1
0
mirror of https://github.com/arduino/Arduino.git synced 2025-01-21 10:52:14 +01:00

778 lines
21 KiB
C++

/*
* IRremote
* Version 0.11 August, 2009
* Copyright 2009 Ken Shirriff
* For details, see http://arcfn.com/2009/08/multi-protocol-infrared-remote-library.html
*
* Modified by Paul Stoffregen <paul@pjrc.com> to support other boards and timers
* Modified by Mitra Ardron <mitra@mitra.biz>
* Added Sanyo and Mitsubishi controllers
* Modified Sony to spot the repeat codes that some Sony's send
*
* Interrupt code based on NECIRrcv by Joe Knapp
* http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1210243556
* Also influenced by http://zovirl.com/2008/11/12/building-a-universal-remote-with-an-arduino/
*
* JVC and Panasonic protocol added by Kristian Lauszus (Thanks to zenwheel and other people at the original blog post)
*/
#include "IRremote.h"
#include "IRremoteInt.h"
// Provides ISR
#include <avr/interrupt.h>
volatile irparams_t irparams;
// These versions of MATCH, MATCH_MARK, and MATCH_SPACE are only for debugging.
// To use them, set DEBUG in IRremoteInt.h
// Normally macros are used for efficiency
#ifdef DEBUG
int MATCH(int measured, int desired) {
Serial.print("Testing: ");
Serial.print(TICKS_LOW(desired), DEC);
Serial.print(" <= ");
Serial.print(measured, DEC);
Serial.print(" <= ");
Serial.println(TICKS_HIGH(desired), DEC);
return measured >= TICKS_LOW(desired) && measured <= TICKS_HIGH(desired);
}
int MATCH_MARK(int measured_ticks, int desired_us) {
Serial.print("Testing mark ");
Serial.print(measured_ticks * USECPERTICK, DEC);
Serial.print(" vs ");
Serial.print(desired_us, DEC);
Serial.print(": ");
Serial.print(TICKS_LOW(desired_us + MARK_EXCESS), DEC);
Serial.print(" <= ");
Serial.print(measured_ticks, DEC);
Serial.print(" <= ");
Serial.println(TICKS_HIGH(desired_us + MARK_EXCESS), DEC);
return measured_ticks >= TICKS_LOW(desired_us + MARK_EXCESS) && measured_ticks <= TICKS_HIGH(desired_us + MARK_EXCESS);
}
int MATCH_SPACE(int measured_ticks, int desired_us) {
Serial.print("Testing space ");
Serial.print(measured_ticks * USECPERTICK, DEC);
Serial.print(" vs ");
Serial.print(desired_us, DEC);
Serial.print(": ");
Serial.print(TICKS_LOW(desired_us - MARK_EXCESS), DEC);
Serial.print(" <= ");
Serial.print(measured_ticks, DEC);
Serial.print(" <= ");
Serial.println(TICKS_HIGH(desired_us - MARK_EXCESS), DEC);
return measured_ticks >= TICKS_LOW(desired_us - MARK_EXCESS) && measured_ticks <= TICKS_HIGH(desired_us - MARK_EXCESS);
}
#else
int MATCH(int measured, int desired) {return measured >= TICKS_LOW(desired) && measured <= TICKS_HIGH(desired);}
int MATCH_MARK(int measured_ticks, int desired_us) {return MATCH(measured_ticks, (desired_us + MARK_EXCESS));}
int MATCH_SPACE(int measured_ticks, int desired_us) {return MATCH(measured_ticks, (desired_us - MARK_EXCESS));}
#endif
IRrecv::IRrecv(int recvpin)
{
irparams.recvpin = recvpin;
irparams.blinkflag = 0;
}
// initialization
void IRrecv::enableIRIn() {
cli();
// setup pulse clock timer interrupt
//Prescale /8 (16M/8 = 0.5 microseconds per tick)
// Therefore, the timer interval can range from 0.5 to 128 microseconds
// depending on the reset value (255 to 0)
TIMER_CONFIG_NORMAL();
//Timer2 Overflow Interrupt Enable
TIMER_ENABLE_INTR;
TIMER_RESET;
sei(); // enable interrupts
// initialize state machine variables
irparams.rcvstate = STATE_IDLE;
irparams.rawlen = 0;
// set pin modes
pinMode(irparams.recvpin, INPUT);
}
// enable/disable blinking of pin 13 on IR processing
void IRrecv::blink13(int blinkflag)
{
irparams.blinkflag = blinkflag;
if (blinkflag)
pinMode(BLINKLED, OUTPUT);
}
// TIMER2 interrupt code to collect raw data.
