mirror of
https://github.com/arduino/Arduino.git
synced 2025-01-10 00:46:09 +01:00
473 lines
12 KiB
C
Executable File
473 lines
12 KiB
C
Executable File
/*! \file timer.c \brief System Timer function library. */
|
|
//*****************************************************************************
|
|
//
|
|
// File Name : 'timer.c'
|
|
// Title : System Timer function library
|
|
// Author : Pascal Stang - Copyright (C) 2000-2002
|
|
// Created : 11/22/2000
|
|
// Revised : 07/09/2003
|
|
// Version : 1.1
|
|
// Target MCU : Atmel AVR Series
|
|
// Editor Tabs : 4
|
|
//
|
|
// This code is distributed under the GNU Public License
|
|
// which can be found at http://www.gnu.org/licenses/gpl.txt
|
|
//
|
|
//*****************************************************************************
|
|
|
|
#ifndef WIN32
|
|
#include <avr/io.h>
|
|
#include <avr/signal.h>
|
|
#include <avr/interrupt.h>
|
|
#include <avr/pgmspace.h>
|
|
#include <avr/sleep.h>
|
|
#endif
|
|
|
|
#include "global.h"
|
|
#include "timer.h"
|
|
|
|
#include "rprintf.h"
|
|
|
|
// Program ROM constants
|
|
// the prescale division values stored in order of timer control register index
|
|
// STOP, CLK, CLK/8, CLK/64, CLK/256, CLK/1024
|
|
unsigned short __attribute__ ((progmem)) TimerPrescaleFactor[] = {0,1,8,64,256,1024};
|
|
// the prescale division values stored in order of timer control register index
|
|
// STOP, CLK, CLK/8, CLK/32, CLK/64, CLK/128, CLK/256, CLK/1024
|
|
unsigned short __attribute__ ((progmem)) TimerRTCPrescaleFactor[] = {0,1,8,32,64,128,256,1024};
|
|
|
|
// Global variables
|
|
// time registers
|
|
volatile unsigned long TimerPauseReg;
|
|
volatile unsigned long Timer0Reg0;
|
|
volatile unsigned long Timer2Reg0;
|
|
|
|
typedef void (*voidFuncPtr)(void);
|
|
volatile static voidFuncPtr TimerIntFunc[TIMER_NUM_INTERRUPTS];
|
|
|
|
// delay for a minimum of <us> microseconds
|
|
// the time resolution is dependent on the time the loop takes
|
|
// e.g. with 4Mhz and 5 cycles per loop, the resolution is 1.25 us
|
|
void delay_us(unsigned short time_us)
|
|
{
|
|
unsigned short delay_loops;
|
|
register unsigned short i;
|
|
|
|
delay_loops = (time_us+3)/5*CYCLES_PER_US; // +3 for rounding up (dirty)
|
|
|
|
// one loop takes 5 cpu cycles
|
|
for (i=0; i < delay_loops; i++) {};
|
|
}
|
|
/*
|
|
void delay_ms(unsigned char time_ms)
|
|
{
|
|
unsigned short delay_count = F_CPU / 4000;
|
|
|
|
unsigned short cnt;
|
|
asm volatile ("\n"
|
|
"L_dl1%=:\n\t"
|
|
"mov %A0, %A2\n\t"
|
|
