/*! \file timer.c \brief System Timer function library. */ //***************************************************************************** // // File Name : 'timer.c' // Title : System Timer function library // Author : Pascal Stang - Copyright (C) 2000-2002 // Created : 11/22/2000 // Revised : 07/09/2003 // Version : 1.1 // Target MCU : Atmel AVR Series // Editor Tabs : 4 // // This code is distributed under the GNU Public License // which can be found at http://www.gnu.org/licenses/gpl.txt // //***************************************************************************** #ifndef WIN32 #include #include #include #include #include #endif #include "global.h" #include "timer.h" #include "rprintf.h" // Program ROM constants // the prescale division values stored in order of timer control register index // STOP, CLK, CLK/8, CLK/64, CLK/256, CLK/1024 unsigned short __attribute__ ((progmem)) TimerPrescaleFactor[] = {0,1,8,64,256,1024}; // the prescale division values stored in order of timer control register index // STOP, CLK, CLK/8, CLK/32, CLK/64, CLK/128, CLK/256, CLK/1024 unsigned short __attribute__ ((progmem)) TimerRTCPrescaleFactor[] = {0,1,8,32,64,128,256,1024}; // Global variables // time registers volatile unsigned long TimerPauseReg; volatile unsigned long Timer0Reg0; volatile unsigned long Timer2Reg0; typedef void (*voidFuncPtr)(void); volatile static voidFuncPtr TimerIntFunc[TIMER_NUM_INTERRUPTS]; /* // delay for a minimum of microseconds // the time resolution is dependent on the time the loop takes // e.g. with 4Mhz and 5 cycles per loop, the resolution is 1.25 us void delay_us(unsigned short time_us) { unsigned short delay_loops; register unsigned short i; delay_loops = (time_us+3)/5*CYCLES_PER_US; // +3 for rounding up (dirty) // one loop takes 5 cpu cycles for (i=0; i < delay_loops; i++) {}; } */ /* void delay_ms(unsigned char time_ms) { unsigned short delay_count = F_CPU / 4000; unsigned short cnt; asm volatile ("\n" "L_dl1%=:\n\t" "mov %A0, %A2\n\t" "mov %B0, %B2\n" "L_dl2%=:\n\t" "sbiw %A0, 1\n\t" "brne L_dl2%=\n\t" "dec %1\n\t" "brne L_dl1%=\n\t":"=&w" (cnt) :"r"(time_ms), "r"((unsigned short) (delay_count)) ); } */ /* void timerInit(void) { u08 intNum; // detach all user functions from interrupts for(intNum=0; intNum number of milliseconds u08 timerThres; u32 ticRateHz; u32 pause; // capture current pause timer value timerThres = inb(TCNT0); // reset pause timer overflow count TimerPauseReg = 0; // calculate delay for [pause_ms] milliseconds // prescaler division = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0))) ticRateHz = F_CPU/timer0GetPrescaler(); // precision management // prevent overflow and precision underflow // -could add more conditions to improve accuracy if( ((ticRateHz < 429497) && (pause_ms <= 10000)) ) pause = (pause_ms*ticRateHz)/1000; else pause = pause_ms*(ticRateHz/1000); // loop until time expires while( ((TimerPauseReg<<8) | inb(TCNT0)) < (pause+timerThres) ) { // DAM: these lines (in particular, the call to set_sleep_mode) // caused avr-gcc to give an error about a misplaced } in linux, // presumambly caused by a macro somewhere. Since they're not // vital (and are causing problems), I'm commenting them out. //if( TimerPauseReg < (pause>>8)); //{ // save power by idling the processor //set_sleep_mode(SLEEP_MODE_IDLE); //sleep_mode(); //} } /* old inaccurate code, for reference // calculate delay for [pause_ms] milliseconds u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0))); u32 pause = (pause_ms*(F_CPU/(prescaleDiv*256)))/1000; TimerPauseReg = 0; while(TimerPauseReg < pause); */ } void timer0ClearOverflowCount(void) { // clear the timer overflow counter registers Timer0Reg0 = 0; // initialize time registers } long timer0GetOverflowCount(void) { // return the current timer overflow count // (this is since the last timer0ClearOverflowCount() command was called) return Timer0Reg0; } #ifdef TCNT2 // support timer2 only if it exists void timer2ClearOverflowCount(void) { // clear the timer overflow counter registers Timer2Reg0 = 0; // initialize time registers } /* long timer2GetOverflowCount(void) { // return the current timer overflow count // (this is since the last timer2ClearOverflowCount() command was called) return Timer2Reg0; } */ #endif void timer1PWMInit(u08 bitRes) { // configures timer1 for use with PWM output // on OC1A and OC1B pins // enable timer1 as 8,9,10bit PWM if(bitRes == 9) { // 9bit mode sbi(TCCR1A,PWM11); cbi(TCCR1A,PWM10); } else if( bitRes == 10 ) { // 10bit mode sbi(TCCR1A,PWM11); sbi(TCCR1A,PWM10); } else { // default 8bit mode cbi(TCCR1A,PWM11); sbi(TCCR1A,PWM10); } // clear output compare value A outb(OCR1AH, 0); outb(OCR1AL, 0); // clear output compare value B outb(OCR1BH, 0); outb(OCR1BL, 0); } #ifdef WGM10 // include support for arbitrary top-count PWM // on new AVR processors that support it void timer1PWMInitICR(u16 topcount) { // set PWM mode with ICR top-count cbi(TCCR1A,WGM10); sbi(TCCR1A,WGM11); sbi(TCCR1B,WGM12); sbi(TCCR1B,WGM13); // set top count value ICR1 = topcount; // clear output compare value A OCR1A = 0; // clear output compare value B OCR1B = 0; } #endif void timer1PWMOff(void) { // turn off timer1 PWM mode cbi(TCCR1A,PWM11); cbi(TCCR1A,PWM10); // set PWM1A/B (OutputCompare action) to none timer1PWMAOff(); timer1PWMBOff(); } void timer1PWMAOn(void) { // turn on channel A (OC1A) PWM output // set OC1A as non-inverted PWM sbi(TCCR1A,COM1A1); cbi(TCCR1A,COM1A0); } void timer1PWMBOn(void) { // turn on channel B (OC1B) PWM output // set OC1B as non-inverted PWM sbi(TCCR1A,COM1B1); cbi(TCCR1A,COM1B0); } void timer1PWMAOff(void) { // turn off channel A (OC1A) PWM output // set OC1A (OutputCompare action) to none cbi(TCCR1A,COM1A1); cbi(TCCR1A,COM1A0); } void timer1PWMBOff(void) { // turn off channel B (OC1B) PWM output // set OC1B (OutputCompare action) to none cbi(TCCR1A,COM1B1); cbi(TCCR1A,COM1B0); } void timer1PWMASet(u16 pwmDuty) { // set PWM (output compare) duty for channel A // this PWM output is generated on OC1A pin // NOTE: pwmDuty should be in the range 0-255 for 8bit PWM // pwmDuty should be in the range 0-511 for 9bit PWM // pwmDuty should be in the range 0-1023 for 10bit PWM //outp( (pwmDuty>>8), OCR1AH); // set the high 8bits of OCR1A //outp( (pwmDuty&0x00FF), OCR1AL); // set the low 8bits of OCR1A OCR1A = pwmDuty; } void timer1PWMBSet(u16 pwmDuty) { // set PWM (output compare) duty for channel B // this PWM output is generated on OC1B pin // NOTE: pwmDuty should be in the range 0-255 for 8bit PWM // pwmDuty should be in the range 0-511 for 9bit PWM // pwmDuty should be in the range 0-1023 for 10bit PWM //outp( (pwmDuty>>8), OCR1BH); // set the high 8bits of OCR1B //outp( (pwmDuty&0x00FF), OCR1BL); // set the low 8bits of OCR1B OCR1B = pwmDuty; } //! Interrupt handler for tcnt0 overflow interrupt TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW0) { Timer0Reg0++; // increment low-order counter // increment pause counter TimerPauseReg++; // if a user function is defined, execute it too if(TimerIntFunc[TIMER0OVERFLOW_INT]) TimerIntFunc[TIMER0OVERFLOW_INT](); } //! Interrupt handler for tcnt1 overflow interrupt TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW1) { // if a user function is defined, execute it if(TimerIntFunc[TIMER1OVERFLOW_INT]) TimerIntFunc[TIMER1OVERFLOW_INT](); } #ifdef TCNT2 // support timer2 only if it exists //! Interrupt handler for tcnt2 overflow interrupt TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW2) { Timer2Reg0++; // increment low-order counter // if a user function is defined, execute it if(TimerIntFunc[TIMER2OVERFLOW_INT]) TimerIntFunc[TIMER2OVERFLOW_INT](); } #endif #ifdef OCR0 // include support for Output Compare 0 for new AVR processors that support it //! Interrupt handler for OutputCompare0 match (OC0) interrupt TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE0) { // if a user function is defined, execute it if(TimerIntFunc[TIMER0OUTCOMPARE_INT]) TimerIntFunc[TIMER0OUTCOMPARE_INT](); } #endif //! Interrupt handler for CutputCompare1A match (OC1A) interrupt TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1A) { // if a user function is defined, execute it if(TimerIntFunc[TIMER1OUTCOMPAREA_INT]) TimerIntFunc[TIMER1OUTCOMPAREA_INT](); } //! Interrupt handler for OutputCompare1B match (OC1B) interrupt TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1B) { // if a user function is defined, execute it if(TimerIntFunc[TIMER1OUTCOMPAREB_INT]) TimerIntFunc[TIMER1OUTCOMPAREB_INT](); } //! Interrupt handler for InputCapture1 (IC1) interrupt TIMER_INTERRUPT_HANDLER(SIG_INPUT_CAPTURE1) { // if a user function is defined, execute it if(TimerIntFunc[TIMER1INPUTCAPTURE_INT]) TimerIntFunc[TIMER1INPUTCAPTURE_INT](); } //! Interrupt handler for OutputCompare2 match (OC2) interrupt TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE2) { // if a user function is defined, execute it if(TimerIntFunc[TIMER2OUTCOMPARE_INT]) TimerIntFunc[TIMER2OUTCOMPARE_INT](); }