTENTS, READONLY, DEBUGGING
3 .debug_info 00000277 00000000 00000000 000002f0 2**0
CONTENTS, READONLY, DEBUGGING
4 .debug_abbrev 00000194 00000000 00000000 00000567 2**0
CONTENTS, READONLY, DEBUGGING
5 .debug_line 000003bb 00000000 00000000 000006fb 2**0
CONTENTS, READONLY, DEBUGGING
6 .debug_frame 000000a0 00000000 00000000 00000ab8 2**2
CONTENTS, READONLY, DEBUGGING
7 .debug_str 0000013f 00000000 00000000 00000b58 2**0
CONTENTS, READONLY, DEBUGGING
8 .debug_loc 000001a0 00000000 00000000 00000c97 2**0
CONTENTS, READONLY, DEBUGGING
9 .debug_ranges 00000070 00000000 00000000 00000e37 2**0
CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:
00003e00 <main>:
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
3e00: 85 e0 ldi r24, 0x05 ; 5
3e02: 80 93 81 00 sts 0x0081, r24
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
#endif
// Adaboot no-wait mod
ch = MCUSR;
3e06: 84 b7 in r24, 0x34 ; 52
MCUSR = 0;
3e08: 14 be out 0x34, r1 ; 52
if (!(ch & _BV(EXTRF))) appStart();
3e0a: 81 ff sbrs r24, 1
3e0c: e4 d0 rcall .+456 ; 0x3fd6 <appStart>
// Set up watchdog to trigger after 500ms
watchdogConfig(WATCHDOG_500MS);
3e0e: 8d e0 ldi r24, 0x0D ; 13
3e10: dc d0 rcall .+440 ; 0x3fca <watchdogConfig>
/* Set LED pin as output */
LED_DDR |= _BV(LED);
3e12: 25 9a sbi 0x04, 5 ; 4
#ifdef SOFT_UART
/* Set TX pin as output */
UART_DDR |= _BV(UART_TX_BIT);
3e14: 51 9a sbi 0x0a, 1 ; 10
3e16: 86 e0 ldi r24, 0x06 ; 6
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e18: 28 e1 ldi r18, 0x18 ; 24
3e1a: 3e ef ldi r19, 0xFE ; 254
TIFR1 = _BV(TOV1);
3e1c: 91 e0 ldi r25, 0x01 ; 1
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e1e: 30 93 85 00 sts 0x0085, r19
3e22: 20 93 84 00 sts 0x0084, r18
TIFR1 = _BV(TOV1);
3e26: 96 bb out 0x16, r25 ; 22
while(!(TIFR1 & _BV(TOV1)));
3e28: b0 9b sbis 0x16, 0 ; 22
3e2a: fe cf rjmp .-4 ; 0x3e28 <main+0x28>
LED_PIN |= _BV(LED);
3e2c: 1d 9a sbi 0x03, 5 ; 3
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3e2e: a8 95 wdr
TCNT1 = -(F_CPU/(1024*16));
TIFR1 = _BV(TOV1);
while(!(TIFR1 & _BV(TOV1)));
LED_PIN |= _BV(LED);
watchdogReset();
} while (--count);
3e30: 81 50 subi r24, 0x01 ; 1
3e32: a9 f7 brne .-22 ; 0x3e1e <main+0x1e>
/* get character from UART */
ch = getch();
if(ch == STK_GET_PARAMETER) {
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
3e34: dd 24 eor r13, r13
3e36: d3 94 inc r13
boot_page_fill((uint16_t)(void*)addrPtr,a);
addrPtr += 2;
} while (--ch);
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
3e38: a5 e0 ldi r26, 0x05 ; 5
3e3a: ea 2e mov r14, r26
boot_spm_busy_wait();
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3e3c: f1 e1 ldi r31, 0x11 ; 17
3e3e: ff 2e mov r15, r31
#endif
/* Forever loop */
for (;;) {
/* get character from UART */
ch = getch();
3e40: ab d0 rcall .+342 ; 0x3f98 <getch>
if(ch == STK_GET_PARAMETER) {
3e42: 81 34 cpi r24, 0x41 ; 65
3e44: 21 f4 brne .+8 ; 0x3e4e <main+0x4e>
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
3e46: 81 e0 ldi r24, 0x01 ; 1
3e48: d1 d0 rcall .+418 ; 0x3fec <verifySpace+0xc>
putch(0x03);
3e4a: 83 e0 ldi r24, 0x03 ; 3
3e4c: 24 c0 rjmp .+72 ; 0x3e96 <main+0x96>
}
else if(ch == STK_SET_DEVICE) {
3e4e: 82 34 cpi r24, 0x42 ; 66
3e50: 11 f4 brne .+4 ; 0x3e56 <main+0x56>
// SET DEVICE is ignored
getNch(20);
3e52: 84 e1 ldi r24, 0x14 ; 20
3e54: 03 c0 rjmp .+6 ; 0x3e5c <main+0x5c>
}
else if(ch == STK_SET_DEVICE_EXT) {
3e56: 85 34 cpi r24, 0x45 ; 69
3e58: 19 f4 brne .+6 ; 0x3e60 <main+0x60>
// SET DEVICE EXT is ignored
getNch(5);
3e5a: 85 e0 ldi r24, 0x05 ; 5
3e5c: c7 d0 rcall .+398 ; 0x3fec <verifySpace+0xc>
3e5e: 8a c0 rjmp .+276 ; 0x3f74 <main+0x174>
}
else if(ch == STK_LOAD_ADDRESS) {
3e60: 85 35 cpi r24, 0x55 ; 85
3e62: a1 f4 brne .+40 ; 0x3e8c <main+0x8c>
// LOAD ADDRESS
address = getch();
3e64: 99 d0 rcall .+306 ; 0x3f98 <getch>
3e66: 08 2f mov r16, r24
3e68: 10 e0 ldi r17, 0x00 ; 0
3e6a: 10 93 01 02 sts 0x0201, r17
3e6e: 00 93 00 02 sts 0x0200, r16
address = (address & 0xff) | (getch() << 8);
3e72: 92 d0 rcall .+292 ; 0x3f98 <getch>
3e74: 90 e0 ldi r25, 0x00 ; 0
3e76: 98 2f mov r25, r24
3e78: 88 27 eor r24, r24
3e7a: 80 2b or r24, r16
3e7c: 91 2b or r25, r17
address += address; // Convert from word address to byte address
3e7e: 88 0f add r24, r24
3e80: 99 1f adc r25, r25
3e82: 90 93 01 02 sts 0x0201, r25
3e86: 80 93 00 02 sts 0x0200, r24
3e8a: 73 c0 rjmp .+230 ; 0x3f72 <main+0x172>
verifySpace();
}
else if(ch == STK_UNIVERSAL) {
3e8c: 86 35 cpi r24, 0x56 ; 86
3e8e: 29 f4 brne .+10 ; 0x3e9a <main+0x9a>
// UNIVERSAL command is ignored
getNch(4);
3e90: 84 e0 ldi r24, 0x04 ; 4
3e92: ac d0 rcall .+344 ; 0x3fec <verifySpace+0xc>
putch(0x00);
3e94: 80 e0 ldi r24, 0x00 ; 0
3e96: 71 d0 rcall .+226 ; 0x3f7a <putch>
3e98: 6d c0 rjmp .+218 ; 0x3f74 <main+0x174>
}
/* Write memory, length is big endian and is in bytes */
else if(ch == STK_PROG_PAGE) {
3e9a: 84 36 cpi r24, 0x64 ; 100
3e9c: 09 f0 breq .+2 ; 0x3ea0 <main+0xa0>
3e9e: 43 c0 rjmp .+134 ; 0x3f26 <main+0x126>
// PROGRAM PAGE - we support flash programming only, not EEPROM
uint8_t *bufPtr;
uint16_t addrPtr;
getLen();
3ea0: 8f d0 rcall .+286 ; 0x3fc0 <getLen>
// Immediately start page erase - this will 4.5ms
boot_page_erase((uint16_t)(void*)address);
3ea2: e0 91 00 02 lds r30, 0x0200
3ea6: f0 91 01 02 lds r31, 0x0201
3eaa: 83 e0 ldi r24, 0x03 ; 3
3eac: 80 93 57 00 sts 0x0057, r24
3eb0: e8 95 spm
3eb2: c0 e0 ldi r28, 0x00 ; 0
3eb4: d1 e0 ldi r29, 0x01 ; 1
// While that is going on, read in page contents
bufPtr = buff;
do *bufPtr++ = getch();
3eb6: 70 d0 rcall .+224 ; 0x3f98 <getch>
3eb8: 89 93 st Y+, r24
while (--length);
3eba: 80 91 02 02 lds r24, 0x0202
3ebe: 81 50 subi r24, 0x01 ; 1
3ec0: 80 93 02 02 sts 0x0202, r24
3ec4: 88 23 and r24, r24
3ec6: b9 f7 brne .-18 ; 0x3eb6 <main+0xb6>
// Read command terminator, start reply
verifySpace();
3ec8: 8b d0 rcall .+278 ; 0x3fe0 <verifySpace>
// If only a partial page is to be programmed, the erase might not be complete.
// So check that here
boot_spm_busy_wait();
3eca: 07 b6 in r0, 0x37 ; 55
3ecc: 00 fc sbrc r0, 0
3ece: fd cf rjmp .-6 ; 0x3eca <main+0xca>
}
#endif
// Copy buffer into programming buffer
bufPtr = buff;
addrPtr = (uint16_t)(void*)address;
3ed0: 40 91 00 02 lds r20, 0x0200
3ed4: 50 91 01 02 lds r21, 0x0201
3ed8: a0 e0 ldi r26, 0x00 ; 0
3eda: b1 e0 ldi r27, 0x01 ; 1
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
3edc: 2c 91 ld r18, X
3ede: 30 e0 ldi r19, 0x00 ; 0
a |= (*bufPtr++) << 8;
3ee0: 11 96 adiw r26, 0x01 ; 1
3ee2: 8c 91 ld r24, X
3ee4: 11 97 sbiw r26, 0x01 ; 1
3ee6: 90 e0 ldi r25, 0x00 ; 0
3ee8: 98 2f mov r25, r24
3eea: 88 27 eor r24, r24
3eec: 82 2b or r24, r18
3eee: 93 2b or r25, r19
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
3ef0: 12 96 adiw r26, 0x02 ; 2
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
boot_page_fill((uint16_t)(void*)addrPtr,a);
3ef2: fa 01 movw r30, r20
3ef4: 0c 01 movw r0, r24
3ef6: d0 92 57 00 sts 0x0057, r13
3efa: e8 95 spm
3efc: 11 24 eor r1, r1
addrPtr += 2;
3efe: 4e 5f subi r20, 0xFE ; 254
3f00: 5f 4f sbci r21, 0xFF ; 255
} while (--ch);
3f02: f1 e0 ldi r31, 0x01 ; 1
3f04: a0 38 cpi r26, 0x80 ; 128
3f06: bf 07 cpc r27, r31
3f08: 49 f7 brne .-46 ; 0x3edc <main+0xdc>
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
3f0a: e0 91 00 02 lds r30, 0x0200
3f0e: f0 91 01 02 lds r31, 0x0201
3f12: e0 92 57 00 sts 0x0057, r14
3f16: e8 95 spm
boot_spm_busy_wait();
3f18: 07 b6 in r0, 0x37 ; 55
3f1a: 00 fc sbrc r0, 0
3f1c: fd cf rjmp .-6 ; 0x3f18 <main+0x118>
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3f1e: f0 92 57 00 sts 0x0057, r15
3f22: e8 95 spm
3f24: 27 c0 rjmp .+78 ; 0x3f74 <main+0x174>
#endif
}
/* Read memory block mode, length is big endian. */
else if(ch == STK_READ_PAGE) {
3f26: 84 37 cpi r24, 0x74 ; 116
3f28: b9 f4 brne .+46 ; 0x3f58 <main+0x158>
// READ PAGE - we only read flash
getLen();
3f2a: 4a d0 rcall .+148 ; 0x3fc0 <getLen>
verifySpace();
3f2c: 59 d0 rcall .+178 ; 0x3fe0 <verifySpace>
else ch = pgm_read_byte_near(address);
address++;
putch(ch);
} while (--length);
#else
do putch(pgm_read_byte_near(address++));
3f2e: e0 91 00 02 lds r30, 0x0200
3f32: f0 91 01 02 lds r31, 0x0201
3f36: 31 96 adiw r30, 0x01 ; 1
3f38: f0 93 01 02 sts 0x0201, r31
3f3c: e0 93 00 02 sts 0x0200, r30
3f40: 31 97 sbiw r30, 0x01 ; 1
3f42: e4 91 lpm r30, Z+
3f44: 8e 2f mov r24, r30
3f46: 19 d0 rcall .+50 ; 0x3f7a <putch>
while (--length);
3f48: 80 91 02 02 lds r24, 0x0202
3f4c: 81 50 subi r24, 0x01 ; 1
3f4e: 80 93 02 02 sts 0x0202, r24
3f52: 88 23 and r24, r24
3f54: 61 f7 brne .-40 ; 0x3f2e <main+0x12e>
3f56: 0e c0 rjmp .+28 ; 0x3f74 <main+0x174>
#endif
}
/* Get device signature bytes */
else if(ch == STK_READ_SIGN) {
3f58: 85 37 cpi r24, 0x75 ; 117
3f5a: 39 f4 brne .+14 ; 0x3f6a <main+0x16a>
// READ SIGN - return what Avrdude wants to hear
verifySpace();
3f5c: 41 d0 rcall .+130 ; 0x3fe0 <verifySpace>
putch(SIGNATURE_0);
3f5e: 8e e1 ldi r24, 0x1E ; 30
3f60: 0c d0 rcall .+24 ; 0x3f7a <putch>
putch(SIGNATURE_1);
3f62: 84 e9 ldi r24, 0x94 ; 148
3f64: 0a d0 rcall .+20 ; 0x3f7a <putch>
putch(SIGNATURE_2);
3f66: 86 e0 ldi r24, 0x06 ; 6
3f68: 96 cf rjmp .-212 ; 0x3e96 <main+0x96>
}
else if (ch == 'Q') {
3f6a: 81 35 cpi r24, 0x51 ; 81
3f6c: 11 f4 brne .+4 ; 0x3f72 <main+0x172>
// Adaboot no-wait mod
watchdogConfig(WATCHDOG_16MS);
3f6e: 88 e0 ldi r24, 0x08 ; 8
3f70: 2c d0 rcall .+88 ; 0x3fca <watchdogConfig>
verifySpace();
}
else {
// This covers the response to commands like STK_ENTER_PROGMODE
verifySpace();
3f72: 36 d0 rcall .+108 ; 0x3fe0 <verifySpace>
}
putch(STK_OK);
3f74: 80 e1 ldi r24, 0x10 ; 16
3f76: 01 d0 rcall .+2 ; 0x3f7a <putch>
3f78: 63 cf rjmp .-314 ; 0x3e40 <main+0x40>
00003f7a <putch>:
void putch(char ch) {
#ifndef SOFT_UART
while (!(UCSR0A & _BV(UDRE0)));
UDR0 = ch;
#else
__asm__ __volatile__ (
3f7a: 2a e0 ldi r18, 0x0A ; 10
3f7c: 30 e0 ldi r19, 0x00 ; 0
3f7e: 80 95 com r24
3f80: 08 94 sec
3f82: 10 f4 brcc .+4 ; 0x3f88 <putch+0xe>
3f84: 59 98 cbi 0x0b, 1 ; 11
3f86: 02 c0 rjmp .+4 ; 0x3f8c <putch+0x12>
3f88: 59 9a sbi 0x0b, 1 ; 11
3f8a: 00 00 nop
3f8c: 15 d0 rcall .+42 ; 0x3fb8 <uartDelay>
3f8e: 14 d0 rcall .+40 ; 0x3fb8 <uartDelay>
3f90: 86 95 lsr r24
3f92: 2a 95 dec r18
3f94: b1 f7 brne .-20 ; 0x3f82 <putch+0x8>
[uartBit] "I" (UART_TX_BIT)
:
"r25"
);
#endif
}
3f96: 08 95 ret
00003f98 <getch>:
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3f98: a8 95 wdr
#ifdef LED_DATA_FLASH
LED_PIN |= _BV(LED);
#endif
return ch;
}
3f9a: 29 e0 ldi r18, 0x09 ; 9
3f9c: 30 e0 ldi r19, 0x00 ; 0
3f9e: 48 99 sbic 0x09, 0 ; 9
3fa0: fe cf rjmp .-4 ; 0x3f9e <getch+0x6>
3fa2: 0a d0 rcall .+20 ; 0x3fb8 <uartDelay>
3fa4: 09 d0 rcall .+18 ; 0x3fb8 <uartDelay>
3fa6: 08 d0 rcall .+16 ; 0x3fb8 <uartDelay>
3fa8: 88 94 clc
3faa: 48 99 sbic 0x09, 0 ; 9
3fac: 08 94 sec
3fae: 2a 95 dec r18
3fb0: 11 f0 breq .+4 ; 0x3fb6 <getch+0x1e>
3fb2: 87 95 ror r24
3fb4: f7 cf rjmp .-18 ; 0x3fa4 <getch+0xc>
3fb6: 08 95 ret
00003fb8 <uartDelay>:
#if UART_B_VALUE > 255
#error Baud rate too slow for soft UART
#endif
void uartDelay() {
__asm__ __volatile__ (
3fb8: 98 e0 ldi r25, 0x08 ; 8
3fba: 9a 95 dec r25
3fbc: f1 f7 brne .-4 ; 0x3fba <uartDelay+0x2>
3fbe: 08 95 ret
00003fc0 <getLen>:
} while (--count);
}
#endif
uint8_t getLen() {
getch();
3fc0: eb df rcall .-42 ; 0x3f98 <getch>
length = getch();
3fc2: ea df rcall .-44 ; 0x3f98 <getch>
3fc4: 80 93 02 02 sts 0x0202, r24
return getch();
}
3fc8: e7 cf rjmp .-50 ; 0x3f98 <getch>
00003fca <watchdogConfig>:
"wdr\n"
);
}
void watchdogConfig(uint8_t x) {
WDTCSR = _BV(WDCE) | _BV(WDE);
3fca: e0 e6 ldi r30, 0x60 ; 96
3fcc: f0 e0 ldi r31, 0x00 ; 0
3fce: 98 e1 ldi r25, 0x18 ; 24
3fd0: 90 83 st Z, r25
WDTCSR = x;
3fd2: 80 83 st Z, r24
}
3fd4: 08 95 ret
00003fd6 <appStart>:
void appStart() {
watchdogConfig(WATCHDOG_OFF);
3fd6: 80 e0 ldi r24, 0x00 ; 0
3fd8: f8 df rcall .-16 ; 0x3fca <watchdogConfig>
__asm__ __volatile__ (
3fda: ee 27 eor r30, r30
3fdc: ff 27 eor r31, r31
3fde: 09 94 ijmp
00003fe0 <verifySpace>:
do getch(); while (--count);
verifySpace();
}
void verifySpace() {
if (getch() != CRC_EOP) appStart();
3fe0: db df rcall .-74 ; 0x3f98 <getch>
3fe2: 80 32 cpi r24, 0x20 ; 32
3fe4: 09 f0 breq .+2 ; 0x3fe8 <verifySpace+0x8>
3fe6: f7 df rcall .-18 ; 0x3fd6 <appStart>
putch(STK_INSYNC);
3fe8: 84 e1 ldi r24, 0x14 ; 20
}
3fea: c7 cf rjmp .-114 ; 0x3f7a <putch>
::[count] "M" (UART_B_VALUE)
);
}
#endif
void getNch(uint8_t count) {
3fec: 1f 93 push r17
3fee: 18 2f mov r17, r24
00003ff0 <getNch>:
do getch(); while (--count);
3ff0: d3 df rcall .-90 ; 0x3f98 <getch>
3ff2: 11 50 subi r17, 0x01 ; 1
3ff4: e9 f7 brne .-6 ; 0x3ff0 <getNch>
verifySpace();
3ff6: f4 df rcall .-24 ; 0x3fe0 <verifySpace>
}
3ff8: 1f 91 pop r17
3ffa: 08 95 ret

