1
0
mirror of https://github.com/arduino/Arduino.git synced 2024-12-11 22:24:13 +01:00
Arduino/hardware/arduino/bootloaders/optiboot/optiboot_luminet.lst
WestfW 00706284de Add a version number to the optiboot source and binary.
http://code.google.com/p/arduino/issues/detail?id=554

end of flash memory where they can be read (at least in theory) by
device programmers, hex-file examination, or application programs.
This is done by putting the version number in a separate section
(".version"), and using linker/objcopy magic to locate that section as
appropriate for the target chip.  (See
http://lists.gnu.org/archive/html/avr-gcc-list/2011-02/msg00016.html
for some discussion on the details.)

Start the version at 4.1 (the last "packaged" version of optiboot was
called version 3, so the "top of source" would be 4.0, and adding the
version number makes 4.1)

Refactor LDSECTION in the Makefile to LDSECTIONS so that multiple
section start addresses can be defined.

Change the _isp makefile definitions to make the bootloader section
readable (but not writable) by the application section.  (This would
need to be done elsewhere as well to handle all bootloader programming
techniques.  Notably Arduino's boards.txt

Note that this change does not change the "code" portion of optiboot
at all.  The only diffs in the .hex files are the added version word
at the end of flash memory.
2011-06-10 17:47:47 -07:00

625 lines
20 KiB
Plaintext

optiboot_luminet.elf: file format elf32-avr
Sections:
Idx Name Size VMA LMA File off Algn
0 .version 00000002 00001efe 00001efe 000002c8 2**0
CONTENTS, READONLY
1 .text 00000274 00000000 00000000 00000054 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
2 .debug_aranges 00000028 00000000 00000000 000002ca 2**0
CONTENTS, READONLY, DEBUGGING
3 .debug_pubnames 00000078 00000000 00000000 000002f2 2**0
CONTENTS, READONLY, DEBUGGING
4 .debug_info 000002a5 00000000 00000000 0000036a 2**0
CONTENTS, READONLY, DEBUGGING
5 .debug_abbrev 0000019d 00000000 00000000 0000060f 2**0
CONTENTS, READONLY, DEBUGGING
6 .debug_line 000004ac 00000000 00000000 000007ac 2**0
CONTENTS, READONLY, DEBUGGING
7 .debug_frame 000000a0 00000000 00000000 00000c58 2**2
CONTENTS, READONLY, DEBUGGING
8 .debug_str 00000150 00000000 00000000 00000cf8 2**0
CONTENTS, READONLY, DEBUGGING
9 .debug_loc 00000194 00000000 00000000 00000e48 2**0
CONTENTS, READONLY, DEBUGGING
10 .debug_ranges 00000088 00000000 00000000 00000fdc 2**0
CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:
00000000 <main>:
#define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4))
#define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6))
#endif
/* main program starts here */
int main(void) {
0: 11 24 eor r1, r1
#ifdef __AVR_ATmega8__
SP=RAMEND; // This is done by hardware reset
#endif
// Adaboot no-wait mod
ch = MCUSR;
2: 84 b7 in r24, 0x34 ; 52
MCUSR = 0;
4: 14 be out 0x34, r1 ; 52
if (!(ch & _BV(EXTRF))) appStart();
6: 81 ff sbrs r24, 1
8: 22 d1 rcall .+580 ; 0x24e <appStart>
#if LED_START_FLASHES > 0
// Set up Timer 1 for timeout counter
TCCR1B = _BV(CS12) | _BV(CS10); // div 1024
a: 85 e0 ldi r24, 0x05 ; 5
c: 8e bd out 0x2e, r24 ; 46
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
