/* wiring.c - Partial implementation of the Wiring API for the ATmega8. Part of Arduino - http://www.arduino.cc/ Copyright (c) 2005-2006 David A. Mellis This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA $Id$ */ #include #include #include #include #include #include #ifndef cbi #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #endif #ifndef sbi #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) #endif #include "wiring.h" // Define constants and variables for buffering incoming serial data. We're // using a ring buffer (I think), in which rx_buffer_head is the index of the // location to which to write the next incoming character and rx_buffer_tail // is the index of the location from which to read #define RX_BUFFER_SIZE 128 unsigned char rx_buffer[RX_BUFFER_SIZE]; int rx_buffer_head = 0; int rx_buffer_tail = 0; // The number of times timer 0 has overflowed since the program started. // Must be volatile or gcc will optimize away some uses of it. volatile unsigned long timer0_overflow_count; // Get the hardware port of the given virtual pin number. This comes from // the pins_*.c file for the active board configuration. int digitalPinToPort(int pin) { return digital_pin_to_port[pin].port; } // Get the bit location within the hardware port of the given virtual pin. // This comes from the pins_*.c file for the active board configuration. int digitalPinToBit(int pin) { return digital_pin_to_port[pin].bit; } int analogOutPinToTimer(int pin) { return analog_out_pin_to_timer[pin]; } int analogInPinToBit(int pin) { return analog_in_pin_to_port[pin].bit; } void pinMode(int pin, int mode) { if (digitalPinToPort(pin) != NOT_A_PIN) { if (mode == INPUT) cbi(_SFR_IO8(port_to_mode[digitalPinToPort(pin)]), digitalPinToBit(pin)); else sbi(_SFR_IO8(port_to_mode[digitalPinToPort(pin)]), digitalPinToBit(pin)); } } void digitalWrite(int pin, int val) { if (digitalPinToPort(pin) != NOT_A_PIN) { // If the pin that support PWM output, we need to turn it off // before doing a digital write. if (analogOutPinToTimer(pin) == TIMER1A) cbi(TCCR1A, COM1A1); if (analogOutPinToTimer(pin) == TIMER1B) cbi(TCCR1A, COM1B1); #if defined(__AVR_ATmega168__) if (analogOutPinToTimer(pin) == TIMER0A) cbi(TCCR0A, COM0A1); if (analogOutPinToTimer(pin) == TIMER0B) cbi(TCCR0A, COM0B1); if (analogOutPinToTimer(pin) == TIMER2A) cbi(TCCR2A, COM2A1); if (analogOutPinToTimer(pin) == TIMER2B) cbi(TCCR2A, COM2B1); #else if (analogOutPinToTimer(pin) == TIMER2) cbi(TCCR2, COM21); #endif if (val == LOW) cbi(_SFR_IO8(port_to_output[digitalPinToPort(pin)]), digitalPinToBit(pin)); else sbi(_SFR_IO8(port_to_output[digitalPinToPort(pin)]), digitalPinToBit(pin)); } } int digitalRead(int pin) { if (digitalPinToPort(pin) != NOT_A_PIN) { // If the pin that support PWM output, we need to turn it off // before getting a digital reading. if (analogOutPinToTimer(pin) == TIMER1A) cbi(TCCR1A, COM1A1); if (analogOutPinToTimer(pin) == TIMER1B) cbi(TCCR1A, COM1B1); #if defined(__AVR_ATmega168__) if (analogOutPinToTimer(pin) == TIMER0A) cbi(TCCR0A, COM0A1); if (analogOutPinToTimer(pin) == TIMER0B) cbi(TCCR0A, COM0B1); if (analogOutPinToTimer(pin) == TIMER2A) cbi(TCCR2A, COM2A1); if (analogOutPinToTimer(pin) == TIMER2B) cbi(TCCR2A, COM2B1); #else if (analogOutPinToTimer(pin) == TIMER2) cbi(TCCR2, COM21); #endif return (_SFR_IO8(port_to_input[digitalPinToPort(pin)]) >> digitalPinToBit(pin)) & 0x01; } return LOW; } int analogRead(int pin) { unsigned int low, high, ch = analogInPinToBit(pin); // the low 4 bits of ADMUX select the ADC channel