1
0
mirror of https://github.com/arduino/Arduino.git synced 2025-01-19 08:52:15 +01:00
Arduino/hardware/arduino/bootloaders/optiboot/optiboot_pro_16MHz.lst
WestfW 00706284de Add a version number to the optiboot source and binary.
http://code.google.com/p/arduino/issues/detail?id=554

end of flash memory where they can be read (at least in theory) by
device programmers, hex-file examination, or application programs.
This is done by putting the version number in a separate section
(".version"), and using linker/objcopy magic to locate that section as
appropriate for the target chip.  (See
http://lists.gnu.org/archive/html/avr-gcc-list/2011-02/msg00016.html
for some discussion on the details.)

Start the version at 4.1 (the last "packaged" version of optiboot was
called version 3, so the "top of source" would be 4.0, and adding the
version number makes 4.1)

Refactor LDSECTION in the Makefile to LDSECTIONS so that multiple
section start addresses can be defined.

Change the _isp makefile definitions to make the bootloader section
readable (but not writable) by the application section.  (This would
need to be done elsewhere as well to handle all bootloader programming
techniques.  Notably Arduino's boards.txt

Note that this change does not change the "code" portion of optiboot
at all.  The only diffs in the .hex files are the added version word
at the end of flash memory.
2011-06-10 17:47:47 -07:00

557 lines
18 KiB
Plaintext

optiboot_pro_16MHz.elf: file format elf32-avr
Sections:
Idx Name Size VMA LMA File off Algn
0 .text 000001fc 00003e00 00003e00 00000054 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .version 00000002 00003ffe 00003ffe 00000250 2**0
CONTENTS, READONLY
2 .debug_aranges 00000028 00000000 00000000 00000252 2**0
CONTENTS, READONLY, DEBUGGING
3 .debug_pubnames 0000006a 00000000 00000000 0000027a 2**0
CONTENTS, READONLY, DEBUGGING
4 .debug_info 00000285 00000000 00000000 000002e4 2**0
CONTENTS, READONLY, DEBUGGING
5 .debug_abbrev 0000019f 00000000 00000000 00000569 2**0
CONTENTS, READONLY, DEBUGGING
6 .debug_line 00000453 00000000 00000000 00000708 2**0
CONTENTS, READONLY, DEBUGGING
7 .debug_frame 00000090 00000000 00000000 00000b5c 2**2
CONTENTS, READONLY, DEBUGGING
8 .debug_str 00000141 00000000 00000000 00000bec 2**0
CONTENTS, READONLY, DEBUGGING
9 .debug_loc 000001e1 00000000 00000000 00000d2d 2**0
CONTENTS, READONLY, DEBUGGING
10 .debug_ranges 00000068 00000000 00000000 00000f0e 2**0
CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:
00003e00 <main>:
#define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4))
#define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6))
#endif
/* main program starts here */
int main(void) {
3e00: 11 24 eor r1, r1
#ifdef __AVR_ATmega8__
SP=RAMEND; // This is done by hardware reset
#endif
// Adaboot no-wait mod
ch = MCUSR;
3e02: 84 b7 in r24, 0x34 ; 52
MCUSR = 0;
3e04: 14 be out 0x34, r1 ; 52
if (!(ch & _BV(EXTRF))) appStart();
