/*! \file timer128.c \brief System Timer function library for Mega128. */ //***************************************************************************** // // File Name : 'timer128.c' // Title : System Timer function library for Mega128 // Author : Pascal Stang - Copyright (C) 2000-2003 // Created : 11/22/2000 // Revised : 02/24/2003 // Version : 1.2 // Target MCU : Atmel AVR Series // Editor Tabs : 4 // // This code is distributed under the GNU Public License // which can be found at http://www.gnu.org/licenses/gpl.txt // //***************************************************************************** #ifndef WIN32 #include #include #include #include #include #endif #include "global.h" #include "timer128.h" // Program ROM constants // the prescale division values stored in order of timer control register index // STOP, CLK, CLK/8, CLK/64, CLK/256, CLK/1024 unsigned short __attribute__ ((progmem)) TimerPrescaleFactor[] = {0,1,8,64,256,1024}; // the prescale division values stored in order of timer control register index // STOP, CLK, CLK/8, CLK/32, CLK/64, CLK/128, CLK/256, CLK/1024 unsigned short __attribute__ ((progmem)) TimerRTCPrescaleFactor[] = {0,1,8,32,64,128,256,1024}; // Global variables // time registers volatile unsigned long TimerPauseReg; volatile unsigned long Timer0Reg0; volatile unsigned long Timer0Reg1; volatile unsigned long Timer2Reg0; volatile unsigned long Timer2Reg1; typedef void (*voidFuncPtr)(void); volatile static voidFuncPtr TimerIntFunc[TIMER_NUM_INTERRUPTS]; // delay for a minimum of microseconds // the time resolution is dependent on the time the loop takes // e.g. with 4Mhz and 5 cycles per loop, the resolution is 1.25 us void delay_us(unsigned short time_us) { unsigned short delay_loops; register unsigned short i; delay_loops = (time_us+3)/5*CYCLES_PER_US; // +3 for rounding up (dirty) // one loop takes 5 cpu cycles for (i=0; i < delay_loops; i++) {}; } /* void delay_ms(unsigned char time_ms) { unsigned short delay_count = F_CPU / 4000; unsigned short cnt; asm volatile ("\n" "L_dl1%=:\n\t" "mov %A0, %A2\n\t" "mov %B0, %B2\n" "L_dl2%=:\n\t" "sbiw %A0, 1\n\t" "brne L_dl2%=\n\t" "dec %1\n\t" "brne L_dl1%=\n\t":"=&w" (cnt) :"r"(time_ms), "r"((unsigned short) (delay_count)) ); } */ void timerInit(void) { u08 intNum; // detach all user functions from interrupts for(intNum=0; intNum number of milliseconds u08 timerThres; u32 ticRateHz; u32 pause; // capture current pause timer value timerThres = inb(TCNT2); // reset pause timer overflow count TimerPauseReg = 0; // calculate delay for [pause_ms] milliseconds // prescaler division = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR2))) ticRateHz = F_CPU/timer2GetPrescaler(); // precision management // prevent overflow and precision underflow // -could add more conditions to improve accuracy if( ((ticRateHz < 429497) && (pause_ms <= 10000)) ) pause = (pause_ms*ticRateHz)/1000; else pause = pause_ms*(ticRateHz/1000); // loop until time expires while( ((TimerPauseReg<<8) | inb(TCNT2)) < (pause+timerThres) ) { if( TimerPauseReg < (pause>>8)); { // save power by idling the processor set_sleep_mode(SLEEP_MODE_IDLE); sleep_mode(); } } } void timer0ClearOverflowCount(void) { // clear the timer overflow counter registers Timer0Reg0 = 0; // initialize time registers Timer0Reg1 = 0; // initialize time registers } long timer0GetOverflowCount(void) { // return the current timer overflow count // (this is since the last timer0ClearOverflowCount() command was called) return Timer0Reg0; } void timer2ClearOverflowCount(void) { // clear the timer overflow counter registers