// Widths of alternating SPACE, MARK are recorded in rawbuf.
// Recorded in ticks of 50 microseconds.
// rawlen counts the number of entries recorded so far.
// First entry is the SPACE between transmissions.
// As soon as a SPACE gets long, ready is set, state switches to IDLE, timing of SPACE continues.
// As soon as first MARK arrives, gap width is recorded, ready is cleared, and new logging starts
ISR(TIMER_INTR_NAME)
{
TIMER_RESET;
uint8_t irdata = (uint8_t)digitalRead(irparams.recvpin);
irparams.timer++; // One more 50us tick
if (irparams.rawlen >= RAWBUF) {
// Buffer overflow
irparams.rcvstate = STATE_STOP;
}
switch(irparams.rcvstate) {
case STATE_IDLE: // In the middle of a gap
if (irdata == MARK) {
if (irparams.timer < GAP_TICKS) {
// Not big enough to be a gap.
irparams.timer = 0;
}
else {
// gap just ended, record duration and start recording transmission
irparams.rawlen = 0;
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
irparams.timer = 0;
irparams.rcvstate = STATE_MARK;
}
}
break;
case STATE_MARK: // timing MARK
if (irdata == SPACE) { // MARK ended, record time
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
irparams.timer = 0;
irparams.rcvstate = STATE_SPACE;
}
break;
case STATE_SPACE: // timing SPACE
if (irdata == MARK) { // SPACE just ended, record it
irparams.rawbuf[irparams.rawlen++] = irparams.timer;
irparams.timer = 0;
irparams.rcvstate = STATE_MARK;
}
else { // SPACE
if (irparams.timer > GAP_TICKS) {
// big SPACE, indicates gap between codes
// Mark current code as ready for processing
// Switch to STOP
// Don't reset timer; keep counting space width
irparams.rcvstate = STATE_STOP;
}
}
break;
case STATE_STOP: // waiting, measuring gap
if (irdata == MARK) { // reset gap timer
irparams.timer = 0;
}
break;
}
if (irparams.blinkflag) {
if (irdata == MARK) {
BLINKLED_ON(); // turn pin 13 LED on
}
else {
BLINKLED_OFF(); // turn pin 13 LED off
}
}
}
void IRrecv::resume() {
irparams.rcvstate = STATE_IDLE;
irparams.rawlen = 0;
}
// Decodes the received IR message
// Returns 0 if no data ready, 1 if data ready.
// Results of decoding are stored in results
int IRrecv::decode(decode_results *results) {
results->rawbuf = irparams.rawbuf;
results->rawlen = irparams.rawlen;
if (irparams.rcvstate != STATE_STOP) {
return ERR;
}
#ifdef DEBUG
Serial.println("Attempting NEC decode");
#endif
if (decodeNEC(results)) {
return DECODED;
}
/*
#ifdef DEBUG
Serial.println("Attempting Sony decode");
#endif
if (decodeSony(results)) {
return DECODED;
}*/
/*
#ifdef DEBUG
Serial.println("Attempting Sanyo decode");
#endif
if (decodeSanyo(results)) {
return DECODED;
}
*/
/*
#ifdef DEBUG
Serial.println("Attempting Mitsubishi decode");
#endif
if (decodeMitsubishi(results)) {
return DECODED;
}*/
/*
#ifdef DEBUG
Serial.println("Attempting RC5 decode");
#endif
if (decodeRC5(results)) {
return DECODED;
}
*/
/*
#ifdef DEBUG
Serial.println("Attempting RC6 decode");
#endif
if (decodeRC6(results)) {
return DECODED;
}
*/
/*
#ifdef DEBUG
Serial.println("Attempting Panasonic decode");
#endif
if (decodePanasonic(results)) {
return DECODED;
}
*/
/*
#ifdef DEBUG
Serial.println("Attempting JVC decode");
#endif
if (decodeJVC(results)) {
return DECODED;
}*/
// decodeHash returns a hash on any input.