View File

@ -1,34 +0,0 @@
:103E000085E08093810084B714BE81FFE4D08DE00B
:103E1000DCD0259A519A86E028E13EEF91E030937C
:103E200085002093840096BBB09BFECF1D9AA89579
:103E30008150A9F7DD24D394A5E0EA2EF1E1FF2E0D
:103E4000ABD0813421F481E0D1D083E024C082342E
:103E500011F484E103C0853419F485E0C7D08AC029
:103E60008535A1F499D0082F10E01093010200933A
:103E7000000292D090E0982F8827802B912B880FFA
:103E8000991F909301028093000273C0863529F434
:103E900084E0ACD080E071D06DC0843609F043C0BE
:103EA0008FD0E0910002F091010283E080935700EF
:103EB000E895C0E0D1E070D08993809102028150F2
:103EC000809302028823B9F78BD007B600FCFDCFA0
:103ED0004091000250910102A0E0B1E02C9130E04D
:103EE00011968C91119790E0982F8827822B932B15
:103EF0001296FA010C01D0925700E89511244E5FFA
:103F00005F4FF1E0A038BF0749F7E0910002F09160
:103F10000102E0925700E89507B600FCFDCFF09251
:103F20005700E89527C08437B9F44AD059D0E091BA
:103F30000002F09101023196F0930102E093000239
:103F40003197E4918E2F19D0809102028150809395
:103F50000202882361F70EC0853739F441D08EE123
:103F60000CD084E90AD086E096CF813511F488E040
:103F70002CD036D080E101D063CF2AE030E08095AC
:103F8000089410F4599802C0599A000015D014D022
:103F900086952A95B1F70895A89529E030E04899CB
:103FA000FECF0AD009D008D08894489908942A9561
:103FB00011F08795F7CF089598E09A95F1F7089555
:103FC000EBDFEADF80930202E7CFE0E6F0E098E182
:103FD00090838083089580E0F8DFEE27FF2709941F
:103FE000DBDF803209F0F7DF84E1C7CF1F93182FA2
:0C3FF000D3DF1150E9F7F4DF1F910895B2
:0400000300003E00BB
:00000001FF

View File

@ -1,533 +0,0 @@
optiboot_lilypad_resonator.elf: file format elf32-avr
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 000001fc 00003e00 00003e00 00000054 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .debug_aranges 00000028 00000000 00000000 00000250 2**0
CONTENTS, READONLY, DEBUGGING
2 .debug_pubnames 00000078 00000000 00000000 00000278 2**0
CONTENTS, READONLY, DEBUGGING
3 .debug_info 00000277 00000000 00000000 000002f0 2**0
CONTENTS, READONLY, DEBUGGING
4 .debug_abbrev 00000194 00000000 00000000 00000567 2**0
CONTENTS, READONLY, DEBUGGING
5 .debug_line 000003bb 00000000 00000000 000006fb 2**0
CONTENTS, READONLY, DEBUGGING
6 .debug_frame 000000a0 00000000 00000000 00000ab8 2**2
CONTENTS, READONLY, DEBUGGING
7 .debug_str 0000013f 00000000 00000000 00000b58 2**0
CONTENTS, READONLY, DEBUGGING
8 .debug_loc 000001a0 00000000 00000000 00000c97 2**0
CONTENTS, READONLY, DEBUGGING
9 .debug_ranges 00000070 00000000 00000000 00000e37 2**0
CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:
00003e00 <main>:
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
3e00: 85 e0 ldi r24, 0x05 ; 5
3e02: 80 93 81 00 sts 0x0081, r24
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
#endif
// Adaboot no-wait mod
ch = MCUSR;
3e06: 84 b7 in r24, 0x34 ; 52
MCUSR = 0;
3e08: 14 be out 0x34, r1 ; 52
if (!(ch & _BV(EXTRF))) appStart();
3e0a: 81 ff sbrs r24, 1
3e0c: e4 d0 rcall .+456 ; 0x3fd6 <appStart>
// Set up watchdog to trigger after 500ms
watchdogConfig(WATCHDOG_500MS);
3e0e: 8d e0 ldi r24, 0x0D ; 13
3e10: dc d0 rcall .+440 ; 0x3fca <watchdogConfig>
/* Set LED pin as output */
LED_DDR |= _BV(LED);
3e12: 25 9a sbi 0x04, 5 ; 4
#ifdef SOFT_UART
/* Set TX pin as output */
UART_DDR |= _BV(UART_TX_BIT);
3e14: 51 9a sbi 0x0a, 1 ; 10
3e16: 86 e0 ldi r24, 0x06 ; 6
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e18: 28 e1 ldi r18, 0x18 ; 24
3e1a: 3e ef ldi r19, 0xFE ; 254
TIFR1 = _BV(TOV1);
3e1c: 91 e0 ldi r25, 0x01 ; 1
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e1e: 30 93 85 00 sts 0x0085, r19
3e22: 20 93 84 00 sts 0x0084, r18
TIFR1 = _BV(TOV1);
3e26: 96 bb out 0x16, r25 ; 22
while(!(TIFR1 & _BV(TOV1)));
3e28: b0 9b sbis 0x16, 0 ; 22
3e2a: fe cf rjmp .-4 ; 0x3e28 <main+0x28>
LED_PIN |= _BV(LED);
3e2c: 1d 9a sbi 0x03, 5 ; 3
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3e2e: a8 95 wdr
TCNT1 = -(F_CPU/(1024*16));
TIFR1 = _BV(TOV1);
while(!(TIFR1 & _BV(TOV1)));
LED_PIN |= _BV(LED);
watchdogReset();
} while (--count);
3e30: 81 50 subi r24, 0x01 ; 1
3e32: a9 f7 brne .-22 ; 0x3e1e <main+0x1e>
/* get character from UART */
ch = getch();
if(ch == STK_GET_PARAMETER) {
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
3e34: dd 24 eor r13, r13
3e36: d3 94 inc r13
boot_page_fill((uint16_t)(void*)addrPtr,a);
addrPtr += 2;
} while (--ch);
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
3e38: a5 e0 ldi r26, 0x05 ; 5
3e3a: ea 2e mov r14, r26
boot_spm_busy_wait();
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3e3c: f1 e1 ldi r31, 0x11 ; 17
3e3e: ff 2e mov r15, r31
#endif
/* Forever loop */
for (;;) {
/* get character from UART */
ch = getch();
3e40: ab d0 rcall .+342 ; 0x3f98 <getch>
if(ch == STK_GET_PARAMETER) {
3e42: 81 34 cpi r24, 0x41 ; 65
3e44: 21 f4 brne .+8 ; 0x3e4e <main+0x4e>
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
3e46: 81 e0 ldi r24, 0x01 ; 1
3e48: d1 d0 rcall .+418 ; 0x3fec <verifySpace+0xc>
putch(0x03);
3e4a: 83 e0 ldi r24, 0x03 ; 3
3e4c: 24 c0 rjmp .+72 ; 0x3e96 <main+0x96>
}
else if(ch == STK_SET_DEVICE) {
3e4e: 82 34 cpi r24, 0x42 ; 66
3e50: 11 f4 brne .+4 ; 0x3e56 <main+0x56>
// SET DEVICE is ignored
getNch(20);
3e52: 84 e1 ldi r24, 0x14 ; 20
3e54: 03 c0 rjmp .+6 ; 0x3e5c <main+0x5c>
}
else if(ch == STK_SET_DEVICE_EXT) {
3e56: 85 34 cpi r24, 0x45 ; 69
3e58: 19 f4 brne .+6 ; 0x3e60 <main+0x60>
// SET DEVICE EXT is ignored
getNch(5);
3e5a: 85 e0 ldi r24, 0x05 ; 5
3e5c: c7 d0 rcall .+398 ; 0x3fec <verifySpace+0xc>
3e5e: 8a c0 rjmp .+276 ; 0x3f74 <main+0x174>
}
else if(ch == STK_LOAD_ADDRESS) {
3e60: 85 35 cpi r24, 0x55 ; 85
3e62: a1 f4 brne .+40 ; 0x3e8c <main+0x8c>
// LOAD ADDRESS
address = getch();
3e64: 99 d0 rcall .+306 ; 0x3f98 <getch>
3e66: 08 2f mov r16, r24
3e68: 10 e0 ldi r17, 0x00 ; 0
3e6a: 10 93 01 02 sts 0x0201, r17
3e6e: 00 93 00 02 sts 0x0200, r16
address = (address & 0xff) | (getch() << 8);
3e72: 92 d0 rcall .+292 ; 0x3f98 <getch>
3e74: 90 e0 ldi r25, 0x00 ; 0
3e76: 98 2f mov r25, r24
3e78: 88 27 eor r24, r24
3e7a: 80 2b or r24, r16
3e7c: 91 2b or r25, r17
address += address; // Convert from word address to byte address
3e7e: 88 0f add r24, r24
3e80: 99 1f adc r25, r25
3e82: 90 93 01 02 sts 0x0201, r25
3e86: 80 93 00 02 sts 0x0200, r24
3e8a: 73 c0 rjmp .+230 ; 0x3f72 <main+0x172>
verifySpace();
}
else if(ch == STK_UNIVERSAL) {
3e8c: 86 35 cpi r24, 0x56 ; 86
3e8e: 29 f4 brne .+10 ; 0x3e9a <main+0x9a>
// UNIVERSAL command is ignored
getNch(4);
3e90: 84 e0 ldi r24, 0x04 ; 4
3e92: ac d0 rcall .+344 ; 0x3fec <verifySpace+0xc>
putch(0x00);
3e94: 80 e0 ldi r24, 0x00 ; 0
3e96: 71 d0 rcall .+226 ; 0x3f7a <putch>
3e98: 6d c0 rjmp .+218 ; 0x3f74 <main+0x174>
}
/* Write memory, length is big endian and is in bytes */
else if(ch == STK_PROG_PAGE) {
3e9a: 84 36 cpi r24, 0x64 ; 100
3e9c: 09 f0 breq .+2 ; 0x3ea0 <main+0xa0>
3e9e: 43 c0 rjmp .+134 ; 0x3f26 <main+0x126>
// PROGRAM PAGE - we support flash programming only, not EEPROM
uint8_t *bufPtr;
uint16_t addrPtr;
getLen();
3ea0: 8f d0 rcall .+286 ; 0x3fc0 <getLen>
// Immediately start page erase - this will 4.5ms
boot_page_erase((uint16_t)(void*)address);
3ea2: e0 91 00 02 lds r30, 0x0200
3ea6: f0 91 01 02 lds r31, 0x0201
3eaa: 83 e0 ldi r24, 0x03 ; 3
3eac: 80 93 57 00 sts 0x0057, r24
3eb0: e8 95 spm
3eb2: c0 e0 ldi r28, 0x00 ; 0
3eb4: d1 e0 ldi r29, 0x01 ; 1
// While that is going on, read in page contents
bufPtr = buff;
do *bufPtr++ = getch();
3eb6: 70 d0 rcall .+224 ; 0x3f98 <getch>
3eb8: 89 93 st Y+, r24
while (--length);
3eba: 80 91 02 02 lds r24, 0x0202
3ebe: 81 50 subi r24, 0x01 ; 1
3ec0: 80 93 02 02 sts 0x0202, r24
3ec4: 88 23 and r24, r24
3ec6: b9 f7 brne .-18 ; 0x3eb6 <main+0xb6>
// Read command terminator, start reply
verifySpace();
3ec8: 8b d0 rcall .+278 ; 0x3fe0 <verifySpace>
// If only a partial page is to be programmed, the erase might not be complete.
// So check that here
boot_spm_busy_wait();
3eca: 07 b6 in r0, 0x37 ; 55
3ecc: 00 fc sbrc r0, 0
3ece: fd cf rjmp .-6 ; 0x3eca <main+0xca>
}
#endif
// Copy buffer into programming buffer
bufPtr = buff;
addrPtr = (uint16_t)(void*)address;
3ed0: 40 91 00 02 lds r20, 0x0200
3ed4: 50 91 01 02 lds r21, 0x0201
3ed8: a0 e0 ldi r26, 0x00 ; 0
3eda: b1 e0 ldi r27, 0x01 ; 1
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
3edc: 2c 91 ld r18, X
3ede: 30 e0 ldi r19, 0x00 ; 0
a |= (*bufPtr++) << 8;
3ee0: 11 96 adiw r26, 0x01 ; 1
3ee2: 8c 91 ld r24, X
3ee4: 11 97 sbiw r26, 0x01 ; 1
3ee6: 90 e0 ldi r25, 0x00 ; 0
3ee8: 98 2f mov r25, r24
3eea: 88 27 eor r24, r24
3eec: 82 2b or r24, r18
3eee: 93 2b or r25, r19
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
3ef0: 12 96 adiw r26, 0x02 ; 2
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
boot_page_fill((uint16_t)(void*)addrPtr,a);
3ef2: fa 01 movw r30, r20
3ef4: 0c 01 movw r0, r24
3ef6: d0 92 57 00 sts 0x0057, r13
3efa: e8 95 spm
3efc: 11 24 eor r1, r1
addrPtr += 2;
3efe: 4e 5f subi r20, 0xFE ; 254
3f00: 5f 4f sbci r21, 0xFF ; 255
} while (--ch);
3f02: f1 e0 ldi r31, 0x01 ; 1
3f04: a0 38 cpi r26, 0x80 ; 128
3f06: bf 07 cpc r27, r31
3f08: 49 f7 brne .-46 ; 0x3edc <main+0xdc>
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
3f0a: e0 91 00 02 lds r30, 0x0200
3f0e: f0 91 01 02 lds r31, 0x0201
3f12: e0 92 57 00 sts 0x0057, r14
3f16: e8 95 spm
boot_spm_busy_wait();
3f18: 07 b6 in r0, 0x37 ; 55
3f1a: 00 fc sbrc r0, 0
3f1c: fd cf rjmp .-6 ; 0x3f18 <main+0x118>
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3f1e: f0 92 57 00 sts 0x0057, r15
3f22: e8 95 spm
3f24: 27 c0 rjmp .+78 ; 0x3f74 <main+0x174>
#endif
}
/* Read memory block mode, length is big endian. */
else if(ch == STK_READ_PAGE) {
3f26: 84 37 cpi r24, 0x74 ; 116
3f28: b9 f4 brne .+46 ; 0x3f58 <main+0x158>
// READ PAGE - we only read flash
getLen();
3f2a: 4a d0 rcall .+148 ; 0x3fc0 <getLen>
verifySpace();
3f2c: 59 d0 rcall .+178 ; 0x3fe0 <verifySpace>
else ch = pgm_read_byte_near(address);
address++;
putch(ch);
} while (--length);
#else
do putch(pgm_read_byte_near(address++));
3f2e: e0 91 00 02 lds r30, 0x0200
3f32: f0 91 01 02 lds r31, 0x0201
3f36: 31 96 adiw r30, 0x01 ; 1
3f38: f0 93 01 02 sts 0x0201, r31
3f3c: e0 93 00 02 sts 0x0200, r30
3f40: 31 97 sbiw r30, 0x01 ; 1
3f42: e4 91 lpm r30, Z+
3f44: 8e 2f mov r24, r30
3f46: 19 d0 rcall .+50 ; 0x3f7a <putch>
while (--length);
3f48: 80 91 02 02 lds r24, 0x0202
3f4c: 81 50 subi r24, 0x01 ; 1
3f4e: 80 93 02 02 sts 0x0202, r24
3f52: 88 23 and r24, r24
3f54: 61 f7 brne .-40 ; 0x3f2e <main+0x12e>
3f56: 0e c0 rjmp .+28 ; 0x3f74 <main+0x174>
#endif
}
/* Get device signature bytes */
else if(ch == STK_READ_SIGN) {
3f58: 85 37 cpi r24, 0x75 ; 117
3f5a: 39 f4 brne .+14 ; 0x3f6a <main+0x16a>
// READ SIGN - return what Avrdude wants to hear
verifySpace();
3f5c: 41 d0 rcall .+130 ; 0x3fe0 <verifySpace>
putch(SIGNATURE_0);
3f5e: 8e e1 ldi r24, 0x1E ; 30
3f60: 0c d0 rcall .+24 ; 0x3f7a <putch>
putch(SIGNATURE_1);
3f62: 84 e9 ldi r24, 0x94 ; 148
3f64: 0a d0 rcall .+20 ; 0x3f7a <putch>
putch(SIGNATURE_2);
3f66: 86 e0 ldi r24, 0x06 ; 6
3f68: 96 cf rjmp .-212 ; 0x3e96 <main+0x96>
}
else if (ch == 'Q') {
3f6a: 81 35 cpi r24, 0x51 ; 81
3f6c: 11 f4 brne .+4 ; 0x3f72 <main+0x172>
// Adaboot no-wait mod
watchdogConfig(WATCHDOG_16MS);
3f6e: 88 e0 ldi r24, 0x08 ; 8
3f70: 2c d0 rcall .+88 ; 0x3fca <watchdogConfig>
verifySpace();
}
else {
// This covers the response to commands like STK_ENTER_PROGMODE
verifySpace();
3f72: 36 d0 rcall .+108 ; 0x3fe0 <verifySpace>
}
putch(STK_OK);
3f74: 80 e1 ldi r24, 0x10 ; 16
3f76: 01 d0 rcall .+2 ; 0x3f7a <putch>
3f78: 63 cf rjmp .-314 ; 0x3e40 <main+0x40>
00003f7a <putch>:
void putch(char ch) {
#ifndef SOFT_UART
while (!(UCSR0A & _BV(UDRE0)));
UDR0 = ch;
#else
__asm__ __volatile__ (
3f7a: 2a e0 ldi r18, 0x0A ; 10
3f7c: 30 e0 ldi r19, 0x00 ; 0
3f7e: 80 95 com r24
3f80: 08 94 sec
3f82: 10 f4 brcc .+4 ; 0x3f88 <putch+0xe>
3f84: 59 98 cbi 0x0b, 1 ; 11
3f86: 02 c0 rjmp .+4 ; 0x3f8c <putch+0x12>
3f88: 59 9a sbi 0x0b, 1 ; 11
3f8a: 00 00 nop
3f8c: 15 d0 rcall .+42 ; 0x3fb8 <uartDelay>
3f8e: 14 d0 rcall .+40 ; 0x3fb8 <uartDelay>
3f90: 86 95 lsr r24
3f92: 2a 95 dec r18
3f94: b1 f7 brne .-20 ; 0x3f82 <putch+0x8>
[uartBit] "I" (UART_TX_BIT)
:
"r25"
);
#endif
}
3f96: 08 95 ret
00003f98 <getch>:
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3f98: a8 95 wdr
#ifdef LED_DATA_FLASH
LED_PIN |= _BV(LED);
#endif
return ch;
}
3f9a: 29 e0 ldi r18, 0x09 ; 9
3f9c: 30 e0 ldi r19, 0x00 ; 0
3f9e: 48 99 sbic 0x09, 0 ; 9
3fa0: fe cf rjmp .-4 ; 0x3f9e <getch+0x6>
3fa2: 0a d0 rcall .+20 ; 0x3fb8 <uartDelay>
3fa4: 09 d0 rcall .+18 ; 0x3fb8 <uartDelay>
3fa6: 08 d0 rcall .+16 ; 0x3fb8 <uartDelay>
3fa8: 88 94 clc
3faa: 48 99 sbic 0x09, 0 ; 9
3fac: 08 94 sec
3fae: 2a 95 dec r18
3fb0: 11 f0 breq .+4 ; 0x3fb6 <getch+0x1e>
3fb2: 87 95 ror r24
3fb4: f7 cf rjmp .-18 ; 0x3fa4 <getch+0xc>
3fb6: 08 95 ret
00003fb8 <uartDelay>:
#if UART_B_VALUE > 255
#error Baud rate too slow for soft UART
#endif
void uartDelay() {
__asm__ __volatile__ (
3fb8: 98 e0 ldi r25, 0x08 ; 8
3fba: 9a 95 dec r25
3fbc: f1 f7 brne .-4 ; 0x3fba <uartDelay+0x2>
3fbe: 08 95 ret
00003fc0 <getLen>:
} while (--count);
}
#endif
uint8_t getLen() {
getch();
3fc0: eb df rcall .-42 ; 0x3f98 <getch>
length = getch();
3fc2: ea df rcall .-44 ; 0x3f98 <getch>
3fc4: 80 93 02 02 sts 0x0202, r24
return getch();
}
3fc8: e7 cf rjmp .-50 ; 0x3f98 <getch>
00003fca <watchdogConfig>:
"wdr\n"
);
}
void watchdogConfig(uint8_t x) {
WDTCSR = _BV(WDCE) | _BV(WDE);
3fca: e0 e6 ldi r30, 0x60 ; 96
3fcc: f0 e0 ldi r31, 0x00 ; 0
3fce: 98 e1 ldi r25, 0x18 ; 24
3fd0: 90 83 st Z, r25
WDTCSR = x;
3fd2: 80 83 st Z, r24
}
3fd4: 08 95 ret
00003fd6 <appStart>:
void appStart() {
watchdogConfig(WATCHDOG_OFF);
3fd6: 80 e0 ldi r24, 0x00 ; 0
3fd8: f8 df rcall .-16 ; 0x3fca <watchdogConfig>
__asm__ __volatile__ (
3fda: ee 27 eor r30, r30
3fdc: ff 27 eor r31, r31
3fde: 09 94 ijmp
00003fe0 <verifySpace>:
do getch(); while (--count);
verifySpace();
}
void verifySpace() {
if (getch() != CRC_EOP) appStart();
3fe0: db df rcall .-74 ; 0x3f98 <getch>
3fe2: 80 32 cpi r24, 0x20 ; 32
3fe4: 09 f0 breq .+2 ; 0x3fe8 <verifySpace+0x8>
3fe6: f7 df rcall .-18 ; 0x3fd6 <appStart>
putch(STK_INSYNC);
3fe8: 84 e1 ldi r24, 0x14 ; 20
}
3fea: c7 cf rjmp .-114 ; 0x3f7a <putch>
::[count] "M" (UART_B_VALUE)
);
}
#endif
void getNch(uint8_t count) {
3fec: 1f 93 push r17
3fee: 18 2f mov r17, r24
00003ff0 <getNch>:
do getch(); while (--count);
3ff0: d3 df rcall .-90 ; 0x3f98 <getch>
3ff2: 11 50 subi r17, 0x01 ; 1
3ff4: e9 f7 brne .-6 ; 0x3ff0 <getNch>
verifySpace();
3ff6: f4 df rcall .-24 ; 0x3fe0 <verifySpace>
}
3ff8: 1f 91 pop r17
3ffa: 08 95 ret