"mov %B0, %B2\n"
|
|
"L_dl2%=:\n\t"
|
|
"sbiw %A0, 1\n\t"
|
|
"brne L_dl2%=\n\t"
|
|
"dec %1\n\t" "brne L_dl1%=\n\t":"=&w" (cnt)
|
|
:"r"(time_ms), "r"((unsigned short) (delay_count))
|
|
);
|
|
}
|
|
*/
|
|
void timerInit(void)
|
|
{
|
|
u08 intNum;
|
|
// detach all user functions from interrupts
|
|
for(intNum=0; intNum<TIMER_NUM_INTERRUPTS; intNum++)
|
|
timerDetach(intNum);
|
|
|
|
// initialize all timers
|
|
timer0Init();
|
|
timer1Init();
|
|
#ifdef TCNT2 // support timer2 only if it exists
|
|
timer2Init();
|
|
#endif
|
|
// enable interrupts
|
|
sei();
|
|
}
|
|
|
|
void timer0Init()
|
|
{
|
|
// initialize timer 0
|
|
timer0SetPrescaler( TIMER0PRESCALE ); // set prescaler
|
|
outb(TCNT0, 0); // reset TCNT0
|
|
sbi(TIMSK, TOIE0); // enable TCNT0 overflow interrupt
|
|
|
|
timer0ClearOverflowCount(); // initialize time registers
|
|
}
|
|
|
|
void timer1Init(void)
|
|
{
|
|
// initialize timer 1
|
|
timer1SetPrescaler( TIMER1PRESCALE ); // set prescaler
|
|
outb(TCNT1H, 0); // reset TCNT1
|
|
outb(TCNT1L, 0);
|
|
sbi(TIMSK, TOIE1); // enable TCNT1 overflow
|
|
}
|
|
|
|
#ifdef TCNT2 // support timer2 only if it exists
|
|
void timer2Init(void)
|
|
{
|
|
// initialize timer 2
|
|
timer2SetPrescaler( TIMER2PRESCALE ); // set prescaler
|
|
outb(TCNT2, 0); // reset TCNT2
|
|
sbi(TIMSK, TOIE2); // enable TCNT2 overflow
|
|
|
|
timer2ClearOverflowCount(); // initialize time registers
|
|
}
|
|
#endif
|
|
|
|
void timer0SetPrescaler(u08 prescale)
|
|
{
|
|
// set prescaler on timer 0
|
|
outb(TCCR0, (inb(TCCR0) & ~TIMER_PRESCALE_MASK) | prescale);
|
|
}
|
|
|
|
void timer1SetPrescaler(u08 prescale)
|
|
{
|
|
// set prescaler on timer 1
|
|
outb(TCCR1B, (inb(TCCR1B) & ~TIMER_PRESCALE_MASK) | prescale);
|
|
}
|
|
|
|
#ifdef TCNT2 // support timer2 only if it exists
|
|
void timer2SetPrescaler(u08 prescale)
|
|
{
|
|
// set prescaler on timer 2
|
|
outb(TCCR2, (inb(TCCR2) & ~TIMER_PRESCALE_MASK) | prescale);
|
|
}
|
|
#endif
|
|
|
|
u16 timer0GetPrescaler(void)
|
|
{
|
|
// get the current prescaler setting
|
|
return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR0) & TIMER_PRESCALE_MASK)));
|
|
}
|
|
|
|
u16 timer1GetPrescaler(void)
|
|
{
|
|
// get the current prescaler setting
|
|
return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR1B) & TIMER_PRESCALE_MASK)));
|
|
}
|
|
|
|
#ifdef TCNT2 // support timer2 only if it exists
|
|
u16 timer2GetPrescaler(void)
|
|
{
|
|
//TODO: can we assume for all 3-timer AVR processors,
|
|
// that timer2 is the RTC timer?
