/* wiring.c - Partial implementation of the Wiring API for the ATmega8. Part of Arduino - http://www.arduino.cc/ Copyright (c) 2005-2006 David A. Mellis This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA $Id$ */ #include #include #include #include #include #include #ifndef cbi #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #endif #ifndef sbi #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) #endif // from Pascal's avrlib #include "global.h" //#include "a2d.h" #include "timer.h" #include "uart.h" // timer.h #defines delay to be delay_us, we need to undefine // it so our delay can be in milliseconds. #undef delay #include "wiring.h" // The number of times timer 0 has overflowed since the program started. // Must be volatile or gcc will optimize away some uses of it. volatile unsigned long timer0_overflow_count; // Get the hardware port of the given virtual pin number. This comes from // the pins_*.c file for the active board configuration. int digitalPinToPort(int pin) { return digital_pin_to_port[pin].port; } // Get the bit location within the hardware port of the given virtual pin. // This comes from the pins_*.c file for the active board configuration. int digitalPinToBit(int pin) { return digital_pin_to_port[pin].bit; } int analogOutPinToPort(int pin) { return analog_out_pin_to_port[pin].port; } int analogOutPinToBit(int pin) { return analog_out_pin_to_port[pin].bit; } int analogInPinToBit(int pin) { return analog_in_pin_to_port[pin].bit; } void timer2PWMOn() { // configure timer 2 for normal (non-inverting) pwm operation // this attaches the timer to the pwm pin sbi(TCCR2, COM21); cbi(TCCR2, COM20); } void timer2PWMOff() { // disconnect the timer from the pwm pin cbi(TCCR2, COM21); cbi(TCCR2, COM20); } void timer2PWMSet(unsigned char val) { OCR2 = val; } void pinMode(int pin, int mode) { if (digitalPinToPort(pin) != NOT_A_PIN) { if (mode == INPUT) cbi(_SFR_IO8(port_to_mode[digitalPinToPort(pin)]), digitalPinToBit(pin)); else sbi(_SFR_IO8(port_to_mode[digitalPinToPort(pin)]), digitalPinToBit(pin)); } } void digitalWrite(int pin, int val) { if (digitalPinToPort(pin) != NOT_A_PIN) { // If the pin that support PWM output, we need to turn it off // before doing a digital write. if (analogOutPinToBit(pin) == 1) timer1PWMAOff(); if (analogOutPinToBit(pin) == 2) timer1PWMBOff(); if (analogOutPinToBit(pin) == 3) timer2PWMOff(); if (val == LOW) cbi(_SFR_IO8(port_to_output[digitalPinToPort(pin)]), digitalPinToBit(pin)); else sbi(_SFR_IO8(port_to_output[digitalPinToPort(pin)]), digitalPinToBit(pin)); } } int digitalRead(int pin) { if (digitalPinToPort(pin) != NOT_A_PIN) { // If the pin that support PWM output, we need to turn it off // before getting a digital reading. if (analogOutPinToBit(pin) == 1) timer1PWMAOff(); if (analogOutPinToBit(pin) == 2) timer1PWMBOff(); if (analogOutPinToBit(pin) == 3) timer2PWMOff(); return (_SFR_IO8(port_to_input[digitalPinToPort(pin)]) >> digitalPinToBit(pin)) & 0x01; } return LOW; } int analogRead(int pin) { unsigned int low, high, ch = analogInPinToBit(pin); // the low 4 bits of ADMUX select the ADC channel ADMUX = (ADMUX & (unsigned int) 0xf0) | (ch & (unsigned int) 0x0f); // without a delay, we seem to read from the wrong channel delay(1); // start the conversion sbi(ADCSRA, ADSC); // ADSC is cleared when the conversion finishes while (bit_is_set(ADCSRA, ADSC)); // we have to read ADCL first; doing so locks both ADCL // and ADCH until ADCH is read. reading ADCL second would // cause the results of each conversion to be discarded, // as ADCL and ADCH would be locked when it completed. low = ADCL; high = ADCH; // combine the two bytes return (high << 8) | low; } // Right now, PWM output only works on the pins with // hardware support. These are defined in the appropriate // pins_*.c file. For the rest of the pins, we default // to digital output. void analogWrite(int pin, int val) { // We need to make sure the PWM output is enabled for those pins // that support it, as we turn it off when digitally reading or // writing with them. Also, make sure the pin is in output mode // for consistenty with Wiring, which doesn't require a pinMode // call for the analog output pins. if (analogOutPinToBit(pin) == 1) { pinMode(pin, OUTPUT); timer1PWMAOn(); timer1PWMASet(val); } else if (analogOutPinToBit(pin) == 2) { pinMode(pin, OUTPUT); timer1PWMBOn(); timer1PWMBSet(val); } else if (analogOutPinToBit(pin) == 3) { pinMode(pin, OUTPUT); timer2PWMOn(); timer2PWMSet(val); } else if (val < 128) digitalWrite(pin, LOW); else digitalWrite(pin, HIGH); } void beginSerial(long baud) { uartInit(); uartSetBaudRate(baud); } void serialWrite(unsigned char c) { uartSendByte(c); } int serialAvailable() { return uartGetRxBuffer()->datalength; } int serialRead() { return uartGetByte(); } void printMode(int mode) { // do nothing, we only support serial printing, not lcd. } void printByte(unsigned char c) { serialWrite(c); } void printNewline() { printByte('\n'); } void printString(char *s) { while (*s) printByte(*s++); } void printIntegerInBase(unsigned long n, unsigned long base) { unsigned char buf[8 * sizeof(long)]; // Assumes 8-bit chars. unsigned long i = 0; if (n == 0) { printByte('0'); return; } while (n > 0) { buf[i++] = n % base; n /= base; } for (; i > 0; i--) printByte(buf[i - 1] < 10 ? '0' + buf[i - 1] : 'A' + buf[i - 1] - 10); } void printInteger(long n) { if (n < 0) { printByte('-'); n = -n; } printIntegerInBase(n, 10); } void printHex(unsigned long n) { printIntegerInBase(n, 16); } void printOctal(unsigned long n) { printIntegerInBase(n, 8); } void printBinary(unsigned long n) { printIntegerInBase(n, 2); } /* Including print() adds approximately 1500 bytes to the binary size, * so we replace it with the smaller and less-confusing printString(), * printInteger(), etc. void print(const char *format, ...) { char buf[256]; va_list ap; va_start(ap, format); vsnprintf(buf, 256, format, ap); va_end(ap); printString(buf); } */ TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW0) { timer0_overflow_count++; } unsigned long millis() { // timer 0 increments every 8 cycles, and overflows when it reaches 256. // we calculate the total number of clock cycles, then divide by the // number of clock cycles per millisecond. //return timer0_overflow_count * 8UL * 256UL / (F_CPU / 1000UL); // calculating the total number of clock cycles overflows an // unsigned long, so instead find 1/128th the number of clock cycles // and divide by 1/128th the number of clock cycles per millisecond. return timer0_overflow_count * 8UL * 2UL / (F_CPU / 128000UL); } void delay(unsigned long ms) { unsigned long start = millis(); while (millis() - start < ms) ; } /* Delay for the given number of microseconds. Assumes a 16 MHz clock. * Disables interrupts, which will disrupt the millis() function if used * too frequently. */ void delayMicroseconds(unsigned int us) { // calling avrlib's delay_us() function with low values (e.g. 1 or // 2 microseconds) gives delays longer than desired. //delay_us(us); // for a one-microsecond delay, simply return. the overhead // of the function call yields a delay of approximately 1 1/8 us. if (--us == 0) return; // the following loop takes a quarter of a microsecond (4 cycles) // per iteration, so execute it four times for each microsecond of // delay requested. us <<= 2; // account for the time taken in the preceeding commands. us -= 2; // disable interrupts, otherwise the timer 0 overflow interrupt that // tracks milliseconds will make us delay longer than we want. cli(); // busy wait __asm__ __volatile__ ( "1: sbiw %0,1" "\n\t" // 2 cycles "brne 1b" : "=w" (us) : "0" (us) // 2 cycles ); // reenable interrupts. sei(); } /* unsigned long pulseIn(int pin, int state) { unsigned long width = 0; while (digitalRead(pin) == !state) ; while (digitalRead(pin) != !state) width++; return width * 17 / 2; // convert to microseconds } */ /* Measures the length (in microseconds) of a pulse on the pin; state is HIGH * or LOW, the type of pulse to measure. Works on pulses from 10 microseconds * to 3 minutes in length, but must be called at least N microseconds before * the start of the pulse. */ unsigned long pulseIn(int pin, int state) { // cache the port and bit of the pin in order to speed up the // pulse width measuring loop and achieve finer resolution. calling // digitalRead() instead yields much coarser resolution. int r = port_to_input[digitalPinToPort(pin)]; int bit = digitalPinToBit(pin); int mask = 1 << bit; unsigned long width = 0; // compute the desired bit pattern for the port reading (e.g. set or // clear the bit corresponding to the pin being read). the !!state // ensures that the function treats any non-zero value of state as HIGH. state = (!!state) << bit; // wait for the pulse to start while ((_SFR_IO8(r) & mask) != state) ; // wait for the pulse to stop while ((_SFR_IO8(r) & mask) == state) width++; // convert the reading to microseconds. the slower the CPU speed, the // proportionally fewer iterations of the loop will occur (e.g. a // 4 MHz clock will yield a width that is one-fourth of that read with // a 16 MHz clock). each loop was empirically determined to take // approximately 23/20 of a microsecond with a 16 MHz clock. return width * (16000000UL / F_CPU) * 20 / 23; } int main(void) { // this needs to be called before setup() or some functions won't // work there sei(); // timer 0 is used for millis() and delay() //timer0Init(); timer0_overflow_count = 0; // set timer 0 prescale factor to 8 sbi(TCCR0, CS01); // enable timer 0 overflow interrupt sbi(TIMSK, TOIE0); // timers 1 & 2 are used for the hardware pwm timer1Init(); //timer1SetPrescaler(TIMER_CLK_DIV1); timer1PWMInit(8); timer2Init(); // configure timer 2 for phase correct pwm // this is better for motors as it ensures an even waveform // note, however, that fast pwm mode can achieve a frequency of up // 8 MHz (with a 16 MHz clock) at 50% duty cycle cbi(TCCR2, WGM21); sbi(TCCR2, WGM20); // set a2d reference to AVCC (5 volts) cbi(ADMUX, REFS1); sbi(ADMUX, REFS0); // set a2d prescale factor to 128 // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range. // XXX: this will not work properly for other clock speeds, and // this code should use F_CPU to determine the prescale factor. sbi(ADCSRA, ADPS2); sbi(ADCSRA, ADPS1); sbi(ADCSRA, ADPS0); // enable a2d conversions sbi(ADCSRA, ADEN); setup(); for (;;) loop(); return 0; }