ADMUX = (ADMUX & (unsigned int) 0xf0) | (ch & (unsigned int) 0x0f); // without a delay, we seem to read from the wrong channel delay(1); // start the conversion sbi(ADCSRA, ADSC); // ADSC is cleared when the conversion finishes while (bit_is_set(ADCSRA, ADSC)); // we have to read ADCL first; doing so locks both ADCL // and ADCH until ADCH is read. reading ADCL second would // cause the results of each conversion to be discarded, // as ADCL and ADCH would be locked when it completed. low = ADCL; high = ADCH; // combine the two bytes return (high << 8) | low; } // Right now, PWM output only works on the pins with // hardware support. These are defined in the appropriate // pins_*.c file. For the rest of the pins, we default // to digital output. void analogWrite(int pin, int val) { // We need to make sure the PWM output is enabled for those pins // that support it, as we turn it off when digitally reading or // writing with them. Also, make sure the pin is in output mode // for consistenty with Wiring, which doesn't require a pinMode // call for the analog output pins. pinMode(pin, OUTPUT); if (analogOutPinToTimer(pin) == TIMER1A) { // connect pwm to pin on timer 1, channel A sbi(TCCR1A, COM1A1); // set pwm duty OCR1A = val; } else if (analogOutPinToTimer(pin) == TIMER1B) { // connect pwm to pin on timer 1, channel B sbi(TCCR1A, COM1B1); // set pwm duty OCR1B = val; #if defined(__AVR_ATmega168__) } else if (analogOutPinToTimer(pin) == TIMER0A) { // connect pwm to pin on timer 0, channel A sbi(TCCR0A, COM0A1); // set pwm duty OCR0A = val; } else if (analogOutPinToTimer(pin) == TIMER0B) { // connect pwm to pin on timer 0, channel B sbi(TCCR0A, COM0B1); // set pwm duty OCR0B = val; } else if (analogOutPinToTimer(pin) == TIMER2A) { // connect pwm to pin on timer 2, channel A sbi(TCCR2A, COM2A1); // set pwm duty OCR2A = val; } else if (analogOutPinToTimer(pin) == TIMER2B) { // connect pwm to pin on timer 2, channel B sbi(TCCR2A, COM2B1); // set pwm duty OCR2B = val; #else } else if (analogOutPinToTimer(pin) == TIMER2) { // connect pwm to pin on timer 2, channel B sbi(TCCR2, COM21); // set pwm duty OCR2 = val; #endif } else if (val < 128) digitalWrite(pin, LOW); else digitalWrite(pin, HIGH); } void beginSerial(long baud) { #if defined(__AVR_ATmega168__) UBRR0H = ((F_CPU / 16 + baud / 2) / baud - 1) >> 8; UBRR0L = ((F_CPU / 16 + baud / 2) / baud - 1); // enable rx and tx sbi(UCSR0B, RXEN0); sbi(UCSR0B, TXEN0); // enable interrupt on complete reception of a byte sbi(UCSR0B, RXCIE0); #else UBRRH = ((F_CPU / 16 + baud / 2) / baud - 1) >> 8; UBRRL = ((F_CPU / 16 + baud / 2) / baud - 1); // enable rx and tx sbi(UCSRB, RXEN); sbi(UCSRB, TXEN); // enable interrupt on complete reception of a byte sbi(UCSRB, RXCIE); #endif // defaults to 8-bit, no parity, 1 stop bit } void serialWrite(unsigned char c) { #if defined(__AVR_ATmega168__) while (!(UCSR0A & (1 << UDRE0))) ; UDR0 = c; #else while (!(UCSRA & (1 << UDRE))) ; UDR = c; #endif } int serialAvailable() { return (rx_buffer_head - rx_buffer_tail) % RX_BUFFER_SIZE; } int serialRead() { // if the head isn't ahead of the tail, we don't have any characters if (rx_buffer_head == rx_buffer_tail) { return -1; } else { unsigned char c = rx_buffer[rx_buffer_tail]; rx_buffer_tail = (rx_buffer_tail + 1) % RX_BUFFER_SIZE; return c; } } #if defined(__AVR_ATmega168__) SIGNAL(SIG_USART_RECV) #else SIGNAL(SIG_UART_RECV) #endif { #if defined(__AVR_ATmega168__) unsigned char c = UDR0; #else unsigned char c = UDR; #endif int i = (rx_buffer_head + 1) % RX_BUFFER_SIZE; // if