This prevents interrupts from triggering when the SoftwareSerial
instance is not even listening.
Additionally, this removes the need to disable interrupts in
SoftwareSerial::listen, since no interrupts are active while it touches
the variables.
The current check is still always false when the old check was, but
additionally it will not disable the interrupts when they were never
enabled (which shouldn't matter much, but this is more consistent).
In this case, SoftwareSerial::begin will not have enabled the
interrupts, so better not allow the SoftwareSerial instance to enter the
listening state either.
Before enabling interupts, begin would see if the given receive pin
actually has an associated PCINT register. If not, the interrupts would
not be enabled.
Now, the same check is done, but when no register is available, the rx
parameters are not loaded at all (which in turn prevents the interrupt
from being enabled). This allows all code to use the same "is rx
enabled" (which will be added next).
Previously, it could happen that SPI::beginTransaction was
interrupted by an ISR, while it is changing the SPI_AVR_EIMSK
register or interruptSave variable (it seems that there is
a small window after changing SPI_AVR_EIMSK where an interrupt
might still occur). If this happens, interruptSave is overwritten
with an invalid value, permanently disabling the pin interrupts.
To prevent this, disable interrupts globally while changing
these values.
From https://github.com/arduino/Arduino/pull/2376#issuecomment-59671152
Quoting Andrew Kroll:
[..this commit..] introduces a small delay that can prevent the wait
loop form iterating when running at the maximum speed. This gives
you a little more speed, even if it seems counter-intuitive. At
lower speeds, it is unnoticed. Watch the output on an oscilloscope
when running full SPI speed, and you should see closer back-to-back
writes.
Quoting Paul Stoffregen:
I did quite a bit of experimenting with the NOP addition. The one
that's in my copy gives about a 10% speedup on AVR.