3e06: 81 ff sbrs r24, 1
3e08: e6 d0 rcall .+460 ; 0x3fd6 <appStart>
#if LED_START_FLASHES > 0
// Set up Timer 1 for timeout counter
TCCR1B = _BV(CS12) | _BV(CS10); // div 1024
3e0a: 85 e0 ldi r24, 0x05 ; 5
3e0c: 80 93 81 00 sts 0x0081, r24
UCSRA = _BV(U2X); //Double speed mode USART
UCSRB = _BV(RXEN) | _BV(TXEN); // enable Rx & Tx
UCSRC = _BV(URSEL) | _BV(UCSZ1) | _BV(UCSZ0); // config USART; 8N1
UBRRL = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
#else
UCSR0A = _BV(U2X0); //Double speed mode USART0
3e10: 82 e0 ldi r24, 0x02 ; 2
3e12: 80 93 c0 00 sts 0x00C0, r24
UCSR0B = _BV(RXEN0) | _BV(TXEN0);
3e16: 88 e1 ldi r24, 0x18 ; 24
3e18: 80 93 c1 00 sts 0x00C1, r24
UCSR0C = _BV(UCSZ00) | _BV(UCSZ01);
3e1c: 86 e0 ldi r24, 0x06 ; 6
3e1e: 80 93 c2 00 sts 0x00C2, r24
UBRR0L = (uint8_t)( (F_CPU + BAUD_RATE * 4L) / (BAUD_RATE * 8L) - 1 );
3e22: 80 e1 ldi r24, 0x10 ; 16
3e24: 80 93 c4 00 sts 0x00C4, r24
#endif
#endif
// Set up watchdog to trigger after 500ms
watchdogConfig(WATCHDOG_1S);
3e28: 8e e0 ldi r24, 0x0E ; 14
3e2a: cf d0 rcall .+414 ; 0x3fca <watchdogConfig>
/* Set LED pin as output */
LED_DDR |= _BV(LED);
3e2c: 25 9a sbi 0x04, 5 ; 4
3e2e: 86 e0 ldi r24, 0x06 ; 6
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e30: 20 e3 ldi r18, 0x30 ; 48
3e32: 3c ef ldi r19, 0xFC ; 252
TIFR1 = _BV(TOV1);
3e34: 91 e0 ldi r25, 0x01 ; 1
}
#if LED_START_FLASHES > 0
void flash_led(uint8_t count) {
do {
TCNT1 = -(F_CPU/(1024*16));
3e36: 30 93 85 00 sts 0x0085, r19
3e3a: 20 93 84 00 sts 0x0084, r18
TIFR1 = _BV(TOV1);
3e3e: 96 bb out 0x16, r25 ; 22
while(!(TIFR1 & _BV(TOV1)));
3e40: b0 9b sbis 0x16, 0 ; 22
3e42: fe cf rjmp .-4 ; 0x3e40 <main+0x40>
#ifdef __AVR_ATmega8__
LED_PORT ^= _BV(LED);
#else
LED_PIN |= _BV(LED);
3e44: 1d 9a sbi 0x03, 5 ; 3
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3e46: a8 95 wdr
LED_PORT ^= _BV(LED);
#else
LED_PIN |= _BV(LED);
#endif
watchdogReset();
} while (--count);
3e48: 81 50 subi r24, 0x01 ; 1
3e4a: a9 f7 brne .-22 ; 0x3e36 <main+0x36>
/* get character from UART */
ch = getch();
if(ch == STK_GET_PARAMETER) {
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
3e4c: dd 24 eor r13, r13
3e4e: d3 94 inc r13
__boot_page_fill_short((uint16_t)(void*)addrPtr,a);
addrPtr += 2;
} while (--ch);
// Write from programming buffer
__boot_page_write_short((uint16_t)(void*)address);
3e50: a5 e0 ldi r26, 0x05 ; 5
3e52: ea 2e mov r14, r26
boot_spm_busy_wait();
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3e54: f1 e1 ldi r31, 0x11 ; 17
3e56: ff 2e mov r15, r31
#endif
/* Forever loop */
for (;;) {
/* get character from UART */
ch = getch();
3e58: ab d0 rcall .+342 ; 0x3fb0 <getch>
if(ch == STK_GET_PARAMETER) {
3e5a: 81 34 cpi r24, 0x41 ; 65
3e5c: 21 f4 brne .+8 ; 0x3e66 <main+0x66>
// GET PARAMETER returns a generic 0x03 reply - enough to keep Avrdude happy
getNch(1);
3e5e: 81 e0 ldi r24, 0x01 ; 1
3e60: c5 d0 rcall .+394 ; 0x3fec <getNch>
putch(0x03);
3e62: 83 e0 ldi r24, 0x03 ; 3