we should be storing the received character into the location // just before the tail (meaning that the head would advance to the // current location of the tail), we're about to overflow the buffer // and so we don't write the character or advance the head. if (i != rx_buffer_tail) { rx_buffer[rx_buffer_head] = c; rx_buffer_head = i; } } void printMode(int mode) { // do nothing, we only support serial printing, not lcd. } void printByte(unsigned char c) { serialWrite(c); } void printNewline() { printByte('\n'); } void printString(char *s) { while (*s) printByte(*s++); } void printIntegerInBase(unsigned long n, unsigned long base) { unsigned char buf[8 * sizeof(long)]; // Assumes 8-bit chars. unsigned long i = 0; if (n == 0) { printByte('0'); return; } while (n > 0) { buf[i++] = n % base; n /= base; } for (; i > 0; i--) printByte(buf[i - 1] < 10 ? '0' + buf[i - 1] : 'A' + buf[i - 1] - 10); } void printInteger(long n) { if (n < 0) { printByte('-'); n = -n; } printIntegerInBase(n, 10); } void printHex(unsigned long n) { printIntegerInBase(n, 16); } void printOctal(unsigned long n) { printIntegerInBase(n, 8); } void printBinary(unsigned long n) { printIntegerInBase(n, 2); } /* Including print() adds approximately 1500 bytes to the binary size, * so we replace it with the smaller and less-confusing printString(), * printInteger(), etc. void print(const char *format, ...) { char buf[256]; va_list ap; va_start(ap, format); vsnprintf(buf, 256, format, ap); va_end(ap); printString(buf); } */ SIGNAL(SIG_OVERFLOW0) { timer0_overflow_count++; } unsigned long millis() { // timer 0 increments every 64 cycles, and overflows when it reaches // 256. we would calculate the total number of clock cycles, then // divide by the number of clock cycles per millisecond, but this // overflows too often. //return timer0_overflow_count * 64UL * 256UL / (F_CPU / 1000UL); // instead find 1/128th the number of clock cycles and divide by // 1/128th the number of clock cycles per millisecond return timer0_overflow_count * 64UL * 2UL / (F_CPU / 128000UL); } void delay(unsigned long ms) { unsigned long start = millis(); while (millis() - start < ms) ; } /* Delay for the given number of microseconds. Assumes a 16 MHz clock. * Disables interrupts, which will disrupt the millis() function if used * too frequently. */ void delayMicroseconds(unsigned int us) { // calling avrlib's delay_us() function with low values (e.g. 1 or // 2 microseconds) gives delays longer than desired. //delay_us(us); // for a one-microsecond delay, simply return. the overhead // of the function call yields a delay of approximately 1 1/8 us. if (--us == 0) return; // the following loop takes a quarter of a microsecond (4 cycles) // per iteration, so execute it four times for each microsecond of // delay requested. us <<= 2; // account for the time taken in the preceeding commands. us -= 2; // disable interrupts, otherwise the timer 0 overflow interrupt that // tracks milliseconds will make us delay longer than we want. cli(); // busy wait __asm__ __volatile__ ( "1: sbiw %0,1" "\n\t" // 2 cycles "brne 1b" : "=w" (us) : "0" (us) // 2 cycles ); // reenable interrupts. sei(); } /* unsigned long pulseIn(int pin, int state) { unsigned long width = 0; while (digitalRead(pin) == !state) ; while (digitalRead(pin) != !state) width++; return width * 17 / 2; // convert to microseconds } */ /* Measures the length (in microseconds) of a pulse on the pin; state is HIGH * or LOW, the type of pulse to measure. Works on pulses from 10 microseconds * to 3 minutes