/*! \file ********************************************************************* * * \brief API for SAM3 Analog-to-Digital Converter (ADC/ADC12B) controller. * * ---------------------------------------------------------------------------- * SAM Software Package License * ---------------------------------------------------------------------------- * Copyright (c) 2011, Atmel Corporation * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the disclaimer below. * * Atmel's name may not be used to endorse or promote products derived from * this software without specific prior written permission. * * DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * - Compiler: IAR EWARM and CodeSourcery GCC for ARM * - Supported devices: All SAM devices with a Analog-to-Digital Converter can be used. * - AppNote: * * \author Atmel Corporation: http://www.atmel.com \n * Support and FAQ: http://support.atmel.com/ * *******************************************************************************/ #include "../chip.h" /// @cond 0 /**INDENT-OFF**/ #ifdef __cplusplus extern "C" { #endif /**INDENT-ON**/ /// @endcond #if SAM3S || SAM3N || SAM3XA /** * \brief Initializes the given ADC with the specified ADC clock and startup time. * * \param p_adc Pointer to an ADC instance. * \param dw_mck Main clock of the device (value in Hz). * \param dw_adc_clock Analog-to-Digital conversion clock (value in Hz). * \param uc_startup ADC start up time. Please refer to the product datasheet for details. * * \retval 0 The initialization operation succeeds. * \retval others The initialization operation fails. */ uint32_t adc_init(Adc *p_adc, uint32_t ul_mck, uint32_t ul_adc_clock, uint8_t uc_startup) { uint32_t ul_prescal; /* Reset the controller */ p_adc->ADC_CR = ADC_CR_SWRST; /* Reset Mode Register */ p_adc->ADC_MR = 0; /* Reset PDC transfer */ p_adc->ADC_PTCR = (ADC_PTCR_RXTDIS | ADC_PTCR_TXTDIS); p_adc->ADC_RCR = 0; p_adc->ADC_RNCR = 0; p_adc->ADC_TCR = 0; p_adc->ADC_TNCR = 0; ul_prescal = ul_mck/(2 * ul_adc_clock) - 1; p_adc->ADC_MR |= ADC_MR_PRESCAL( ul_prescal ) | ( (uc_startup<ADC_MR |= (resolution<<4) & ADC_MR_LOWRES; } /** * \brief Configures conversion trigger and free run mode. * * \param p_adc Pointer to an ADC instance. * \param trigger Conversion trigger. * \param uc_freerun ADC_MR_FREERUN_ON enables freerun mode * ADC_MR_FREERUN_OFF disables freerun mode * */ void adc_configure_trigger(Adc *p_adc, adc_trigger_t trigger, uint8_t uc_freerun) { p_adc->ADC_MR |= trigger | ((uc_freerun<<7) & ADC_MR_FREERUN); } /** * \brief Configures ADC power saving mode. * * \param p_adc Pointer to an ADC instance. * \param uc_sleep ADC_MR_SLEEP_NORMAL keeps the ADC Core and reference voltage circuitry ON between conversions * ADC_MR_SLEEP_SLEEP keeps the ADC Core and reference voltage circuitry OFF between conversions * \param uc_fwup ADC_MR_FWUP_OFF configures sleep mode as uc_sleep setting * ADC_MR_FWUP_ON keeps voltage reference ON and ADC Core OFF between conversions * */ void adc_configure_power_save(Adc *p_adc, uint8_t uc_sleep, uint8_t uc_fwup) { p_adc->ADC_MR |= ( ((uc_sleep<<5) & ADC_MR_SLEEP) | ((uc_fwup<<6) & ADC_MR_FWUP) ); } /** * \brief Configures conversion sequence. * * \param p_adc Pointer to an ADC instance. * \param ch_list Channel sequence list. * \param number Number of channels in the list. * */ void adc_configure_sequence(Adc *p_adc, adc_channel_num_t ch_list[], uint8_t