mirror of
https://github.com/arduino/Arduino.git
synced 2025-01-06 21:46:09 +01:00
311 lines
11 KiB
C++
311 lines
11 KiB
C++
/*
|
|
Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
|
|
Copyright (c) 2009 Michael Margolis. All right reserved.
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
/*
|
|
A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
|
|
The servos are pulsed in the background using the value most recently written using the write() method
|
|
|
|
Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
|
|
Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
|
|
|
|
The methods are:
|
|
|
|
Servo - Class for manipulating servo motors connected to Arduino pins.
|
|
|
|
attach(pin ) - Attaches a servo motor to an i/o pin.
|
|
attach(pin, min, max ) - Attaches to a pin setting min and max values in microseconds
|
|
default min is 544, max is 2400
|
|
|
|
write() - Sets the servo angle in degrees. (invalid angle that is valid as pulse in microseconds is treated as microseconds)
|
|
writeMicroseconds() - Sets the servo pulse width in microseconds
|
|
read() - Gets the last written servo pulse width as an angle between 0 and 180.
|
|
readMicroseconds() - Gets the last written servo pulse width in microseconds. (was read_us() in first release)
|
|
attached() - Returns true if there is a servo attached.
|
|
detach() - Stops an attached servos from pulsing its i/o pin.
|
|
|
|
*/
|
|
|
|
#include <Arduino.h>
|
|
#include "Servo.h"
|
|
|
|
#define usToTicks(_us) (( clockCyclesPerMicrosecond() * _us) / 32) // converts microseconds to tick
|
|
#define ticksToUs(_ticks) (( (unsigned)_ticks * 32)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
|
|
|
|
|
|
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays
|
|
|
|
static servo_t servos[MAX_SERVOS]; // static array of servo structures
|
|
|
|
uint8_t ServoCount = 0; // the total number of attached servos
|
|
|
|
static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
|
|
|
|
// convenience macros
|
|
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
|
|
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
|
|
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
|
|
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
|
|
|
|
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
|
|
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
|
|
|
|
/************ static functions common to all instances ***********************/
|
|
|
|
|
|
//timer16_Sequence_t timer;
|
|
|
|
//------------------------------------------------------------------------------
|
|
/// Interrupt handler for the TC0 channel 1.
|
|
//------------------------------------------------------------------------------
|
|
void Servo_Handler(timer16_Sequence_t timer, Tc *pTc, uint8_t channel);
|
|
#if defined (_useTimer1)
|
|
void HANDLER_FOR_TIMER1(void) {
|
|
Servo_Handler(_timer1, TC_FOR_TIMER1, CHANNEL_FOR_TIMER1);
|
|
}
|
|
#endif
|
|
#if defined (_useTimer2)
|
|
void HANDLER_FOR_TIMER2(void) {
|
|
Servo_Handler(_timer2, TC_FOR_TIMER2, CHANNEL_FOR_TIMER2);
|
|
}
|
|
#endif
|
|
#if defined (_useTimer3)
|
|
void HANDLER_FOR_TIMER3(void) {
|
|
Servo_Handler(_timer3, TC_FOR_TIMER3, CHANNEL_FOR_TIMER3);
|
|
}
|
|
#endif
|
|
#if defined (_useTimer4)
|
|
void HANDLER_FOR_TIMER4(void) {
|
|
Servo_Handler(_timer4, TC_FOR_TIMER4, CHANNEL_FOR_TIMER4);
|
|
}
|
|
#endif
|
|
#if defined (_useTimer5)
|
|
void HANDLER_FOR_TIMER5(void) {
|
|
Servo_Handler(_timer5, TC_FOR_TIMER5, CHANNEL_FOR_TIMER5);
|
|
}
|
|
#endif
|
|
|
|
void Servo_Handler(timer16_Sequence_t timer, Tc *tc, uint8_t channel)
|
|
{
|
|
// clear interrupt
|
|
tc->TC_CHANNEL[channel].TC_SR;
|
|
if (Channel[timer] < 0) {
|
|
tc->TC_CHANNEL[channel].TC_CCR |= TC_CCR_SWTRG; // channel set to -1 indicated that refresh interval completed so reset the timer
|
|
} else {
|
|
if (SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true) {
|
|
digitalWrite(SERVO(timer,Channel[timer]).Pin.nbr, LOW); // pulse this channel low if activated
|
|
}
|
|
}
|
|
|
|
Channel[timer]++; // increment to the next channel
|
|
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
|
|
tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + SERVO(timer,Channel[timer]).ticks;
|
|
if(SERVO(timer,Channel[timer]).Pin.isActive == true) { // check if activated
|
|
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
|
|
}
|
|
}
|
|
else {
|
|
// finished all channels so wait for the refresh period to expire before starting over
|
|
if( (tc->TC_CHANNEL[channel].TC_CV) + 4 < usToTicks(REFRESH_INTERVAL) ) { // allow a few ticks to ensure the next OCR1A not missed
|
|
tc->TC_CHANNEL[channel].TC_RA = (unsigned int)usToTicks(REFRESH_INTERVAL);
|
|
}
|
|
else {
|
|
tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + 4; // at least REFRESH_INTERVAL has elapsed
|
|
}
|
|
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
|
|
}
|
|
}
|
|
|
|
static void _initISR(Tc *tc, uint32_t channel, uint32_t id, IRQn_Type irqn)
|
|
{
|
|
pmc_enable_periph_clk(id);
|
|
TC_Configure(tc, channel,