View File

@ -1,42 +0,0 @@
:101D000085E08EBD84B714BE81FF27D18DE021D13F
:101D1000D49AD29A86E023EC3FEF91E03DBD2CBDF2
:101D20009BB9589BFECFCC9AA8958150B9F7CC248B
:101D3000C39485E0E82E0FE7D02E1EECF12EF0D0F4
:101D4000813421F481E014D183E024C0823411F481
:101D500084E103C0853419F485E00AD1CFC085350C
:101D6000A1F4DED0082F10E01093010200930002CE
:101D7000D7D090E0982F8827802B912B880F991F20
:101D80009093010280930002B8C0863529F484E064
:101D9000EFD080E0B6D0B2C0843609F06EC0D4D0A7
:101DA000E0910002F091010283E080935700E895F2
:101DB000C0E0D1E0B5D08993809102028150809338
:101DC00002028823B9F7CED007B600FCFDCF809180
:101DD000000290910102892B41F580910001209130
:101DE000010130E0322F222790E0282B392B30934D
:101DF00005022093040240910A0180910B0190E0BA
:101E0000982F882750E0842B952B9093070280937E
:101E100006022450304020930A01232F33272093B9
:101E20000B01D0920001F09201014091000250910B
:101E30000102A0E0B1E02C9130E011968C91119755
:101E400090E0982F8827822B932B1296FA010C0191
:101E5000C0925700E89511244E5F5F4FF1E0A03427
:101E6000BF0749F7E0910002F0910102E0925700AC
:101E7000E89507B600FCFDCF41C0843789F564D0F2
:101E800071D0E0910002F0910102309719F4209195
:101E9000040213C0E130F10519F4209105020DC0D0
:101EA000EA30F10519F42091060207C0EB30F10584
:101EB00019F42091070201C02491809100029091B1
:101EC000010201969093010280930002822F19D0A3
:101ED00080910202815080930202882391F60EC005
:101EE000853739F43FD08EE10CD083E90AD08CE0FD
:101EF00051CF813511F488E02CD034D080E101D06D
:101F00001ECF2AE030E08095089410F4DA9802C0E1
:101F1000DA9A000015D014D086952A95B1F7089565
:101F2000A89529E030E0CB99FECF0AD009D008D09F
:101F30008894CB9908942A9511F08795F7CF089546
:101F40009EE09A95F1F70895EBDFEADF80930202B5
:101F5000E7CF98E191BD81BD089580E0FADFE5E02B
:101F6000FF270994DDDF803209F0F7DF84E1C9CF74
:101F70001F93182FD5DF1150E9F7F4DF1F91089553
:0400000300001D00DC
:00000001FF

