/* Copyright (c) 2012 Arduino. All right reserved. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "chip.h" #include #if SAM3XA_SERIES //#define TRACE_UOTGHS(x) x #define TRACE_UOTGHS(x) static void (*gpf_isr)(void) = (0UL); static volatile uint32_t ul_send_fifo_ptr[MAX_ENDPOINTS]; static volatile uint32_t ul_recv_fifo_ptr[MAX_ENDPOINTS]; void UDD_SetStack(void (*pf_isr)(void)) { gpf_isr = pf_isr; } void UOTGHS_Handler( void ) { if (gpf_isr) gpf_isr(); } uint32_t UDD_Init(void) { uint32_t i; for (i = 0; i < MAX_ENDPOINTS; ++i) { ul_send_fifo_ptr[i] = 0; ul_recv_fifo_ptr[i] = 0; } // Enables the USB Clock pmc_enable_periph_clk(ID_UOTGHS); pmc_enable_upll_clock(); pmc_switch_udpck_to_upllck(0); // div=0+1 pmc_enable_udpck(); // Configure interrupts NVIC_SetPriority((IRQn_Type) ID_UOTGHS, 0UL); NVIC_EnableIRQ((IRQn_Type) ID_UOTGHS); // Always authorize asynchrone USB interrupts to exit from sleep mode // for SAM3 USB wake up device except BACKUP mode //pmc_set_fast_startup_input(PMC_FSMR_USBAL); // ID pin not used then force device mode otg_disable_id_pin(); otg_force_device_mode(); // Enable USB hardware otg_disable_pad(); otg_enable_pad(); otg_enable(); otg_unfreeze_clock(); // Check USB clock //while (!Is_otg_clock_usable()) // ; udd_low_speed_disable(); udd_high_speed_disable(); //otg_ack_vbus_transition(); // Force Vbus interrupt in case of Vbus always with a high level // This is possible with a short timing between a Host mode stop/start. /*if (Is_otg_vbus_high()) { otg_raise_vbus_transition(); } otg_enable_vbus_interrupt();*/ otg_freeze_clock(); return 0UL ; } void UDD_Attach(void) { irqflags_t flags = cpu_irq_save(); TRACE_UOTGHS(printf("=> UDD_Attach\r\n");) otg_unfreeze_clock(); // Check USB clock because the source can be a PLL while (!Is_otg_clock_usable()); // Authorize attach if Vbus is present udd_attach_device(); // Enable USB line events udd_enable_reset_interrupt(); //udd_enable_sof_interrupt(); cpu_irq_restore(flags); } void UDD_Detach(void) { TRACE_UOTGHS(printf("=> UDD_Detach\r\n");) UOTGHS->UOTGHS_DEVCTRL |= UOTGHS_DEVCTRL_DETACH; } void UDD_InitEP( uint32_t ul_ep_nb, uint32_t ul_ep_cfg ) { ul_ep_nb = ul_ep_nb & 0xF; // EP range is 0..9, hence mask is 0xF. TRACE_UOTGHS(printf("=> UDD_InitEP : init EP %d\r\n", ul_ep_nb);) // Configure EP UOTGHS->UOTGHS_DEVEPTCFG[ul_ep_nb] = ul_ep_cfg; // Enable EP udd_enable_endpoint(ul_ep_nb); if (!Is_udd_endpoint_configured(ul_ep_nb)) { TRACE_UOTGHS(printf("=> UDD_InitEP : ERROR FAILED TO INIT EP %d\r\n", ul_ep_nb);) } } void UDD_InitEndpoints(const uint32_t* eps_table, const uint32_t ul_eps_table_size) { uint32_t ul_ep_nb ; for (ul_ep_nb = 1; ul_ep_nb < ul_eps_table_size; ul_ep_nb++) { // Configure EP UOTGHS->UOTGHS_DEVEPTCFG[ul_ep_nb] = eps_table[ul_ep_nb]; // Enable EP udd_enable_endpoint(ul_ep_nb); if (!Is_udd_endpoint_configured(ul_ep_nb)) { TRACE_UOTGHS(printf("=> UDD_InitEP : ERROR FAILED TO INIT EP %d\r\n", ul_ep_nb);) } } } // Wait until ready to accept IN packet. void UDD_WaitIN(void) { while (!(UOTGHS->UOTGHS_DEVEPTISR[EP0] & UOTGHS_DEVEPTISR_TXINI)) ; } void UDD_WaitOUT(void) { while (!(UOTGHS->UOTGHS_DEVEPTISR[EP0] & UOTGHS_DEVEPTISR_RXOUTI)) ; } // Send packet. void UDD_ClearIN(void) { TRACE_UOTGHS(printf("=> UDD_ClearIN: sent %d bytes\r\n", ul_send_fifo_ptr[EP0]);) UOTGHS->UOTGHS_DEVEPTICR[EP0] = UOTGHS_DEVEPTICR_TXINIC; ul_send_fifo_ptr[EP0] = 0; } void UDD_ClearOUT(void) { UOTGHS->UOTGHS_DEVEPTICR[EP0] = UOTGHS_DEVEPTICR_RXOUTIC; ul_recv_fifo_ptr[EP0] = 0; } // Wait for IN FIFO to be ready to accept data or OUT FIFO to receive data. // Return true if new IN FIFO buffer available. uint32_t UDD_WaitForINOrOUT(void) { while (!