|
|
|
|
// get the current prescaler setting
|
|
return (pgm_read_word(TimerRTCPrescaleFactor+(inb(TCCR2) & TIMER_PRESCALE_MASK)));
|
|
}
|
|
#endif
|
|
|
|
void timerAttach(u08 interruptNum, void (*userFunc)(void) )
|
|
{
|
|
// make sure the interrupt number is within bounds
|
|
if(interruptNum < TIMER_NUM_INTERRUPTS)
|
|
{
|
|
// set the interrupt function to run
|
|
// the supplied user's function
|
|
TimerIntFunc[interruptNum] = userFunc;
|
|
}
|
|
}
|
|
|
|
void timerDetach(u08 interruptNum)
|
|
{
|
|
// make sure the interrupt number is within bounds
|
|
if(interruptNum < TIMER_NUM_INTERRUPTS)
|
|
{
|
|
// set the interrupt function to run nothing
|
|
TimerIntFunc[interruptNum] = 0;
|
|
}
|
|
}
|
|
/*
|
|
u32 timerMsToTics(u16 ms)
|
|
{
|
|
// calculate the prescaler division rate
|
|
u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));
|
|
// calculate the number of timer tics in x milliseconds
|
|
return (ms*(F_CPU/(prescaleDiv*256)))/1000;
|
|
}
|
|
|
|
u16 timerTicsToMs(u32 tics)
|
|
{
|
|
// calculate the prescaler division rate
|
|
u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));
|
|
// calculate the number of milliseconds in x timer tics
|
|
return (tics*1000*(prescaleDiv*256))/F_CPU;
|
|
}
|
|
*/
|
|
void timerPause(unsigned short pause_ms)
|
|
{
|
|
// pauses for exactly <pause_ms> number of milliseconds
|
|
u08 timerThres;
|
|
u32 ticRateHz;
|
|
u32 pause;
|
|
|
|
// capture current pause timer value
|
|
timerThres = inb(TCNT0);
|
|
// reset pause timer overflow count
|
|
TimerPauseReg = 0;
|
|
// calculate delay for [pause_ms] milliseconds
|
|
// prescaler division = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)))
|
|
ticRateHz = F_CPU/timer0GetPrescaler();
|
|
// precision management
|
|
// prevent overflow and precision underflow
|
|
// -could add more conditions to improve accuracy
|
|
if( ((ticRateHz < 429497) && (pause_ms <= 10000)) )
|
|
pause = (pause_ms*ticRateHz)/1000;
|
|
else
|
|
pause = pause_ms*(ticRateHz/1000);
|
|
|
|
// loop until time expires
|
|
while( ((TimerPauseReg<<8) | inb(TCNT0)) < (pause+timerThres) )
|
|
{
|
|
if( TimerPauseReg < (pause>>8));
|
|
{
|
|
// save power by idling the processor
|
|
set_sleep_mode(SLEEP_MODE_IDLE);
|
|
sleep_mode();
|
|
}
|
|
}
|
|
|
|
/* old inaccurate code, for reference
|
|
|
|
// calculate delay for [pause_ms] milliseconds
|
|
u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));
|
|
u32 pause = (pause_ms*(F_CPU/(prescaleDiv*256)))/1000;
|
|
|
|
TimerPauseReg = 0;
|
|
while(TimerPauseReg < pause);
|
|
|
|
*/
|
|
}
|
|
|
|
void timer0ClearOverflowCount(void)
|
|
{
|
|
// clear the timer overflow counter registers
|
|
Timer0Reg0 = 0; // initialize time registers
|
|
}
|
|
|
|
long timer0GetOverflowCount(void)
|
|
{
|
|
// return the current timer overflow count
|
|
// (this is since the last timer0ClearOverflowCount() command was called)
|
|
return Timer0Reg0;
|
|
}
|
|
|
|
