/* ---------------------------------------------------------------------------- * SAM Software Package License * ---------------------------------------------------------------------------- * Copyright (c) 2011-2012, Atmel Corporation * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following condition is met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the disclaimer below. * * Atmel's name may not be used to endorse or promote products derived from * this software without specific prior written permission. * * DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ---------------------------------------------------------------------------- */ #include "../chip.h" /// @cond 0 /**INDENT-OFF**/ #ifdef __cplusplus extern "C" { #endif /**INDENT-ON**/ /// @endcond /** * \defgroup sam_drivers_adc_group Analog-to-digital Converter (ADC) * * Driver for the Analog-to-digital Converter. This driver provides access to the main * features of the ADC controller. * * @{ */ #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES /** * \brief Initialize the given ADC with the specified ADC clock and startup time. * * \param p_adc Pointer to an ADC instance. * \param ul_mck Main clock of the device (value in Hz). * \param ul_adc_clock Analog-to-Digital conversion clock (value in Hz). * \param uc_startup ADC start up time. Please refer to the product datasheet * for details. * * \return 0 on success. */ uint32_t adc_init(Adc *p_adc, const uint32_t ul_mck, const uint32_t ul_adc_clock, const uint8_t uc_startup) { uint32_t ul_prescal; /* Reset the controller. */ p_adc->ADC_CR = ADC_CR_SWRST; /* Reset Mode Register. */ p_adc->ADC_MR = 0; /* Reset PDC transfer. */ p_adc->ADC_PTCR = (ADC_PTCR_RXTDIS | ADC_PTCR_TXTDIS); p_adc->ADC_RCR = 0; p_adc->ADC_RNCR = 0; ul_prescal = ul_mck / (2 * ul_adc_clock) - 1; p_adc->ADC_MR |= ADC_MR_PRESCAL(ul_prescal) | ((uc_startup << ADC_MR_STARTUP_Pos) & ADC_MR_STARTUP_Msk); return 0; } #elif SAM3XA_SERIES /** * \brief Initialize the given ADC with the specified ADC clock and startup time. * * \param p_adc Pointer to an ADC instance. * \param ul_mck Main clock of the device (value in Hz). * \param ul_adc_clock Analog-to-Digital conversion clock (value in Hz). * \param uc_startup ADC start up time. Please refer to the product datasheet * for details. * * \return 0 on success. */ uint32_t adc_init(Adc *p_adc, const uint32_t ul_mck, const uint32_t ul_adc_clock, const uint8_t uc_startuptime) { uint32_t startup_table[] = { 0, 8, 16, 24, 64, 80, 96, 112, 512, 576, 640, 704, 768, 832, 896, 960 }; uint32_t ul_prescal, ul_startup, ul_mr_startup, ul_real_adc_clock; p_adc->ADC_CR = ADC_CR_SWRST; /* Reset Mode Register. */ p_adc->ADC_MR = 0; /* Reset PDC transfer. */ p_adc->ADC_PTCR = (ADC_PTCR_RXTDIS | ADC_PTCR_TXTDIS); p_adc->ADC_RCR = 0; p_adc->ADC_RNCR = 0; if (ul_mck % (2 * ul_adc_clock)) { // Division with reminder ul_prescal = ul_mck / (2 * ul_adc_clock); } else { // Whole division ul_prescal = ul_mck / (2 * ul_adc_clock) - 1; } ul_real_adc_clock = ul_mck / (2 * (ul_prescal + 1)); // ADC clocks needed to get ul_startuptime uS ul_startup = (ul_real_adc_clock / 1000000) * uc_startuptime; // Find correct MR_STARTUP value from conversion table for (ul_mr_startup=0; ul_mr_startup<16; ul_mr_startup++) { if (startup_table[ul_mr_startup] >= ul_startup) break; } if (ul_mr_startup==16) return -1; p_adc->ADC_MR |= ADC_MR_PRESCAL(ul_prescal) | ((ul_mr_startup << ADC_MR_STARTUP_Pos) & ADC_MR_STARTUP_Msk); return 0; } #elif SAM3U_SERIES /** * \brief Initialize the given ADC with the specified ADC clock and startup time. * * \param p_adc Pointer to an ADC instance. * \param ul_mck Main clock of the device (value in Hz). * \param ul_adc_clock Analog-to-Digital conversion clock (in Hz). * \param ul_startuptime ADC startup time value (value in us). * Please refer to the product datasheet for details. * \param ul_offmode_startuptime ADC off mode startup time value (in us). * Please refer to the product datasheet for details. * * \return 0 on success. */ uint32_t adc_init(Adc *p_adc, const uint32_t ul_mck, const uint32_t ul_adc_clock, const uint32_t ul_startuptime) { uint32_t ul_prescal, ul_startup; p_adc->ADC_CR = ADC_CR_SWRST; /* Reset Mode Register. */ p_adc->ADC_MR = 0; /* Reset PDC transfer. */ p_adc->ADC_PTCR = (ADC_PTCR_RXTDIS | ADC_PTCR_TXTDIS); p_adc->ADC_RCR = 0; p_adc->ADC_RNCR = 0; ul_prescal = ul_mck / (2 * ul_adc_clock) - 1; ul_startup = ((ul_adc_clock / 1000000) * ul_startuptime / 8) - 1; p_adc->ADC_MR |= ADC_MR_PRESCAL(ul_prescal) | ((ul_startup << ADC_MR_STARTUP_Pos) & ADC_MR_STARTUP_Msk); return 0; } #endif /** * \brief Configure the conversion resolution. * * \param p_adc Pointer to an ADC instance. * \param resolution ADC resolution. * */ void adc_set_resolution(Adc *p_adc,const enum adc_resolution_t resolution) { p_adc->ADC_MR |= (resolution << 4) & ADC_MR_LOWRES; } #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES /** * \brief Configure conversion trigger and free run mode. * * \param p_adc Pointer to an ADC instance. * \param trigger Conversion trigger. * \param uc_freerun ADC_MR_FREERUN_ON enables freerun mode, * ADC_MR_FREERUN_OFF disables freerun mode. * */ void adc_configure_trigger(Adc *p_adc, const enum adc_trigger_t trigger, uint8_t uc_freerun) { p_adc->ADC_MR |= trigger | ((uc_freerun << 7) & ADC_MR_FREERUN); } #elif SAM3U_SERIES /** * \brief Configure conversion trigger and free run mode. * * \param p_adc Pointer to an ADC instance. * \param trigger Conversion trigger. */ void adc_configure_trigger(Adc *p_adc, const enum adc_trigger_t trigger) { p_adc->ADC_MR |= trigger; } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES /** * \brief Configures ADC power saving mode. * * \param p_adc Pointer to an ADC instance. * \param uc_sleep ADC_MR_SLEEP_NORMAL keeps the ADC Core and reference voltage * circuitry ON between conversions. * ADC_MR_SLEEP_SLEEP keeps the ADC Core and reference voltage circuitry OFF * between conversions. * \param uc_fwup ADC_MR_FWUP_OFF configures sleep mode as uc_sleep setting, * ADC_MR_FWUP_ON keeps voltage reference ON and ADC Core OFF between conversions. */ void adc_configure_power_save(Adc *p_adc, const uint8_t uc_sleep, const uint8_t uc_fwup) { p_adc->ADC_MR |= (((uc_sleep << 5) & ADC_MR_SLEEP) | ((uc_fwup << 6) & ADC_MR_FWUP)); } #elif SAM3U_SERIES /** * \brief Configure ADC power saving mode. * * \param p_adc Pointer to an ADC instance. * \param uc_sleep ADC_MR_SLEEP_NORMAL keeps the ADC Core and reference * voltage circuitry ON between conversions. * ADC_MR_SLEEP_SLEEP keeps the ADC Core and reference