uc_num) { uint8_t uc_counter; if(uc_num < 8) { for(uc_counter=0;uc_counter < uc_num;uc_counter++) { p_adc->ADC_SEQR1 |= ch_list[uc_counter] << (4*uc_counter); } } else { for(uc_counter=0;uc_counter < 8;uc_counter++) { p_adc->ADC_SEQR1 |= ch_list[uc_counter] << (4*uc_counter); } for(uc_counter=0;uc_counter < uc_num-8;uc_counter++) { p_adc->ADC_SEQR2 |= ch_list[uc_counter] << (4*uc_counter); } } } #if SAM3S || SAM3XA /** * \brief Configures ADC timing. * * \param p_adc Pointer to an ADC instance. * \param uc_tracking ADC tracking time = uc_tracking / ADC clock. * \param uc_settling Analog settling time = (uc_settling + 1) / ADC clock. * \param uc_transfer Data transfer time = (uc_transfer * 2 + 3) / ADC clock. * */ void adc_configure_timing(Adc *p_adc, uint8_t uc_tracking, adc_settling_time_t settling, uint8_t uc_transfer) { p_adc->ADC_MR |= ADC_MR_TRANSFER( uc_transfer ) | settling | ADC_MR_TRACKTIM( uc_tracking ) ; } #elif SAM3N /** * \brief Configures ADC timing. * * \param p_adc Pointer to an ADC instance. * \param uc_tracking ADC tracking time = uc_tracking / ADC clock. * */ void adc_configure_timing(Adc *p_adc, uint8_t uc_tracking) { p_adc->ADC_MR |= ADC_MR_TRACKTIM( uc_tracking ) ; } #endif #if SAM3S || SAM3XA /** * \brief enable analog change. * * note it allows different analog settings for each channel, * * \param pAdc Pointer to an Adc instance. */ void adc_enable_anch( Adc *pAdc ) { pAdc->ADC_MR |= ADC_MR_ANACH; } #endif #if SAM3S || SAM3XA /** * \brief disable analog change. * * note DIFF0, GAIN0 and OFF0 are used for all channels. * * \param pAdc Pointer to an Adc instance. */ void adc_disable_anch( Adc *pAdc ) { pAdc->ADC_MR &= ~ADC_MR_ANACH; } #endif /** * \brief Starts analog-to-digital conversion. * * \note If one of the hardware event is selected as ADC trigger, this function can NOT start analog to digital conversion. * * \param p_adc Pointer to an ADC instance. * */ void adc_start(Adc *p_adc) { p_adc->ADC_CR = ADC_CR_START; } /** * \brief Stop analog-to-digital conversion. * \param p_adc Pointer to an ADC instance. * */ void adc_stop(Adc *p_adc) { p_adc->ADC_CR = ADC_CR_SWRST; } /** * \brief Enables the specified ADC channel. * * \param p_adc Pointer to an ADC instance. * \param adc_ch ADC channel number. * */ void adc_enable_channel(Adc *p_adc, adc_channel_num_t adc_ch) { p_adc->ADC_CHER = 1 << adc_ch; } /** * \brief Disables the specified ADC channel. * * \param p_adc Pointer to an ADC instance. * \param adc_ch ADC channel number. * */ void adc_disable_channel(Adc *p_adc, adc_channel_num_t adc_ch) { p_adc->ADC_CHDR = 1 << adc_ch; } /** * \brief Reads the ADC channel status. * * \param p_adc Pointer to an ADC instance. * \param adc_ch ADC channel number. * * \retval 1 means the specified channel is enabled. * 0 means the specified channel is disabled. */ uint32_t adc_get_status(Adc *p_adc, adc_channel_num_t adc_ch) { return p_adc->ADC_CHSR & (1 << adc_ch); } /** * \brief Reads the ADC result data of the specified channel. * * \param p_adc Pointer to an ADC instance. * \param adc_ch ADC channel number. * * \retval ADC data of the specified channel. */ uint32_t adc_get_value(Adc *p_adc, adc_channel_num_t adc_ch) { uint32_t dwData = 0; if ( 15 >= adc_ch ) { dwData=*(p_adc->ADC_CDR+adc_ch) ; } return dwData ; } /** * \brief Reads the last ADC result data. * * \param p_adc Pointer to an ADC instance. * * \retval ADC data. */ uint32_t