#ifdef TCNT2 // support timer2 only if it exists
|
|
void timer2ClearOverflowCount(void)
|
|
{
|
|
// clear the timer overflow counter registers
|
|
Timer2Reg0 = 0; // initialize time registers
|
|
}
|
|
|
|
long timer2GetOverflowCount(void)
|
|
{
|
|
// return the current timer overflow count
|
|
// (this is since the last timer2ClearOverflowCount() command was called)
|
|
return Timer2Reg0;
|
|
}
|
|
#endif
|
|
|
|
void timer1PWMInit(u08 bitRes)
|
|
{
|
|
// configures timer1 for use with PWM output
|
|
// on OC1A and OC1B pins
|
|
|
|
// enable timer1 as 8,9,10bit PWM
|
|
if(bitRes == 9)
|
|
{ // 9bit mode
|
|
sbi(TCCR1A,PWM11);
|
|
cbi(TCCR1A,PWM10);
|
|
}
|
|
else if( bitRes == 10 )
|
|
{ // 10bit mode
|
|
sbi(TCCR1A,PWM11);
|
|
sbi(TCCR1A,PWM10);
|
|
}
|
|
else
|
|
{ // default 8bit mode
|
|
cbi(TCCR1A,PWM11);
|
|
sbi(TCCR1A,PWM10);
|
|
}
|
|
|
|
// clear output compare value A
|
|
outb(OCR1AH, 0);
|
|
outb(OCR1AL, 0);
|
|
// clear output compare value B
|
|
outb(OCR1BH, 0);
|
|
outb(OCR1BL, 0);
|
|
}
|
|
|
|
#ifdef WGM10
|
|
// include support for arbitrary top-count PWM
|
|
// on new AVR processors that support it
|
|
void timer1PWMInitICR(u16 topcount)
|
|
{
|
|
// set PWM mode with ICR top-count
|
|
cbi(TCCR1A,WGM10);
|
|
sbi(TCCR1A,WGM11);
|
|
sbi(TCCR1B,WGM12);
|
|
sbi(TCCR1B,WGM13);
|
|
|
|
// set top count value
|
|
ICR1 = topcount;
|
|
|
|
// clear output compare value A
|
|
OCR1A = 0;
|
|
// clear output compare value B
|
|
OCR1B = 0;
|
|
|
|
}
|
|
#endif
|
|
|
|
void timer1PWMOff(void)
|
|
{
|
|
// turn off timer1 PWM mode
|
|
cbi(TCCR1A,PWM11);
|
|
cbi(TCCR1A,PWM10);
|
|
// set PWM1A/B (OutputCompare action) to none
|
|
timer1PWMAOff();
|
|
timer1PWMBOff();
|
|
}
|
|
|
|
void timer1PWMAOn(void)
|
|
{
|
|
// turn on channel A (OC1A) PWM output
|
|
// set OC1A as non-inverted PWM
|
|
sbi(TCCR1A,COM1A1);
|
|
cbi(TCCR1A,COM1A0);
|
|
}
|
|
|
|
void timer1PWMBOn(void)
|
|
{
|
|
// turn on channel B (OC1B) PWM output
|
|
// set OC1B as non-inverted PWM
|
|
sbi(TCCR1A,COM1B1);
|
|
cbi(TCCR1A,COM1B0);
|
|
}
|
|
|
|
void timer1PWMAOff(void)
|
|
{
|
|
// turn off channel A (OC1A) PWM output
|
|
// set OC1A (OutputCompare action) to none
|
|
cbi(TCCR1A,COM1A1);
|
|
cbi(TCCR1A,COM1A0);
|
|
}
|
|
|
|
void timer1PWMBOff(void)
|
|
{
|
|
// turn off channel B (OC1B) PWM output
|
|
// set OC1B (OutputCompare action) to none
|
|
cbi(TCCR1A,COM1B1);
|
|
cbi(TCCR1A,COM1B0);
|
|
}
|
|
|
|
void timer1PWMASet(u16 pwmDuty)
|
|
{
|
|
// set PWM (output compare) duty for channel A
|
|
// this PWM output is generated on OC1A pin
|
|
// NOTE: pwmDuty should be in the range 0-255 for 8bit PWM
|
|
// pwmDuty should be in the range 0-511 for 9bit PWM
|
|
// pwmDuty should be in the range 0-1023 for 10bit PWM
|
|
//outp( (pwmDuty>>8), OCR1AH); // set the high 8bits of OCR1A
|
|
//outp( (pwmDuty&0x00FF), OCR1AL); // set the low 8bits of OCR1A
|
|
OCR1A = pwmDuty;
|
|
}
|
|
|
|
void timer1PWMBSet(u16 pwmDuty)
|