#endif
#endif
// Set up watchdog to trigger after 500ms
watchdogConfig(WATCHDOG_1S);
e: 8e e0 ldi r24, 0x0E ; 14
10: 1a d1 rcall .+564 ; 0x246 <watchdogConfig>
/* Set LED pin as output */
LED_DDR |= _BV(LED);
12: d4 9a sbi 0x1a, 4 ; 26
#ifdef SOFT_UART
/* Set TX pin as output */
UART_DDR |= _BV(UART_TX_BIT);
14: d2 9a sbi 0x1a, 2 ; 26
16: 86 e0 ldi r24, 0x06 ; 6
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
18: 23 ec ldi r18, 0xC3 ; 195
1a: 3f ef ldi r19, 0xFF ; 255
TIFR1 = _BV(TOV1);
1c: 91 e0 ldi r25, 0x01 ; 1
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
1e: 3d bd out 0x2d, r19 ; 45
20: 2c bd out 0x2c, r18 ; 44
TIFR1 = _BV(TOV1);
22: 9b b9 out 0x0b, r25 ; 11
while(!(TIFR1 & _BV(TOV1)));
24: 58 9b sbis 0x0b, 0 ; 11
26: fe cf rjmp .-4 ; 0x24 <__zero_reg__+0x23>
#ifdef __AVR_ATmega8__
LED_PORT ^= _BV(LED);
#else
LED_PIN |= _BV(LED);
28: cc 9a sbi 0x19, 4 ; 25
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
2a: a8 95 wdr
LED_PORT ^= _BV(LED);
#else
LED_PIN |= _BV(LED);
#endif
watchdogReset();
} while (--count);
2c: 81 50 subi r24, 0x01 ; 1
2e: b9 f7 brne .-18 ; 0x1e <__zero_reg__+0x1d>
/* get character from UART */
ch = getch();
if(ch == STK_GET_PARAMETER) {
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
30: dd 24 eor r13, r13
32: d3 94 inc r13
__boot_page_fill_short((uint16_t)(void*)addrPtr,a);
addrPtr += 2;
} while (--ch);
// Write from programming buffer
__boot_page_write_short((uint16_t)(void*)address);
34: 85 e0 ldi r24, 0x05 ; 5
36: c8 2e mov r12, r24
vect -= 4; // Instruction is a relative jump (rjmp), so recalculate.
buff[8] = vect & 0xff;
buff[9] = vect >> 8;
// Add jump to bootloader at RESET vector
buff[0] = 0x7f;
38: 0f e7 ldi r16, 0x7F ; 127
3a: f0 2e mov r15, r16
buff[1] = 0xce; // rjmp 0x1d00 instruction
3c: 1e ec ldi r17, 0xCE ; 206
3e: e1 2e mov r14, r17
#endif
/* Forever loop */
for (;;) {
/* get character from UART */
ch = getch();
40: e9 d0 rcall .+466 ; 0x214 <getch>
if(ch == STK_GET_PARAMETER) {
42: 81 34 cpi r24, 0x41 ; 65
44: 21 f4 brne .+8 ; 0x4e <__SREG__+0xf>
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
46: 81 e0 ldi r24, 0x01 ; 1
48: 0d d1 rcall .+538 ; 0x264 <getNch>
putch(0x03);
4a: 83 e0 ldi r24, 0x03 ; 3
4c: 20 c0 rjmp .+64 ; 0x8e <__SREG__+0x4f>
}
else if(ch == STK_SET_DEVICE) {
4e: 82 34 cpi r24, 0x42 ; 66
50: 11 f4 brne .+4 ; 0x56 <__SREG__+0x17>
// SET DEVICE is ignored
getNch(20);
52: 84 e1 ldi r24, 0x14 ; 20
54: 03 c0 rjmp .+6 ; 0x5c <__SREG__+0x1d>
}
else if(ch == STK_SET_DEVICE_EXT) {
56: 85 34 cpi r24, 0x45 ; 69
58: 19 f4 brne .+6 ; 0x60 <__SREG__+0x21>
// SET DEVICE EXT is ignored
getNch(5);
5a: 85 e0 ldi r24, 0x05 ; 5
5c: 03 d1 rcall .+518 ; 0x264 <getNch>
5e: c8 c0 rjmp .+400 ; 0x1f0 <__SREG__+0x1b1>
}
else if(ch == STK_LOAD_ADDRESS) {
60: 85 35 cpi r24, 0x55 ; 85
62: 81 f4 brne .+32 ; 0x84 <__SREG__+0x45>
// LOAD ADDRESS
uint16_t newAddress;
newAddress = getch();
64: d7 d0 rcall .+430 ; 0x214 <getch>
newAddress = (newAddress & 0xff) | (getch() << 8);
66: 08 2f mov r16, r24
68: 10 e0 ldi r17, 0x00 ; 0
6a: d4 d0 rcall .+424 ; 0x214 <getch>
6c: 90 e0 ldi r25, 0x00 ; 0
6e: 98 2f mov r25, r24
70: 88 27 eor r24, r24
72: 80 2b or r24, r16
74: 91 2b or r25, r17
#ifdef RAMPZ