View File

@ -1,604 +0,0 @@
optiboot_luminet.elf: file format elf32-avr
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 00000280 00001d00 00001d00 00000054 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .debug_aranges 00000028 00000000 00000000 000002d4 2**0
CONTENTS, READONLY, DEBUGGING
2 .debug_pubnames 00000078 00000000 00000000 000002fc 2**0
CONTENTS, READONLY, DEBUGGING
3 .debug_info 00000289 00000000 00000000 00000374 2**0
CONTENTS, READONLY, DEBUGGING
4 .debug_abbrev 000001a1 00000000 00000000 000005fd 2**0
CONTENTS, READONLY, DEBUGGING
5 .debug_line 00000435 00000000 00000000 0000079e 2**0
CONTENTS, READONLY, DEBUGGING
6 .debug_frame 000000a0 00000000 00000000 00000bd4 2**2
CONTENTS, READONLY, DEBUGGING
7 .debug_str 00000144 00000000 00000000 00000c74 2**0
CONTENTS, READONLY, DEBUGGING
8 .debug_loc 00000194 00000000 00000000 00000db8 2**0
CONTENTS, READONLY, DEBUGGING
9 .debug_ranges 00000088 00000000 00000000 00000f4c 2**0
CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:
00001d00 <main>:
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
1d00: 85 e0 ldi r24, 0x05 ; 5
1d02: 8e bd out 0x2e, r24 ; 46
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
#endif
// Adaboot no-wait mod
ch = MCUSR;
1d04: 84 b7 in r24, 0x34 ; 52
MCUSR = 0;
1d06: 14 be out 0x34, r1 ; 52
if (!(ch & _BV(EXTRF))) appStart();
1d08: 81 ff sbrs r24, 1
1d0a: 27 d1 rcall .+590 ; 0x1f5a <appStart>
// Set up watchdog to trigger after 500ms
watchdogConfig(WATCHDOG_500MS);
1d0c: 8d e0 ldi r24, 0x0D ; 13
1d0e: 21 d1 rcall .+578 ; 0x1f52 <watchdogConfig>
/* Set LED pin as output */
LED_DDR |= _BV(LED);
1d10: d4 9a sbi 0x1a, 4 ; 26
#ifdef SOFT_UART
/* Set TX pin as output */
UART_DDR |= _BV(UART_TX_BIT);
1d12: d2 9a sbi 0x1a, 2 ; 26
1d14: 86 e0 ldi r24, 0x06 ; 6
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
1d16: 23 ec ldi r18, 0xC3 ; 195
1d18: 3f ef ldi r19, 0xFF ; 255
TIFR1 = _BV(TOV1);
1d1a: 91 e0 ldi r25, 0x01 ; 1
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
1d1c: 3d bd out 0x2d, r19 ; 45
1d1e: 2c bd out 0x2c, r18 ; 44
TIFR1 = _BV(TOV1);
1d20: 9b b9 out 0x0b, r25 ; 11
while(!(TIFR1 & _BV(TOV1)));
1d22: 58 9b sbis 0x0b, 0 ; 11
1d24: fe cf rjmp .-4 ; 0x1d22 <main+0x22>
LED_PIN |= _BV(LED);
1d26: cc 9a sbi 0x19, 4 ; 25
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
1d28: a8 95 wdr
TCNT1 = -(F_CPU/(1024*16));
TIFR1 = _BV(TOV1);
while(!(TIFR1 & _BV(TOV1)));
LED_PIN |= _BV(LED);
watchdogReset();
} while (--count);
1d2a: 81 50 subi r24, 0x01 ; 1
1d2c: b9 f7 brne .-18 ; 0x1d1c <main+0x1c>
/* get character from UART */
ch = getch();
if(ch == STK_GET_PARAMETER) {
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
1d2e: cc 24 eor r12, r12
1d30: c3 94 inc r12
boot_page_fill((uint16_t)(void*)addrPtr,a);
addrPtr += 2;
} while (--ch);
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
1d32: 85 e0 ldi r24, 0x05 ; 5
1d34: e8 2e mov r14, r24
vect -= 4; // Instruction is a relative jump (rjmp), so recalculate.
buff[10] = vect & 0xff;
buff[11] = vect >> 8;
// Add jump to bootloader at RESET vector
buff[0] = 0x7f;
1d36: 0f e7 ldi r16, 0x7F ; 127
1d38: d0 2e mov r13, r16
buff[1] = 0xce; // rjmp 0x1d00 instruction
1d3a: 1e ec ldi r17, 0xCE ; 206
1d3c: f1 2e mov r15, r17
#endif
/* Forever loop */
for (;;) {
/* get character from UART */
ch = getch();
1d3e: f0 d0 rcall .+480 ; 0x1f20 <getch>
if(ch == STK_GET_PARAMETER) {
1d40: 81 34 cpi r24, 0x41 ; 65
1d42: 21 f4 brne .+8 ; 0x1d4c <main+0x4c>
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
1d44: 81 e0 ldi r24, 0x01 ; 1
1d46: 14 d1 rcall .+552 ; 0x1f70 <verifySpace+0xc>
putch(0x03);
1d48: 83 e0 ldi r24, 0x03 ; 3
1d4a: 24 c0 rjmp .+72 ; 0x1d94 <main+0x94>
}
else if(ch == STK_SET_DEVICE) {
1d4c: 82 34 cpi r24, 0x42 ; 66
1d4e: 11 f4 brne .+4 ; 0x1d54 <main+0x54>
// SET DEVICE is ignored
getNch(20);
1d50: 84 e1 ldi r24, 0x14 ; 20
1d52: 03 c0 rjmp .+6 ; 0x1d5a <main+0x5a>
}
else if(ch == STK_SET_DEVICE_EXT) {
1d54: 85 34 cpi r24, 0x45 ; 69
1d56: 19 f4 brne .+6 ; 0x1d5e <main+0x5e>
// SET DEVICE EXT is ignored
getNch(5);
1d58: 85 e0 ldi r24, 0x05 ; 5
1d5a: 0a d1 rcall .+532 ; 0x1f70 <verifySpace+0xc>
1d5c: cf c0 rjmp .+414 ; 0x1efc <main+0x1fc>
}
else if(ch == STK_LOAD_ADDRESS) {
1d5e: 85 35 cpi r24, 0x55 ; 85
1d60: a1 f4 brne .+40 ; 0x1d8a <main+0x8a>
// LOAD ADDRESS
address = getch();
1d62: de d0 rcall .+444 ; 0x1f20 <getch>
1d64: 08 2f mov r16, r24
1d66: 10 e0 ldi r17, 0x00 ; 0
1d68: 10 93 01 02 sts 0x0201, r17
1d6c: 00 93 00 02 sts 0x0200, r16
address = (address & 0xff) | (getch() << 8);
1d70: d7 d0 rcall .+430 ; 0x1f20 <getch>
1d72: 90 e0 ldi r25, 0x00 ; 0
1d74: 98 2f mov r25, r24
1d76: 88 27 eor r24, r24
1d78: 80 2b or r24, r16
1d7a: 91 2b or r25, r17
address += address; // Convert from word address to byte address
1d7c: 88 0f add r24, r24
1d7e: 99 1f adc r25, r25
1d80: 90 93 01 02 sts 0x0201, r25
1d84: 80 93 00 02 sts 0x0200, r24
1d88: b8 c0 rjmp .+368 ; 0x1efa <main+0x1fa>
verifySpace();
}
else if(ch == STK_UNIVERSAL) {
1d8a: 86 35 cpi r24, 0x56 ; 86
1d8c: 29 f4 brne .+10 ; 0x1d98 <main+0x98>
// UNIVERSAL command is ignored
getNch(4);
1d8e: 84 e0 ldi r24, 0x04 ; 4
1d90: ef d0 rcall .+478 ; 0x1f70 <verifySpace+0xc>
putch(0x00);
1d92: 80 e0 ldi r24, 0x00 ; 0
1d94: b6 d0 rcall .+364 ; 0x1f02 <putch>
1d96: b2 c0 rjmp .+356 ; 0x1efc <main+0x1fc>
}
/* Write memory, length is big endian and is in bytes */
else if(ch == STK_PROG_PAGE) {
1d98: 84 36 cpi r24, 0x64 ; 100
1d9a: 09 f0 breq .+2 ; 0x1d9e <main+0x9e>
1d9c: 6e c0 rjmp .+220 ; 0x1e7a <main+0x17a>
// PROGRAM PAGE - we support flash programming only, not EEPROM
uint8_t *bufPtr;
uint16_t addrPtr;
getLen();
1d9e: d4 d0 rcall .+424 ; 0x1f48 <getLen>
// Immediately start page erase - this will 4.5ms
boot_page_erase((uint16_t)(void*)address);
1da0: e0 91 00 02 lds r30, 0x0200
1da4: f0 91 01 02 lds r31, 0x0201
1da8: 83 e0 ldi r24, 0x03 ; 3
1daa: 80 93 57 00 sts 0x0057, r24
1dae: e8 95 spm
1db0: c0 e0 ldi r28, 0x00 ; 0
1db2: d1 e0 ldi r29, 0x01 ; 1
// While that is going on, read in page contents
bufPtr = buff;
do *bufPtr++ = getch();
1db4: b5 d0 rcall .+362 ; 0x1f20 <getch>
1db6: 89 93 st Y+, r24
while (--length);
1db8: 80 91 02 02 lds r24, 0x0202
1dbc: 81 50 subi r24, 0x01 ; 1
1dbe: 80 93 02 02 sts 0x0202, r24
1dc2: 88 23 and r24, r24
1dc4: b9 f7 brne .-18 ; 0x1db4 <main+0xb4>
// Read command terminator, start reply
verifySpace();
1dc6: ce d0 rcall .+412 ; 0x1f64 <verifySpace>
// If only a partial page is to be programmed, the erase might not be complete.
// So check that here
boot_spm_busy_wait();
1dc8: 07 b6 in r0, 0x37 ; 55
1dca: 00 fc sbrc r0, 0
1dcc: fd cf rjmp .-6 ; 0x1dc8 <main+0xc8>
#ifdef VIRTUAL_BOOT_PARTITION
if ((uint16_t)(void*)address == 0) {
1dce: 80 91 00 02 lds r24, 0x0200
1dd2: 90 91 01 02 lds r25, 0x0201
1dd6: 89 2b or r24, r25
1dd8: 41 f5 brne .+80 ; 0x1e2a <main+0x12a>
// This is the reset vector page. We need to live-patch the code so the
// bootloader runs.
//
// Move RESET vector to WDT vector
uint16_t vect = buff[0] | (buff[1]<<8);
1dda: 80 91 00 01 lds r24, 0x0100
1dde: 20 91 01 01 lds r18, 0x0101
1de2: 30 e0 ldi r19, 0x00 ; 0
1de4: 32 2f mov r19, r18
1de6: 22 27 eor r18, r18
1de8: 90 e0 ldi r25, 0x00 ; 0
1dea: 28 2b or r18, r24
1dec: 39 2b or r19, r25
rstVect = vect;
1dee: 30 93 05 02 sts 0x0205, r19
1df2: 20 93 04 02 sts 0x0204, r18
wdtVect = buff[10] | (buff[11]<<8);
1df6: 40 91 0a 01 lds r20, 0x010A
1dfa: 80 91 0b 01 lds r24, 0x010B
1dfe: 90 e0 ldi r25, 0x00 ; 0
1e00: 98 2f mov r25, r24
1e02: 88 27 eor r24, r24
1e04: 50 e0 ldi r21, 0x00 ; 0
1e06: 84 2b or r24, r20
1e08: 95 2b or r25, r21
1e0a: 90 93 07 02 sts 0x0207, r25
1e0e: 80 93 06 02 sts 0x0206, r24
vect -= 4; // Instruction is a relative jump (rjmp), so recalculate.
1e12: 24 50 subi r18, 0x04 ; 4
1e14: 30 40 sbci r19, 0x00 ; 0
buff[10] = vect & 0xff;
1e16: 20 93 0a 01 sts 0x010A, r18
buff[11] = vect >> 8;
1e1a: 23 2f mov r18, r19
1e1c: 33 27 eor r19, r19
1e1e: 20 93 0b 01 sts 0x010B, r18
// Add jump to bootloader at RESET vector
buff[0] = 0x7f;
1e22: d0 92 00 01 sts 0x0100, r13
buff[1] = 0xce; // rjmp 0x1d00 instruction
1e26: f0 92 01 01 sts 0x0101, r15
}
#endif
// Copy buffer into programming buffer
bufPtr = buff;
addrPtr = (uint16_t)(void*)address;
1e2a: 40 91 00 02 lds r20, 0x0200
1e2e: 50 91 01 02 lds r21, 0x0201
1e32: a0 e0 ldi r26, 0x00 ; 0
1e34: b1 e0 ldi r27, 0x01 ; 1
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
1e36: 2c 91 ld r18, X
1e38: 30 e0 ldi r19, 0x00 ; 0
a |= (*bufPtr++) << 8;
1e3a: 11 96 adiw r26, 0x01 ; 1
1e3c: 8c 91 ld r24, X
1e3e: 11 97 sbiw r26, 0x01 ; 1
1e40: 90 e0 ldi r25, 0x00 ; 0
1e42: 98 2f mov r25, r24
1e44: 88 27 eor r24, r24
1e46: 82 2b or r24, r18
1e48: 93 2b or r25, r19
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
1e4a: 12 96 adiw r26, 0x02 ; 2
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
boot_page_fill((uint16_t)(void*)addrPtr,a);
1e4c: fa 01 movw r30, r20
1e4e: 0c 01 movw r0, r24
1e50: c0 92 57 00 sts 0x0057, r12
1e54: e8 95 spm
1e56: 11 24 eor r1, r1
addrPtr += 2;
1e58: 4e 5f subi r20, 0xFE ; 254
1e5a: 5f 4f sbci r21, 0xFF ; 255
} while (--ch);
1e5c: f1 e0 ldi r31, 0x01 ; 1
1e5e: a0 34 cpi r26, 0x40 ; 64
1e60: bf 07 cpc r27, r31
1e62: 49 f7 brne .-46 ; 0x1e36 <main+0x136>
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
1e64: e0 91 00 02 lds r30, 0x0200
1e68: f0 91 01 02 lds r31, 0x0201
1e6c: e0 92 57 00 sts 0x0057, r14
1e70: e8 95 spm
boot_spm_busy_wait();
1e72: 07 b6 in r0, 0x37 ; 55
1e74: 00 fc sbrc r0, 0
1e76: fd cf rjmp .-6 ; 0x1e72 <main+0x172>
1e78: 41 c0 rjmp .+130 ; 0x1efc <main+0x1fc>
boot_rww_enable();
#endif
}
/* Read memory block mode, length is big endian. */
else if(ch == STK_READ_PAGE) {
1e7a: 84 37 cpi r24, 0x74 ; 116
1e7c: 89 f5 brne .+98 ; 0x1ee0 <main+0x1e0>
// READ PAGE - we only read flash
getLen();
1e7e: 64 d0 rcall .+200 ; 0x1f48 <getLen>
verifySpace();
1e80: 71 d0 rcall .+226 ; 0x1f64 <verifySpace>
#ifdef VIRTUAL_BOOT_PARTITION
do {
// Undo vector patch in bottom page so verify passes
if (address == 0) ch=rstVect & 0xff;
1e82: e0 91 00 02 lds r30, 0x0200
1e86: f0 91 01 02 lds r31, 0x0201
1e8a: 30 97 sbiw r30, 0x00 ; 0
1e8c: 19 f4 brne .+6 ; 0x1e94 <main+0x194>
1e8e: 20 91 04 02 lds r18, 0x0204
1e92: 13 c0 rjmp .+38 ; 0x1eba <main+0x1ba>
else if (address == 1) ch=rstVect >> 8;
1e94: e1 30 cpi r30, 0x01 ; 1
1e96: f1 05 cpc r31, r1
1e98: 19 f4 brne .+6 ; 0x1ea0 <main+0x1a0>
1e9a: 20 91 05 02 lds r18, 0x0205
1e9e: 0d c0 rjmp .+26 ; 0x1eba <main+0x1ba>
else if (address == 10) ch=wdtVect & 0xff;
1ea0: ea 30 cpi r30, 0x0A ; 10
1ea2: f1 05 cpc r31, r1
1ea4: 19 f4 brne .+6 ; 0x1eac <main+0x1ac>
1ea6: 20 91 06 02 lds r18, 0x0206
1eaa: 07 c0 rjmp .+14 ; 0x1eba <main+0x1ba>
else if (address == 11) ch=wdtVect >> 8;
1eac: eb 30 cpi r30, 0x0B ; 11
1eae: f1 05 cpc r31, r1
1eb0: 19 f4 brne .+6 ; 0x1eb8 <main+0x1b8>
1eb2: 20 91 07 02 lds r18, 0x0207
1eb6: 01 c0 rjmp .+2 ; 0x1eba <main+0x1ba>
else ch = pgm_read_byte_near(address);
1eb8: 24 91 lpm r18, Z+
address++;
1eba: 80 91 00 02 lds r24, 0x0200
1ebe: 90 91 01 02 lds r25, 0x0201
1ec2: 01 96 adiw r24, 0x01 ; 1
1ec4: 90 93 01 02 sts 0x0201, r25
1ec8: 80 93 00 02 sts 0x0200, r24
putch(ch);
1ecc: 82 2f mov r24, r18
1ece: 19 d0 rcall .+50 ; 0x1f02 <putch>
} while (--length);
1ed0: 80 91 02 02 lds r24, 0x0202
1ed4: 81 50 subi r24, 0x01 ; 1
1ed6: 80 93 02 02 sts 0x0202, r24
1eda: 88 23 and r24, r24
1edc: 91 f6 brne .-92 ; 0x1e82 <main+0x182>
1ede: 0e c0 rjmp .+28 ; 0x1efc <main+0x1fc>
while (--length);
#endif
}
/* Get device signature bytes */
else if(ch == STK_READ_SIGN) {
1ee0: 85 37 cpi r24, 0x75 ; 117
1ee2: 39 f4 brne .+14 ; 0x1ef2 <main+0x1f2>
// READ SIGN - return what Avrdude wants to hear
verifySpace();
1ee4: 3f d0 rcall .+126 ; 0x1f64 <verifySpace>
putch(SIGNATURE_0);
1ee6: 8e e1 ldi r24, 0x1E ; 30
1ee8: 0c d0 rcall .+24 ; 0x1f02 <putch>
putch(SIGNATURE_1);
1eea: 83 e9 ldi r24, 0x93 ; 147
1eec: 0a d0 rcall .+20 ; 0x1f02 <putch>
putch(SIGNATURE_2);
1eee: 8c e0 ldi r24, 0x0C ; 12
1ef0: 51 cf rjmp .-350 ; 0x1d94 <main+0x94>
}
else if (ch == 'Q') {
1ef2: 81 35 cpi r24, 0x51 ; 81
1ef4: 11 f4 brne .+4 ; 0x1efa <main+0x1fa>
// Adaboot no-wait mod
watchdogConfig(WATCHDOG_16MS);
1ef6: 88 e0 ldi r24, 0x08 ; 8
1ef8: 2c d0 rcall .+88 ; 0x1f52 <watchdogConfig>
verifySpace();
}
else {
// This covers the response to commands like STK_ENTER_PROGMODE
verifySpace();
1efa: 34 d0 rcall .+104 ; 0x1f64 <verifySpace>
}
putch(STK_OK);
1efc: 80 e1 ldi r24, 0x10 ; 16
1efe: 01 d0 rcall .+2 ; 0x1f02 <putch>
1f00: 1e cf rjmp .-452 ; 0x1d3e <main+0x3e>
00001f02 <putch>:
void putch(char ch) {
#ifndef SOFT_UART
while (!(UCSR0A & _BV(UDRE0)));
UDR0 = ch;
#else
__asm__ __volatile__ (
1f02: 2a e0 ldi r18, 0x0A ; 10
1f04: 30 e0 ldi r19, 0x00 ; 0
1f06: 80 95 com r24
1f08: 08 94 sec
1f0a: 10 f4 brcc .+4 ; 0x1f10 <putch+0xe>
1f0c: da 98 cbi 0x1b, 2 ; 27
1f0e: 02 c0 rjmp .+4 ; 0x1f14 <putch+0x12>
1f10: da 9a sbi 0x1b, 2 ; 27
1f12: 00 00 nop
1f14: 15 d0 rcall .+42 ; 0x1f40 <uartDelay>
1f16: 14 d0 rcall .+40 ; 0x1f40 <uartDelay>
1f18: 86 95 lsr r24
1f1a: 2a 95 dec r18
1f1c: b1 f7 brne .-20 ; 0x1f0a <putch+0x8>
[uartBit] "I" (UART_TX_BIT)
:
"r25"
);
#endif
}
1f1e: 08 95 ret
00001f20 <getch>:
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
1f20: a8 95 wdr
#ifdef LED_DATA_FLASH
LED_PIN |= _BV(LED);
#endif
return ch;
}
1f22: 29 e0 ldi r18, 0x09 ; 9
1f24: 30 e0 ldi r19, 0x00 ; 0
1f26: cb 99 sbic 0x19, 3 ; 25
1f28: fe cf rjmp .-4 ; 0x1f26 <getch+0x6>
1f2a: 0a d0 rcall .+20 ; 0x1f40 <uartDelay>
1f2c: 09 d0 rcall .+18 ; 0x1f40 <uartDelay>
1f2e: 08 d0 rcall .+16 ; 0x1f40 <uartDelay>
1f30: 88 94 clc
1f32: cb 99 sbic 0x19, 3 ; 25
1f34: 08 94 sec
1f36: 2a 95 dec r18
1f38: 11 f0 breq .+4 ; 0x1f3e <getch+0x1e>
1f3a: 87 95 ror r24
1f3c: f7 cf rjmp .-18 ; 0x1f2c <getch+0xc>
1f3e: 08 95 ret
00001f40 <uartDelay>:
#if UART_B_VALUE > 255
#error Baud rate too slow for soft UART
#endif
void uartDelay() {
__asm__ __volatile__ (
1f40: 9e e0 ldi r25, 0x0E ; 14
1f42: 9a 95 dec r25
1f44: f1 f7 brne .-4 ; 0x1f42 <uartDelay+0x2>
1f46: 08 95 ret
00001f48 <getLen>:
} while (--count);
}
#endif
uint8_t getLen() {
getch();
1f48: eb df rcall .-42 ; 0x1f20 <getch>
length = getch();
1f4a: ea df rcall .-44 ; 0x1f20 <getch>
1f4c: 80 93 02 02 sts 0x0202, r24
return getch();
}
1f50: e7 cf rjmp .-50 ; 0x1f20 <getch>
00001f52 <watchdogConfig>:
"wdr\n"
);
}
void watchdogConfig(uint8_t x) {
WDTCSR = _BV(WDCE) | _BV(WDE);
1f52: 98 e1 ldi r25, 0x18 ; 24
1f54: 91 bd out 0x21, r25 ; 33
WDTCSR = x;
1f56: 81 bd out 0x21, r24 ; 33
}
1f58: 08 95 ret
00001f5a <appStart>:
void appStart() {
watchdogConfig(WATCHDOG_OFF);
1f5a: 80 e0 ldi r24, 0x00 ; 0
1f5c: fa df rcall .-12 ; 0x1f52 <watchdogConfig>
__asm__ __volatile__ (
1f5e: e5 e0 ldi r30, 0x05 ; 5
1f60: ff 27 eor r31, r31
1f62: 09 94 ijmp
00001f64 <verifySpace>:
do getch(); while (--count);
verifySpace();
}
void verifySpace() {
if (getch() != CRC_EOP) appStart();
1f64: dd df rcall .-70 ; 0x1f20 <getch>
1f66: 80 32 cpi r24, 0x20 ; 32
1f68: 09 f0 breq .+2 ; 0x1f6c <verifySpace+0x8>
1f6a: f7 df rcall .-18 ; 0x1f5a <appStart>
putch(STK_INSYNC);
1f6c: 84 e1 ldi r24, 0x14 ; 20
}
1f6e: c9 cf rjmp .-110 ; 0x1f02 <putch>
::[count] "M" (UART_B_VALUE)
);
}
#endif
void getNch(uint8_t count) {
1f70: 1f 93 push r17
1f72: 18 2f mov r17, r24
00001f74 <getNch>:
do getch(); while (--count);
1f74: d5 df rcall .-86 ; 0x1f20 <getch>
1f76: 11 50 subi r17, 0x01 ; 1
1f78: e9 f7 brne .-6 ; 0x1f74 <getNch>
verifySpace();
1f7a: f4 df rcall .-24 ; 0x1f64 <verifySpace>
}
1f7c: 1f 91 pop r17
1f7e: 08 95 ret

