/** * \file * * \brief Enhanced Embedded Flash Controller (EEFC) driver for SAM. * * Copyright (c) 2011-2012 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * */ #include "../chip.h" #include /// @cond 0 /**INDENT-OFF**/ #ifdef __cplusplus extern "C" { #endif /**INDENT-ON**/ /// @endcond /** * \defgroup sam_drivers_efc_group Enhanced Embedded Flash Controller (EEFC) * * The Enhanced Embedded Flash Controller ensures the interface of the Flash block with * the 32-bit internal bus. * * @{ */ /* Address definition for read operation */ #if (SAM3XA_SERIES || SAM3U_SERIES /*|| SAM4SD16 || SAM4SD32*/) # define READ_BUFF_ADDR0 IFLASH0_ADDR # define READ_BUFF_ADDR1 IFLASH1_ADDR #elif (SAM3S_SERIES || SAM3N_SERIES) # define READ_BUFF_ADDR IFLASH_ADDR #elif (SAM3U_SERIES || SAM4S_SERIES) # define READ_BUFF_ADDR IFLASH0_ADDR #else # warning Only reading unique id for sam3 is implemented. #endif /* Flash Writing Protection Key */ #define FWP_KEY 0x5Au #if SAM4S_SERIES #define EEFC_FCR_FCMD(value) \ ((EEFC_FCR_FCMD_Msk & ((value) << EEFC_FCR_FCMD_Pos))) #define EEFC_ERROR_FLAGS (EEFC_FSR_FLOCKE | EEFC_FSR_FCMDE | EEFC_FSR_FLERR) #else #define EEFC_ERROR_FLAGS (EEFC_FSR_FLOCKE | EEFC_FSR_FCMDE) #endif /* * Local function declaration. * Because they are RAM functions, they need 'extern' declaration. */ extern void efc_write_fmr(Efc *p_efc, uint32_t ul_fmr); extern uint32_t efc_perform_fcr(Efc *p_efc, uint32_t ul_fcr); /** * \brief Initialize the EFC controller. * * \param ul_access_mode 0 for 128-bit, EEFC_FMR_FAM for 64-bit. * \param ul_fws The number of wait states in cycle (no shift). * * \return 0 if successful. */ uint32_t efc_init(Efc *p_efc, uint32_t ul_access_mode, uint32_t ul_fws) { efc_write_fmr(p_efc, ul_access_mode | EEFC_FMR_FWS(ul_fws)); return EFC_RC_OK; } /** * \brief Enable the flash ready interrupt. * * \param p_efc Pointer to an EFC instance. */ void efc_enable_frdy_interrupt(Efc *p_efc) { uint32_t ul_fmr = p_efc->EEFC_FMR; efc_write_fmr(p_efc, ul_fmr | EEFC_FMR_FRDY); } /** * \brief Disable the flash ready interrupt. * * \param p_efc Pointer to an EFC instance. */ void efc_disable_frdy_interrupt(Efc *p_efc) { uint32_t ul_fmr = p_efc->EEFC_FMR; efc_write_fmr(p_efc, ul_fmr & (~EEFC_FMR_FRDY)); } /** * \brief Set flash access mode. * * \param p_efc Pointer to an EFC instance. * \param ul_mode 0 for 128-bit, EEFC_FMR_FAM for 64-bit. */ void efc_set_flash_access_mode(Efc *p_efc, uint32_t ul_mode) { uint32_t ul_fmr = p_efc->EEFC_FMR & (~EEFC_FMR_FAM); efc_write_fmr(p_efc, ul_fmr | ul_mode); } /** * \brief Get flash access mode. * * \param p_efc Pointer to an EFC instance. * * \return 0 for 128-bit or EEFC_FMR_FAM for 64-bit. */ uint32_t efc_get_flash_access_mode(Efc *p_efc) { return (p_efc->EEFC_FMR & EEFC_FMR_FAM); } /** * \brief Set flash wait state. * * \param p_efc Pointer to an EFC instance. * \param ul_fws The number of wait states in cycle (no shift). */ void efc_set_wait_state(Efc *p_efc, uint32_t ul_fws) { uint32_t ul_fmr = p_efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk); efc_write_fmr(p_efc, ul_fmr | EEFC_FMR_FWS(ul_fws)); } /** * \brief Get flash wait state. * * \param p_efc Pointer to an EFC instance. * * \return The number of wait states in cycle (no shift). */ uint32_t efc_get_wait_state(Efc *p_efc) { return ((p_efc->EEFC_FMR & EEFC_FMR_FWS_Msk) >> EEFC_FMR_FWS_Pos); } /** * \brief Perform the given command and wait until its completion (or an error). * * \note Unique ID commands are not supported, use efc_read_unique_id. * * \param p_efc Pointer to an EFC instance. * \param ul_command Command to perform. * \param ul_argument Optional command argument. * * \note This function will automatically choose to use IAP function. * * \return 0 if successful, otherwise returns an error code. */ uint32_t efc_perform_command(Efc *p_efc, uint32_t ul_command, uint32_t ul_argument) { // Unique ID commands are not supported. if (ul_command == EFC_FCMD_STUI || ul_command == EFC_FCMD_SPUI) { return EFC_RC_NOT_SUPPORT; } #if (SAM3XA_SERIES || SAM3U4) // Use IAP function with 2 parameters in ROM. static uint32_t(*iap_perform_command) (uint32_t, uint32_t); uint32_t ul_efc_nb = (p_efc == EFC0) ? 