adc_get_latest_value(Adc *p_adc) { return p_adc->ADC_LCDR; } /** * \brief Enables TAG option so that the number of the last converted channel can be indicated. * * \param p_adc Pointer to an ADC instance. * */ void adc_enable_tag(Adc *p_adc) { p_adc->ADC_EMR |= ADC_EMR_TAG; } /** * \brief Disables TAG option. * * \param p_adc Pointer to an ADC instance. * */ void adc_disable_tag(Adc *p_adc) { p_adc->ADC_EMR &= ~ADC_EMR_TAG; } /** * \brief Indicates the last converted channel. * * \note If TAG option is NOT enabled before, an incorrect channel number is returned. * * \param p_adc Pointer to an ADC instance. * * \retval The last converted channel number. */ adc_channel_num_t adc_get_tag(Adc *p_adc) { return (p_adc->ADC_LCDR & ADC_LCDR_CHNB_Msk) >> ADC_LCDR_CHNB_Pos; } /** * \brief Enables conversion sequencer. * * \param p_adc Pointer to an ADC instance. * */ void adc_start_sequencer(Adc *p_adc) { p_adc->ADC_MR |= ADC_MR_USEQ; } /** * \brief Disables conversion sequencer. * * \param p_adc Pointer to an ADC instance. * */ void adc_stop_sequencer(Adc *p_adc) { p_adc->ADC_MR &= ~ADC_MR_USEQ; } /** * \brief Configures comparsion mode. * * \param p_adc Pointer to an ADC instance. * \param mode ADC comparsion mode. * */ void adc_set_comparison_mode(Adc *p_adc, uint8_t uc_mode) { p_adc->ADC_EMR &= (uint32_t)~(ADC_EMR_CMPMODE_Msk); p_adc->ADC_EMR |= (uc_mode & ADC_EMR_CMPMODE_Msk); } /** * \brief get comparsion mode. * * \param p_adc Pointer to an ADC instance. * \param mode ADC comparsion mode. * * \retval compare mode value. */ uint32_t adc_get_comparison_mode(Adc *p_adc) { return p_adc->ADC_EMR & ADC_EMR_CMPMODE_Msk; } /** * \brief Configures ADC compare window. * * \param p_adc Pointer to an ADC instance. * \param w_low_threshold Low threshold of compare window. * \param w_high_threshold High threshold of compare window. * */ void adc_set_comparsion_window(Adc *p_adc, uint16_t us_low_threshold, uint16_t us_high_threshold) { p_adc->ADC_CWR = ADC_CWR_LOWTHRES(us_low_threshold) | ADC_CWR_HIGHTHRES(us_high_threshold); } /** * \brief Configures comparison selected channel. * * \param p_adc Pointer to an ADC instance. * \param channel Comparison selected channel. * */ void adc_set_comparison_channel(Adc *p_adc, adc_channel_num_t channel) { if ( channel < 16 ) { p_adc->ADC_EMR &= (uint32_t)~(ADC_EMR_CMPALL); p_adc->ADC_EMR &= (uint32_t)~(ADC_EMR_CMPSEL_Msk); p_adc->ADC_EMR |= (channel << ADC_EMR_CMPSEL_Pos); } else { p_adc->ADC_EMR |= ADC_EMR_CMPALL; } } #if SAM3S || SAM3XA /** * \brief Enables differential input for the specified channel. * * \param p_adc Pointer to an ADC instance. * \param channel Channel number. * */ void adc_enable_differential_input(Adc *p_adc, adc_channel_num_t channel) { p_adc->ADC_COR |= 0x01u << (16+ channel); } /** * \brief Disables differential input for the specified channel. * * \param p_adc Pointer to an ADC instance. * \param channel Channel number. * */ void adc_disable_differential_input(Adc *p_adc, adc_channel_num_t channel) { uint32_t ul_temp; ul_temp = p_adc->ADC_COR; p_adc->ADC_COR &= 0xfffeffffu << channel; p_adc->ADC_COR |= ul_temp; } /** * \brief Enables analog signal offset for the specified channel. * * \param p_adc Pointer to an ADC instance. * \param channel Channel number. * */ void adc_enable_input_offset(Adc *p_adc, adc_channel_num_t channel) { p_adc->ADC_COR |= 0x01u << channel; } /** * \brief Disables analog signal