voltage circuitry * OFF between conversions. * \param uc_offmode 0 for Standby Mode (if Sleep Bit = 1), 1 for Off Mode. */ void adc_configure_power_save(Adc *p_adc, const uint8_t uc_sleep) { p_adc->ADC_MR |= ((uc_sleep << 5) & ADC_MR_SLEEP); } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES /** * \brief Configure conversion sequence. * * \param p_adc Pointer to an ADC instance. * \param ch_list Channel sequence list. * \param number Number of channels in the list. */ void adc_configure_sequence(Adc *p_adc, const enum adc_channel_num_t ch_list[], uint8_t uc_num) { uint8_t uc_counter; if (uc_num < 8) { for (uc_counter = 0; uc_counter < uc_num; uc_counter++) { p_adc->ADC_SEQR1 |= ch_list[uc_counter] << (4 * uc_counter); } } else { for (uc_counter = 0; uc_counter < 8; uc_counter++) { p_adc->ADC_SEQR1 |= ch_list[uc_counter] << (4 * uc_counter); } for (uc_counter = 0; uc_counter < uc_num - 8; uc_counter++) { p_adc->ADC_SEQR2 |= ch_list[uc_counter] << (4 * uc_counter); } } } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES /** * \brief Configure ADC timing. * * \param p_adc Pointer to an ADC instance. * \param uc_tracking ADC tracking time = uc_tracking / ADC clock. * \param uc_settling Analog settling time = (uc_settling + 1) / ADC clock. * \param uc_transfer Data transfer time = (uc_transfer * 2 + 3) / ADC clock. */ void adc_configure_timing(Adc *p_adc, const uint8_t uc_tracking, const enum adc_settling_time_t settling,const uint8_t uc_transfer) { p_adc->ADC_MR |= ADC_MR_TRANSFER(uc_transfer) | settling | ADC_MR_TRACKTIM(uc_tracking); } #elif SAM3N_SERIES /** * \brief Configure ADC timing. * * \param p_adc Pointer to an ADC instance. * \param uc_tracking ADC tracking time = uc_tracking / ADC clock. */ void adc_configure_timing(Adc *p_adc, const uint8_t uc_tracking) { p_adc->ADC_MR |= ADC_MR_TRACKTIM(uc_tracking); } #elif SAM3U_SERIES /** * \brief Configure ADC timing. * * \param p_adc Pointer to an ADC instance. * \param ul_sh ADC sample and hold time = uc_sh / ADC clock. */ void adc_configure_timing(Adc *p_adc, const uint32_t ul_sh) { p_adc->ADC_MR |= ADC_MR_SHTIM(ul_sh); } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES /** * \brief Enable analog change. * * \note It allows different analog settings for each channel. * * \param p_Adc Pointer to an ADC instance. */ void adc_enable_anch(Adc *p_adc) { p_adc->ADC_MR |= ADC_MR_ANACH; } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES /** * \brief Disable analog change. * * \note DIFF0, GAIN0 and OFF0 are used for all channels. * * \param p_Adc Pointer to an ADC instance. */ void adc_disable_anch(Adc *p_adc) { p_adc->ADC_MR &= ~ADC_MR_ANACH; } #endif /** * \brief Start analog-to-digital conversion. * * \note If one of the hardware event is selected as ADC trigger, * this function can NOT start analog to digital conversion. * * \param p_adc Pointer to an ADC instance. */ void adc_start(Adc *p_adc) { p_adc->ADC_CR = ADC_CR_START; } /** * \brief Stop analog-to-digital conversion. * * \param p_adc Pointer to an ADC instance. */ void adc_stop(Adc *p_adc) { p_adc->ADC_CR = ADC_CR_SWRST; } /** * \brief Enable the specified ADC channel. * * \param p_adc Pointer to an ADC instance. * \param adc_ch ADC channel number. */ void adc_enable_channel(Adc *p_adc, const enum adc_channel_num_t