// Transfer top bit to RAMPZ
RAMPZ = (newAddress & 0x8000) ? 1 : 0;
#endif
newAddress += newAddress; // Convert from word address to byte address
76: 88 0f add r24, r24
78: 99 1f adc r25, r25
address = newAddress;
7a: 90 93 81 01 sts 0x0181, r25
7e: 80 93 80 01 sts 0x0180, r24
82: b5 c0 rjmp .+362 ; 0x1ee <__SREG__+0x1af>
verifySpace();
}
else if(ch == STK_UNIVERSAL) {
84: 86 35 cpi r24, 0x56 ; 86
86: 29 f4 brne .+10 ; 0x92 <__SREG__+0x53>
// UNIVERSAL command is ignored
getNch(4);
88: 84 e0 ldi r24, 0x04 ; 4
8a: ec d0 rcall .+472 ; 0x264 <getNch>
putch(0x00);
8c: 80 e0 ldi r24, 0x00 ; 0
8e: b3 d0 rcall .+358 ; 0x1f6 <putch>
90: af c0 rjmp .+350 ; 0x1f0 <__SREG__+0x1b1>
}
/* Write memory, length is big endian and is in bytes */
else if(ch == STK_PROG_PAGE) {
92: 84 36 cpi r24, 0x64 ; 100
94: 09 f0 breq .+2 ; 0x98 <__SREG__+0x59>
96: 6b c0 rjmp .+214 ; 0x16e <__SREG__+0x12f>
// PROGRAM PAGE - we support flash programming only, not EEPROM
uint8_t *bufPtr;
uint16_t addrPtr;
getLen();
98: d1 d0 rcall .+418 ; 0x23c <getLen>
9a: c0 e0 ldi r28, 0x00 ; 0
9c: d1 e0 ldi r29, 0x01 ; 1
// If we are in RWW section, immediately start page erase
if (address < NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address);
// While that is going on, read in page contents
bufPtr = buff;
do *bufPtr++ = getch();
9e: ba d0 rcall .+372 ; 0x214 <getch>
a0: 89 93 st Y+, r24
while (--length);
a2: 80 91 82 01 lds r24, 0x0182
a6: 81 50 subi r24, 0x01 ; 1
a8: 80 93 82 01 sts 0x0182, r24
ac: 88 23 and r24, r24
ae: b9 f7 brne .-18 ; 0x9e <__SREG__+0x5f>
// If we are in NRWW section, page erase has to be delayed until now.
// Todo: Take RAMPZ into account
if (address >= NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address);
b0: e0 91 80 01 lds r30, 0x0180
b4: f0 91 81 01 lds r31, 0x0181
b8: 83 e0 ldi r24, 0x03 ; 3
ba: 87 bf out 0x37, r24 ; 55
bc: e8 95 spm
// Read command terminator, start reply
verifySpace();
be: cc d0 rcall .+408 ; 0x258 <verifySpace>
// If only a partial page is to be programmed, the erase might not be complete.
// So check that here
boot_spm_busy_wait();
c0: 07 b6 in r0, 0x37 ; 55
c2: 00 fc sbrc r0, 0
c4: fd cf rjmp .-6 ; 0xc0 <__SREG__+0x81>
#ifdef VIRTUAL_BOOT_PARTITION
if ((uint16_t)(void*)address == 0) {
c6: 80 91 80 01 lds r24, 0x0180
ca: 90 91 81 01 lds r25, 0x0181
ce: 89 2b or r24, r25
d0: 41 f5 brne .+80 ; 0x122 <__SREG__+0xe3>
// This is the reset vector page. We need to live-patch the code so the
// bootloader runs.
//
// Move RESET vector to WDT vector
uint16_t vect = buff[0] | (buff[1]<<8);
d2: 80 91 00 01 lds r24, 0x0100
d6: 20 91 01 01 lds r18, 0x0101
da: 30 e0 ldi r19, 0x00 ; 0
dc: 32 2f mov r19, r18
de: 22 27 eor r18, r18
e0: 90 e0 ldi r25, 0x00 ; 0
e2: 28 2b or r18, r24
e4: 39 2b or r19, r25
rstVect = vect;
e6: 30 93 85 01 sts 0x0185, r19
ea: 20 93 84 01 sts 0x0184, r18
wdtVect = buff[8] | (buff[9]<<8);
ee: 40 91 08 01 lds r20, 0x0108
f2: 80 91 09 01 lds r24, 0x0109
f6: 90 e0 ldi r25, 0x00 ; 0
f8: 98 2f mov r25, r24
fa: 88 27 eor r24, r24
fc: 50 e0 ldi r21, 0x00 ; 0
fe: 84 2b or r24, r20
100: 95 2b or r25, r21
102: 90 93 87 01 sts 0x0187, r25
106: 80 93 86 01 sts 0x0186, r24
vect -= 4; // Instruction is a relative jump (rjmp), so recalculate.