3e64: 20 c0 rjmp .+64 ; 0x3ea6 <main+0xa6>
}
else if(ch == STK_SET_DEVICE) {
3e66: 82 34 cpi r24, 0x42 ; 66
3e68: 11 f4 brne .+4 ; 0x3e6e <main+0x6e>
// SET DEVICE is ignored
getNch(20);
3e6a: 84 e1 ldi r24, 0x14 ; 20
3e6c: 03 c0 rjmp .+6 ; 0x3e74 <main+0x74>
}
else if(ch == STK_SET_DEVICE_EXT) {
3e6e: 85 34 cpi r24, 0x45 ; 69
3e70: 19 f4 brne .+6 ; 0x3e78 <main+0x78>
// SET DEVICE EXT is ignored
getNch(5);
3e72: 85 e0 ldi r24, 0x05 ; 5
3e74: bb d0 rcall .+374 ; 0x3fec <getNch>
3e76: 91 c0 rjmp .+290 ; 0x3f9a <main+0x19a>
}
else if(ch == STK_LOAD_ADDRESS) {
3e78: 85 35 cpi r24, 0x55 ; 85
3e7a: 81 f4 brne .+32 ; 0x3e9c <main+0x9c>
// LOAD ADDRESS
uint16_t newAddress;
newAddress = getch();
3e7c: 99 d0 rcall .+306 ; 0x3fb0 <getch>
newAddress = (newAddress & 0xff) | (getch() << 8);
3e7e: 08 2f mov r16, r24
3e80: 10 e0 ldi r17, 0x00 ; 0
3e82: 96 d0 rcall .+300 ; 0x3fb0 <getch>
3e84: 90 e0 ldi r25, 0x00 ; 0
3e86: 98 2f mov r25, r24
3e88: 88 27 eor r24, r24
3e8a: 80 2b or r24, r16
3e8c: 91 2b or r25, r17
#ifdef RAMPZ
// Transfer top bit to RAMPZ
RAMPZ = (newAddress & 0x8000) ? 1 : 0;
#endif
newAddress += newAddress; // Convert from word address to byte address
3e8e: 88 0f add r24, r24
3e90: 99 1f adc r25, r25
address = newAddress;
3e92: 90 93 01 02 sts 0x0201, r25
3e96: 80 93 00 02 sts 0x0200, r24
3e9a: 7e c0 rjmp .+252 ; 0x3f98 <main+0x198>
verifySpace();
}
else if(ch == STK_UNIVERSAL) {
3e9c: 86 35 cpi r24, 0x56 ; 86
3e9e: 29 f4 brne .+10 ; 0x3eaa <main+0xaa>
// UNIVERSAL command is ignored
getNch(4);
3ea0: 84 e0 ldi r24, 0x04 ; 4
3ea2: a4 d0 rcall .+328 ; 0x3fec <getNch>
putch(0x00);
3ea4: 80 e0 ldi r24, 0x00 ; 0
3ea6: 7c d0 rcall .+248 ; 0x3fa0 <putch>
3ea8: 78 c0 rjmp .+240 ; 0x3f9a <main+0x19a>
}
/* Write memory, length is big endian and is in bytes */
else if(ch == STK_PROG_PAGE) {
3eaa: 84 36 cpi r24, 0x64 ; 100
3eac: 09 f0 breq .+2 ; 0x3eb0 <main+0xb0>
3eae: 4e c0 rjmp .+156 ; 0x3f4c <main+0x14c>
// PROGRAM PAGE - we support flash programming only, not EEPROM
uint8_t *bufPtr;
uint16_t addrPtr;
getLen();
3eb0: 87 d0 rcall .+270 ; 0x3fc0 <getLen>
// If we are in RWW section, immediately start page erase
if (address < NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address);
3eb2: e0 91 00 02 lds r30, 0x0200
3eb6: f0 91 01 02 lds r31, 0x0201
3eba: 88 e3 ldi r24, 0x38 ; 56
3ebc: e0 30 cpi r30, 0x00 ; 0
3ebe: f8 07 cpc r31, r24
3ec0: 18 f4 brcc .+6 ; 0x3ec8 <main+0xc8>
3ec2: 83 e0 ldi r24, 0x03 ; 3
3ec4: 87 bf out 0x37, r24 ; 55
3ec6: e8 95 spm
3ec8: c0 e0 ldi r28, 0x00 ; 0
3eca: d1 e0 ldi r29, 0x01 ; 1
// While that is going on, read in page contents
bufPtr = buff;
do *bufPtr++ = getch();
3ecc: 71 d0 rcall .+226 ; 0x3fb0 <getch>
3ece: 89 93 st Y+, r24
while (--length);
3ed0: 80 91 02 02 lds r24, 0x0202
3ed4: 81 50 subi r24, 0x01 ; 1
3ed6: 80 93 02 02 sts 0x0202, r24
3eda: 88 23 and r24, r24
3edc: b9 f7 brne .-18 ; 0x3ecc <main+0xcc>
// If we are in NRWW section, page erase has to be delayed until now.
