1
0
mirror of https://github.com/arduino/Arduino.git synced 2025-01-22 11:52:14 +01:00
2005-08-25 21:06:28 +00:00

693 lines
18 KiB
C
Executable File

/*! \file timer128.c \brief System Timer function library for Mega128. */
//*****************************************************************************
//
// File Name : 'timer128.c'
// Title : System Timer function library for Mega128
// Author : Pascal Stang - Copyright (C) 2000-2003
// Created : 11/22/2000
// Revised : 02/24/2003
// Version : 1.2
// Target MCU : Atmel AVR Series
// Editor Tabs : 4
//
// This code is distributed under the GNU Public License
// which can be found at http://www.gnu.org/licenses/gpl.txt
//
//*****************************************************************************
#ifndef WIN32
#include <avr/io.h>
#include <avr/signal.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <avr/sleep.h>
#endif
#include "global.h"
#include "timer128.h"
// Program ROM constants
// the prescale division values stored in order of timer control register index
// STOP, CLK, CLK/8, CLK/64, CLK/256, CLK/1024
unsigned short __attribute__ ((progmem)) TimerPrescaleFactor[] = {0,1,8,64,256,1024};
// the prescale division values stored in order of timer control register index
// STOP, CLK, CLK/8, CLK/32, CLK/64, CLK/128, CLK/256, CLK/1024
unsigned short __attribute__ ((progmem)) TimerRTCPrescaleFactor[] = {0,1,8,32,64,128,256,1024};
// Global variables
// time registers
volatile unsigned long TimerPauseReg;
volatile unsigned long Timer0Reg0;
volatile unsigned long Timer0Reg1;
volatile unsigned long Timer2Reg0;
volatile unsigned long Timer2Reg1;
typedef void (*voidFuncPtr)(void);
volatile static voidFuncPtr TimerIntFunc[TIMER_NUM_INTERRUPTS];
// delay for a minimum of <us> microseconds
// the time resolution is dependent on the time the loop takes
// e.g. with 4Mhz and 5 cycles per loop, the resolution is 1.25 us
void delay_us(unsigned short time_us)
{
unsigned short delay_loops;
register unsigned short i;
delay_loops = (time_us+3)/5*CYCLES_PER_US; // +3 for rounding up (dirty)
// one loop takes 5 cpu cycles
for (i=0; i < delay_loops; i++) {};
}
/*
void delay_ms(unsigned char time_ms)
{
unsigned short delay_count = F_CPU / 4000;
unsigned short cnt;
asm volatile ("\n"
"L_dl1%=:\n\t"
"mov %A0, %A2\n\t"
"mov %B0, %B2\n"
"L_dl2%=:\n\t"
"sbiw %A0, 1\n\t"
"brne L_dl2%=\n\t"
"dec %1\n\t" "brne L_dl1%=\n\t":"=&w" (cnt)
:"r"(time_ms), "r"((unsigned short) (delay_count))
);
}
*/
void timerInit(void)
{
u08 intNum;
// detach all user functions from interrupts
for(intNum=0; intNum<TIMER_NUM_INTERRUPTS; intNum++)
timerDetach(intNum);
// initialize all timers
timer0Init();
timer1Init();
timer2Init();
timer3Init();
// enable interrupts
sei();
}
void timer0Init()
{
// initialize timer 0
timer0SetPrescaler( TIMER0PRESCALE ); // set prescaler
outb(TCNT0, 0); // reset TCNT0
sbi(TIMSK, TOIE0); // enable TCNT0 overflow interrupt
timer0ClearOverflowCount(); // initialize time registers
}
void timer1Init(void)
{
// initialize timer 1
timer1SetPrescaler( TIMER1PRESCALE ); // set prescaler
outb(TCNT1H, 0); // reset TCNT1
outb(TCNT1L, 0);
sbi(TIMSK, TOIE1); // enable TCNT1 overflow
}
void timer2Init(void)
{
// initialize timer 2
timer2SetPrescaler( TIMER2PRESCALE ); // set prescaler
outb(TCNT2, 0); // reset TCNT2
sbi(TIMSK, TOIE2); // enable TCNT2 overflow
timer2ClearOverflowCount(); // initialize time registers
}
void timer3Init(void)
{
// initialize timer 3