10a: 24 50 subi r18, 0x04 ; 4
10c: 30 40 sbci r19, 0x00 ; 0
buff[8] = vect & 0xff;
10e: 20 93 08 01 sts 0x0108, r18
buff[9] = vect >> 8;
112: 23 2f mov r18, r19
114: 33 27 eor r19, r19
116: 20 93 09 01 sts 0x0109, r18
// Add jump to bootloader at RESET vector
buff[0] = 0x7f;
11a: f0 92 00 01 sts 0x0100, r15
buff[1] = 0xce; // rjmp 0x1d00 instruction
11e: e0 92 01 01 sts 0x0101, r14
}
#endif
// Copy buffer into programming buffer
bufPtr = buff;
addrPtr = (uint16_t)(void*)address;
122: 40 91 80 01 lds r20, 0x0180
126: 50 91 81 01 lds r21, 0x0181
12a: a0 e0 ldi r26, 0x00 ; 0
12c: b1 e0 ldi r27, 0x01 ; 1
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
12e: 2c 91 ld r18, X
130: 30 e0 ldi r19, 0x00 ; 0
a |= (*bufPtr++) << 8;
132: 11 96 adiw r26, 0x01 ; 1
134: 8c 91 ld r24, X
136: 11 97 sbiw r26, 0x01 ; 1
138: 90 e0 ldi r25, 0x00 ; 0
13a: 98 2f mov r25, r24
13c: 88 27 eor r24, r24
13e: 82 2b or r24, r18
140: 93 2b or r25, r19
#define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4))
#define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6))
#endif
/* main program starts here */
int main(void) {
142: 12 96 adiw r26, 0x02 ; 2
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
__boot_page_fill_short((uint16_t)(void*)addrPtr,a);
144: fa 01 movw r30, r20
146: 0c 01 movw r0, r24
148: d7 be out 0x37, r13 ; 55
14a: e8 95 spm
14c: 11 24 eor r1, r1
addrPtr += 2;
14e: 4e 5f subi r20, 0xFE ; 254
150: 5f 4f sbci r21, 0xFF ; 255
} while (--ch);
152: f1 e0 ldi r31, 0x01 ; 1
154: a0 34 cpi r26, 0x40 ; 64
156: bf 07 cpc r27, r31
158: 51 f7 brne .-44 ; 0x12e <__SREG__+0xef>
// Write from programming buffer
__boot_page_write_short((uint16_t)(void*)address);
15a: e0 91 80 01 lds r30, 0x0180
15e: f0 91 81 01 lds r31, 0x0181
162: c7 be out 0x37, r12 ; 55
164: e8 95 spm
boot_spm_busy_wait();
166: 07 b6 in r0, 0x37 ; 55
168: 00 fc sbrc r0, 0
16a: fd cf rjmp .-6 ; 0x166 <__SREG__+0x127>
16c: 41 c0 rjmp .+130 ; 0x1f0 <__SREG__+0x1b1>
boot_rww_enable();
#endif
}
/* Read memory block mode, length is big endian. */
else if(ch == STK_READ_PAGE) {
16e: 84 37 cpi r24, 0x74 ; 116
170: 89 f5 brne .+98 ; 0x1d4 <__SREG__+0x195>
// READ PAGE - we only read flash
getLen();
172: 64 d0 rcall .+200 ; 0x23c <getLen>
verifySpace();
174: 71 d0 rcall .+226 ; 0x258 <verifySpace>
#ifdef VIRTUAL_BOOT_PARTITION
do {
// Undo vector patch in bottom page so verify passes
if (address == 0) ch=rstVect & 0xff;
176: e0 91 80 01 lds r30, 0x0180
17a: f0 91 81 01 lds r31, 0x0181
17e: 30 97 sbiw r30, 0x00 ; 0
180: 19 f4 brne .+6 ; 0x188 <__SREG__+0x149>
182: 20 91 84 01 lds r18, 0x0184