adc_ch) { p_adc->ADC_CHER = 1 << adc_ch; } /** * \brief Enable all ADC channels. * * \param p_adc Pointer to an ADC instance. */ void adc_enable_all_channel(Adc *p_adc) { #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES p_adc->ADC_CHER = 0xFFFF; #elif SAM3U_SERIES p_adc->ADC_CHER = 0xFF; #endif } /** * \brief Disable the specified ADC channel. * * \param p_adc Pointer to an ADC instance. * \param adc_ch ADC channel number. */ void adc_disable_channel(Adc *p_adc, const enum adc_channel_num_t adc_ch) { p_adc->ADC_CHDR = 1 << adc_ch; } /** * \brief Disable all ADC channel. * * \param p_adc Pointer to an ADC instance. */ void adc_disable_all_channel(Adc *p_adc) { #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES p_adc->ADC_CHDR = 0xFFFF; #elif SAM3U_SERIES p_adc->ADC_CHDR = 0xFF; #endif } /** * \brief Read the ADC channel status. * * \param p_adc Pointer to an ADC instance. * \param adc_ch ADC channel number. * * \retval 1 if channel is enabled. * \retval 0 if channel is disabled. */ uint32_t adc_get_channel_status(const Adc *p_adc, const enum adc_channel_num_t adc_ch) { return p_adc->ADC_CHSR & (1 << adc_ch); } /** * \brief Read the ADC result data of the specified channel. * * \param p_adc Pointer to an ADC instance. * \param adc_ch ADC channel number. * * \return ADC value of the specified channel. */ uint32_t adc_get_channel_value(const Adc *p_adc, const enum adc_channel_num_t adc_ch) { uint32_t ul_data = 0; if (15 >= adc_ch) { ul_data = *(p_adc->ADC_CDR + adc_ch); } return ul_data; } /** * \brief Read the last ADC result data. * * \param p_adc Pointer to an ADC instance. * * \return ADC latest value. */ uint32_t adc_get_latest_value(const Adc *p_adc) { return p_adc->ADC_LCDR; } #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES /** * \brief Enable TAG option so that the number of the last converted channel * can be indicated. * * \param p_adc Pointer to an ADC instance. */ void adc_enable_tag(Adc *p_adc) { p_adc->ADC_EMR |= ADC_EMR_TAG; } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES /** * \brief Disable TAG option. * * \param p_adc Pointer to an ADC instance. */ void adc_disable_tag(Adc *p_adc) { p_adc->ADC_EMR &= ~ADC_EMR_TAG; } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES /** * \brief Indicate the last converted channel. * * \note If TAG option is NOT enabled before, an incorrect channel * number is returned. * * \param p_adc Pointer to an ADC instance. * * \return The last converted channel number. */ enum adc_channel_num_t adc_get_tag(const Adc *p_adc) { return (p_adc->ADC_LCDR & ADC_LCDR_CHNB_Msk) >> ADC_LCDR_CHNB_Pos; } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES /** * \brief Enable conversion sequencer. * * \param p_adc Pointer to an ADC instance. */ void adc_start_sequencer(Adc *p_adc) { p_adc->ADC_MR |= ADC_MR_USEQ; } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES /** * \brief Disable conversion sequencer. * * \param p_adc Pointer to an ADC instance. */ void adc_stop_sequencer(Adc *p_adc) { p_adc->ADC_MR &= ~ADC_MR_USEQ; } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES /** * \brief Configure comparison mode. * * \param p_adc Pointer to an ADC instance. * \param uc_mode ADC comparison mode. */ void adc_set_comparison_mode(Adc *p_adc, const uint8_t