View File

@ -1,33 +0,0 @@
:103E000085E08093810082E08093C00088E1809308
:103E1000C10086E08093C20080E18093C40084B733
:103E200014BE81FFD0D08DE0C8D0259A86E020E373
:103E30003CEF91E0309385002093840096BBB09BCB
:103E4000FECF1D9AA8958150A9F7DD24D394A5E053
:103E5000EA2EF1E1FF2EA4D0813421F481E0BED01E
:103E600083E024C0823411F484E103C0853419F462
:103E700085E0B4D08AC08535A1F492D0082F10E037
:103E800010930102009300028BD090E0982F8827B6
:103E9000802B912B880F991F909301028093000231
:103EA00073C0863529F484E099D080E071D06DC06C
:103EB000843609F043C07CD0E0910002F091010209
:103EC00083E080935700E895C0E0D1E069D0899302
:103ED000809102028150809302028823B9F778D042
:103EE00007B600FCFDCF4091000250910102A0E016
:103EF000B1E02C9130E011968C91119790E0982FC1
:103F00008827822B932B1296FA010C01D09257002E
:103F1000E89511244E5F5F4FF1E0A038BF0749F7E5
:103F2000E0910002F0910102E0925700E89507B697
:103F300000FCFDCFF0925700E89527C08437B9F414
:103F400037D046D0E0910002F09101023196F09313
:103F50000102E09300023197E4918E2F19D08091F5
:103F60000202815080930202882361F70EC08537D8
:103F700039F42ED08EE10CD084E90AD086E096CFB9
:103F8000813511F488E019D023D080E101D063CFCE
:103F9000982F8091C00085FFFCCF9093C6000895B4
:103FA000A8958091C00087FFFCCF8091C60008953E
:103FB000F7DFF6DF80930202F3CFE0E6F0E098E16E
:103FC00090838083089580E0F8DFEE27FF2709942F
:103FD000E7DF803209F0F7DF84E1DACF1F93182F93
:0C3FE000DFDF1150E9F7F4DF1F910895B6
:0400000300003E00BB
:00000001FF

View File

@ -1,520 +0,0 @@
optiboot_pro_16MHz.elf: file format elf32-avr
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 000001ec 00003e00 00003e00 00000054 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .debug_aranges 00000028 00000000 00000000 00000240 2**0
CONTENTS, READONLY, DEBUGGING
2 .debug_pubnames 0000006a 00000000 00000000 00000268 2**0
CONTENTS, READONLY, DEBUGGING
3 .debug_info 00000269 00000000 00000000 000002d2 2**0
CONTENTS, READONLY, DEBUGGING
4 .debug_abbrev 00000196 00000000 00000000 0000053b 2**0
CONTENTS, READONLY, DEBUGGING
5 .debug_line 000003d3 00000000 00000000 000006d1 2**0
CONTENTS, READONLY, DEBUGGING
6 .debug_frame 00000090 00000000 00000000 00000aa4 2**2
CONTENTS, READONLY, DEBUGGING
7 .debug_str 00000135 00000000 00000000 00000b34 2**0
CONTENTS, READONLY, DEBUGGING
8 .debug_loc 000001d1 00000000 00000000 00000c69 2**0
CONTENTS, READONLY, DEBUGGING
9 .debug_ranges 00000068 00000000 00000000 00000e3a 2**0
CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:
00003e00 <main>:
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
3e00: 85 e0 ldi r24, 0x05 ; 5
3e02: 80 93 81 00 sts 0x0081, r24
#if LED_START_FLASHES > 0
// Set up Timer 1 for timeout counter
TCCR1B = _BV(CS12) | _BV(CS10); // div 1024
#endif
#ifndef SOFT_UART
UCSR0A = _BV(U2X0); //Double speed mode USART0
3e06: 82 e0 ldi r24, 0x02 ; 2
3e08: 80 93 c0 00 sts 0x00C0, r24
UCSR0B = _BV(RXEN0) | _BV(TXEN0);
3e0c: 88 e1 ldi r24, 0x18 ; 24
3e0e: 80 93 c1 00 sts 0x00C1, r24
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
3e12: 86 e0 ldi r24, 0x06 ; 6
3e14: 80 93 c2 00 sts 0x00C2, r24
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
3e18: 80 e1 ldi r24, 0x10 ; 16
3e1a: 80 93 c4 00 sts 0x00C4, r24
#endif
// Adaboot no-wait mod
ch = MCUSR;
3e1e: 84 b7 in r24, 0x34 ; 52
MCUSR = 0;
3e20: 14 be out 0x34, r1 ; 52
if (!(ch & _BV(EXTRF))) appStart();
3e22: 81 ff sbrs r24, 1
3e24: d0 d0 rcall .+416 ; 0x3fc6 <appStart>
// Set up watchdog to trigger after 500ms
watchdogConfig(WATCHDOG_500MS);
3e26: 8d e0 ldi r24, 0x0D ; 13
3e28: c8 d0 rcall .+400 ; 0x3fba <watchdogConfig>
/* Set LED pin as output */
LED_DDR |= _BV(LED);
3e2a: 25 9a sbi 0x04, 5 ; 4
3e2c: 86 e0 ldi r24, 0x06 ; 6
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e2e: 20 e3 ldi r18, 0x30 ; 48
3e30: 3c ef ldi r19, 0xFC ; 252
TIFR1 = _BV(TOV1);
3e32: 91 e0 ldi r25, 0x01 ; 1
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e34: 30 93 85 00 sts 0x0085, r19
3e38: 20 93 84 00 sts 0x0084, r18
TIFR1 = _BV(TOV1);
3e3c: 96 bb out 0x16, r25 ; 22
while(!(TIFR1 & _BV(TOV1)));
3e3e: b0 9b sbis 0x16, 0 ; 22
3e40: fe cf rjmp .-4 ; 0x3e3e <main+0x3e>
LED_PIN |= _BV(LED);
3e42: 1d 9a sbi 0x03, 5 ; 3
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3e44: a8 95 wdr
TCNT1 = -(F_CPU/(1024*16));
TIFR1 = _BV(TOV1);
while(!(TIFR1 & _BV(TOV1)));
LED_PIN |= _BV(LED);
watchdogReset();
} while (--count);
3e46: 81 50 subi r24, 0x01 ; 1
3e48: a9 f7 brne .-22 ; 0x3e34 <main+0x34>
/* get character from UART */
ch = getch();
if(ch == STK_GET_PARAMETER) {
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
3e4a: dd 24 eor r13, r13
3e4c: d3 94 inc r13
boot_page_fill((uint16_t)(void*)addrPtr,a);
addrPtr += 2;
} while (--ch);
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
3e4e: a5 e0 ldi r26, 0x05 ; 5
3e50: ea 2e mov r14, r26
boot_spm_busy_wait();
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3e52: f1 e1 ldi r31, 0x11 ; 17
3e54: ff 2e mov r15, r31
#endif
/* Forever loop */
for (;;) {
/* get character from UART */
ch = getch();
3e56: a4 d0 rcall .+328 ; 0x3fa0 <getch>
if(ch == STK_GET_PARAMETER) {
3e58: 81 34 cpi r24, 0x41 ; 65
3e5a: 21 f4 brne .+8 ; 0x3e64 <main+0x64>
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
3e5c: 81 e0 ldi r24, 0x01 ; 1
3e5e: be d0 rcall .+380 ; 0x3fdc <verifySpace+0xc>
putch(0x03);
3e60: 83 e0 ldi r24, 0x03 ; 3
3e62: 24 c0 rjmp .+72 ; 0x3eac <main+0xac>
}
else if(ch == STK_SET_DEVICE) {
3e64: 82 34 cpi r24, 0x42 ; 66
3e66: 11 f4 brne .+4 ; 0x3e6c <main+0x6c>
// SET DEVICE is ignored
getNch(20);
3e68: 84 e1 ldi r24, 0x14 ; 20
3e6a: 03 c0 rjmp .+6 ; 0x3e72 <main+0x72>
}
else if(ch == STK_SET_DEVICE_EXT) {
3e6c: 85 34 cpi r24, 0x45 ; 69
3e6e: 19 f4 brne .+6 ; 0x3e76 <main+0x76>
// SET DEVICE EXT is ignored
getNch(5);
3e70: 85 e0 ldi r24, 0x05 ; 5
3e72: b4 d0 rcall .+360 ; 0x3fdc <verifySpace+0xc>
3e74: 8a c0 rjmp .+276 ; 0x3f8a <main+0x18a>
}
else if(ch == STK_LOAD_ADDRESS) {
3e76: 85 35 cpi r24, 0x55 ; 85
3e78: a1 f4 brne .+40 ; 0x3ea2 <main+0xa2>
// LOAD ADDRESS
address = getch();
3e7a: 92 d0 rcall .+292 ; 0x3fa0 <getch>
3e7c: 08 2f mov r16, r24
3e7e: 10 e0 ldi r17, 0x00 ; 0
3e80: 10 93 01 02 sts 0x0201, r17
3e84: 00 93 00 02 sts 0x0200, r16
address = (address & 0xff) | (getch() << 8);
3e88: 8b d0 rcall .+278 ; 0x3fa0 <getch>
3e8a: 90 e0 ldi r25, 0x00 ; 0
3e8c: 98 2f mov r25, r24
3e8e: 88 27 eor r24, r24
3e90: 80 2b or r24, r16
3e92: 91 2b or r25, r17
address += address; // Convert from word address to byte address
3e94: 88 0f add r24, r24
3e96: 99 1f adc r25, r25
3e98: 90 93 01 02 sts 0x0201, r25
3e9c: 80 93 00 02 sts 0x0200, r24
3ea0: 73 c0 rjmp .+230 ; 0x3f88 <main+0x188>
verifySpace();
}
else if(ch == STK_UNIVERSAL) {
3ea2: 86 35 cpi r24, 0x56 ; 86
3ea4: 29 f4 brne .+10 ; 0x3eb0 <main+0xb0>
// UNIVERSAL command is ignored
getNch(4);
3ea6: 84 e0 ldi r24, 0x04 ; 4
3ea8: 99 d0 rcall .+306 ; 0x3fdc <verifySpace+0xc>
putch(0x00);
3eaa: 80 e0 ldi r24, 0x00 ; 0
3eac: 71 d0 rcall .+226 ; 0x3f90 <putch>
3eae: 6d c0 rjmp .+218 ; 0x3f8a <main+0x18a>
}
/* Write memory, length is big endian and is in bytes */
else if(ch == STK_PROG_PAGE) {
3eb0: 84 36 cpi r24, 0x64 ; 100
3eb2: 09 f0 breq .+2 ; 0x3eb6 <main+0xb6>
3eb4: 43 c0 rjmp .+134 ; 0x3f3c <main+0x13c>
// PROGRAM PAGE - we support flash programming only, not EEPROM
uint8_t *bufPtr;
uint16_t addrPtr;
getLen();
3eb6: 7c d0 rcall .+248 ; 0x3fb0 <getLen>
// Immediately start page erase - this will 4.5ms
boot_page_erase((uint16_t)(void*)address);
3eb8: e0 91 00 02 lds r30, 0x0200
3ebc: f0 91 01 02 lds r31, 0x0201
3ec0: 83 e0 ldi r24, 0x03 ; 3
3ec2: 80 93 57 00 sts 0x0057, r24
3ec6: e8 95 spm
3ec8: c0 e0 ldi r28, 0x00 ; 0
3eca: d1 e0 ldi r29, 0x01 ; 1
// While that is going on, read in page contents
bufPtr = buff;
do *bufPtr++ = getch();
3ecc: 69 d0 rcall .+210 ; 0x3fa0 <getch>
3ece: 89 93 st Y+, r24
while (--length);
3ed0: 80 91 02 02 lds r24, 0x0202
3ed4: 81 50 subi r24, 0x01 ; 1
3ed6: 80 93 02 02 sts 0x0202, r24
3eda: 88 23 and r24, r24
3edc: b9 f7 brne .-18 ; 0x3ecc <main+0xcc>
// Read command terminator, start reply
verifySpace();
3ede: 78 d0 rcall .+240 ; 0x3fd0 <verifySpace>
// If only a partial page is to be programmed, the erase might not be complete.
// So check that here
boot_spm_busy_wait();
3ee0: 07 b6 in r0, 0x37 ; 55
3ee2: 00 fc sbrc r0, 0
3ee4: fd cf rjmp .-6 ; 0x3ee0 <main+0xe0>
}
#endif
// Copy buffer into programming buffer
bufPtr = buff;
addrPtr = (uint16_t)(void*)address;
3ee6: 40 91 00 02 lds r20, 0x0200
3eea: 50 91 01 02 lds r21, 0x0201
3eee: a0 e0 ldi r26, 0x00 ; 0
3ef0: b1 e0 ldi r27, 0x01 ; 1
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
3ef2: 2c 91 ld r18, X
3ef4: 30 e0 ldi r19, 0x00 ; 0
a |= (*bufPtr++) << 8;
3ef6: 11 96 adiw r26, 0x01 ; 1
3ef8: 8c 91 ld r24, X
3efa: 11 97 sbiw r26, 0x01 ; 1
3efc: 90 e0 ldi r25, 0x00 ; 0
3efe: 98 2f mov r25, r24
3f00: 88 27 eor r24, r24
3f02: 82 2b or r24, r18
3f04: 93 2b or r25, r19
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
3f06: 12 96 adiw r26, 0x02 ; 2
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
boot_page_fill((uint16_t)(void*)addrPtr,a);
3f08: fa 01 movw r30, r20
3f0a: 0c 01 movw r0, r24
3f0c: d0 92 57 00 sts 0x0057, r13
3f10: e8 95 spm
3f12: 11 24 eor r1, r1
addrPtr += 2;
3f14: 4e 5f subi r20, 0xFE ; 254
3f16: 5f 4f sbci r21, 0xFF ; 255
} while (--ch);
3f18: f1 e0 ldi r31, 0x01 ; 1
3f1a: a0 38 cpi r26, 0x80 ; 128
3f1c: bf 07 cpc r27, r31
3f1e: 49 f7 brne .-46 ; 0x3ef2 <main+0xf2>
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
3f20: e0 91 00 02 lds r30, 0x0200
3f24: f0 91 01 02 lds r31, 0x0201
3f28: e0 92 57 00 sts 0x0057, r14
3f2c: e8 95 spm
boot_spm_busy_wait();
3f2e: 07 b6 in r0, 0x37 ; 55
3f30: 00 fc sbrc r0, 0
3f32: fd cf rjmp .-6 ; 0x3f2e <main+0x12e>
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3f34: f0 92 57 00 sts 0x0057, r15
3f38: e8 95 spm
3f3a: 27 c0 rjmp .+78 ; 0x3f8a <main+0x18a>
#endif
}
/* Read memory block mode, length is big endian. */
else if(ch == STK_READ_PAGE) {
3f3c: 84 37 cpi r24, 0x74 ; 116
3f3e: b9 f4 brne .+46 ; 0x3f6e <main+0x16e>
// READ PAGE - we only read flash
getLen();
3f40: 37 d0 rcall .+110 ; 0x3fb0 <getLen>
verifySpace();
3f42: 46 d0 rcall .+140 ; 0x3fd0 <verifySpace>
else ch = pgm_read_byte_near(address);
address++;
putch(ch);
} while (--length);
#else
do putch(pgm_read_byte_near(address++));
3f44: e0 91 00 02 lds r30, 0x0200
3f48: f0 91 01 02 lds r31, 0x0201
3f4c: 31 96 adiw r30, 0x01 ; 1
3f4e: f0 93 01 02 sts 0x0201, r31
3f52: e0 93 00 02 sts 0x0200, r30
3f56: 31 97 sbiw r30, 0x01 ; 1
3f58: e4 91 lpm r30, Z+
3f5a: 8e 2f mov r24, r30
3f5c: 19 d0 rcall .+50 ; 0x3f90 <putch>
while (--length);
3f5e: 80 91 02 02 lds r24, 0x0202
3f62: 81 50 subi r24, 0x01 ; 1
3f64: 80 93 02 02 sts 0x0202, r24
3f68: 88 23 and r24, r24
3f6a: 61 f7 brne .-40 ; 0x3f44 <main+0x144>
3f6c: 0e c0 rjmp .+28 ; 0x3f8a <main+0x18a>
#endif
}
/* Get device signature bytes */
else if(ch == STK_READ_SIGN) {
3f6e: 85 37 cpi r24, 0x75 ; 117
3f70: 39 f4 brne .+14 ; 0x3f80 <main+0x180>
// READ SIGN - return what Avrdude wants to hear
verifySpace();
3f72: 2e d0 rcall .+92 ; 0x3fd0 <verifySpace>
putch(SIGNATURE_0);
3f74: 8e e1 ldi r24, 0x1E ; 30
3f76: 0c d0 rcall .+24 ; 0x3f90 <putch>
putch(SIGNATURE_1);
3f78: 84 e9 ldi r24, 0x94 ; 148
3f7a: 0a d0 rcall .+20 ; 0x3f90 <putch>
putch(SIGNATURE_2);
3f7c: 86 e0 ldi r24, 0x06 ; 6
3f7e: 96 cf rjmp .-212 ; 0x3eac <main+0xac>
}
else if (ch == 'Q') {
3f80: 81 35 cpi r24, 0x51 ; 81
3f82: 11 f4 brne .+4 ; 0x3f88 <main+0x188>
// Adaboot no-wait mod
watchdogConfig(WATCHDOG_16MS);
3f84: 88 e0 ldi r24, 0x08 ; 8
3f86: 19 d0 rcall .+50 ; 0x3fba <watchdogConfig>
verifySpace();
}
else {
// This covers the response to commands like STK_ENTER_PROGMODE
verifySpace();
3f88: 23 d0 rcall .+70 ; 0x3fd0 <verifySpace>
}
putch(STK_OK);
3f8a: 80 e1 ldi r24, 0x10 ; 16
3f8c: 01 d0 rcall .+2 ; 0x3f90 <putch>
3f8e: 63 cf rjmp .-314 ; 0x3e56 <main+0x56>
00003f90 <putch>:
}
}
void putch(char ch) {
3f90: 98 2f mov r25, r24
#ifndef SOFT_UART
while (!(UCSR0A & _BV(UDRE0)));
3f92: 80 91 c0 00 lds r24, 0x00C0
3f96: 85 ff sbrs r24, 5
3f98: fc cf rjmp .-8 ; 0x3f92 <putch+0x2>
UDR0 = ch;
3f9a: 90 93 c6 00 sts 0x00C6, r25
[uartBit] "I" (UART_TX_BIT)
:
"r25"
);
#endif
}
3f9e: 08 95 ret
00003fa0 <getch>:
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3fa0: a8 95 wdr
[uartBit] "I" (UART_RX_BIT)
:
"r25"
);
#else
while(!(UCSR0A & _BV(RXC0)));
3fa2: 80 91 c0 00 lds r24, 0x00C0
3fa6: 87 ff sbrs r24, 7
3fa8: fc cf rjmp .-8 ; 0x3fa2 <getch+0x2>
ch = UDR0;
3faa: 80 91 c6 00 lds r24, 0x00C6
#ifdef LED_DATA_FLASH
LED_PIN |= _BV(LED);
#endif
return ch;
}
3fae: 08 95 ret
00003fb0 <getLen>:
} while (--count);
}
#endif
uint8_t getLen() {
getch();
3fb0: f7 df rcall .-18 ; 0x3fa0 <getch>
length = getch();
3fb2: f6 df rcall .-20 ; 0x3fa0 <getch>
3fb4: 80 93 02 02 sts 0x0202, r24
return getch();
}
3fb8: f3 cf rjmp .-26 ; 0x3fa0 <getch>
00003fba <watchdogConfig>:
"wdr\n"
);
}
void watchdogConfig(uint8_t x) {
WDTCSR = _BV(WDCE) | _BV(WDE);
3fba: e0 e6 ldi r30, 0x60 ; 96
3fbc: f0 e0 ldi r31, 0x00 ; 0
3fbe: 98 e1 ldi r25, 0x18 ; 24
3fc0: 90 83 st Z, r25
WDTCSR = x;
3fc2: 80 83 st Z, r24
}
3fc4: 08 95 ret
00003fc6 <appStart>:
void appStart() {
watchdogConfig(WATCHDOG_OFF);
3fc6: 80 e0 ldi r24, 0x00 ; 0
3fc8: f8 df rcall .-16 ; 0x3fba <watchdogConfig>
__asm__ __volatile__ (
3fca: ee 27 eor r30, r30
3fcc: ff 27 eor r31, r31
3fce: 09 94 ijmp
00003fd0 <verifySpace>:
do getch(); while (--count);
verifySpace();
}
void verifySpace() {
if (getch() != CRC_EOP) appStart();
3fd0: e7 df rcall .-50 ; 0x3fa0 <getch>
3fd2: 80 32 cpi r24, 0x20 ; 32
3fd4: 09 f0 breq .+2 ; 0x3fd8 <verifySpace+0x8>
3fd6: f7 df rcall .-18 ; 0x3fc6 <appStart>
putch(STK_INSYNC);
3fd8: 84 e1 ldi r24, 0x14 ; 20
}
3fda: da cf rjmp .-76 ; 0x3f90 <putch>
::[count] "M" (UART_B_VALUE)
);
}
#endif
void getNch(uint8_t count) {
3fdc: 1f 93 push r17
3fde: 18 2f mov r17, r24
00003fe0 <getNch>:
do getch(); while (--count);
3fe0: df df rcall .-66 ; 0x3fa0 <getch>
3fe2: 11 50 subi r17, 0x01 ; 1
3fe4: e9 f7 brne .-6 ; 0x3fe0 <getNch>
verifySpace();
3fe6: f4 df rcall .-24 ; 0x3fd0 <verifySpace>
}
3fe8: 1f 91 pop r17
3fea: 08 95 ret