offset for the specified channel. * * \param p_adc Pointer to an ADC instance. * \param channel Channel number. * */ void adc_disable_input_offset(Adc *p_adc, adc_channel_num_t channel) { uint32_t ul_temp; ul_temp = p_adc->ADC_COR; p_adc->ADC_COR &= (0xfffffffeu << channel); p_adc->ADC_COR |= ul_temp; } /** * \brief Configures input gain for the specified channel. * * \param p_adc Pointer to an ADC instance. * \param channel Channel number. * \param gain Gain value for the input. * */ void adc_set_input_gain(Adc *p_adc, adc_channel_num_t channel, adc_gainvalue_t gain) { p_adc->ADC_CGR |= (0x03u << (2*channel)) & (gain << (2*channel)); } #endif /* SAM3S || SAM3XA */ #if SAM3S8 || SAM3SD8 /** * \brief set adc auto calibration mode. * * \param p_adc Pointer to an ADC instance. * */ void adc_set_calibmode(Adc *p_adc) { p_adc->ADC_CR |= ADC_CR_AUTOCAL; } #endif /* SAM3S8 || SAM3SD8 */ /** * \brief Returns the actual ADC clock. * * \param p_adc Pointer to an ADC instance. * \param ul_mck Main clock of the device (value in Hz). * * \retval 0 The actual ADC clock (value in Hz). */ uint32_t adc_get_actual_adc_clock(Adc *p_adc, uint32_t ul_mck) { uint32_t ul_adcfreq; uint32_t ul_prescal; /* ADCClock = MCK / ( (PRESCAL+1) * 2 ) */ ul_prescal = (( p_adc->ADC_MR & ADC_MR_PRESCAL_Msk) >> ADC_MR_PRESCAL_Pos); ul_adcfreq = ul_mck / ((ul_prescal+1)*2); return ul_adcfreq; } /** * \brief Enables ADC interrupt(s). * * \param p_adc Pointer to an ADC instance. * \param dw_source Interrupt(s) to be enabled. * */ void adc_enable_interrupt(Adc *p_adc, uint32_t ul_source) { p_adc->ADC_IER = ul_source; } /** * \brief Disables ADC interrupt(s). * * \param p_adc Pointer to an ADC instance. * \param dw_source Interrupt(s) to be disabled. * */ void adc_disable_interrupt(Adc *p_adc, uint32_t ul_source) { p_adc->ADC_IDR = ul_source; } /** * \brief Reads ADC interrupt status. * * \param p_adc Pointer to an ADC instance. * * \retval ADC interrupt status. */ uint32_t adc_get_interrupt_status(Adc *p_adc) { return p_adc->ADC_ISR ; } /** \brief Read ADC interrupt mask. * * \param p_uart pointer to a UART instance. * * \return The interrupt mask value. */ uint32_t adc_get_interrupt_mask(Adc *p_adc) { return p_adc->ADC_IMR; } /** * \brief Reads overrun status. * * \param p_adc Pointer to an ADC instance. * * \retval ADC overrun status. */ uint32_t adc_check_ovr(Adc *p_adc,adc_channel_num_t adc_ch) { return p_adc->ADC_OVER & (0x01u << adc_ch); } #if SAM3S || SAM3XA /** * \brief Adapts performance versus power consumption. * * \note Please refer to ADC Characteristics in the product datasheet for the details. * * \param p_adc Pointer to an ADC instance. * \param ibctl ADC Bias current control. * */ void adc_set_bias_current(Adc *p_adc, uint8_t uc_ibctl) { p_adc->ADC_ACR |= ADC_ACR_IBCTL(uc_ibctl); } #endif #if SAM3S || SAM3XA /** * \brief turn on temperature sensor. * * \param p_adc Pointer to an ADC instance. * */ void adc_enable_ts(Adc *p_adc) { p_adc->ADC_ACR |= ADC_ACR_TSON; } #endif #if SAM3S || SAM3XA /** * \brief turn off temperature sensor. * * \param p_adc Pointer to an ADC instance. * */ void adc_disable_ts(Adc *p_adc) { p_adc->ADC_ACR &= ~ADC_ACR_TSON; } #endif /** * \brief Enables or disables write protection of ADC registers. * * \param p_adc Pointer to an ADC instance. * \param dw_eanble 1 to eanble, 0 to disable. */ void adc_set_writeprotect(Adc *p_adc, uint32_t