// Thus, it needs to be last in the list.
// If you add any decodes, add them before this.
if (decodeHash(results)) {
return DECODED;
}
// Throw away and start over
resume();
return ERR;
}
// NECs have a repeat only 4 items long
long IRrecv::decodeNEC(decode_results *results) {
long data = 0;
int offset = 1; // Skip first space
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], NEC_HDR_MARK)) {
return ERR;
}
offset++;
// Check for repeat
if (irparams.rawlen == 4 &&
MATCH_SPACE(results->rawbuf[offset], NEC_RPT_SPACE) &&
MATCH_MARK(results->rawbuf[offset+1], NEC_BIT_MARK)) {
results->bits = 0;
results->value = REPEAT;
results->decode_type = NEC;
return DECODED;
}
if (irparams.rawlen < 2 * NEC_BITS + 4) {
return ERR;
}
// Initial space
if (!MATCH_SPACE(results->rawbuf[offset], NEC_HDR_SPACE)) {
return ERR;
}
offset++;
for (int i = 0; i < NEC_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset], NEC_BIT_MARK)) {
return ERR;
}
offset++;
if (MATCH_SPACE(results->rawbuf[offset], NEC_ONE_SPACE)) {
data = (data << 1) | 1;
}
else if (MATCH_SPACE(results->rawbuf[offset], NEC_ZERO_SPACE)) {
data <<= 1;
}
else {
return ERR;
}
offset++;
}
// Success
results->bits = NEC_BITS;
results->value = data;
results->decode_type = NEC;
return DECODED;
}
/*
long IRrecv::decodeSony(decode_results *results) {
long data = 0;
if (irparams.rawlen < 2 * SONY_BITS + 2) {
return ERR;
}
int offset = 0; // Dont skip first space, check its size
// Some Sony's deliver repeats fast after first
// unfortunately can't spot difference from of repeat from two fast clicks
if (results->rawbuf[offset] < SONY_DOUBLE_SPACE_USECS) {
// Serial.print("IR Gap found: ");
results->bits = 0;
results->value = REPEAT;
results->decode_type = SANYO;
return DECODED;
}
offset++;
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], SONY_HDR_MARK)) {
return ERR;
}
offset++;
while (offset + 1 < irparams.rawlen) {
if (!MATCH_SPACE(results->rawbuf[offset], SONY_HDR_SPACE)) {
break;
}
offset++;
if (MATCH_MARK(results->rawbuf[offset], SONY_ONE_MARK)) {
data = (data << 1) | 1;
}
else if (MATCH_MARK(results->rawbuf[offset], SONY_ZERO_MARK)) {
data <<= 1;
}
else {
return ERR;
}
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < 12) {
results->bits = 0;
return ERR;
}
results->value = data;
results->decode_type = SONY;
return DECODED;
}*/
/*
// I think this is a Sanyo decoder - serial = SA 8650B
// Looks like Sony except for timings, 48 chars of data and time/space different
long IRrecv::decodeSanyo(decode_results *results) {
long data = 0;
if (irparams.rawlen < 2 * SANYO_BITS + 2) {
return ERR;
}
int offset = 0; // Skip first space
// Initial space
// Put this back in for debugging - note can't use #DEBUG as if Debug on we don't see the repeat cos of the delay
//Serial.print("IR Gap: ");
//Serial.println( results->rawbuf[offset]);
//Serial.println( "test against:");
//Serial.println(results->rawbuf[offset]);
if (results->rawbuf[offset] < SANYO_DOUBLE_SPACE_USECS) {
// Serial.print("IR Gap found: ");
results->bits = 0;
results->value = REPEAT;