View File

@ -1,33 +0,0 @@
:103E000085E08093810082E08093C00088E1809308
:103E1000C10086E08093C20085E18093C40084B72E
:103E200014BE81FFD0D08DE0C8D0259A86E02CE367
:103E30003BEF91E0309385002093840096BBB09BCC
:103E4000FECF1D9AA8958150A9F7DD24D394A5E053
:103E5000EA2EF1E1FF2EA4D0813421F481E0BED01E
:103E600083E024C0823411F484E103C0853419F462
:103E700085E0B4D08AC08535A1F492D0082F10E037
:103E800010930102009300028BD090E0982F8827B6
:103E9000802B912B880F991F909301028093000231
:103EA00073C0863529F484E099D080E071D06DC06C
:103EB000843609F043C07CD0E0910002F091010209
:103EC00083E080935700E895C0E0D1E069D0899302
:103ED000809102028150809302028823B9F778D042
:103EE00007B600FCFDCF4091000250910102A0E016
:103EF000B1E02C9130E011968C91119790E0982FC1
:103F00008827822B932B1296FA010C01D09257002E
:103F1000E89511244E5F5F4FF1E0A038BF0749F7E5
:103F2000E0910002F0910102E0925700E89507B697
:103F300000FCFDCFF0925700E89527C08437B9F414
:103F400037D046D0E0910002F09101023196F09313
:103F50000102E09300023197E4918E2F19D08091F5
:103F60000202815080930202882361F70EC08537D8
:103F700039F42ED08EE10CD084E90AD086E096CFB9
:103F8000813511F488E019D023D080E101D063CFCE
:103F9000982F8091C00085FFFCCF9093C6000895B4
:103FA000A8958091C00087FFFCCF8091C60008953E
:103FB000F7DFF6DF80930202F3CFE0E6F0E098E16E
:103FC00090838083089580E0F8DFEE27FF2709942F
:103FD000E7DF803209F0F7DF84E1DACF1F93182F93
:0C3FE000DFDF1150E9F7F4DF1F910895B6
:0400000300003E00BB
:00000001FF

View File

@ -1,520 +0,0 @@
optiboot_pro_20mhz.elf: file format elf32-avr
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 000001ec 00003e00 00003e00 00000054 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .debug_aranges 00000028 00000000 00000000 00000240 2**0
CONTENTS, READONLY, DEBUGGING
2 .debug_pubnames 0000006a 00000000 00000000 00000268 2**0
CONTENTS, READONLY, DEBUGGING
3 .debug_info 00000269 00000000 00000000 000002d2 2**0
CONTENTS, READONLY, DEBUGGING
4 .debug_abbrev 00000196 00000000 00000000 0000053b 2**0
CONTENTS, READONLY, DEBUGGING
5 .debug_line 000003d3 00000000 00000000 000006d1 2**0
CONTENTS, READONLY, DEBUGGING
6 .debug_frame 00000090 00000000 00000000 00000aa4 2**2
CONTENTS, READONLY, DEBUGGING
7 .debug_str 00000135 00000000 00000000 00000b34 2**0
CONTENTS, READONLY, DEBUGGING
8 .debug_loc 000001d1 00000000 00000000 00000c69 2**0
CONTENTS, READONLY, DEBUGGING
9 .debug_ranges 00000068 00000000 00000000 00000e3a 2**0
CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:
00003e00 <main>:
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
3e00: 85 e0 ldi r24, 0x05 ; 5
3e02: 80 93 81 00 sts 0x0081, r24
#if LED_START_FLASHES > 0
// Set up Timer 1 for timeout counter
TCCR1B = _BV(CS12) | _BV(CS10); // div 1024
#endif
#ifndef SOFT_UART
UCSR0A = _BV(U2X0); //Double speed mode USART0
3e06: 82 e0 ldi r24, 0x02 ; 2
3e08: 80 93 c0 00 sts 0x00C0, r24
UCSR0B = _BV(RXEN0) | _BV(TXEN0);
3e0c: 88 e1 ldi r24, 0x18 ; 24
3e0e: 80 93 c1 00 sts 0x00C1, r24
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
3e12: 86 e0 ldi r24, 0x06 ; 6
3e14: 80 93 c2 00 sts 0x00C2, r24
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
3e18: 85 e1 ldi r24, 0x15 ; 21
3e1a: 80 93 c4 00 sts 0x00C4, r24
#endif
// Adaboot no-wait mod
ch = MCUSR;
3e1e: 84 b7 in r24, 0x34 ; 52
MCUSR = 0;
3e20: 14 be out 0x34, r1 ; 52
if (!(ch & _BV(EXTRF))) appStart();
3e22: 81 ff sbrs r24, 1
3e24: d0 d0 rcall .+416 ; 0x3fc6 <appStart>
// Set up watchdog to trigger after 500ms
watchdogConfig(WATCHDOG_500MS);
3e26: 8d e0 ldi r24, 0x0D ; 13
3e28: c8 d0 rcall .+400 ; 0x3fba <watchdogConfig>
/* Set LED pin as output */
LED_DDR |= _BV(LED);
3e2a: 25 9a sbi 0x04, 5 ; 4
3e2c: 86 e0 ldi r24, 0x06 ; 6
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e2e: 2c e3 ldi r18, 0x3C ; 60
3e30: 3b ef ldi r19, 0xFB ; 251
TIFR1 = _BV(TOV1);
3e32: 91 e0 ldi r25, 0x01 ; 1
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e34: 30 93 85 00 sts 0x0085, r19
3e38: 20 93 84 00 sts 0x0084, r18
TIFR1 = _BV(TOV1);
3e3c: 96 bb out 0x16, r25 ; 22
while(!(TIFR1 & _BV(TOV1)));
3e3e: b0 9b sbis 0x16, 0 ; 22
3e40: fe cf rjmp .-4 ; 0x3e3e <main+0x3e>
LED_PIN |= _BV(LED);
3e42: 1d 9a sbi 0x03, 5 ; 3
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3e44: a8 95 wdr
TCNT1 = -(F_CPU/(1024*16));
TIFR1 = _BV(TOV1);
while(!(TIFR1 & _BV(TOV1)));
LED_PIN |= _BV(LED);
watchdogReset();
} while (--count);
3e46: 81 50 subi r24, 0x01 ; 1
3e48: a9 f7 brne .-22 ; 0x3e34 <main+0x34>
/* get character from UART */
ch = getch();
if(ch == STK_GET_PARAMETER) {
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
3e4a: dd 24 eor r13, r13
3e4c: d3 94 inc r13
boot_page_fill((uint16_t)(void*)addrPtr,a);
addrPtr += 2;
} while (--ch);
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
3e4e: a5 e0 ldi r26, 0x05 ; 5
3e50: ea 2e mov r14, r26
boot_spm_busy_wait();
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3e52: f1 e1 ldi r31, 0x11 ; 17
3e54: ff 2e mov r15, r31
#endif
/* Forever loop */
for (;;) {
/* get character from UART */
ch = getch();
3e56: a4 d0 rcall .+328 ; 0x3fa0 <getch>
if(ch == STK_GET_PARAMETER) {
3e58: 81 34 cpi r24, 0x41 ; 65
3e5a: 21 f4 brne .+8 ; 0x3e64 <main+0x64>
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
3e5c: 81 e0 ldi r24, 0x01 ; 1
3e5e: be d0 rcall .+380 ; 0x3fdc <verifySpace+0xc>
putch(0x03);
3e60: 83 e0 ldi r24, 0x03 ; 3
3e62: 24 c0 rjmp .+72 ; 0x3eac <main+0xac>
}
else if(ch == STK_SET_DEVICE) {
3e64: 82 34 cpi r24, 0x42 ; 66
3e66: 11 f4 brne .+4 ; 0x3e6c <main+0x6c>
// SET DEVICE is ignored
getNch(20);
3e68: 84 e1 ldi r24, 0x14 ; 20
3e6a: 03 c0 rjmp .+6 ; 0x3e72 <main+0x72>
}
else if(ch == STK_SET_DEVICE_EXT) {
3e6c: 85 34 cpi r24, 0x45 ; 69
3e6e: 19 f4 brne .+6 ; 0x3e76 <main+0x76>
// SET DEVICE EXT is ignored
getNch(5);
3e70: 85 e0 ldi r24, 0x05 ; 5
3e72: b4 d0 rcall .+360 ; 0x3fdc <verifySpace+0xc>
3e74: 8a c0 rjmp .+276 ; 0x3f8a <main+0x18a>
}
else if(ch == STK_LOAD_ADDRESS) {
3e76: 85 35 cpi r24, 0x55 ; 85
3e78: a1 f4 brne .+40 ; 0x3ea2 <main+0xa2>
// LOAD ADDRESS
address = getch();
3e7a: 92 d0 rcall .+292 ; 0x3fa0 <getch>
3e7c: 08 2f mov r16, r24
3e7e: 10 e0 ldi r17, 0x00 ; 0
3e80: 10 93 01 02 sts 0x0201, r17
3e84: 00 93 00 02 sts 0x0200, r16
address = (address & 0xff) | (getch() << 8);
3e88: 8b d0 rcall .+278 ; 0x3fa0 <getch>
3e8a: 90 e0 ldi r25, 0x00 ; 0
3e8c: 98 2f mov r25, r24
3e8e: 88 27 eor r24, r24
3e90: 80 2b or r24, r16
3e92: 91 2b or r25, r17
address += address; // Convert from word address to byte address
3e94: 88 0f add r24, r24
3e96: 99 1f adc r25, r25
3e98: 90 93 01 02 sts 0x0201, r25
3e9c: 80 93 00 02 sts 0x0200, r24
3ea0: 73 c0 rjmp .+230 ; 0x3f88 <main+0x188>
verifySpace();
}
else if(ch == STK_UNIVERSAL) {
3ea2: 86 35 cpi r24, 0x56 ; 86
3ea4: 29 f4 brne .+10 ; 0x3eb0 <main+0xb0>
// UNIVERSAL command is ignored
getNch(4);
3ea6: 84 e0 ldi r24, 0x04 ; 4
3ea8: 99 d0 rcall .+306 ; 0x3fdc <verifySpace+0xc>
putch(0x00);
3eaa: 80 e0 ldi r24, 0x00 ; 0
3eac: 71 d0 rcall .+226 ; 0x3f90 <putch>
3eae: 6d c0 rjmp .+218 ; 0x3f8a <main+0x18a>
}
/* Write memory, length is big endian and is in bytes */
else if(ch == STK_PROG_PAGE) {
3eb0: 84 36 cpi r24, 0x64 ; 100
3eb2: 09 f0 breq .+2 ; 0x3eb6 <main+0xb6>
3eb4: 43 c0 rjmp .+134 ; 0x3f3c <main+0x13c>
// PROGRAM PAGE - we support flash programming only, not EEPROM
uint8_t *bufPtr;
uint16_t addrPtr;
getLen();
3eb6: 7c d0 rcall .+248 ; 0x3fb0 <getLen>
// Immediately start page erase - this will 4.5ms
boot_page_erase((uint16_t)(void*)address);
3eb8: e0 91 00 02 lds r30, 0x0200
3ebc: f0 91 01 02 lds r31, 0x0201
3ec0: 83 e0 ldi r24, 0x03 ; 3
3ec2: 80 93 57 00 sts 0x0057, r24
3ec6: e8 95 spm
3ec8: c0 e0 ldi r28, 0x00 ; 0
3eca: d1 e0 ldi r29, 0x01 ; 1
// While that is going on, read in page contents
bufPtr = buff;
do *bufPtr++ = getch();
3ecc: 69 d0 rcall .+210 ; 0x3fa0 <getch>
3ece: 89 93 st Y+, r24
while (--length);
3ed0: 80 91 02 02 lds r24, 0x0202
3ed4: 81 50 subi r24, 0x01 ; 1
3ed6: 80 93 02 02 sts 0x0202, r24
3eda: 88 23 and r24, r24
3edc: b9 f7 brne .-18 ; 0x3ecc <main+0xcc>
// Read command terminator, start reply
verifySpace();
3ede: 78 d0 rcall .+240 ; 0x3fd0 <verifySpace>
// If only a partial page is to be programmed, the erase might not be complete.
// So check that here
boot_spm_busy_wait();
3ee0: 07 b6 in r0, 0x37 ; 55
3ee2: 00 fc sbrc r0, 0
3ee4: fd cf rjmp .-6 ; 0x3ee0 <main+0xe0>
}
#endif
// Copy buffer into programming buffer
bufPtr = buff;
addrPtr = (uint16_t)(void*)address;
3ee6: 40 91 00 02 lds r20, 0x0200
3eea: 50 91 01 02 lds r21, 0x0201
3eee: a0 e0 ldi r26, 0x00 ; 0
3ef0: b1 e0 ldi r27, 0x01 ; 1
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
3ef2: 2c 91 ld r18, X
3ef4: 30 e0 ldi r19, 0x00 ; 0
a |= (*bufPtr++) << 8;
3ef6: 11 96 adiw r26, 0x01 ; 1
3ef8: 8c 91 ld r24, X
3efa: 11 97 sbiw r26, 0x01 ; 1
3efc: 90 e0 ldi r25, 0x00 ; 0
3efe: 98 2f mov r25, r24
3f00: 88 27 eor r24, r24
3f02: 82 2b or r24, r18
3f04: 93 2b or r25, r19
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
3f06: 12 96 adiw r26, 0x02 ; 2
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
boot_page_fill((uint16_t)(void*)addrPtr,a);
3f08: fa 01 movw r30, r20
3f0a: 0c 01 movw r0, r24
3f0c: d0 92 57 00 sts 0x0057, r13
3f10: e8 95 spm
3f12: 11 24 eor r1, r1
addrPtr += 2;
3f14: 4e 5f subi r20, 0xFE ; 254
3f16: 5f 4f sbci r21, 0xFF ; 255
} while (--ch);
3f18: f1 e0 ldi r31, 0x01 ; 1
3f1a: a0 38 cpi r26, 0x80 ; 128
3f1c: bf 07 cpc r27, r31
3f1e: 49 f7 brne .-46 ; 0x3ef2 <main+0xf2>
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
3f20: e0 91 00 02 lds r30, 0x0200
3f24: f0 91 01 02 lds r31, 0x0201
3f28: e0 92 57 00 sts 0x0057, r14
3f2c: e8 95 spm
boot_spm_busy_wait();
3f2e: 07 b6 in r0, 0x37 ; 55
3f30: 00 fc sbrc r0, 0
3f32: fd cf rjmp .-6 ; 0x3f2e <main+0x12e>
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3f34: f0 92 57 00 sts 0x0057, r15
3f38: e8 95 spm
3f3a: 27 c0 rjmp .+78 ; 0x3f8a <main+0x18a>
#endif
}
/* Read memory block mode, length is big endian. */
else if(ch == STK_READ_PAGE) {
3f3c: 84 37 cpi r24, 0x74 ; 116
3f3e: b9 f4 brne .+46 ; 0x3f6e <main+0x16e>
// READ PAGE - we only read flash
getLen();
3f40: 37 d0 rcall .+110 ; 0x3fb0 <getLen>
verifySpace();
3f42: 46 d0 rcall .+140 ; 0x3fd0 <verifySpace>
else ch = pgm_read_byte_near(address);
address++;
putch(ch);
} while (--length);
#else
do putch(pgm_read_byte_near(address++));
3f44: e0 91 00 02 lds r30, 0x0200
3f48: f0 91 01 02 lds r31, 0x0201
3f4c: 31 96 adiw r30, 0x01 ; 1
3f4e: f0 93 01 02 sts 0x0201, r31
3f52: e0 93 00 02 sts 0x0200, r30
3f56: 31 97 sbiw r30, 0x01 ; 1
3f58: e4 91 lpm r30, Z+
3f5a: 8e 2f mov r24, r30
3f5c: 19 d0 rcall .+50 ; 0x3f90 <putch>
while (--length);
3f5e: 80 91 02 02 lds r24, 0x0202
3f62: 81 50 subi r24, 0x01 ; 1
3f64: 80 93 02 02 sts 0x0202, r24
3f68: 88 23 and r24, r24
3f6a: 61 f7 brne .-40 ; 0x3f44 <main+0x144>
3f6c: 0e c0 rjmp .+28 ; 0x3f8a <main+0x18a>
#endif
}
/* Get device signature bytes */
else if(ch == STK_READ_SIGN) {
3f6e: 85 37 cpi r24, 0x75 ; 117
3f70: 39 f4 brne .+14 ; 0x3f80 <main+0x180>
// READ SIGN - return what Avrdude wants to hear
verifySpace();
3f72: 2e d0 rcall .+92 ; 0x3fd0 <verifySpace>
putch(SIGNATURE_0);
3f74: 8e e1 ldi r24, 0x1E ; 30
3f76: 0c d0 rcall .+24 ; 0x3f90 <putch>
putch(SIGNATURE_1);
3f78: 84 e9 ldi r24, 0x94 ; 148
3f7a: 0a d0 rcall .+20 ; 0x3f90 <putch>
putch(SIGNATURE_2);
3f7c: 86 e0 ldi r24, 0x06 ; 6
3f7e: 96 cf rjmp .-212 ; 0x3eac <main+0xac>
}
else if (ch == 'Q') {
3f80: 81 35 cpi r24, 0x51 ; 81
3f82: 11 f4 brne .+4 ; 0x3f88 <main+0x188>
// Adaboot no-wait mod
watchdogConfig(WATCHDOG_16MS);
3f84: 88 e0 ldi r24, 0x08 ; 8
3f86: 19 d0 rcall .+50 ; 0x3fba <watchdogConfig>
verifySpace();
}
else {
// This covers the response to commands like STK_ENTER_PROGMODE
verifySpace();
3f88: 23 d0 rcall .+70 ; 0x3fd0 <verifySpace>
}
putch(STK_OK);
3f8a: 80 e1 ldi r24, 0x10 ; 16
3f8c: 01 d0 rcall .+2 ; 0x3f90 <putch>
3f8e: 63 cf rjmp .-314 ; 0x3e56 <main+0x56>
00003f90 <putch>:
}
}
void putch(char ch) {
3f90: 98 2f mov r25, r24
#ifndef SOFT_UART
while (!(UCSR0A & _BV(UDRE0)));
3f92: 80 91 c0 00 lds r24, 0x00C0
3f96: 85 ff sbrs r24, 5
3f98: fc cf rjmp .-8 ; 0x3f92 <putch+0x2>
UDR0 = ch;
3f9a: 90 93 c6 00 sts 0x00C6, r25
[uartBit] "I" (UART_TX_BIT)
:
"r25"
);
#endif
}
3f9e: 08 95 ret
00003fa0 <getch>:
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3fa0: a8 95 wdr
[uartBit] "I" (UART_RX_BIT)
:
"r25"
);
#else
while(!(UCSR0A & _BV(RXC0)));
3fa2: 80 91 c0 00 lds r24, 0x00C0
3fa6: 87 ff sbrs r24, 7
3fa8: fc cf rjmp .-8 ; 0x3fa2 <getch+0x2>
ch = UDR0;
3faa: 80 91 c6 00 lds r24, 0x00C6
#ifdef LED_DATA_FLASH
LED_PIN |= _BV(LED);
#endif
return ch;
}
3fae: 08 95 ret
00003fb0 <getLen>:
} while (--count);
}
#endif
uint8_t getLen() {
getch();
3fb0: f7 df rcall .-18 ; 0x3fa0 <getch>
length = getch();
3fb2: f6 df rcall .-20 ; 0x3fa0 <getch>
3fb4: 80 93 02 02 sts 0x0202, r24
return getch();
}
3fb8: f3 cf rjmp .-26 ; 0x3fa0 <getch>
00003fba <watchdogConfig>:
"wdr\n"
);
}
void watchdogConfig(uint8_t x) {
WDTCSR = _BV(WDCE) | _BV(WDE);
3fba: e0 e6 ldi r30, 0x60 ; 96
3fbc: f0 e0 ldi r31, 0x00 ; 0
3fbe: 98 e1 ldi r25, 0x18 ; 24
3fc0: 90 83 st Z, r25
WDTCSR = x;
3fc2: 80 83 st Z, r24
}
3fc4: 08 95 ret
00003fc6 <appStart>:
void appStart() {
watchdogConfig(WATCHDOG_OFF);
3fc6: 80 e0 ldi r24, 0x00 ; 0
3fc8: f8 df rcall .-16 ; 0x3fba <watchdogConfig>
__asm__ __volatile__ (
3fca: ee 27 eor r30, r30
3fcc: ff 27 eor r31, r31
3fce: 09 94 ijmp
00003fd0 <verifySpace>:
do getch(); while (--count);
verifySpace();
}
void verifySpace() {
if (getch() != CRC_EOP) appStart();
3fd0: e7 df rcall .-50 ; 0x3fa0 <getch>
3fd2: 80 32 cpi r24, 0x20 ; 32
3fd4: 09 f0 breq .+2 ; 0x3fd8 <verifySpace+0x8>
3fd6: f7 df rcall .-18 ; 0x3fc6 <appStart>
putch(STK_INSYNC);
3fd8: 84 e1 ldi r24, 0x14 ; 20
}
3fda: da cf rjmp .-76 ; 0x3f90 <putch>
::[count] "M" (UART_B_VALUE)
);
}
#endif
void getNch(uint8_t count) {
3fdc: 1f 93 push r17
3fde: 18 2f mov r17, r24
00003fe0 <getNch>:
do getch(); while (--count);
3fe0: df df rcall .-66 ; 0x3fa0 <getch>
3fe2: 11 50 subi r17, 0x01 ; 1
3fe4: e9 f7 brne .-6 ; 0x3fe0 <getNch>
verifySpace();
3fe6: f4 df rcall .-24 ; 0x3fd0 <verifySpace>
}
3fe8: 1f 91 pop r17
3fea: 08 95 ret