Timer2Reg0 = 0; // initialize time registers Timer2Reg1 = 0; // initialize time registers } long timer2GetOverflowCount(void) { // return the current timer overflow count // (this is since the last timer2ClearOverflowCount() command was called) return Timer2Reg0; } void timer1PWMInit(u08 bitRes) { // configures timer1 for use with PWM output // on pins OC1A, OC1B, and OC1C // enable Timer1 as 8,9,10bit PWM if(bitRes == 9) { // 9bit mode sbi(TCCR1A,WGMA1); cbi(TCCR1A,WGMA0); } else if( bitRes == 10 ) { // 10bit mode sbi(TCCR1A,WGMA1); sbi(TCCR1A,WGMA0); } else { // default 8bit mode cbi(TCCR1A,WGMA1); sbi(TCCR1A,WGMA0); } // set clear-timer-on-compare-match //cbi(TCCR1B,CTC1); // clear output compare value A outb(OCR1AH, 0); outb(OCR1AL, 0); // clear output compare value B outb(OCR1BH, 0); outb(OCR1BL, 0); // clear output compare value C outb(OCR1CH, 0); outb(OCR1CL, 0); } void timer1PWMInitICR(u16 topcount) { // set PWM mode with ICR top-count cbi(TCCR1A,WGM10); sbi(TCCR1A,WGM11); sbi(TCCR1B,WGM12); sbi(TCCR1B,WGM13); // set top count value ICR1H = (u08)(topcount>>8); ICR1L = (u08)topcount; // clear output compare value A outb(OCR1AH, 0); outb(OCR1AL, 0); // clear output compare value B outb(OCR1BH, 0); outb(OCR1BL, 0); // clear output compare value C outb(OCR1CH, 0); outb(OCR1CL, 0); } void timer1PWMOff(void) { // turn off PWM on Timer1 cbi(TCCR1A,WGMA1); cbi(TCCR1A,WGMA0); // clear (disable) clear-timer-on-compare-match //cbi(TCCR1B,CTC1); // set PWM1A/B/C (OutputCompare action) to none timer1PWMAOff(); timer1PWMBOff(); timer1PWMCOff(); } void timer1PWMAOn(void) { // turn on channel A (OC1A) PWM output // set OC1A as non-inverted PWM sbi(TCCR1A,COMA1); cbi(TCCR1A,COMA0); } void timer1PWMBOn(void) { // turn on channel B (OC1B) PWM output // set OC1B as non-inverted PWM sbi(TCCR1A,COMB1); cbi(TCCR1A,COMB0); } void timer1PWMCOn(void) { // turn on channel C (OC1C) PWM output // set OC1C as non-inverted PWM sbi(TCCR1A,COMC1); cbi(TCCR1A,COMC0); } void timer1PWMAOff(void) { // turn off channel A (OC1A) PWM output // set OC1A (OutputCompare action) to none cbi(TCCR1A,COMA1); cbi(TCCR1A,COMA0); } void timer1PWMBOff(void) { // turn off channel B (OC1B) PWM output // set OC1B (OutputCompare action) to none cbi(TCCR1A,COMB1); cbi(TCCR1A,COMB0); } void timer1PWMCOff(void) { // turn off channel C (OC1C) PWM output // set OC1C (OutputCompare action) to none cbi(TCCR1A,COMC1); cbi(TCCR1A,COMC0); } void timer1PWMASet(u16 pwmDuty) { // set PWM (output compare) duty for channel A // this PWM output is generated on OC1A pin // NOTE: pwmDuty should be in the range 0-255 for 8bit PWM // pwmDuty should be in the range 0-511 for 9bit PWM // pwmDuty should be in the range 0-1023 for 10bit PWM outb(OCR1AH, (pwmDuty>>8)); // set the high 8bits of OCR1A outb(OCR1AL, (pwmDuty&0x00FF)); // set the low 8bits of OCR1A } void timer1PWMBSet(u16 pwmDuty) { // set PWM (output compare) duty for channel B // this PWM output is generated on OC1B pin // NOTE: pwmDuty should be in the range 0-255 for 8bit PWM // pwmDuty should be in the range 0-511 for 9bit PWM // pwmDuty should be in the range 0-1023 for 10bit PWM outb(OCR1BH, (pwmDuty>>8)); // set the high 8bits of OCR1B outb(OCR1BL, (pwmDuty&0x00FF)); // set the low 8bits of OCR1B } void timer1PWMCSet(u16 pwmDuty) { // set PWM (output compare) duty for channel C // this PWM output is generated on OC1C pin // NOTE: pwmDuty should be in the range 0-255 for 8bit PWM // pwmDuty should be in the range 0-511 for 9bit PWM // pwmDuty should be in the range 0-1023 for 10bit PWM outb(OCR1CH, (pwmDuty>>8)); // set the high 8bits of