186: 13 c0 rjmp .+38 ; 0x1ae <__SREG__+0x16f>
else if (address == 1) ch=rstVect >> 8;
188: e1 30 cpi r30, 0x01 ; 1
18a: f1 05 cpc r31, r1
18c: 19 f4 brne .+6 ; 0x194 <__SREG__+0x155>
18e: 20 91 85 01 lds r18, 0x0185
192: 0d c0 rjmp .+26 ; 0x1ae <__SREG__+0x16f>
else if (address == 8) ch=wdtVect & 0xff;
194: e8 30 cpi r30, 0x08 ; 8
196: f1 05 cpc r31, r1
198: 19 f4 brne .+6 ; 0x1a0 <__SREG__+0x161>
19a: 20 91 86 01 lds r18, 0x0186
19e: 07 c0 rjmp .+14 ; 0x1ae <__SREG__+0x16f>
else if (address == 9) ch=wdtVect >> 8;
1a0: e9 30 cpi r30, 0x09 ; 9
1a2: f1 05 cpc r31, r1
1a4: 19 f4 brne .+6 ; 0x1ac <__SREG__+0x16d>
1a6: 20 91 87 01 lds r18, 0x0187
1aa: 01 c0 rjmp .+2 ; 0x1ae <__SREG__+0x16f>
else ch = pgm_read_byte_near(address);
1ac: 24 91 lpm r18, Z+
address++;
1ae: 80 91 80 01 lds r24, 0x0180
1b2: 90 91 81 01 lds r25, 0x0181
1b6: 01 96 adiw r24, 0x01 ; 1
1b8: 90 93 81 01 sts 0x0181, r25
1bc: 80 93 80 01 sts 0x0180, r24
putch(ch);
1c0: 82 2f mov r24, r18
1c2: 19 d0 rcall .+50 ; 0x1f6 <putch>
} while (--length);
1c4: 80 91 82 01 lds r24, 0x0182
1c8: 81 50 subi r24, 0x01 ; 1
1ca: 80 93 82 01 sts 0x0182, r24
1ce: 88 23 and r24, r24
1d0: 91 f6 brne .-92 ; 0x176 <__SREG__+0x137>
1d2: 0e c0 rjmp .+28 ; 0x1f0 <__SREG__+0x1b1>
#endif
#endif
}
/* Get device signature bytes */
else if(ch == STK_READ_SIGN) {
1d4: 85 37 cpi r24, 0x75 ; 117
1d6: 39 f4 brne .+14 ; 0x1e6 <__SREG__+0x1a7>
// READ SIGN - return what Avrdude wants to hear
verifySpace();
1d8: 3f d0 rcall .+126 ; 0x258 <verifySpace>
putch(SIGNATURE_0);
1da: 8e e1 ldi r24, 0x1E ; 30
1dc: 0c d0 rcall .+24 ; 0x1f6 <putch>
putch(SIGNATURE_1);
1de: 83 e9 ldi r24, 0x93 ; 147
1e0: 0a d0 rcall .+20 ; 0x1f6 <putch>
putch(SIGNATURE_2);
1e2: 8c e0 ldi r24, 0x0C ; 12
1e4: 54 cf rjmp .-344 ; 0x8e <__SREG__+0x4f>
}
else if (ch == 'Q') {
1e6: 81 35 cpi r24, 0x51 ; 81
1e8: 11 f4 brne .+4 ; 0x1ee <__SREG__+0x1af>
// Adaboot no-wait mod
watchdogConfig(WATCHDOG_16MS);
1ea: 88 e0 ldi r24, 0x08 ; 8
1ec: 2c d0 rcall .+88 ; 0x246 <watchdogConfig>
verifySpace();
}
else {
// This covers the response to commands like STK_ENTER_PROGMODE
verifySpace();
1ee: 34 d0 rcall .+104 ; 0x258 <verifySpace>
}
putch(STK_OK);
1f0: 80 e1 ldi r24, 0x10 ; 16
1f2: 01 d0 rcall .+2 ; 0x1f6 <putch>
1f4: 25 cf rjmp .-438 ; 0x40 <__SREG__+0x1>
000001f6 <putch>:
void putch(char ch) {
#ifndef SOFT_UART
while (!(UCSR0A & _BV(UDRE0)));
UDR0 = ch;
#else
__asm__ __volatile__ (
1f6: 2a e0 ldi r18, 0x0A ; 10
1f8: 30 e0 ldi r19, 0x00 ; 0
1fa: 80 95 com r24
1fc: 08 94 sec
1fe: 10 f4 brcc .+4 ; 0x204 <putch+0xe>
200: da 98 cbi 0x1b, 2 ; 27