// Todo: Take RAMPZ into account
if (address >= NRWWSTART) __boot_page_erase_short((uint16_t)(void*)address);
3ede: e0 91 00 02 lds r30, 0x0200
3ee2: f0 91 01 02 lds r31, 0x0201
3ee6: 88 e3 ldi r24, 0x38 ; 56
3ee8: e0 30 cpi r30, 0x00 ; 0
3eea: f8 07 cpc r31, r24
3eec: 18 f0 brcs .+6 ; 0x3ef4 <main+0xf4>
3eee: 83 e0 ldi r24, 0x03 ; 3
3ef0: 87 bf out 0x37, r24 ; 55
3ef2: e8 95 spm
// Read command terminator, start reply
verifySpace();
3ef4: 75 d0 rcall .+234 ; 0x3fe0 <verifySpace>
// If only a partial page is to be programmed, the erase might not be complete.
// So check that here
boot_spm_busy_wait();
3ef6: 07 b6 in r0, 0x37 ; 55
3ef8: 00 fc sbrc r0, 0
3efa: fd cf rjmp .-6 ; 0x3ef6 <main+0xf6>
}
#endif
// Copy buffer into programming buffer
bufPtr = buff;
addrPtr = (uint16_t)(void*)address;
3efc: 40 91 00 02 lds r20, 0x0200
3f00: 50 91 01 02 lds r21, 0x0201
3f04: a0 e0 ldi r26, 0x00 ; 0
3f06: b1 e0 ldi r27, 0x01 ; 1
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
3f08: 2c 91 ld r18, X
3f0a: 30 e0 ldi r19, 0x00 ; 0
a |= (*bufPtr++) << 8;
3f0c: 11 96 adiw r26, 0x01 ; 1
3f0e: 8c 91 ld r24, X
3f10: 11 97 sbiw r26, 0x01 ; 1
3f12: 90 e0 ldi r25, 0x00 ; 0
3f14: 98 2f mov r25, r24
3f16: 88 27 eor r24, r24
3f18: 82 2b or r24, r18
3f1a: 93 2b or r25, r19
#define rstVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+4))
#define wdtVect (*(uint16_t*)(RAMSTART+SPM_PAGESIZE*2+6))
#endif
/* main program starts here */
int main(void) {
3f1c: 12 96 adiw r26, 0x02 ; 2
ch = SPM_PAGESIZE / 2;
do {
uint16_t a;
a = *bufPtr++;
a |= (*bufPtr++) << 8;
__boot_page_fill_short((uint16_t)(void*)addrPtr,a);
3f1e: fa 01 movw r30, r20
3f20: 0c 01 movw r0, r24
3f22: d7 be out 0x37, r13 ; 55
3f24: e8 95 spm
3f26: 11 24 eor r1, r1
addrPtr += 2;
3f28: 4e 5f subi r20, 0xFE ; 254
3f2a: 5f 4f sbci r21, 0xFF ; 255
} while (--ch);
3f2c: f1 e0 ldi r31, 0x01 ; 1
3f2e: a0 38 cpi r26, 0x80 ; 128
3f30: bf 07 cpc r27, r31
3f32: 51 f7 brne .-44 ; 0x3f08 <main+0x108>
// Write from programming buffer
__boot_page_write_short((uint16_t)(void*)address);
3f34: e0 91 00 02 lds r30, 0x0200
3f38: f0 91 01 02 lds r31, 0x0201
3f3c: e7 be out 0x37, r14 ; 55
3f3e: e8 95 spm
boot_spm_busy_wait();
3f40: 07 b6 in r0, 0x37 ; 55
3f42: 00 fc sbrc r0, 0
3f44: fd cf rjmp .-6 ; 0x3f40 <main+0x140>
#if defined(RWWSRE)
// Reenable read access to flash
boot_rww_enable();
3f46: f7 be out 0x37, r15 ; 55
3f48: e8 95 spm
3f4a: 27 c0 rjmp .+78 ; 0x3f9a <main+0x19a>