|
{
|
|
// set PWM (output compare) duty for channel B
|
|
// this PWM output is generated on OC1B pin
|
|
// NOTE: pwmDuty should be in the range 0-255 for 8bit PWM
|
|
// pwmDuty should be in the range 0-511 for 9bit PWM
|
|
// pwmDuty should be in the range 0-1023 for 10bit PWM
|
|
//outp( (pwmDuty>>8), OCR1BH); // set the high 8bits of OCR1B
|
|
//outp( (pwmDuty&0x00FF), OCR1BL); // set the low 8bits of OCR1B
|
|
OCR1B = pwmDuty;
|
|
}
|
|
|
|
//! Interrupt handler for tcnt0 overflow interrupt
|
|
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW0)
|
|
{
|
|
Timer0Reg0++; // increment low-order counter
|
|
|
|
// increment pause counter
|
|
TimerPauseReg++;
|
|
|
|
// if a user function is defined, execute it too
|
|
if(TimerIntFunc[TIMER0OVERFLOW_INT])
|
|
TimerIntFunc[TIMER0OVERFLOW_INT]();
|
|
}
|
|
|
|
//! Interrupt handler for tcnt1 overflow interrupt
|
|
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW1)
|
|
{
|
|
// if a user function is defined, execute it
|
|
if(TimerIntFunc[TIMER1OVERFLOW_INT])
|
|
TimerIntFunc[TIMER1OVERFLOW_INT]();
|
|
}
|
|
|
|
#ifdef TCNT2 // support timer2 only if it exists
|
|
//! Interrupt handler for tcnt2 overflow interrupt
|
|
TIMER_INTERRUPT_HANDLER(SIG_OVERFLOW2)
|
|
{
|
|
Timer2Reg0++; // increment low-order counter
|
|
|
|
// if a user function is defined, execute it
|
|
if(TimerIntFunc[TIMER2OVERFLOW_INT])
|
|
TimerIntFunc[TIMER2OVERFLOW_INT]();
|
|
}
|
|
#endif
|
|
|
|
#ifdef OCR0
|
|
// include support for Output Compare 0 for new AVR processors that support it
|
|
//! Interrupt handler for OutputCompare0 match (OC0) interrupt
|
|
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE0)
|
|
{
|
|
// if a user function is defined, execute it
|
|
if(TimerIntFunc[TIMER0OUTCOMPARE_INT])
|
|
TimerIntFunc[TIMER0OUTCOMPARE_INT]();
|
|
}
|
|
#endif
|
|
|
|
//! Interrupt handler for CutputCompare1A match (OC1A) interrupt
|
|
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1A)
|
|
{
|
|
// if a user function is defined, execute it
|
|
if(TimerIntFunc[TIMER1OUTCOMPAREA_INT])
|
|
TimerIntFunc[TIMER1OUTCOMPAREA_INT]();
|
|
}
|
|
|
|
//! Interrupt handler for OutputCompare1B match (OC1B) interrupt
|
|
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1B)
|
|
{
|
|
// if a user function is defined, execute it
|
|
if(TimerIntFunc[TIMER1OUTCOMPAREB_INT])
|
|
TimerIntFunc[TIMER1OUTCOMPAREB_INT]();
|
|
}
|
|
|
|
//! Interrupt handler for InputCapture1 (IC1) interrupt
|
|
TIMER_INTERRUPT_HANDLER(SIG_INPUT_CAPTURE1)
|
|
{
|
|
// if a user function is defined, execute it
|
|
if(TimerIntFunc[TIMER1INPUTCAPTURE_INT])
|
|
TimerIntFunc[TIMER1INPUTCAPTURE_INT]();
|
|
}
|
|
|
|
//! Interrupt handler for OutputCompare2 match (OC2) interrupt
|
|
TIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE2)
|
|
{
|
|
// if a user function is defined, execute it
|
|
if(TimerIntFunc[TIMER2OUTCOMPARE_INT])
|
|
TimerIntFunc[TIMER2OUTCOMPARE_INT]();
|
|
}
|