(UOTGHS->UOTGHS_DEVEPTISR[EP0] & (UOTGHS_DEVEPTISR_TXINI | UOTGHS_DEVEPTISR_RXOUTI))) ; return ((UOTGHS->UOTGHS_DEVEPTISR[EP0] & UOTGHS_DEVEPTISR_RXOUTI) == 0); } uint32_t UDD_ReceivedSetupInt(void) { return UOTGHS->UOTGHS_DEVEPTISR[EP0] & UOTGHS_DEVEPTISR_RXSTPI; } void UDD_ClearSetupInt(void) { UOTGHS->UOTGHS_DEVEPTICR[EP0] = (UOTGHS_DEVEPTICR_RXSTPIC); } uint32_t UDD_Send(uint32_t ep, const void* data, uint32_t len) { const uint8_t *ptr_src = data; uint8_t *ptr_dest = (uint8_t *) &udd_get_endpoint_fifo_access8(ep); uint32_t i; TRACE_UOTGHS(printf("=> UDD_Send (1): ep=%d ul_send_fifo_ptr=%d len=%d\r\n", ep, ul_send_fifo_ptr[ep], len);) if (ep == EP0) { if (ul_send_fifo_ptr[ep] + len > EP0_SIZE) len = EP0_SIZE - ul_send_fifo_ptr[ep]; } else { if (ul_send_fifo_ptr[ep] + len > EPX_SIZE) len = EPX_SIZE - ul_send_fifo_ptr[ep]; } for (i = 0, ptr_dest += ul_send_fifo_ptr[ep]; i < len; ++i) *ptr_dest++ = *ptr_src++; ul_send_fifo_ptr[ep] += i; if (ep == EP0) { TRACE_UOTGHS(printf("=> UDD_Send (2): ep=%d ptr_dest=%d maxlen=%d\r\n", ep, ul_send_fifo_ptr[ep], EP0_SIZE);) if (ul_send_fifo_ptr[ep] == EP0_SIZE) { UDD_ClearIN(); // Fifo is full, release this packet UDD_WaitIN(); // Wait for new FIFO buffer to be ready } } else { if (ul_send_fifo_ptr[ep] == EPX_SIZE) { UDD_ClearIN(); // Fifo is full, release this packet UDD_WaitIN(); // Wait for new FIFO buffer to be ready } } return len; } void UDD_Send8(uint32_t ep, uint8_t data ) { uint8_t *ptr_dest = (uint8_t *) &udd_get_endpoint_fifo_access8(ep); TRACE_UOTGHS(printf("=> UDD_Send8 : ul_send_fifo_ptr=%d data=0x%x\r\n", ul_send_fifo_ptr[ep], data);) ptr_dest[ul_send_fifo_ptr[ep]] = data; ul_send_fifo_ptr[ep] += 1; } uint8_t UDD_Recv8(uint32_t ep) { uint8_t *ptr_dest = (uint8_t *) &udd_get_endpoint_fifo_access8(ep); uint8_t data = ptr_dest[ul_recv_fifo_ptr[ep]]; TRACE_UOTGHS(printf("=> UDD_Recv8 : ul_recv_fifo_ptr=%d\r\n", ul_recv_fifo_ptr[ep]);) ul_recv_fifo_ptr[ep] += 1; return data; } void UDD_Recv(uint32_t ep, uint8_t* data, uint32_t len) { uint8_t *ptr_src = (uint8_t *) &udd_get_endpoint_fifo_access8(ep); uint8_t *ptr_dest = data; uint32_t i; for (i = 0, ptr_src += ul_recv_fifo_ptr[ep]; i < len; ++i) *ptr_dest++ = *ptr_src++; ul_recv_fifo_ptr[ep] += i; } void UDD_Stall(void) { UOTGHS->UOTGHS_DEVEPT = (UOTGHS_DEVEPT_EPEN0 << EP0); UOTGHS->UOTGHS_DEVEPTIER[EP0] = UOTGHS_DEVEPTIER_STALLRQS; } uint32_t UDD_FifoByteCount(uint32_t ep) { return ((UOTGHS->UOTGHS_DEVEPTISR[ep] & UOTGHS_DEVEPTISR_BYCT_Msk) >> UOTGHS_DEVEPTISR_BYCT_Pos); } void UDD_ReleaseRX(uint32_t ep) { TRACE_UOTGHS(puts("=> UDD_ReleaseRX\r\n");) UOTGHS->UOTGHS_DEVEPTICR[ep] = (UOTGHS_DEVEPTICR_NAKOUTIC | UOTGHS_DEVEPTICR_RXOUTIC); UOTGHS->UOTGHS_DEVEPTIDR[ep] = UOTGHS_DEVEPTIDR_FIFOCONC; ul_recv_fifo_ptr[ep] = 0; } void UDD_ReleaseTX(uint32_t ep) { TRACE_UOTGHS(printf("=> UDD_ReleaseTX ep=%d\r\n", ep);) UOTGHS->UOTGHS_DEVEPTICR[ep] = (UOTGHS_DEVEPTICR_NAKINIC | UOTGHS_DEVEPTICR_RXOUTIC | UOTGHS_DEVEPTICR_TXINIC); UOTGHS->UOTGHS_DEVEPTIDR[ep] = UOTGHS_DEVEPTIDR_FIFOCONC; ul_send_fifo_ptr[ep] = 0; } // Return true if the current bank is not full. uint32_t UDD_ReadWriteAllowed(uint32_t ep) { return (UOTGHS->UOTGHS_DEVEPTISR[ep] & UOTGHS_DEVEPTISR_RWALL); } void UDD_SetAddress(uint32_t addr) { TRACE_UOTGHS(printf("=> UDD_SetAddress : setting address to %d\r\n", addr);) udd_configure_address(addr); udd_enable_address(); } uint32_t UDD_GetFrameNumber(void) { return udd_frame_number(); } #endif /* SAM3XA_SERIES */