#endif
}
/* Read memory block mode, length is big endian. */
else if(ch == STK_READ_PAGE) {
3f4c: 84 37 cpi r24, 0x74 ; 116
3f4e: b9 f4 brne .+46 ; 0x3f7e <main+0x17e>
// READ PAGE - we only read flash
getLen();
3f50: 37 d0 rcall .+110 ; 0x3fc0 <getLen>
verifySpace();
3f52: 46 d0 rcall .+140 ; 0x3fe0 <verifySpace>
putch(result);
address++;
}
while (--length);
#else
do putch(pgm_read_byte_near(address++));
3f54: e0 91 00 02 lds r30, 0x0200
3f58: f0 91 01 02 lds r31, 0x0201
3f5c: 31 96 adiw r30, 0x01 ; 1
3f5e: f0 93 01 02 sts 0x0201, r31
3f62: e0 93 00 02 sts 0x0200, r30
3f66: 31 97 sbiw r30, 0x01 ; 1
3f68: e4 91 lpm r30, Z+
3f6a: 8e 2f mov r24, r30
3f6c: 19 d0 rcall .+50 ; 0x3fa0 <putch>
while (--length);
3f6e: 80 91 02 02 lds r24, 0x0202
3f72: 81 50 subi r24, 0x01 ; 1
3f74: 80 93 02 02 sts 0x0202, r24
3f78: 88 23 and r24, r24
3f7a: 61 f7 brne .-40 ; 0x3f54 <main+0x154>
3f7c: 0e c0 rjmp .+28 ; 0x3f9a <main+0x19a>
#endif
#endif
}
/* Get device signature bytes */
else if(ch == STK_READ_SIGN) {
3f7e: 85 37 cpi r24, 0x75 ; 117
3f80: 39 f4 brne .+14 ; 0x3f90 <main+0x190>
// READ SIGN - return what Avrdude wants to hear
verifySpace();
3f82: 2e d0 rcall .+92 ; 0x3fe0 <verifySpace>
putch(SIGNATURE_0);
3f84: 8e e1 ldi r24, 0x1E ; 30
3f86: 0c d0 rcall .+24 ; 0x3fa0 <putch>
putch(SIGNATURE_1);
3f88: 84 e9 ldi r24, 0x94 ; 148
3f8a: 0a d0 rcall .+20 ; 0x3fa0 <putch>
putch(SIGNATURE_2);
3f8c: 86 e0 ldi r24, 0x06 ; 6
3f8e: 8b cf rjmp .-234 ; 0x3ea6 <main+0xa6>
}
else if (ch == 'Q') {
3f90: 81 35 cpi r24, 0x51 ; 81
3f92: 11 f4 brne .+4 ; 0x3f98 <main+0x198>
// Adaboot no-wait mod
watchdogConfig(WATCHDOG_16MS);
3f94: 88 e0 ldi r24, 0x08 ; 8
3f96: 19 d0 rcall .+50 ; 0x3fca <watchdogConfig>
verifySpace();
}
else {
// This covers the response to commands like STK_ENTER_PROGMODE
verifySpace();
3f98: 23 d0 rcall .+70 ; 0x3fe0 <verifySpace>
}
putch(STK_OK);
3f9a: 80 e1 ldi r24, 0x10 ; 16
3f9c: 01 d0 rcall .+2 ; 0x3fa0 <putch>
3f9e: 5c cf rjmp .-328 ; 0x3e58 <main+0x58>
00003fa0 <putch>:
}
}
void putch(char ch) {
3fa0: 98 2f mov r25, r24
#ifndef SOFT_UART
while (!(UCSR0A & _BV(UDRE0)));
3fa2: 80 91 c0 00 lds r24, 0x00C0
3fa6: 85 ff sbrs r24, 5
3fa8: fc cf rjmp .-8 ; 0x3fa2 <putch+0x2>
UDR0 = ch;
3faa: 90 93 c6 00 sts 0x00C6, r25
[uartBit] "I" (UART_TX_BIT)
:
"r25"
);
#endif
}
3fae: 08 95 ret
00003fb0 <getch>:
return getch();
}
// Watchdog functions. These are only safe with interrupts turned off.