View File

@ -1,34 +0,0 @@
:103E000085E08093810084B714BE81FFE4D08DE00B
:103E1000DCD0259A519A86E028E13EEF91E030937C
:103E200085002093840096BBB09BFECF1D9AA89579
:103E30008150A9F7DD24D394A5E0EA2EF1E1FF2E0D
:103E4000ABD0813421F481E0D1D083E024C082342E
:103E500011F484E103C0853419F485E0C7D08AC029
:103E60008535A1F499D0082F10E01093010200933A
:103E7000000292D090E0982F8827802B912B880FFA
:103E8000991F909301028093000273C0863529F434
:103E900084E0ACD080E071D06DC0843609F043C0BE
:103EA0008FD0E0910002F091010283E080935700EF
:103EB000E895C0E0D1E070D08993809102028150F2
:103EC000809302028823B9F78BD007B600FCFDCFA0
:103ED0004091000250910102A0E0B1E02C9130E04D
:103EE00011968C91119790E0982F8827822B932B15
:103EF0001296FA010C01D0925700E89511244E5FFA
:103F00005F4FF1E0A038BF0749F7E0910002F09160
:103F10000102E0925700E89507B600FCFDCFF09251
:103F20005700E89527C08437B9F44AD059D0E091BA
:103F30000002F09101023196F0930102E093000239
:103F40003197E4918E2F19D0809102028150809395
:103F50000202882361F70EC0853739F441D08EE123
:103F60000CD084E90AD086E096CF813511F488E040
:103F70002CD036D080E101D063CF2AE030E08095AC
:103F8000089410F4599802C0599A000015D014D022
:103F900086952A95B1F70895A89529E030E04899CB
:103FA000FECF0AD009D008D08894489908942A9561
:103FB00011F08795F7CF089598E09A95F1F7089555
:103FC000EBDFEADF80930202E7CFE0E6F0E098E182
:103FD00090838083089580E0F8DFEE27FF2709941F
:103FE000DBDF803209F0F7DF84E1C7CF1F93182FA2
:0C3FF000D3DF1150E9F7F4DF1F910895B2
:0400000300003E00BB
:00000001FF