0 : 1; iap_perform_command = (uint32_t(*)(uint32_t, uint32_t)) *((uint32_t *) CHIP_FLASH_IAP_ADDRESS); iap_perform_command(ul_efc_nb, EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(ul_argument) | EEFC_FCR_FCMD(ul_command)); return (p_efc->EEFC_FSR & EEFC_ERROR_FLAGS); #elif (SAM3N_SERIES || SAM3S_SERIES || SAM4S_SERIES || SAM3U_SERIES) // Use IAP function with 2 parameter in ROM. static uint32_t(*iap_perform_command) (uint32_t, uint32_t); iap_perform_command = (uint32_t(*)(uint32_t, uint32_t)) *((uint32_t *) CHIP_FLASH_IAP_ADDRESS); #if SAM4S_SERIES uint32_t ul_efc_nb = (p_efc == EFC0) ? 0 : 1; iap_perform_command(ul_efc_nb, EEFC_FCR_FKEY_PASSWD | EEFC_FCR_FARG(ul_argument) | EEFC_FCR_FCMD(ul_command)); #else iap_perform_command(0, EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(ul_argument) | EEFC_FCR_FCMD(ul_command)); #endif return (p_efc->EEFC_FSR & EEFC_ERROR_FLAGS); #else // Use RAM Function. return efc_perform_fcr(p_efc, EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(ul_argument) | EEFC_FCR_FCMD(ul_command)); #endif } /** * \brief Get the current status of the EEFC. * * \note This function clears the value of some status bits (FLOCKE, FCMDE). * * \param p_efc Pointer to an EFC instance. * * \return The current status. */ uint32_t efc_get_status(Efc *p_efc) { return p_efc->EEFC_FSR; } /** * \brief Get the result of the last executed command. * * \param p_efc Pointer to an EFC instance. * * \return The result of the last executed command. */ uint32_t efc_get_result(Efc *p_efc) { return p_efc->EEFC_FRR; } /** * \brief Perform read sequence. Supported sequences are read Unique ID and * read User Signature * * \param p_efc Pointer to an EFC instance. * \param ul_cmd_st Start command to perform. * \param ul_cmd_sp Stop command to perform. * \param p_ul_buf Pointer to an data buffer. * \param ul_size Buffer size. * * \return 0 if successful, otherwise returns an error code. */ #ifdef __ICCARM__ __ramfunc #else __attribute__ ((section(".ramfunc"))) #endif uint32_t efc_perform_read_sequence(Efc *p_efc, uint32_t ul_cmd_st, uint32_t ul_cmd_sp, uint32_t *p_ul_buf, uint32_t ul_size) { volatile uint32_t ul_status; uint32_t ul_cnt; #if (SAM3U4 || SAM3XA_SERIES /*|| SAM4SD16 || SAM4SD32*/) uint32_t *p_ul_data = (uint32_t *) ((p_efc == EFC0) ? READ_BUFF_ADDR0 : READ_BUFF_ADDR1); #elif (SAM3S_SERIES || SAM4S_SERIES || SAM3N_SERIES || SAM3U_SERIES) uint32_t *p_ul_data = (uint32_t *) READ_BUFF_ADDR; #else return EFC_RC_NOT_SUPPORT; #endif if (p_ul_buf == NULL) { return EFC_RC_INVALID; } p_efc->EEFC_FMR |= (0x1u << 16); /* Send the Start Read command */ #if SAM4S_SERIES p_efc->EEFC_FCR = EEFC_FCR_FKEY_PASSWD | EEFC_FCR_FARG(0) | EEFC_FCR_FCMD(ul_cmd_st); #else p_efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(0) | EEFC_FCR_FCMD(ul_cmd_st); #endif /* Wait for the FRDY bit in the Flash Programming Status Register * (EEFC_FSR) falls. */ do { ul_status = p_efc->EEFC_FSR; } while ((ul_status & EEFC_FSR_FRDY) == EEFC_FSR_FRDY); /* The data is located in the first address of the Flash * memory mapping. */ for (ul_cnt = 0; ul_cnt < ul_size; ul_cnt++) { p_ul_buf[ul_cnt] = p_ul_data[ul_cnt]; } /* To stop the read mode */ p_efc->EEFC_FCR = #if SAM4S_SERIES EEFC_FCR_FKEY_PASSWD | EEFC_FCR_FARG(0) | EEFC_FCR_FCMD(ul_cmd_sp); #else EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(0) | EEFC_FCR_FCMD(ul_cmd_sp); #endif /* Wait for the FRDY bit in the Flash Programming Status Register (EEFC_FSR) * rises. */ do { ul_status = p_efc->EEFC_FSR; } while ((ul_status & EEFC_FSR_FRDY) != EEFC_FSR_FRDY); p_efc->EEFC_FMR &= ~(0x1u << 16); return EFC_RC_OK; } /** * \brief Set mode register. * * \param p_efc Pointer to an EFC instance. * \param ul_fmr Value of mode register */ #ifdef __ICCARM__ __ramfunc #else __attribute__ ((section(".ramfunc"))) #endif void efc_write_fmr(Efc *p_efc, uint32_t ul_fmr) { p_efc->EEFC_FMR = ul_fmr; } /** * \brief Perform command. * * \param p_efc Pointer to an EFC instance. * \param ul_fcr Flash command. * * \return The current status. */ #ifdef __ICCARM__ __ramfunc #else __attribute__ ((section(".ramfunc"))) #endif uint32_t efc_perform_fcr(Efc *p_efc, uint32_t ul_fcr) { volatile uint32_t ul_status; p_efc->EEFC_FCR = ul_fcr; do { ul_status = p_efc->EEFC_FSR; } while ((ul_status & EEFC_FSR_FRDY) != EEFC_FSR_FRDY); return (ul_status & EEFC_ERROR_FLAGS); } //@} /// @cond 0 /**INDENT-OFF**/ #ifdef __cplusplus } #endif /**INDENT-ON**/ /// @endcond