202: 02 c0 rjmp .+4 ; 0x208 <putch+0x12>
204: da 9a sbi 0x1b, 2 ; 27
206: 00 00 nop
208: 15 d0 rcall .+42 ; 0x234 <uartDelay>
20a: 14 d0 rcall .+40 ; 0x234 <uartDelay>
20c: 86 95 lsr r24
20e: 2a 95 dec r18
210: b1 f7 brne .-20 ; 0x1fe <putch+0x8>
[uartBit] "I" (UART_TX_BIT)
:
"r25"
);
#endif
}
212: 08 95 ret
00000214 <getch>:
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
214: a8 95 wdr
LED_PIN |= _BV(LED);
#endif
#endif
return ch;
}
216: 29 e0 ldi r18, 0x09 ; 9
218: 30 e0 ldi r19, 0x00 ; 0
21a: cb 99 sbic 0x19, 3 ; 25
21c: fe cf rjmp .-4 ; 0x21a <getch+0x6>
21e: 0a d0 rcall .+20 ; 0x234 <uartDelay>
220: 09 d0 rcall .+18 ; 0x234 <uartDelay>
222: 08 d0 rcall .+16 ; 0x234 <uartDelay>
224: 88 94 clc
226: cb 99 sbic 0x19, 3 ; 25
228: 08 94 sec
22a: 2a 95 dec r18
22c: 11 f0 breq .+4 ; 0x232 <getch+0x1e>
22e: 87 95 ror r24
230: f7 cf rjmp .-18 ; 0x220 <getch+0xc>
232: 08 95 ret
00000234 <uartDelay>:
#if UART_B_VALUE > 255
#error Baud rate too slow for soft UART
#endif
void uartDelay() {
__asm__ __volatile__ (
234: 9e e0 ldi r25, 0x0E ; 14
236: 9a 95 dec r25
238: f1 f7 brne .-4 ; 0x236 <uartDelay+0x2>
23a: 08 95 ret
0000023c <getLen>:
} while (--count);
}
#endif
uint8_t getLen() {
getch();
23c: eb df rcall .-42 ; 0x214 <getch>
length = getch();
23e: ea df rcall .-44 ; 0x214 <getch>
240: 80 93 82 01 sts 0x0182, r24
return getch();
}
244: e7 cf rjmp .-50 ; 0x214 <getch>
00000246 <watchdogConfig>:
"wdr\n"
);
}
void watchdogConfig(uint8_t x) {
WDTCSR = _BV(WDCE) | _BV(WDE);
246: 98 e1 ldi r25, 0x18 ; 24
248: 91 bd out 0x21, r25 ; 33
WDTCSR = x;
24a: 81 bd out 0x21, r24 ; 33
}
24c: 08 95 ret
0000024e <appStart>:
void appStart() {
watchdogConfig(WATCHDOG_OFF);
24e: 80 e0 ldi r24, 0x00 ; 0
250: fa df rcall .-12 ; 0x246 <watchdogConfig>
__asm__ __volatile__ (
252: e4 e0 ldi r30, 0x04 ; 4
254: ff 27 eor r31, r31
256: 09 94 ijmp
00000258 <verifySpace>:
do getch(); while (--count);
verifySpace();
}
void verifySpace() {
if (getch() != CRC_EOP) appStart();
258: dd df rcall .-70 ; 0x214 <getch>
25a: 80 32 cpi r24, 0x20 ; 32
25c: 09 f0 breq .+2 ; 0x260 <verifySpace+0x8>
25e: f7 df rcall .-18 ; 0x24e <appStart>
putch(STK_INSYNC);
260: 84 e1 ldi r24, 0x14 ; 20
}
262: c9 cf rjmp .-110 ; 0x1f6 <putch>
00000264 <getNch>:
::[count] "M" (UART_B_VALUE)
);
}
#endif
void getNch(uint8_t count) {
264: 1f 93 push r17
266: 18 2f mov r17, r24
do getch(); while (--count);
268: d5 df rcall .-86 ; 0x214 <getch>
26a: 11 50 subi r17, 0x01 ; 1
26c: e9 f7 brne .-6 ; 0x268 <getNch+0x4>
verifySpace();
26e: f4 df rcall .-24 ; 0x258 <verifySpace>
}
270: 1f 91 pop r17
272: 08 95 ret