/* * Copyright (c) 2010 by Cristian Maglie * Copyright (c) 2014 by Paul Stoffregen (Transaction API) * SPI Master library for arduino. * * This file is free software; you can redistribute it and/or modify * it under the terms of either the GNU General Public License version 2 * or the GNU Lesser General Public License version 2.1, both as * published by the Free Software Foundation. */ #include "SPI.h" SPIClass::SPIClass(Spi *_spi, uint32_t _id, void(*_initCb)(void)) : spi(_spi), id(_id), initCb(_initCb), initialized(false) { // Empty } void SPIClass::begin() { init(); // NPCS control is left to the user // Default speed set to 4Mhz setClockDivider(BOARD_SPI_DEFAULT_SS, 21); setDataMode(BOARD_SPI_DEFAULT_SS, SPI_MODE0); setBitOrder(BOARD_SPI_DEFAULT_SS, MSBFIRST); } void SPIClass::begin(uint8_t _pin) { init(); uint32_t spiPin = BOARD_PIN_TO_SPI_PIN(_pin); PIO_Configure( g_APinDescription[spiPin].pPort, g_APinDescription[spiPin].ulPinType, g_APinDescription[spiPin].ulPin, g_APinDescription[spiPin].ulPinConfiguration); // Default speed set to 4Mhz setClockDivider(_pin, 21); setDataMode(_pin, SPI_MODE0); setBitOrder(_pin, MSBFIRST); } void SPIClass::init() { if (initialized) return; interruptMode = 0; interruptSave = 0; interruptMask[0] = 0; interruptMask[1] = 0; interruptMask[2] = 0; interruptMask[3] = 0; initCb(); SPI_Configure(spi, id, SPI_MR_MSTR | SPI_MR_PS | SPI_MR_MODFDIS); SPI_Enable(spi); initialized = true; } #ifndef interruptsStatus #define interruptsStatus() __interruptsStatus() static inline unsigned char __interruptsStatus(void) __attribute__((always_inline, unused)); static inline unsigned char __interruptsStatus(void) { unsigned int primask, faultmask; asm volatile ("mrs %0, primask" : "=r" (primask)); if (primask) return 0; asm volatile ("mrs %0, faultmask" : "=r" (faultmask)); if (faultmask) return 0; return 1; } #endif void SPIClass::usingInterrupt(uint8_t interruptNumber) { uint8_t irestore; irestore = interruptsStatus(); noInterrupts(); if (interruptMode < 16) { if (interruptNumber > NUM_DIGITAL_PINS) { interruptMode = 16; } else { Pio *pio = g_APinDescription[interruptNumber].pPort; uint32_t mask = g_APinDescription[interruptNumber].ulPin; if (pio == PIOA) { interruptMode |= 1; interruptMask[0] |= mask; } else if (pio == PIOB) { interruptMode |= 2; interruptMask[1] |= mask; } else if (pio == PIOC) { interruptMode |= 4; interruptMask[2] |= mask; } else if (pio == PIOD) { interruptMode |= 8; interruptMask[3] |= mask; } else { interruptMode = 16; } } } if (irestore) interrupts(); } void SPIClass::beginTransaction(uint8_t pin, SPISettings settings) { uint8_t mode = interruptMode; if (mode > 0) { if (mode < 16) { if (mode & 1) PIOA->PIO_IDR = interruptMask[0]; if (mode & 2) PIOB->PIO_IDR = interruptMask[1]; if (mode & 4) PIOC->PIO_IDR = interruptMask[2]; if (mode & 8) PIOD->PIO_IDR = interruptMask[3]; } else { interruptSave = interruptsStatus(); noInterrupts(); } } uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(pin); bitOrder[ch] = settings.border; SPI_ConfigureNPCS(spi, ch, settings.config); //setBitOrder(pin, settings.border); //setDataMode(pin, settings.datamode); //setClockDivider(pin, settings.clockdiv); } void SPIClass::endTransaction(void) { uint8_t mode = interruptMode; if (mode > 0) { if (mode < 16) { if (mode & 1) PIOA->PIO_IER = interruptMask[0]; if (mode & 2) PIOB->PIO_IER = interruptMask[1]; if (mode & 4) PIOC->PIO_IER = interruptMask[2]; if (mode & 8) PIOD->PIO_IER = interruptMask[3]; } else { if (interruptSave) interrupts(); } } } void SPIClass::end(uint8_t _pin) { uint32_t spiPin = BOARD_PIN_TO_SPI_PIN(_pin); // Setting the pin as INPUT will disconnect it from SPI peripheral pinMode(spiPin, INPUT); } void SPIClass::end() { SPI_Disable(spi); initialized = false; } void SPIClass::setBitOrder(uint8_t _pin, BitOrder _bitOrder) { uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(_pin); bitOrder[ch] = _bitOrder; } void SPIClass::setDataMode(uint8_t _pin, uint8_t _mode) { uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(_pin); mode[ch] = _mode | SPI_CSR_CSAAT; // SPI_CSR_DLYBCT(1) keeps CS enabled for 32 MCLK after a completed // transfer. Some device needs that for working properly. SPI_ConfigureNPCS(spi, ch, mode[ch] | SPI_CSR_SCBR(divider[ch]) | SPI_CSR_DLYBCT(1)); } void SPIClass::setClockDivider(uint8_t _pin, uint8_t _divider) { uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(_pin); divider[ch] = _divider; // SPI_CSR_DLYBCT(1) keeps CS enabled for 32 MCLK after a completed // transfer. Some device needs that for working properly. SPI_ConfigureNPCS(spi, ch, mode[ch] | SPI_CSR_SCBR(divider[ch]) | SPI_CSR_DLYBCT(1)); } byte SPIClass::transfer(byte _pin, uint8_t _data, SPITransferMode _mode) { uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(_pin); // Reverse bit order if (bitOrder[ch] == LSBFIRST) _data = __REV(__RBIT(_data)); uint32_t d = _data | SPI_PCS(ch); if (_mode == SPI_LAST) d |= SPI_TDR_LASTXFER; // SPI_Write(spi, _channel, _data); while ((spi->SPI_SR & SPI_SR_TDRE) == 0) ; spi->SPI_TDR = d; // return SPI_Read(spi); while ((spi->SPI_SR & SPI_SR_RDRF) == 0) ; d = spi->SPI_RDR; // Reverse bit order if (bitOrder[ch] == LSBFIRST) d = __REV(__RBIT(d)); return d & 0xFF; } uint16_t SPIClass::transfer16(byte _pin, uint16_t _data, SPITransferMode _mode) { union { uint16_t val; struct { uint8_t lsb; uint8_t msb; }; } t; uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(_pin); t.val = _data; if (bitOrder[ch] == LSBFIRST) { t.lsb = transfer(_pin, t.lsb, SPI_CONTINUE); t.msb = transfer(_pin, t.msb, _mode); } else { t.msb = transfer(_pin, t.msb, SPI_CONTINUE); t.lsb = transfer(_pin, t.lsb, _mode); } return t.val; } void SPIClass::transfer(byte _pin, void *_buf, size_t _count, SPITransferMode _mode) { if (_count == 0) return; uint8_t *buffer = (uint8_t *)_buf; if (_count == 1) { *buffer = transfer(_pin, *buffer, _mode); return; } uint32_t ch = BOARD_PIN_TO_SPI_CHANNEL(_pin); bool reverse = (bitOrder[ch] == LSBFIRST); // Send the first byte uint32_t d = *buffer; if (reverse) d = __REV(__RBIT(d)); while ((spi->SPI_SR & SPI_SR_TDRE) == 0) ; spi->SPI_TDR = d | SPI_PCS(ch); while (_count > 1) { // Prepare next byte d = *(buffer+1); if (reverse) d = __REV(__RBIT(d)); if (_count == 2 && _mode == SPI_LAST) d |= SPI_TDR_LASTXFER; // Read transferred byte and send next one straight away while ((spi->SPI_SR & SPI_SR_RDRF) == 0) ; uint8_t r = spi->SPI_RDR; spi->SPI_TDR = d | SPI_PCS(ch); // Save read byte if (reverse) r = __REV(__RBIT(r)); *buffer = r; buffer++; _count--; } // Receive the last transferred byte while ((spi->SPI_SR & SPI_SR_RDRF) == 0) ; uint8_t r = spi->SPI_RDR; if (reverse) r = __REV(__RBIT(r)); *buffer = r; } void SPIClass::attachInterrupt(void) { // Should be enableInterrupt() } void SPIClass::detachInterrupt(void) { // Should be disableInterrupt() } #if SPI_INTERFACES_COUNT > 0 static void SPI_0_Init(void) { PIO_Configure( g_APinDescription[PIN_SPI_MOSI].pPort, g_APinDescription[PIN_SPI_MOSI].ulPinType, g_APinDescription[PIN_SPI_MOSI].ulPin, g_APinDescription[PIN_SPI_MOSI].ulPinConfiguration); PIO_Configure( g_APinDescription[PIN_SPI_MISO].pPort, g_APinDescription[PIN_SPI_MISO].ulPinType, g_APinDescription[PIN_SPI_MISO].ulPin, g_APinDescription[PIN_SPI_MISO].ulPinConfiguration); PIO_Configure( g_APinDescription[PIN_SPI_SCK].pPort, g_APinDescription[PIN_SPI_SCK].ulPinType, g_APinDescription[PIN_SPI_SCK].ulPin, g_APinDescription[PIN_SPI_SCK].ulPinConfiguration); } SPIClass SPI(SPI_INTERFACE, SPI_INTERFACE_ID, SPI_0_Init); #endif