|
|
TC_CMR_TCCLKS_TIMER_CLOCK3 | // MCK/32
|
|
TC_CMR_WAVE | // Waveform mode
|
|
TC_CMR_WAVSEL_UP_RC ); // Counter running up and reset when equals to RC
|
|
|
|
/* 84MHz, MCK/32, for 1.5ms: 3937 */
|
|
TC_SetRA(tc, channel, 2625); // 1ms
|
|
|
|
/* Configure and enable interrupt */
|
|
NVIC_EnableIRQ(irqn);
|
|
// TC_IER_CPAS: RA Compare
|
|
tc->TC_CHANNEL[channel].TC_IER = TC_IER_CPAS;
|
|
|
|
// Enables the timer clock and performs a software reset to start the counting
|
|
TC_Start(tc, channel);
|
|
}
|
|
|
|
static void initISR(timer16_Sequence_t timer)
|
|
{
|
|
#if defined (_useTimer1)
|
|
if (timer == _timer1)
|
|
_initISR(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, ID_TC_FOR_TIMER1, IRQn_FOR_TIMER1);
|
|
#endif
|
|
#if defined (_useTimer2)
|
|
if (timer == _timer2)
|
|
_initISR(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, ID_TC_FOR_TIMER2, IRQn_FOR_TIMER2);
|
|
#endif
|
|
#if defined (_useTimer3)
|
|
if (timer == _timer3)
|
|
_initISR(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3, ID_TC_FOR_TIMER3, IRQn_FOR_TIMER3);
|
|
#endif
|
|
#if defined (_useTimer4)
|
|
if (timer == _timer4)
|
|
_initISR(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4, ID_TC_FOR_TIMER4, IRQn_FOR_TIMER4);
|
|
#endif
|
|
#if defined (_useTimer5)
|
|
if (timer == _timer5)
|
|
_initISR(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5, ID_TC_FOR_TIMER5, IRQn_FOR_TIMER5);
|
|
#endif
|
|
}
|
|
|
|
static void finISR(timer16_Sequence_t timer)
|
|
{
|
|
#if defined (_useTimer1)
|
|
TC_Stop(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1);
|
|
#endif
|
|
#if defined (_useTimer2)
|
|
TC_Stop(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2);
|
|
#endif
|
|
#if defined (_useTimer3)
|
|
TC_Stop(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3);
|
|
#endif
|
|
#if defined (_useTimer4)
|
|
TC_Stop(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4);
|
|
#endif
|
|
#if defined (_useTimer5)
|
|
TC_Stop(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5);
|
|
#endif
|
|
}
|
|
|
|
|
|
static boolean isTimerActive(timer16_Sequence_t timer)
|
|
{
|
|
// returns true if any servo is active on this timer
|
|
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
|
|
if(SERVO(timer,channel).Pin.isActive == true)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/****************** end of static functions ******************************/
|
|
|
|
Servo::Servo()
|
|
{
|
|
if (ServoCount < MAX_SERVOS) {
|
|
this->servoIndex = ServoCount++; // assign a servo index to this instance
|
|
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values
|
|
} else {
|
|
this->servoIndex = INVALID_SERVO; // too many servos
|
|
}
|
|
}
|
|
|
|
uint8_t Servo::attach(int pin)
|
|
{
|
|
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
|
|
}
|
|
|
|
uint8_t Servo::attach(int pin, int min, int max)
|
|
{
|
|
timer16_Sequence_t timer;
|
|
|
|
if (this->servoIndex < MAX_SERVOS) {
|
|
pinMode(pin, OUTPUT); // set servo pin to output
|
|
servos[this->servoIndex].Pin.nbr = pin;
|
|
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
|
|
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
|
|
this->max = (MAX_PULSE_WIDTH - max)/4;
|
|
// initialize the timer if it has not already been initialized
|
|
timer = SERVO_INDEX_TO_TIMER(servoIndex);
|
|
if (isTimerActive(timer) == false) {
|
|
initISR(timer);
|
|
}
|
|
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
|
|
}
|
|
return this->servoIndex;
|
|
}
|
|
|
|
void Servo::detach()
|
|
{
|
|
timer16_Sequence_t timer;
|
|
|
|
servos[this->servoIndex].Pin.isActive = false;
|
|
timer = SERVO_INDEX_TO_TIMER(servoIndex);
|
|
if(isTimerActive(timer) == false) {
|
|
finISR(timer);
|
|
}
|
|
}
|
|
|
|
void Servo::write(int value)
|
|
{
|
|
// treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
|
|
if (value < MIN_PULSE_WIDTH)
|
|
{
|
|
if (value < 0)
|
|
value = 0;
|
|
else if (value > 180)
|
|
value = 180;
|
|
|
|
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
|
|
}
|
|
writeMicroseconds(value);
|
|
}
|
|
|
|
void Servo::writeMicroseconds(int value)
|
|
{
|
|
// calculate and store the values for the given channel
|
|
byte channel = this->servoIndex;
|
|
if( (channel < MAX_SERVOS) ) // ensure channel is valid
|
|
{
|
|
if (value < SERVO_MIN()) // ensure pulse width is valid
|
|
value = SERVO_MIN();
|
|
else if (value > SERVO_MAX())
|
|
value = SERVO_MAX();
|
|
|
|
value = value - TRIM_DURATION;
|
|
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead
|
|
servos[channel].ticks = value;
|
|
}
|
|
}
|
|
|
|
int Servo::read() // return the value as degrees
|
|
{
|
|
return map(readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
|
|
}
|
|
|
|
int Servo::readMicroseconds()
|
|
{
|
|
unsigned int pulsewidth;
|
|
if (this->servoIndex != INVALID_SERVO)
|
|
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION;
|
|
else
|
|
pulsewidth = 0;
|
|
|
|
return pulsewidth;
|
|
}
|
|
|
|
bool Servo::attached()
|
|
{
|
|
return servos[this->servoIndex].Pin.isActive;
|
|
}
|
|
|
|
|
|
|