OCR1C outb(OCR1CL, (pwmDuty&0x00FF)); // set the low 8bits of OCR1C } void timer3PWMInit(u08 bitRes) { // configures timer1 for use with PWM output // on pins OC3A, OC3B, and OC3C // enable Timer3 as 8,9,10bit PWM if(bitRes == 9) { // 9bit mode sbi(TCCR3A,WGMA1); cbi(TCCR3A,WGMA0); } else if( bitRes == 10 ) { // 10bit mode sbi(TCCR3A,WGMA1); sbi(TCCR3A,WGMA0); } else { // default 8bit mode cbi(TCCR3A,WGMA1); sbi(TCCR3A,WGMA0); } // set clear-timer-on-compare-match //cbi(TCCR3B,CTC1); // clear output compare value A outb(OCR3AH, 0); outb(OCR3AL, 0); // clear output compare value B outb(OCR3BH, 0); outb(OCR3BL, 0); // clear output compare value B outb(OCR3CH, 0); outb(OCR3CL, 0); } void timer3PWMInitICR(u16 topcount) { // set PWM mode with ICR top-count cbi(TCCR3A,WGM30); sbi(TCCR3A,WGM31); sbi(TCCR3B,WGM32); sbi(TCCR3B,WGM33); // set top count value ICR3H = (u08)(topcount>>8); ICR3L = (u08)topcount; // clear output compare value A outb(OCR3AH, 0); outb(OCR3AL, 0); // clear output compare value B outb(OCR3BH, 0); outb(OCR3BL, 0); // clear output compare value C outb(OCR3CH, 0); outb(OCR3CL, 0); } void timer3PWMOff(void) { // turn off PWM mode on Timer3 cbi(TCCR3A,WGMA1); cbi(TCCR3A,WGMA0); // clear (disable) clear-timer-on-compare-match //cbi(TCCR3B,CTC1); // set OC3A/B/C (OutputCompare action) to none timer3PWMAOff(); timer3PWMBOff(); timer3PWMCOff(); } void timer3PWMAOn(void) { // turn on channel A (OC3A) PWM output // set OC3A as non-inverted PWM sbi(TCCR3A,COMA1); cbi(TCCR3A,COMA0); } void timer3PWMBOn(void) { // turn on channel B (OC3B) PWM output // set OC3B as non-inverted PWM sbi(TCCR3A,COMB1); cbi(TCCR3A,COMB0); } void timer3PWMCOn(void) { // turn on channel C (OC3C) PWM output // set OC3C as non-inverted PWM sbi(TCCR3A,COMC1); cbi(TCCR3A,COMC0); } void timer3PWMAOff(void) { // turn off channel A (OC3A) PWM output // set OC3A (OutputCompare action) to none cbi(TCCR3A,COMA1); cbi(TCCR3A,COMA0); } void timer3PWMBOff(void) { // turn off channel B (OC3B) PWM output // set OC3B (OutputCompare action) to none cbi(TCCR3A,COMB1); cbi(TCCR3A,COMB0); } void timer3PWMCOff(void) { // turn off channel C (OC3C) PWM output // set OC3C (OutputCompare action) to none cbi(TCCR3A,COMC1); cbi(TCCR3A,COMC0); } void timer3PWMASet(u16 pwmDuty) { // set PWM (output compare) duty for channel A // this PWM output is generated on OC3A pin // NOTE: pwmDuty should be in the range 0-255 for 8bit PWM // pwmDuty should be in the range 0-511 for 9bit PWM // pwmDuty should be in the range 0-1023 for 10bit PWM outb(OCR3AH, (pwmDuty>>8), ); // set the high 8bits of OCR3A outb(OCR3AL, (pwmDuty&0x00FF), ); // set the low 8bits of OCR3A } void timer3PWMBSet(u16 pwmDuty) { // set PWM (output compare) duty for channel B // this PWM output is generated on OC3B pin // NOTE: pwmDuty should be in the range 0-255 for 8bit PWM // pwmDuty should be in the range 0-511 for 9bit PWM // pwmDuty should be in the range 0-1023 for 10bit PWM outb(OCR3BH, (pwmDuty>>8)); // set the high 8bits of OCR3B outb(OCR3BL, (pwmDuty&0x00FF)); // set the low 8bits of OCR3B } void timer3PWMCSet(u16 pwmDuty) { // set PWM (output compare) duty for channel B // this PWM output is generated on OC3C pin // NOTE: pwmDuty should be in the range 0-255 for 8bit PWM // pwmDuty should be in the range 0-511 for 9bit PWM // pwmDuty should be in the range 0-1023 for 10bit PWM outb(OCR3CH, (pwmDuty>>8)); // set the high 8bits of OCR3C outb(OCR3CL, (pwmDuty&0x00FF)); // set the low 8bits of OCR3C } //! Interrupt handler for tcnt0 overflow interrupt TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW0) { Timer0Reg0++; // increment