void watchdogReset() {
__asm__ __volatile__ (
3fb0: a8 95 wdr
[uartBit] "I" (UART_RX_BIT)
:
"r25"
);
#else
while(!(UCSR0A & _BV(RXC0)));
3fb2: 80 91 c0 00 lds r24, 0x00C0
3fb6: 87 ff sbrs r24, 7
3fb8: fc cf rjmp .-8 ; 0x3fb2 <getch+0x2>
ch = UDR0;
3fba: 80 91 c6 00 lds r24, 0x00C6
LED_PIN |= _BV(LED);
#endif
#endif
return ch;
}
3fbe: 08 95 ret
00003fc0 <getLen>:
} while (--count);
}
#endif
uint8_t getLen() {
getch();
3fc0: f7 df rcall .-18 ; 0x3fb0 <getch>
length = getch();
3fc2: f6 df rcall .-20 ; 0x3fb0 <getch>
3fc4: 80 93 02 02 sts 0x0202, r24
return getch();
}
3fc8: f3 cf rjmp .-26 ; 0x3fb0 <getch>
00003fca <watchdogConfig>:
"wdr\n"
);
}
void watchdogConfig(uint8_t x) {
WDTCSR = _BV(WDCE) | _BV(WDE);
3fca: e0 e6 ldi r30, 0x60 ; 96
3fcc: f0 e0 ldi r31, 0x00 ; 0
3fce: 98 e1 ldi r25, 0x18 ; 24
3fd0: 90 83 st Z, r25
WDTCSR = x;
3fd2: 80 83 st Z, r24
}
3fd4: 08 95 ret
00003fd6 <appStart>:
void appStart() {
watchdogConfig(WATCHDOG_OFF);
3fd6: 80 e0 ldi r24, 0x00 ; 0
3fd8: f8 df rcall .-16 ; 0x3fca <watchdogConfig>
__asm__ __volatile__ (
3fda: ee 27 eor r30, r30
3fdc: ff 27 eor r31, r31
3fde: 09 94 ijmp
00003fe0 <verifySpace>:
do getch(); while (--count);
verifySpace();
}
void verifySpace() {
if (getch() != CRC_EOP) appStart();
3fe0: e7 df rcall .-50 ; 0x3fb0 <getch>
3fe2: 80 32 cpi r24, 0x20 ; 32
3fe4: 09 f0 breq .+2 ; 0x3fe8 <verifySpace+0x8>
3fe6: f7 df rcall .-18 ; 0x3fd6 <appStart>
putch(STK_INSYNC);
3fe8: 84 e1 ldi r24, 0x14 ; 20
}
3fea: da cf rjmp .-76 ; 0x3fa0 <putch>
00003fec <getNch>:
::[count] "M" (UART_B_VALUE)
);
}
#endif
void getNch(uint8_t count) {
3fec: 1f 93 push r17
3fee: 18 2f mov r17, r24
do getch(); while (--count);
3ff0: df df rcall .-66 ; 0x3fb0 <getch>
3ff2: 11 50 subi r17, 0x01 ; 1
3ff4: e9 f7 brne .-6 ; 0x3ff0 <getNch+0x4>
verifySpace();
3ff6: f4 df rcall .-24 ; 0x3fe0 <verifySpace>
}
3ff8: 1f 91 pop r17
3ffa: 08 95 ret