timer3SetPrescaler( TIMER3PRESCALE ); // set prescaler
outb(TCNT3H, 0); // reset TCNT3
outb(TCNT3L, 0);
sbi(ETIMSK, TOIE3); // enable TCNT3 overflow
}
void timer0SetPrescaler(u08 prescale)
{
// set prescaler on timer 0
outb(TCCR0, (inb(TCCR0) & ~TIMER_PRESCALE_MASK) | prescale);
}
void timer1SetPrescaler(u08 prescale)
{
// set prescaler on timer 1
outb(TCCR1B, (inb(TCCR1B) & ~TIMER_PRESCALE_MASK) | prescale);
}
void timer2SetPrescaler(u08 prescale)
{
// set prescaler on timer 2
outb(TCCR2, (inb(TCCR2) & ~TIMER_PRESCALE_MASK) | prescale);
}
void timer3SetPrescaler(u08 prescale)
{
// set prescaler on timer 2
outb(TCCR3B, (inp(TCCR3B) & ~TIMER_PRESCALE_MASK) | prescale);
}
u16 timer0GetPrescaler(void)
{
// get the current prescaler setting
return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR0) & TIMER_PRESCALE_MASK)));
}
u16 timer1GetPrescaler(void)
{
// get the current prescaler setting
return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR1B) & TIMER_PRESCALE_MASK)));
}
u16 timer2GetPrescaler(void)
{
// get the current prescaler setting
return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR2) & TIMER_PRESCALE_MASK)));
}
u16 timer3GetPrescaler(void)
{
// get the current prescaler setting
return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR3B) & TIMER_PRESCALE_MASK)));
}
void timerAttach(u08 interruptNum, void (*userFunc)(void) )
{
// make sure the interrupt number is within bounds
if(interruptNum < TIMER_NUM_INTERRUPTS)
{
// set the interrupt function to run
// the supplied user's function
TimerIntFunc[interruptNum] = userFunc;
}
}
void timerDetach(u08 interruptNum)
{
// make sure the interrupt number is within bounds
if(interruptNum < TIMER_NUM_INTERRUPTS)
{
// set the interrupt function to run nothing
TimerIntFunc[interruptNum] = 0;
}
}
void timerPause(unsigned short pause_ms)
{
// pauses for exactly <pause_ms> number of milliseconds
u08 timerThres;
u32 ticRateHz;
u32 pause;
// capture current pause timer value
timerThres = inb(TCNT2);
// reset pause timer overflow count
TimerPauseReg = 0;
// calculate delay for [pause_ms] milliseconds
// prescaler division = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR2)))
ticRateHz = F_CPU/timer2GetPrescaler();
// precision management
// prevent overflow and precision underflow
// -could add more conditions to improve accuracy
if( ((ticRateHz < 429497) && (pause_ms <= 10000)) )
pause = (pause_ms*ticRateHz)/1000;
else
pause = pause_ms*(ticRateHz/1000);
// loop until time expires
while( ((TimerPauseReg<<8) | inb(TCNT2)) < (pause+timerThres) )
{
if( TimerPauseReg < (pause>>8));
{
// save power by idling the processor
set_sleep_mode(SLEEP_MODE_IDLE);
sleep_mode();
}
}
}
void timer0ClearOverflowCount(void)
{
// clear the timer overflow counter registers
Timer0Reg0 = 0; // initialize time registers
Timer0Reg1 = 0; // initialize time registers
}
long timer0GetOverflowCount(void)
{
// return the current timer overflow count
// (this is since the last timer0ClearOverflowCount() command was called)
return Timer0Reg0;
}
void timer2ClearOverflowCount(void)
{
// clear the timer overflow counter registers
Timer2Reg0 = 0; // initialize time registers
Timer2Reg1 = 0; // initialize time registers
}
long timer2GetOverflowCount(void)
{
// return the current timer overflow count
// (this is since the last timer2ClearOverflowCount() command was called)
return Timer2Reg0;
}
void timer1PWMInit(u08 bitRes)
{
// configures timer1 for use with PWM output
// on pins OC1A, OC1B, and OC1C