low-order counter if(!Timer0Reg0) // if low-order counter rollover Timer0Reg1++; // increment high-order counter // if a user function is defined, execute it too if(TimerIntFunc[TIMER0OVERFLOW_INT]) TimerIntFunc[TIMER0OVERFLOW_INT](); } //! Interrupt handler for Timer1 overflow interrupt TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW1) { // if a user function is defined, execute it if(TimerIntFunc[TIMER1OVERFLOW_INT]) TimerIntFunc[TIMER1OVERFLOW_INT](); } //! Interrupt handler for Timer2 overflow interrupt TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW2) { Timer2Reg0++; // increment low-order counter if(!Timer2Reg0) // if low-order counter rollover Timer2Reg1++; // increment high-order counter // increment pause counter TimerPauseReg++; // if a user function is defined, execute it if(TimerIntFunc[TIMER2OVERFLOW_INT]) TimerIntFunc[TIMER2OVERFLOW_INT](); } //! Interrupt handler for Timer3 overflow interrupt TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW3) { // if a user function is defined, execute it if(TimerIntFunc[TIMER3OVERFLOW_INT]) TimerIntFunc[TIMER3OVERFLOW_INT](); } //! Interrupt handler for OutputCompare0 match (OC0) interrupt TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE0) { // if a user function is defined, execute it if(TimerIntFunc[TIMER0OUTCOMPARE_INT]) TimerIntFunc[TIMER0OUTCOMPARE_INT](); } //! Interrupt handler for OutputCompare1A match (OC1A) interrupt TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1A) { // if a user function is defined, execute it if(TimerIntFunc[TIMER1OUTCOMPAREA_INT]) TimerIntFunc[TIMER1OUTCOMPAREA_INT](); } //! Interrupt handler for OutputCompare1B match (OC1B) interrupt TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1B) { // if a user function is defined, execute it if(TimerIntFunc[TIMER1OUTCOMPAREB_INT]) TimerIntFunc[TIMER1OUTCOMPAREB_INT](); } //! Interrupt handler for OutputCompare1C match (OC1C) interrupt TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1C) { // if a user function is defined, execute it if(TimerIntFunc[TIMER1OUTCOMPAREC_INT]) TimerIntFunc[TIMER1OUTCOMPAREC_INT](); } //! Interrupt handler for InputCapture1(IC1) interrupt TIMER_INTERRUPT_HANDLER(SIG_INPUT_CAPTURE1) { // if a user function is defined, execute it if(TimerIntFunc[TIMER1INPUTCAPTURE_INT]) TimerIntFunc[TIMER1INPUTCAPTURE_INT](); } //! Interrupt handler for OutputCompare2 match (OC2) interrupt TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE2) { // if a user function is defined, execute it if(TimerIntFunc[TIMER2OUTCOMPARE_INT]) TimerIntFunc[TIMER2OUTCOMPARE_INT](); } //! Interrupt handler for OutputCompare3A match (OC3A) interrupt TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE3A) { // if a user function is defined, execute it if(TimerIntFunc[TIMER3OUTCOMPAREA_INT]) TimerIntFunc[TIMER3OUTCOMPAREA_INT](); } //! Interrupt handler for OutputCompare3B match (OC3B) interrupt TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE3B) { // if a user function is defined, execute it if(TimerIntFunc[TIMER3OUTCOMPAREB_INT]) TimerIntFunc[TIMER3OUTCOMPAREB_INT](); } //! Interrupt handler for OutputCompare3C match (OC3C) interrupt TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE3C) { // if a user function is defined, execute it if(TimerIntFunc[TIMER3OUTCOMPAREC_INT]) TimerIntFunc[TIMER3OUTCOMPAREC_INT](); } //! Interrupt handler for InputCapture3 (IC3) interrupt TIMER_INTERRUPT_HANDLER(SIG_INPUT_CAPTURE3) { // if a user function is defined, execute it if(TimerIntFunc[TIMER3INPUTCAPTURE_INT]) TimerIntFunc[TIMER3INPUTCAPTURE_INT](); }