ul_enable) { p_adc->ADC_WPMR |= ADC_WPMR_WPKEY(ul_enable); } /** * \brief Indicates write protect status. * * \param p_adc Pointer to an ADC instance. * * \return 0 if the peripheral is not protected, or 16-bit Write Protect Violation Status. */ uint32_t adc_get_writeprotect_status(Adc *p_adc) { return p_adc->ADC_WPSR & ADC_WPSR_WPVS; } /** * \brief calcul_startup */ static uint32_t calcul_startup( uint32_t ul_startup ) { uint32_t ul_startup_value=0; if( ul_startup == 0 ) ul_startup_value = 0; else if( ul_startup == 1 ) ul_startup_value = 8; else if( ul_startup == 2 ) ul_startup_value = 16; else if( ul_startup == 3 ) ul_startup_value = 24; else if( ul_startup == 4 ) ul_startup_value = 64; else if( ul_startup == 5 ) ul_startup_value = 80; else if( ul_startup == 6 ) ul_startup_value = 96; else if( ul_startup == 7 ) ul_startup_value = 112; else if( ul_startup == 8 ) ul_startup_value = 512; else if( ul_startup == 9 ) ul_startup_value = 576; else if( ul_startup == 10 ) ul_startup_value = 640; else if( ul_startup == 11 ) ul_startup_value = 704; else if( ul_startup == 12 ) ul_startup_value = 768; else if( ul_startup == 13 ) ul_startup_value = 832; else if( ul_startup == 14 ) ul_startup_value = 896; else if( ul_startup == 15 ) ul_startup_value = 960; return ul_startup_value; } #if 0 /** * \brief Checks ADC configurations. * * \param p_adc Pointer to an ADC instance. * \param dw_mck Main clock of the device (value in Hz). */ void adc_check(Adc* p_adc, uint32_t ul_mck) { uint32_t ul_adcfreq; uint32_t ul_prescal; uint32_t ul_startup; /* ADCClock = MCK / ( (PRESCAL+1) * 2 ) */ ul_prescal = (( p_adc->ADC_MR & ADC_MR_PRESCAL_Msk) >> ADC_MR_PRESCAL_Pos); ul_adcfreq = ul_mck / ((ul_prescal+1)*2); printf("ADC clock frequency = %d Hz\r\n", (int)ul_adcfreq ); if( ul_adcfreq < ADC_FREQ_MIN ) { printf("adc frequency too low (out of specification: %d Hz)\r\n", (int)ADC_FREQ_MIN); } if( ul_adcfreq > ADC_FREQ_MAX ) { printf("adc frequency too high (out of specification: %d Hz)\r\n", (int)ADC_FREQ_MAX); } ul_startup = (( p_adc->ADC_MR & ADC_MR_STARTUP_Msk) >> ADC_MR_STARTUP_Pos); if( !(p_adc->ADC_MR & ADC_MR_SLEEP_SLEEP) ) { /* 40ms */ if( ADC_STARTUP_NORM * ul_adcfreq / 1000000 > calcul_startup(ul_startup) ) { printf("Startup time too small: %d, programmed: %d\r\n", (int)(ADC_STARTUP_NORM * ul_adcfreq / 1000000), (int)calcul_startup(ul_startup)); } } else { if(p_adc->ADC_MR & ADC_MR_FREERUN_ON) { printf("FreeRun forbidden in sleep mode\n\r"); } if( !(p_adc->ADC_MR & ADC_MR_FWUP_ON) ) { /* Sleep 40ms */ if( ADC_STARTUP_NORM * ul_adcfreq / 1000000 > calcul_startup(ul_startup) ) { printf("Startup time too small: %d, programmed: %d\r\n", (int)(ADC_STARTUP_NORM * ul_adcfreq / 1000000), (int)(calcul_startup(ul_startup))); } } else { if( p_adc->ADC_MR & ADC_MR_FWUP_ON ) { /* Fast Wake Up Sleep Mode: 12ms */ if( ADC_STARTUP_FAST * ul_adcfreq / 1000000 > calcul_startup(ul_startup) ) { printf("Startup time too small: %d, programmed: %d\r\n", (int)(ADC_STARTUP_NORM * ul_adcfreq / 1000000), (int)(calcul_startup(ul_startup))); } } } } } #endif /* 0 */ /** * \brief Gets PDC registers base address. * * \param p_adc Pointer to an ADC instance. * * \retval PDC registers base for PDC driver to access. */ Pdc *adc_get_pdc_base(Adc *p_adc) { return PDC_ADC; } /// @cond 0 /**INDENT-OFF**/ #ifdef __cplusplus } #endif // SAM3S || SAM3N || SAM3XA /**INDENT-ON**/ /// @endcond #endif /* SAM3S || SAM3N || SAM3XA */