// enable Timer1 as 8,9,10bit PWM
if(bitRes == 9)
{ // 9bit mode
sbi(TCCR1A,WGMA1);
cbi(TCCR1A,WGMA0);
}
else if( bitRes == 10 )
{ // 10bit mode
sbi(TCCR1A,WGMA1);
sbi(TCCR1A,WGMA0);
}
else
{ // default 8bit mode
cbi(TCCR1A,WGMA1);
sbi(TCCR1A,WGMA0);
}
// set clear-timer-on-compare-match
//cbi(TCCR1B,CTC1);
// clear output compare value A
outb(OCR1AH, 0);
outb(OCR1AL, 0);
// clear output compare value B
outb(OCR1BH, 0);
outb(OCR1BL, 0);
// clear output compare value C
outb(OCR1CH, 0);
outb(OCR1CL, 0);
}
void timer1PWMInitICR(u16 topcount)
{
// set PWM mode with ICR top-count
cbi(TCCR1A,WGM10);
sbi(TCCR1A,WGM11);
sbi(TCCR1B,WGM12);
sbi(TCCR1B,WGM13);
// set top count value
ICR1H = (u08)(topcount>>8);
ICR1L = (u08)topcount;
// clear output compare value A
outb(OCR1AH, 0);
outb(OCR1AL, 0);
// clear output compare value B
outb(OCR1BH, 0);
outb(OCR1BL, 0);
// clear output compare value C
outb(OCR1CH, 0);
outb(OCR1CL, 0);
}
void timer1PWMOff(void)
{
// turn off PWM on Timer1
cbi(TCCR1A,WGMA1);
cbi(TCCR1A,WGMA0);
// clear (disable) clear-timer-on-compare-match
//cbi(TCCR1B,CTC1);
// set PWM1A/B/C (OutputCompare action) to none
timer1PWMAOff();
timer1PWMBOff();
timer1PWMCOff();
}
void timer1PWMAOn(void)
{
// turn on channel A (OC1A) PWM output
// set OC1A as non-inverted PWM
sbi(TCCR1A,COMA1);
cbi(TCCR1A,COMA0);
}
void timer1PWMBOn(void)
{
// turn on channel B (OC1B) PWM output
// set OC1B as non-inverted PWM
sbi(TCCR1A,COMB1);
cbi(TCCR1A,COMB0);
}
void timer1PWMCOn(void)
{
// turn on channel C (OC1C) PWM output
// set OC1C as non-inverted PWM
sbi(TCCR1A,COMC1);
cbi(TCCR1A,COMC0);
}
void timer1PWMAOff(void)
{
// turn off channel A (OC1A) PWM output
// set OC1A (OutputCompare action) to none
cbi(TCCR1A,COMA1);
cbi(TCCR1A,COMA0);
}
void timer1PWMBOff(void)
{
// turn off channel B (OC1B) PWM output
// set OC1B (OutputCompare action) to none
cbi(TCCR1A,COMB1);
cbi(TCCR1A,COMB0);
}
void timer1PWMCOff(void)
{
// turn off channel C (OC1C) PWM output
// set OC1C (OutputCompare action) to none
cbi(TCCR1A,COMC1);
cbi(TCCR1A,COMC0);
}
void timer1PWMASet(u16 pwmDuty)
{
// set PWM (output compare) duty for channel A
// this PWM output is generated on OC1A pin
// NOTE: pwmDuty should be in the range 0-255 for 8bit PWM
// pwmDuty should be in the range 0-511 for 9bit PWM
// pwmDuty should be in the range 0-1023 for 10bit PWM
outb(OCR1AH, (pwmDuty>>8)); // set the high 8bits of OCR1A
outb(OCR1AL, (pwmDuty&0x00FF)); // set the low 8bits of OCR1A
}
void timer1PWMBSet(u16 pwmDuty)
{
// set PWM (output compare) duty for channel B
// this PWM output is generated on OC1B pin
// NOTE: pwmDuty should be in the range 0-255 for 8bit PWM
// pwmDuty should be in the range 0-511 for 9bit PWM
// pwmDuty should be in the range 0-1023 for 10bit PWM
outb(OCR1BH, (pwmDuty>>8)); // set the high 8bits of OCR1B
outb(OCR1BL, (pwmDuty&0x00FF)); // set the low 8bits of OCR1B
}
void timer1PWMCSet(u16 pwmDuty)
{
// set PWM (output compare) duty for channel C
// this PWM output is generated on OC1C pin
// NOTE: pwmDuty should be in the range 0-255 for 8bit PWM
// pwmDuty should be in the range 0-511 for 9bit PWM
// pwmDuty should be in the range 0-1023 for 10bit PWM
outb(OCR1CH, (pwmDuty>>8)); // set the high 8bits of OCR1C
outb(OCR1CL, (pwmDuty&0x00FF)); // set the low 8bits of OCR1C
}
void timer3PWMInit(u08 bitRes)
{
// configures timer1 for use with PWM output
// on pins OC3A, OC3B, and OC3C
// enable Timer3 as 8,9,10bit PWM
if(bitRes == 9)
{ // 9bit mode