uc_mode) { p_adc->ADC_EMR &= (uint32_t) ~ (ADC_EMR_CMPMODE_Msk); p_adc->ADC_EMR |= (uc_mode & ADC_EMR_CMPMODE_Msk); } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES /** * \brief Get comparison mode. * * \param p_adc Pointer to an ADC instance. * * \retval Compare mode value. */ uint32_t adc_get_comparison_mode(const Adc *p_adc) { return p_adc->ADC_EMR & ADC_EMR_CMPMODE_Msk; } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES /** * \brief Configure ADC compare window. * * \param p_adc Pointer to an ADC instance. * \param w_low_threshold Low threshold of compare window. * \param w_high_threshold High threshold of compare window. */ void adc_set_comparison_window(Adc *p_adc, const uint16_t us_low_threshold, const uint16_t us_high_threshold) { p_adc->ADC_CWR = ADC_CWR_LOWTHRES(us_low_threshold) | ADC_CWR_HIGHTHRES(us_high_threshold); } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES /** * \brief Configure comparison selected channel. * * \param p_adc Pointer to an ADC instance. * \param channel ADC channel number. */ void adc_set_comparison_channel(Adc *p_adc, const enum adc_channel_num_t channel) { if (channel < 16) { p_adc->ADC_EMR &= (uint32_t) ~ (ADC_EMR_CMPALL); p_adc->ADC_EMR &= (uint32_t) ~ (ADC_EMR_CMPSEL_Msk); p_adc->ADC_EMR |= (channel << ADC_EMR_CMPSEL_Pos); } else { p_adc->ADC_EMR |= ADC_EMR_CMPALL; } } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES /** * \brief Enable differential input for the specified channel. * * \param p_adc Pointer to an ADC instance. * \param channel ADC channel number. */ void adc_enable_channel_differential_input(Adc *p_adc, const enum adc_channel_num_t channel) { p_adc->ADC_COR |= 0x01u << (16 + channel); } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES /** * \brief Disable differential input for the specified channel. * * \param p_adc Pointer to an ADC instance. * \param channel ADC channel number. */ void adc_disable_channel_differential_input(Adc *p_adc, const enum adc_channel_num_t channel) { uint32_t ul_temp; ul_temp = p_adc->ADC_COR; p_adc->ADC_COR &= 0xfffeffffu << channel; p_adc->ADC_COR |= ul_temp; } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES /** * \brief Enable analog signal offset for the specified channel. * * \param p_adc Pointer to an ADC instance. * \param channel ADC channel number. */ void adc_enable_channel_input_offset(Adc *p_adc, const enum adc_channel_num_t channel) { p_adc->ADC_COR |= 0x01u << channel; } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES /** * \brief Disable analog signal offset for the specified channel. * * \param p_adc Pointer to an ADC instance. * \param channel ADC channel number. */ void adc_disable_channel_input_offset(Adc *p_adc, const enum adc_channel_num_t channel) { uint32_t ul_temp; ul_temp = p_adc->ADC_COR; p_adc->ADC_COR &= (0xfffffffeu << channel); p_adc->ADC_COR |= ul_temp; } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES /** * \brief Configure input gain for the specified channel. * * \param p_adc Pointer to an ADC instance. * \param channel ADC channel number. * \param gain Gain value for the input. */ void adc_set_channel_input_gain(Adc *p_adc, const enum adc_channel_num_t channel, const enum adc_gainvalue_t gain) { p_adc->ADC_CGR |= (0x03u << (2 * channel)) & (gain << (2 * channel)); } #endif #if SAM3SD8_SERIES || SAM4S_SERIES /** * \brief Set ADC auto calibration mode. * * \param p_adc Pointer to an ADC instance. */ void adc_set_calibmode(Adc * p_adc) { p_adc->ADC_CR |= ADC_CR_AUTOCAL; } #endif /** * \brief Return the actual ADC clock. * * \param p_adc Pointer to an ADC instance. * \param ul_mck Main clock of the device (in Hz). * * \return The actual ADC clock (in Hz). */ uint32_t adc_get_actual_adc_clock(const Adc *p_adc, const uint32_t ul_mck) { uint32_t ul_adcfreq; uint32_t ul_prescal; /* ADCClock = MCK / ( (PRESCAL+1) * 2 ) */ ul_prescal = ((p_adc->ADC_MR & ADC_MR_PRESCAL_Msk) >> ADC_MR_PRESCAL_Pos); ul_adcfreq = ul_mck / ((ul_prescal + 1) * 2); return ul_adcfreq; } /** * \brief Enable ADC interrupts. * * \param p_adc Pointer to an ADC instance. * \param ul_source Interrupts to be enabled. */ void adc_enable_interrupt(Adc *p_adc, const uint32_t ul_source) { p_adc->ADC_IER = ul_source; } /** * \brief Disable ADC interrupts. * * \param p_adc Pointer to an ADC instance. * \param ul_source Interrupts to be disabled. */ void adc_disable_interrupt(Adc *p_adc, const uint32_t ul_source) { p_adc->ADC_IDR = ul_source; } #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES /** * \brief Get ADC interrupt and overrun error status. * * \param p_adc Pointer to an ADC instance. * * \return ADC status structure. */ uint32_t adc_get_status(const Adc *p_adc) { return p_adc->ADC_ISR; } /** * \brief Get ADC interrupt and overrun error status. * * \param p_adc Pointer to an ADC instance. * * \return ADC status structure. */ uint32_t adc_get_overrun_status(const Adc *p_adc) { return p_adc->ADC_OVER; } #elif SAM3U_SERIES /** * \brief Read ADC interrupt and overrun error status. * * \param p_adc Pointer to an ADC instance. * * \retval ADC status structure. */ uint32_t adc_get_status(const Adc *p_adc) { return p_adc->ADC_SR; } #endif /** * \brief Read ADC interrupt mask. * * \param p_adc Pointer to an ADC instance. * * \return The interrupt mask value. */ uint32_t adc_get_interrupt_mask(const Adc *p_adc) { return p_adc->ADC_IMR; } #if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES /** * \brief Adapt performance versus power consumption. * * \note Please refer to ADC Characteristics in the product datasheet * for more details. * * \param p_adc Pointer to an ADC instance. * \param ibctl ADC Bias current control. */ void adc_set_bias_current(Adc *p_adc, const uint8_t uc_ibctl) { p_adc->ADC_ACR |= ADC_ACR_IBCTL(uc_ibctl); } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES /** * \brief Turn on temperature sensor. * * \param p_adc Pointer to an ADC instance. */ void adc_enable_ts(Adc *p_adc) { p_adc->ADC_ACR |= ADC_ACR_TSON; } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3XA_SERIES /** * \brief Turn off temperature sensor. * * \param p_adc Pointer to an ADC instance. */ void adc_disable_ts(Adc *p_adc) { p_adc->ADC_ACR &= ~ADC_ACR_TSON; } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES /** * \brief Enable or disable write protection of ADC registers. * * \param p_adc Pointer to an ADC instance. * \param ul_enable 1 to enable, 0 to disable. */ void adc_set_writeprotect(Adc *p_adc, const uint32_t ul_enable) { p_adc->ADC_WPMR |= ADC_WPMR_WPKEY(ul_enable); } #endif #if SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3XA_SERIES /** * \brief Indicate write protect status. * * \param p_adc Pointer to an ADC instance. * * \return 0 if the peripheral is not protected, or 16-bit write protect * violation Status. */ uint32_t adc_get_writeprotect_status(const Adc *p_adc) { return p_adc->ADC_WPSR & ADC_WPSR_WPVS; } #endif #if 0 /** * \brief calcul_startup */ static uint32_t calcul_startup(const uint32_t ul_startup) { uint32_t ul_startup_value = 0; if (ul_startup == 0) ul_startup_value = 0; else if (ul_startup == 1) ul_startup_value = 8; else if (ul_startup == 2) ul_startup_value = 16; else if (ul_startup == 3) ul_startup_value = 24; else if (ul_startup == 4) ul_startup_value = 64; else if (ul_startup == 5) ul_startup_value = 80; else if (ul_startup == 6) ul_startup_value = 96; else if (ul_startup == 7) ul_startup_value = 112; else if (ul_startup == 8) ul_startup_value = 512; else if (ul_startup == 9) ul_startup_value = 576; else if (ul_startup == 10) ul_startup_value = 640; else if (ul_startup == 11) ul_startup_value = 704; else if (ul_startup == 12) ul_startup_value = 768; else if (ul_startup == 13) ul_startup_value = 832; else if (ul_startup == 14) ul_startup_value = 896; else if (ul_startup == 15) ul_startup_value = 960; return ul_startup_value; } /** * \brief Check ADC configurations. * * \param p_adc Pointer to an ADC instance. * \param ul_mck Main clock of the device (in Hz). */ void adc_check(Adc *p_adc, const uint32_t ul_mck) { uint32_t ul_adcfreq; uint32_t ul_prescal; uint32_t ul_startup; /* ADCClock = MCK / ( (PRESCAL+1) * 2 ) */ ul_prescal = ((p_adc->ADC_MR & ADC_MR_PRESCAL_Msk) >> ADC_MR_PRESCAL_Pos); ul_adcfreq = ul_mck / ((ul_prescal + 1) * 2); printf("ADC clock frequency = %d Hz\r\n", (int)ul_adcfreq); if (ul_adcfreq < ADC_FREQ_MIN) { printf("adc frequency too low (out of specification: %d Hz)\r\n", (int)ADC_FREQ_MIN); } if (ul_adcfreq > ADC_FREQ_MAX) { printf("adc frequency too high (out of specification: %d Hz)\r\n", (int)ADC_FREQ_MAX); } ul_startup = ((p_adc->ADC_MR & ADC_MR_STARTUP_Msk) >> ADC_MR_STARTUP_Pos); if (!(p_adc->ADC_MR & ADC_MR_SLEEP_SLEEP)) { /* 40ms */ if (ADC_STARTUP_NORM * ul_adcfreq / 1000000 > calcul_startup(ul_startup)) { printf("Startup time too small: %d, programmed: %d\r\n", (int)(ADC_STARTUP_NORM * ul_adcfreq / 1000000), (int)calcul_startup(ul_startup)); } } else { if (p_adc->ADC_MR & ADC_MR_FREERUN_ON) { puts("FreeRun forbidden in sleep mode\r"); } if (!(p_adc->ADC_MR & ADC_MR_FWUP_ON)) { /* Sleep 40ms */ if (ADC_STARTUP_NORM * ul_adcfreq / 1000000 > calcul_startup(ul_startup)) { printf("Startup time too small: %d, programmed: %d\r\n", (int)(ADC_STARTUP_NORM * ul_adcfreq / 1000000), (int)(calcul_startup(ul_startup))); } } else { if (p_adc->ADC_MR & ADC_MR_FWUP_ON) { /* Fast Wake Up Sleep Mode: 12ms */ if (ADC_STARTUP_FAST * ul_adcfreq / 1000000 > calcul_startup(ul_startup)) { printf("Startup time too small: %d, programmed: %d\r\n", (int)(ADC_STARTUP_NORM * ul_adcfreq / 1000000), (int)(calcul_startup(ul_startup))); } } } } } #endif /** * \brief Get PDC registers base address. * * \param p_adc Pointer to an ADC instance. * * \return ADC PDC register base address. */ Pdc *adc_get_pdc_base(const Adc *p_adc) { return PDC_ADC; } //@} /// @cond 0 /**INDENT-OFF**/ #ifdef __cplusplus } #endif /**INDENT-ON**/ /// @endcond