in length, but must be called at least N microseconds before * the start of the pulse. */ unsigned long pulseIn(int pin, int state) { // cache the port and bit of the pin in order to speed up the // pulse width measuring loop and achieve finer resolution. calling // digitalRead() instead yields much coarser resolution. int r = port_to_input[digitalPinToPort(pin)]; int bit = digitalPinToBit(pin); int mask = 1 << bit; unsigned long width = 0; // compute the desired bit pattern for the port reading (e.g. set or // clear the bit corresponding to the pin being read). the !!state // ensures that the function treats any non-zero value of state as HIGH. state = (!!state) << bit; // wait for the pulse to start while ((_SFR_IO8(r) & mask) != state) ; // wait for the pulse to stop while ((_SFR_IO8(r) & mask) == state) width++; // convert the reading to microseconds. the slower the CPU speed, the // proportionally fewer iterations of the loop will occur (e.g. a // 4 MHz clock will yield a width that is one-fourth of that read with // a 16 MHz clock). each loop was empirically determined to take // approximately 23/20 of a microsecond with a 16 MHz clock. return width * (16000000UL / F_CPU) * 20 / 23; } void shiftOut(int dataPin, int clockPin, int bitOrder, byte val) { int i; for (i = 0; i < 8; i++) { if (bitOrder == LSBFIRST) digitalWrite(dataPin, !!(val & (1 << i))); else digitalWrite(dataPin, !!(val & (1 << (7 - i)))); digitalWrite(clockPin, HIGH); digitalWrite(clockPin, LOW); } } int main(void) { // this needs to be called before setup() or some functions won't // work there sei(); // timer 0 is used for millis() and delay() timer0_overflow_count = 0; // on the ATmega168, timer 0 is also used for fast hardware pwm // (using phase-correct PWM would mean that timer 0 overflowed half as often // resulting in different millis() behavior on the ATmega8 and ATmega168) #if defined(__AVR_ATmega168__) sbi(TCCR0A, WGM01); sbi(TCCR0A, WGM00); #endif // set timer 0 prescale factor to 64 #if defined(__AVR_ATmega168__) sbi(TCCR0B, CS01); sbi(TCCR0B, CS00); #else sbi(TCCR0, CS01); sbi(TCCR0, CS00); #endif // enable timer 0 overflow interrupt #if defined(__AVR_ATmega168__) sbi(TIMSK0, TOIE0); #else sbi(TIMSK, TOIE0); #endif // timers 1 and 2 are used for phase-correct hardware pwm // this is better for motors as it ensures an even waveform // note, however, that fast pwm mode can achieve a frequency of up // 8 MHz (with a 16 MHz clock) at 50% duty cycle // set timer 1 prescale factor to 64 sbi(TCCR1B, CS11); sbi(TCCR1B, CS10); // put timer 1 in 8-bit phase correct pwm mode sbi(TCCR1A, WGM10); // set timer 2 prescale factor to 64 #if defined(__AVR_ATmega168__) sbi(TCCR2B, CS22); #else sbi(TCCR2, CS22); #endif // configure timer 2 for phase correct pwm (8-bit) #if defined(__AVR_ATmega168__) sbi(TCCR2A, WGM20); #else sbi(TCCR2, WGM20); #endif // set a2d reference to AVCC (5 volts) cbi(ADMUX, REFS1); sbi(ADMUX, REFS0); // set a2d prescale factor to 128 // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range. // XXX: this will not work properly for other clock speeds, and // this code should use F_CPU to determine the prescale factor. sbi(ADCSRA, ADPS2); sbi(ADCSRA, ADPS1); sbi(ADCSRA, ADPS0); // enable a2d conversions sbi(ADCSRA, ADEN); // the bootloader connects pins 0 and 1 to the USART; disconnect them // here so they can be used as normal digital i/o; they will be // reconnected in Serial.begin() #if defined(__AVR_ATmega168__) UCSR0B = 0; #else UCSRB = 0; #endif setup(); for (;;) loop(); return 0; }