sbi(TCCR3A,WGMA1);
cbi(TCCR3A,WGMA0);
}
else if( bitRes == 10 )
{ // 10bit mode
sbi(TCCR3A,WGMA1);
sbi(TCCR3A,WGMA0);
}
else
{ // default 8bit mode
cbi(TCCR3A,WGMA1);
sbi(TCCR3A,WGMA0);
}
// set clear-timer-on-compare-match
//cbi(TCCR3B,CTC1);
// clear output compare value A
outb(OCR3AH, 0);
outb(OCR3AL, 0);
// clear output compare value B
outb(OCR3BH, 0);
outb(OCR3BL, 0);
// clear output compare value B
outb(OCR3CH, 0);
outb(OCR3CL, 0);
}
void timer3PWMInitICR(u16 topcount)
{
// set PWM mode with ICR top-count
cbi(TCCR3A,WGM30);
sbi(TCCR3A,WGM31);
sbi(TCCR3B,WGM32);
sbi(TCCR3B,WGM33);
// set top count value
ICR3H = (u08)(topcount>>8);
ICR3L = (u08)topcount;
// clear output compare value A
outb(OCR3AH, 0);
outb(OCR3AL, 0);
// clear output compare value B
outb(OCR3BH, 0);
outb(OCR3BL, 0);
// clear output compare value C
outb(OCR3CH, 0);
outb(OCR3CL, 0);
}
void timer3PWMOff(void)
{
// turn off PWM mode on Timer3
cbi(TCCR3A,WGMA1);
cbi(TCCR3A,WGMA0);
// clear (disable) clear-timer-on-compare-match
//cbi(TCCR3B,CTC1);
// set OC3A/B/C (OutputCompare action) to none
timer3PWMAOff();
timer3PWMBOff();
timer3PWMCOff();
}
void timer3PWMAOn(void)
{
// turn on channel A (OC3A) PWM output
// set OC3A as non-inverted PWM
sbi(TCCR3A,COMA1);
cbi(TCCR3A,COMA0);
}
void timer3PWMBOn(void)
{
// turn on channel B (OC3B) PWM output
// set OC3B as non-inverted PWM
sbi(TCCR3A,COMB1);
cbi(TCCR3A,COMB0);
}
void timer3PWMCOn(void)
{
// turn on channel C (OC3C) PWM output
// set OC3C as non-inverted PWM
sbi(TCCR3A,COMC1);
cbi(TCCR3A,COMC0);
}
void timer3PWMAOff(void)
{
// turn off channel A (OC3A) PWM output
// set OC3A (OutputCompare action) to none
cbi(TCCR3A,COMA1);
cbi(TCCR3A,COMA0);
}
void timer3PWMBOff(void)
{
// turn off channel B (OC3B) PWM output
// set OC3B (OutputCompare action) to none
cbi(TCCR3A,COMB1);
cbi(TCCR3A,COMB0);
}
void timer3PWMCOff(void)
{
// turn off channel C (OC3C) PWM output
// set OC3C (OutputCompare action) to none
cbi(TCCR3A,COMC1);
cbi(TCCR3A,COMC0);
}
void timer3PWMASet(u16 pwmDuty)
{
// set PWM (output compare) duty for channel A
// this PWM output is generated on OC3A pin
// NOTE: pwmDuty should be in the range 0-255 for 8bit PWM
// pwmDuty should be in the range 0-511 for 9bit PWM
// pwmDuty should be in the range 0-1023 for 10bit PWM
outb(OCR3AH, (pwmDuty>>8), ); // set the high 8bits of OCR3A
outb(OCR3AL, (pwmDuty&0x00FF), ); // set the low 8bits of OCR3A
}
void timer3PWMBSet(u16 pwmDuty)
{
// set PWM (output compare) duty for channel B
// this PWM output is generated on OC3B pin
// NOTE: pwmDuty should be in the range 0-255 for 8bit PWM
// pwmDuty should be in the range 0-511 for 9bit PWM
// pwmDuty should be in the range 0-1023 for 10bit PWM
outb(OCR3BH, (pwmDuty>>8)); // set the high 8bits of OCR3B
outb(OCR3BL, (pwmDuty&0x00FF)); // set the low 8bits of OCR3B
}
void timer3PWMCSet(u16 pwmDuty)
{
// set PWM (output compare) duty for channel B
// this PWM output is generated on OC3C pin
// NOTE: pwmDuty should be in the range 0-255 for 8bit PWM
// pwmDuty should be in the range 0-511 for 9bit PWM
// pwmDuty should be in the range 0-1023 for 10bit PWM
outb(OCR3CH, (pwmDuty>>8)); // set the high 8bits of OCR3C
outb(OCR3CL, (pwmDuty&0x00FF)); // set the low 8bits of OCR3C
}
//! Interrupt handler for tcnt0 overflow interrupt
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW0)
{
Timer0Reg0++; // increment low-order counter
if(!Timer0Reg0) // if low-order counter rollover
Timer0Reg1++; // increment high-order counter