View File

@ -1,533 +0,0 @@
optiboot_pro_8MHz.elf: file format elf32-avr
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 000001fc 00003e00 00003e00 00000054 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .debug_aranges 00000028 00000000 00000000 00000250 2**0
CONTENTS, READONLY, DEBUGGING
2 .debug_pubnames 00000078 00000000 00000000 00000278 2**0
CONTENTS, READONLY, DEBUGGING
3 .debug_info 00000277 00000000 00000000 000002f0 2**0
CONTENTS, READONLY, DEBUGGING
4 .debug_abbrev 00000194 00000000 00000000 00000567 2**0
CONTENTS, READONLY, DEBUGGING
5 .debug_line 000003bb 00000000 00000000 000006fb 2**0
CONTENTS, READONLY, DEBUGGING
6 .debug_frame 000000a0 00000000 00000000 00000ab8 2**2
CONTENTS, READONLY, DEBUGGING
7 .debug_str 0000013f 00000000 00000000 00000b58 2**0
CONTENTS, READONLY, DEBUGGING
8 .debug_loc 000001a0 00000000 00000000 00000c97 2**0
CONTENTS, READONLY, DEBUGGING
9 .debug_ranges 00000070 00000000 00000000 00000e37 2**0
CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:
00003e00 <main>:
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
3e00: 85 e0 ldi r24, 0x05 ; 5
3e02: 80 93 81 00 sts 0x0081, r24
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
#endif
// Adaboot no-wait mod
ch = MCUSR;
3e06: 84 b7 in r24, 0x34 ; 52
MCUSR = 0;
3e08: 14 be out 0x34, r1 ; 52
if (!(ch & _BV(EXTRF))) appStart();
3e0a: 81 ff sbrs r24, 1
3e0c: e4 d0 rcall .+456 ; 0x3fd6 <appStart>
// Set up watchdog to trigger after 500ms
watchdogConfig(WATCHDOG_500MS);
3e0e: 8d e0 ldi r24, 0x0D ; 13
3e10: dc d0 rcall .+440 ; 0x3fca <watchdogConfig>
/* Set LED pin as output */
LED_DDR |= _BV(LED);
3e12: 25 9a sbi 0x04, 5 ; 4
#ifdef SOFT_UART
/* Set TX pin as output */
UART_DDR |= _BV(UART_TX_BIT);
3e14: 51 9a sbi 0x0a, 1 ; 10
3e16: 86 e0 ldi r24, 0x06 ; 6
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e18: 28 e1 ldi r18, 0x18 ; 24
3e1a: 3e ef ldi r19, 0xFE ; 254
TIFR1 = _BV(TOV1);
3e1c: 91 e0 ldi r25, 0x01 ; 1
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e1e: 30 93 85 00 sts 0x0085, r19
3e22: 20 93 84 00 sts 0x0084, r18
TIFR1 = _BV(TOV1);
3e26: 96 bb out 0x16, r25 ; 22
while(!(TIFR1 & _BV(TOV1)));
3e28: b0 9b sbis 0x16, 0 ; 22
3e2a: fe cf rjmp .-4 ; 0x3e28 <main+0x28>
LED_PIN |= _BV(LED);
3e2c: 1d 9a sbi 0x03, 5 ; 3
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3e2e: a8 95 wdr
TCNT1 = -(F_CPU/(1024*16));
TIFR1 = _BV(TOV1);
while(!(TIFR1 & _BV(TOV1)));
LED_PIN |= _BV(LED);
watchdogReset();
} while (--count);
3e30: 81 50 subi r24, 0x01 ; 1
3e32: a9 f7 brne .-22 ; 0x3e1e <main+0x1e>
/* get character from UART */
ch = getch();
if(ch == STK_GET_PARAMETER) {
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
3e34: dd 24 eor r13, r13
3e36: d3 94 inc r13
boot_page_fill((uint16_t)(void*)addrPtr,a);
addrPtr += 2;
} while (--ch);
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
3e38: a5 e0 ldi r26, 0x05 ; 5
3e3a: ea 2e mov r14, r26
boot_spm_busy_wait();
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3e3c: f1 e1 ldi r31, 0x11 ; 17
3e3e: ff 2e mov r15, r31
#endif
/* Forever loop */
for (;;) {
/* get character from UART */
ch = getch();
3e40: ab d0 rcall .+342 ; 0x3f98 <getch>
if(ch == STK_GET_PARAMETER) {
3e42: 81 34 cpi r24, 0x41 ; 65
3e44: 21 f4 brne .+8 ; 0x3e4e <main+0x4e>
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
3e46: 81 e0 ldi r24, 0x01 ; 1
3e48: d1 d0 rcall .+418 ; 0x3fec <verifySpace+0xc>
putch(0x03);
3e4a: 83 e0 ldi r24, 0x03 ; 3
3e4c: 24 c0 rjmp .+72 ; 0x3e96 <main+0x96>
}
else if(ch == STK_SET_DEVICE) {
3e4e: 82 34 cpi r24, 0x42 ; 66
3e50: 11 f4 brne .+4 ; 0x3e56 <main+0x56>
// SET DEVICE is ignored
getNch(20);
3e52: 84 e1 ldi r24, 0x14 ; 20
3e54: 03 c0 rjmp .+6 ; 0x3e5c <main+0x5c>
}
else if(ch == STK_SET_DEVICE_EXT) {
3e56: 85 34 cpi r24, 0x45 ; 69
3e58: 19 f4 brne .+6 ; 0x3e60 <main+0x60>
// SET DEVICE EXT is ignored
getNch(5);
3e5a: 85 e0 ldi r24, 0x05 ; 5
3e5c: c7 d0 rcall .+398 ; 0x3fec <verifySpace+0xc>
3e5e: 8a c0 rjmp .+276 ; 0x3f74 <main+0x174>
}
else if(ch == STK_LOAD_ADDRESS) {
3e60: 85 35 cpi r24, 0x55 ; 85
3e62: a1 f4 brne .+40 ; 0x3e8c <main+0x8c>
// LOAD ADDRESS
address = getch();
3e64: 99 d0 rcall .+306 ; 0x3f98 <getch>
3e66: 08 2f mov r16, r24
3e68: 10 e0 ldi r17, 0x00 ; 0
3e6a: 10 93 01 02 sts 0x0201, r17
3e6e: 00 93 00 02 sts 0x0200, r16
address = (address & 0xff) | (getch() << 8);
3e72: 92 d0 rcall .+292 ; 0x3f98 <getch>
3e74: 90 e0 ldi r25, 0x00 ; 0
3e76: 98 2f mov r25, r24
3e78: 88 27 eor r24, r24
3e7a: 80 2b or r24, r16
3e7c: 91 2b or r25, r17
address += address; // Convert from word address to byte address
3e7e: 88 0f add r24, r24
3e80: 99 1f adc r25, r25
3e82: 90 93 01 02 sts 0x0201, r25
3e86: 80 93 00 02 sts 0x0200, r24
3e8a: 73 c0 rjmp .+230 ; 0x3f72 <main+0x172>
verifySpace();
}
else if(ch == STK_UNIVERSAL) {
3e8c: 86 35 cpi r24, 0x56 ; 86
3e8e: 29 f4 brne .+10 ; 0x3e9a <main+0x9a>
// UNIVERSAL command is ignored
getNch(4);
3e90: 84 e0 ldi r24, 0x04 ; 4
3e92: ac d0 rcall .+344 ; 0x3fec <verifySpace+0xc>
putch(0x00);
3e94: 80 e0 ldi r24, 0x00 ; 0
3e96: 71 d0 rcall .+226 ; 0x3f7a <putch>
3e98: 6d c0 rjmp .+218 ; 0x3f74 <main+0x174>
}
/* Write memory, length is big endian and is in bytes */
else if(ch == STK_PROG_PAGE) {
3e9a: 84 36 cpi r24, 0x64 ; 100
3e9c: 09 f0 breq .+2 ; 0x3ea0 <main+0xa0>
3e9e: 43 c0 rjmp .+134 ; 0x3f26 <main+0x126>
// PROGRAM PAGE - we support flash programming only, not EEPROM
uint8_t *bufPtr;
uint16_t addrPtr;
getLen();
3ea0: 8f d0 rcall .+286 ; 0x3fc0 <getLen>
// Immediately start page erase - this will 4.5ms
boot_page_erase((uint16_t)(void*)address);
3ea2: e0 91 00 02 lds r30, 0x0200
3ea6: f0 91 01 02 lds r31, 0x0201
3eaa: 83 e0 ldi r24, 0x03 ; 3
3eac: 80 93 57 00 sts 0x0057, r24
3eb0: e8 95 spm
3eb2: c0 e0 ldi r28, 0x00 ; 0
3eb4: d1 e0 ldi r29, 0x01 ; 1
// While that is going on, read in page contents
bufPtr = buff;
do *bufPtr++ = getch();
3eb6: 70 d0 rcall .+224 ; 0x3f98 <getch>
3eb8: 89 93 st Y+, r24
while (--length);
3eba: 80 91 02 02 lds r24, 0x0202
3ebe: 81 50 subi r24, 0x01 ; 1
3ec0: 80 93 02 02 sts 0x0202, r24
3ec4: 88 23 and r24, r24
3ec6: b9 f7 brne .-18 ; 0x3eb6 <main+0xb6>
// Read command terminator, start reply
verifySpace();
3ec8: 8b d0 rcall .+278 ; 0x3fe0 <verifySpace>
// If only a partial page is to be programmed, the erase might not be complete.
// So check that here
boot_spm_busy_wait();
3eca: 07 b6 in r0, 0x37 ; 55
3ecc: 00 fc sbrc r0, 0
3ece: fd cf rjmp .-6 ; 0x3eca <main+0xca>
}
#endif
// Copy buffer into programming buffer
bufPtr = buff;
addrPtr = (uint16_t)(void*)address;
3ed0: 40 91 00 02 lds r20, 0x0200
3ed4: 50 91 01 02 lds r21, 0x0201
3ed8: a0 e0 ldi r26, 0x00 ; 0
3eda: b1 e0 ldi r27, 0x01 ; 1
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
3edc: 2c 91 ld r18, X
3ede: 30 e0 ldi r19, 0x00 ; 0
a |= (*bufPtr++) << 8;
3ee0: 11 96 adiw r26, 0x01 ; 1
3ee2: 8c 91 ld r24, X
3ee4: 11 97 sbiw r26, 0x01 ; 1
3ee6: 90 e0 ldi r25, 0x00 ; 0
3ee8: 98 2f mov r25, r24
3eea: 88 27 eor r24, r24
3eec: 82 2b or r24, r18
3eee: 93 2b or r25, r19
#ifdef VIRTUAL_BOOT_PARTITION
#define rstVect (*(uint16_t*)(0x204))
#define wdtVect (*(uint16_t*)(0x206))
#endif
/* main program starts here */
int main(void) {
3ef0: 12 96 adiw r26, 0x02 ; 2
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
boot_page_fill((uint16_t)(void*)addrPtr,a);
3ef2: fa 01 movw r30, r20
3ef4: 0c 01 movw r0, r24
3ef6: d0 92 57 00 sts 0x0057, r13
3efa: e8 95 spm
3efc: 11 24 eor r1, r1
addrPtr += 2;
3efe: 4e 5f subi r20, 0xFE ; 254
3f00: 5f 4f sbci r21, 0xFF ; 255
} while (--ch);
3f02: f1 e0 ldi r31, 0x01 ; 1
3f04: a0 38 cpi r26, 0x80 ; 128
3f06: bf 07 cpc r27, r31
3f08: 49 f7 brne .-46 ; 0x3edc <main+0xdc>
// Write from programming buffer
boot_page_write((uint16_t)(void*)address);
3f0a: e0 91 00 02 lds r30, 0x0200
3f0e: f0 91 01 02 lds r31, 0x0201
3f12: e0 92 57 00 sts 0x0057, r14
3f16: e8 95 spm
boot_spm_busy_wait();
3f18: 07 b6 in r0, 0x37 ; 55
3f1a: 00 fc sbrc r0, 0
3f1c: fd cf rjmp .-6 ; 0x3f18 <main+0x118>
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3f1e: f0 92 57 00 sts 0x0057, r15
3f22: e8 95 spm
3f24: 27 c0 rjmp .+78 ; 0x3f74 <main+0x174>
#endif
}
/* Read memory block mode, length is big endian. */
else if(ch == STK_READ_PAGE) {
3f26: 84 37 cpi r24, 0x74 ; 116
3f28: b9 f4 brne .+46 ; 0x3f58 <main+0x158>
// READ PAGE - we only read flash
getLen();
3f2a: 4a d0 rcall .+148 ; 0x3fc0 <getLen>
verifySpace();
3f2c: 59 d0 rcall .+178 ; 0x3fe0 <verifySpace>
else ch = pgm_read_byte_near(address);
address++;
putch(ch);
} while (--length);
#else
do putch(pgm_read_byte_near(address++));
3f2e: e0 91 00 02 lds r30, 0x0200
3f32: f0 91 01 02 lds r31, 0x0201
3f36: 31 96 adiw r30, 0x01 ; 1
3f38: f0 93 01 02 sts 0x0201, r31
3f3c: e0 93 00 02 sts 0x0200, r30
3f40: 31 97 sbiw r30, 0x01 ; 1
3f42: e4 91 lpm r30, Z+
3f44: 8e 2f mov r24, r30
3f46: 19 d0 rcall .+50 ; 0x3f7a <putch>
while (--length);
3f48: 80 91 02 02 lds r24, 0x0202
3f4c: 81 50 subi r24, 0x01 ; 1
3f4e: 80 93 02 02 sts 0x0202, r24
3f52: 88 23 and r24, r24
3f54: 61 f7 brne .-40 ; 0x3f2e <main+0x12e>
3f56: 0e c0 rjmp .+28 ; 0x3f74 <main+0x174>
#endif
}
/* Get device signature bytes */
else if(ch == STK_READ_SIGN) {
3f58: 85 37 cpi r24, 0x75 ; 117
3f5a: 39 f4 brne .+14 ; 0x3f6a <main+0x16a>
// READ SIGN - return what Avrdude wants to hear
verifySpace();
3f5c: 41 d0 rcall .+130 ; 0x3fe0 <verifySpace>
putch(SIGNATURE_0);
3f5e: 8e e1 ldi r24, 0x1E ; 30
3f60: 0c d0 rcall .+24 ; 0x3f7a <putch>
putch(SIGNATURE_1);
3f62: 84 e9 ldi r24, 0x94 ; 148
3f64: 0a d0 rcall .+20 ; 0x3f7a <putch>
putch(SIGNATURE_2);
3f66: 86 e0 ldi r24, 0x06 ; 6
3f68: 96 cf rjmp .-212 ; 0x3e96 <main+0x96>
}
else if (ch == 'Q') {
3f6a: 81 35 cpi r24, 0x51 ; 81
3f6c: 11 f4 brne .+4 ; 0x3f72 <main+0x172>
// Adaboot no-wait mod
watchdogConfig(WATCHDOG_16MS);
3f6e: 88 e0 ldi r24, 0x08 ; 8
3f70: 2c d0 rcall .+88 ; 0x3fca <watchdogConfig>
verifySpace();
}
else {
// This covers the response to commands like STK_ENTER_PROGMODE
verifySpace();
3f72: 36 d0 rcall .+108 ; 0x3fe0 <verifySpace>
}
putch(STK_OK);
3f74: 80 e1 ldi r24, 0x10 ; 16
3f76: 01 d0 rcall .+2 ; 0x3f7a <putch>
3f78: 63 cf rjmp .-314 ; 0x3e40 <main+0x40>
00003f7a <putch>:
void putch(char ch) {
#ifndef SOFT_UART
while (!(UCSR0A & _BV(UDRE0)));
UDR0 = ch;
#else
__asm__ __volatile__ (
3f7a: 2a e0 ldi r18, 0x0A ; 10
3f7c: 30 e0 ldi r19, 0x00 ; 0
3f7e: 80 95 com r24
3f80: 08 94 sec
3f82: 10 f4 brcc .+4 ; 0x3f88 <putch+0xe>
3f84: 59 98 cbi 0x0b, 1 ; 11
3f86: 02 c0 rjmp .+4 ; 0x3f8c <putch+0x12>
3f88: 59 9a sbi 0x0b, 1 ; 11
3f8a: 00 00 nop
3f8c: 15 d0 rcall .+42 ; 0x3fb8 <uartDelay>
3f8e: 14 d0 rcall .+40 ; 0x3fb8 <uartDelay>
3f90: 86 95 lsr r24
3f92: 2a 95 dec r18
3f94: b1 f7 brne .-20 ; 0x3f82 <putch+0x8>
[uartBit] "I" (UART_TX_BIT)
:
"r25"
);
#endif
}
3f96: 08 95 ret
00003f98 <getch>:
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3f98: a8 95 wdr
#ifdef LED_DATA_FLASH
LED_PIN |= _BV(LED);
#endif
return ch;
}
3f9a: 29 e0 ldi r18, 0x09 ; 9
3f9c: 30 e0 ldi r19, 0x00 ; 0
3f9e: 48 99 sbic 0x09, 0 ; 9
3fa0: fe cf rjmp .-4 ; 0x3f9e <getch+0x6>
3fa2: 0a d0 rcall .+20 ; 0x3fb8 <uartDelay>
3fa4: 09 d0 rcall .+18 ; 0x3fb8 <uartDelay>
3fa6: 08 d0 rcall .+16 ; 0x3fb8 <uartDelay>
3fa8: 88 94 clc
3faa: 48 99 sbic 0x09, 0 ; 9
3fac: 08 94 sec
3fae: 2a 95 dec r18
3fb0: 11 f0 breq .+4 ; 0x3fb6 <getch+0x1e>
3fb2: 87 95 ror r24
3fb4: f7 cf rjmp .-18 ; 0x3fa4 <getch+0xc>
3fb6: 08 95 ret
00003fb8 <uartDelay>:
#if UART_B_VALUE > 255
#error Baud rate too slow for soft UART
#endif
void uartDelay() {
__asm__ __volatile__ (
3fb8: 98 e0 ldi r25, 0x08 ; 8
3fba: 9a 95 dec r25
3fbc: f1 f7 brne .-4 ; 0x3fba <uartDelay+0x2>
3fbe: 08 95 ret
00003fc0 <getLen>:
} while (--count);
}
#endif
uint8_t getLen() {
getch();
3fc0: eb df rcall .-42 ; 0x3f98 <getch>
length = getch();
3fc2: ea df rcall .-44 ; 0x3f98 <getch>
3fc4: 80 93 02 02 sts 0x0202, r24
return getch();
}
3fc8: e7 cf rjmp .-50 ; 0x3f98 <getch>
00003fca <watchdogConfig>:
"wdr\n"
);
}
void watchdogConfig(uint8_t x) {
WDTCSR = _BV(WDCE) | _BV(WDE);
3fca: e0 e6 ldi r30, 0x60 ; 96
3fcc: f0 e0 ldi r31, 0x00 ; 0
3fce: 98 e1 ldi r25, 0x18 ; 24
3fd0: 90 83 st Z, r25
WDTCSR = x;
3fd2: 80 83 st Z, r24
}
3fd4: 08 95 ret
00003fd6 <appStart>:
void appStart() {
watchdogConfig(WATCHDOG_OFF);
3fd6: 80 e0 ldi r24, 0x00 ; 0
3fd8: f8 df rcall .-16 ; 0x3fca <watchdogConfig>
__asm__ __volatile__ (
3fda: ee 27 eor r30, r30
3fdc: ff 27 eor r31, r31
3fde: 09 94 ijmp
00003fe0 <verifySpace>:
do getch(); while (--count);
verifySpace();
}
void verifySpace() {
if (getch() != CRC_EOP) appStart();
3fe0: db df rcall .-74 ; 0x3f98 <getch>
3fe2: 80 32 cpi r24, 0x20 ; 32
3fe4: 09 f0 breq .+2 ; 0x3fe8 <verifySpace+0x8>
3fe6: f7 df rcall .-18 ; 0x3fd6 <appStart>
putch(STK_INSYNC);
3fe8: 84 e1 ldi r24, 0x14 ; 20
}
3fea: c7 cf rjmp .-114 ; 0x3f7a <putch>
::[count] "M" (UART_B_VALUE)
);
}
#endif
void getNch(uint8_t count) {
3fec: 1f 93 push r17
3fee: 18 2f mov r17, r24
00003ff0 <getNch>:
do getch(); while (--count);
3ff0: d3 df rcall .-90 ; 0x3f98 <getch>
3ff2: 11 50 subi r17, 0x01 ; 1
3ff4: e9 f7 brne .-6 ; 0x3ff0 <getNch>
verifySpace();
3ff6: f4 df rcall .-24 ; 0x3fe0 <verifySpace>
}
3ff8: 1f 91 pop r17
3ffa: 08 95 ret

View File

@ -0,0 +1,80 @@
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__) || defined(__AVR_ATmega88) || defined(__AVR_ATmega8__) || defined(__AVR_ATmega88__)
/* Onboard LED is connected to pin PB5 in Arduino NG, Diecimila, and Duemilanove */
#define LED_DDR DDRB
#define LED_PORT PORTB
#define LED_PIN PINB
#define LED PINB5
/* Ports for soft UART */
#ifdef SOFT_UART
#define UART_PORT PORTD
#define UART_PIN PIND
#define UART_DDR DDRD
#define UART_TX_BIT 1
#define UART_RX_BIT 0
#endif
#endif
#if defined(__AVR_ATmega8__)
//Name conversion R.Wiersma
#define UCSR0A UCSRA
#define UDR0 UDR
#define UDRE0 UDRE
#define RXC0 RXC
#define FE0 FE
#define TIFR1 TIFR
#define WDTCSR WDTCR
#endif
/* Luminet support */
#if defined(__AVR_ATtiny84__)
/* Red LED is connected to pin PA4 */
#define LED_DDR DDRA
#define LED_PORT PORTA
#define LED_PIN PINA
#define LED PINA4
/* Ports for soft UART - left port only for now. TX/RX on PA2/PA3 */
#ifdef SOFT_UART
#define UART_PORT PORTA
#define UART_PIN PINA
#define UART_DDR DDRA
#define UART_TX_BIT 2
#define UART_RX_BIT 3
#endif
#endif
/* Sanguino support */
#if defined(__AVR_ATmega644P__)
/* Onboard LED is connected to pin PB0 on Sanguino */
#define LED_DDR DDRB
#define LED_PORT PORTB
#define LED_PIN PINB
#define LED PINB0
/* Ports for soft UART */
#ifdef SOFT_UART
#define UART_PORT PORTD
#define UART_PIN PIND
#define UART_DDR DDRD
#define UART_TX_BIT 1
#define UART_RX_BIT 0
#endif
#endif
/* Mega support */
#if defined(__AVR_ATmega1280__)
/* Onboard LED is connected to pin PB7 on Arduino Mega */
#define LED_DDR DDRB
#define LED_PORT PORTB
#define LED_PIN PINB
#define LED PINB7
/* Ports for soft UART */
#ifdef SOFT_UART
#define UART_PORT PORTE
#define UART_PIN PINE
#define UART_DDR DDRE
#define UART_TX_BIT 1
#define UART_RX_BIT 0
#endif
#endif

View File

@ -0,0 +1,39 @@
/* STK500 constants list, from AVRDUDE */
#define STK_OK 0x10
#define STK_FAILED 0x11 // Not used
#define STK_UNKNOWN 0x12 // Not used
#define STK_NODEVICE 0x13 // Not used
#define STK_INSYNC 0x14 // ' '
#define STK_NOSYNC 0x15 // Not used
#define ADC_CHANNEL_ERROR 0x16 // Not used
#define ADC_MEASURE_OK 0x17 // Not used
#define PWM_CHANNEL_ERROR 0x18 // Not used
#define PWM_ADJUST_OK 0x19 // Not used
#define CRC_EOP 0x20 // 'SPACE'
#define STK_GET_SYNC 0x30 // '0'
#define STK_GET_SIGN_ON 0x31 // '1'
#define STK_SET_PARAMETER 0x40 // '@'
#define STK_GET_PARAMETER 0x41 // 'A'
#define STK_SET_DEVICE 0x42 // 'B'
#define STK_SET_DEVICE_EXT 0x45 // 'E'
#define STK_ENTER_PROGMODE 0x50 // 'P'
#define STK_LEAVE_PROGMODE 0x51 // 'Q'
#define STK_CHIP_ERASE 0x52 // 'R'
#define STK_CHECK_AUTOINC 0x53 // 'S'
#define STK_LOAD_ADDRESS 0x55 // 'U'
#define STK_UNIVERSAL 0x56 // 'V'
#define STK_PROG_FLASH 0x60 // '`'
#define STK_PROG_DATA 0x61 // 'a'
#define STK_PROG_FUSE 0x62 // 'b'
#define STK_PROG_LOCK 0x63 // 'c'
#define STK_PROG_PAGE 0x64 // 'd'
#define STK_PROG_FUSE_EXT 0x65 // 'e'
#define STK_READ_FLASH 0x70 // 'p'
#define STK_READ_DATA 0x71 // 'q'
#define STK_READ_FUSE 0x72 // 'r'
#define STK_READ_LOCK 0x73 // 's'
#define STK_READ_PAGE 0x74 // 't'
#define STK_READ_SIGN 0x75 // 'u'
#define STK_READ_OSCCAL 0x76 // 'v'
#define STK_READ_FUSE_EXT 0x77 // 'w'
#define STK_READ_OSCCAL_EXT 0x78 // 'x'