// if a user function is defined, execute it too
if(TimerIntFunc[TIMER0OVERFLOW_INT])
TimerIntFunc[TIMER0OVERFLOW_INT]();
}
//! Interrupt handler for Timer1 overflow interrupt
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW1)
{
// if a user function is defined, execute it
if(TimerIntFunc[TIMER1OVERFLOW_INT])
TimerIntFunc[TIMER1OVERFLOW_INT]();
}
//! Interrupt handler for Timer2 overflow interrupt
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW2)
{
Timer2Reg0++; // increment low-order counter
if(!Timer2Reg0) // if low-order counter rollover
Timer2Reg1++; // increment high-order counter
// increment pause counter
TimerPauseReg++;
// if a user function is defined, execute it
if(TimerIntFunc[TIMER2OVERFLOW_INT])
TimerIntFunc[TIMER2OVERFLOW_INT]();
}
//! Interrupt handler for Timer3 overflow interrupt
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW3)
{
// if a user function is defined, execute it
if(TimerIntFunc[TIMER3OVERFLOW_INT])
TimerIntFunc[TIMER3OVERFLOW_INT]();
}
//! Interrupt handler for OutputCompare0 match (OC0) interrupt
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE0)
{
// if a user function is defined, execute it
if(TimerIntFunc[TIMER0OUTCOMPARE_INT])
TimerIntFunc[TIMER0OUTCOMPARE_INT]();
}
//! Interrupt handler for OutputCompare1A match (OC1A) interrupt
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1A)
{
// if a user function is defined, execute it
if(TimerIntFunc[TIMER1OUTCOMPAREA_INT])
TimerIntFunc[TIMER1OUTCOMPAREA_INT]();
}
//! Interrupt handler for OutputCompare1B match (OC1B) interrupt
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1B)
{
// if a user function is defined, execute it
if(TimerIntFunc[TIMER1OUTCOMPAREB_INT])
TimerIntFunc[TIMER1OUTCOMPAREB_INT]();
}
//! Interrupt handler for OutputCompare1C match (OC1C) interrupt
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1C)
{
// if a user function is defined, execute it
if(TimerIntFunc[TIMER1OUTCOMPAREC_INT])
TimerIntFunc[TIMER1OUTCOMPAREC_INT]();
}
//! Interrupt handler for InputCapture1(IC1) interrupt
TIMER_INTERRUPT_HANDLER(SIG_INPUT_CAPTURE1)
{
// if a user function is defined, execute it
if(TimerIntFunc[TIMER1INPUTCAPTURE_INT])
TimerIntFunc[TIMER1INPUTCAPTURE_INT]();
}
//! Interrupt handler for OutputCompare2 match (OC2) interrupt
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE2)
{
// if a user function is defined, execute it
if(TimerIntFunc[TIMER2OUTCOMPARE_INT])
TimerIntFunc[TIMER2OUTCOMPARE_INT]();
}
//! Interrupt handler for OutputCompare3A match (OC3A) interrupt
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE3A)
{
// if a user function is defined, execute it
if(TimerIntFunc[TIMER3OUTCOMPAREA_INT])
TimerIntFunc[TIMER3OUTCOMPAREA_INT]();
}
//! Interrupt handler for OutputCompare3B match (OC3B) interrupt
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE3B)
{
// if a user function is defined, execute it
if(TimerIntFunc[TIMER3OUTCOMPAREB_INT])
TimerIntFunc[TIMER3OUTCOMPAREB_INT]();
}
//! Interrupt handler for OutputCompare3C match (OC3C) interrupt
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE3C)
{
// if a user function is defined, execute it
if(TimerIntFunc[TIMER3OUTCOMPAREC_INT])
TimerIntFunc[TIMER3OUTCOMPAREC_INT]();
}
//! Interrupt handler for InputCapture3 (IC3) interrupt
TIMER_INTERRUPT_HANDLER(SIG_INPUT_CAPTURE3)
{
// if a user function is defined, execute it
if(TimerIntFunc[TIMER3INPUTCAPTURE_INT])
TimerIntFunc[TIMER3INPUTCAPTURE_INT]();
}