results->decode_type = SANYO;
return DECODED;
}
offset++;
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], SANYO_HDR_MARK)) {
return ERR;
}
offset++;
// Skip Second Mark
if (!MATCH_MARK(results->rawbuf[offset], SANYO_HDR_MARK)) {
return ERR;
}
offset++;
while (offset + 1 < irparams.rawlen) {
if (!MATCH_SPACE(results->rawbuf[offset], SANYO_HDR_SPACE)) {
break;
}
offset++;
if (MATCH_MARK(results->rawbuf[offset], SANYO_ONE_MARK)) {
data = (data << 1) | 1;
}
else if (MATCH_MARK(results->rawbuf[offset], SANYO_ZERO_MARK)) {
data <<= 1;
}
else {
return ERR;
}
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < 12) {
results->bits = 0;
return ERR;
}
results->value = data;
results->decode_type = SANYO;
return DECODED;
}
*/
/*
// Looks like Sony except for timings, 48 chars of data and time/space different
long IRrecv::decodeMitsubishi(decode_results *results) {
// Serial.print("?!? decoding Mitsubishi:");Serial.print(irparams.rawlen); Serial.print(" want "); Serial.println( 2 * MITSUBISHI_BITS + 2);
long data = 0;
if (irparams.rawlen < 2 * MITSUBISHI_BITS + 2) {
return ERR;
}
int offset = 0; // Skip first space
// Initial space
// Put this back in for debugging - note can't use #DEBUG as if Debug on we don't see the repeat cos of the delay
//Serial.print("IR Gap: ");
//Serial.println( results->rawbuf[offset]);
//Serial.println( "test against:");
//Serial.println(results->rawbuf[offset]);
// Not seeing double keys from Mitsubishi
//if (results->rawbuf[offset] < MITSUBISHI_DOUBLE_SPACE_USECS) {
// Serial.print("IR Gap found: ");
// results->bits = 0;
// results->value = REPEAT;
// results->decode_type = MITSUBISHI;
// return DECODED;
//}
offset++;
// Typical
// 14200 7 41 7 42 7 42 7 17 7 17 7 18 7 41 7 18 7 17 7 17 7 18 7 41 8 17 7 17 7 18 7 17 7
// Initial Space
if (!MATCH_MARK(results->rawbuf[offset], MITSUBISHI_HDR_SPACE)) {
return ERR;
}
offset++;
while (offset + 1 < irparams.rawlen) {
if (MATCH_MARK(results->rawbuf[offset], MITSUBISHI_ONE_MARK)) {
data = (data << 1) | 1;
}
else if (MATCH_MARK(results->rawbuf[offset], MITSUBISHI_ZERO_MARK)) {
data <<= 1;
}
else {
// Serial.println("A"); Serial.println(offset); Serial.println(results->rawbuf[offset]);
return ERR;
}
offset++;
if (!MATCH_SPACE(results->rawbuf[offset], MITSUBISHI_HDR_SPACE)) {
// Serial.println("B"); Serial.println(offset); Serial.println(results->rawbuf[offset]);
break;
}
offset++;
}
// Success
results->bits = (offset - 1) / 2;
if (results->bits < MITSUBISHI_BITS) {
results->bits = 0;
return ERR;
}
results->value = data;
results->decode_type = MITSUBISHI;
return DECODED;
}*/
// Gets one undecoded level at a time from the raw buffer.
// The RC5/6 decoding is easier if the data is broken into time intervals.
// E.g. if the buffer has MARK for 2 time intervals and SPACE for 1,
// successive calls to getRClevel will return MARK, MARK, SPACE.
// offset and used are updated to keep track of the current position.
// t1 is the time interval for a single bit in microseconds.
// Returns -1 for error (measured time interval is not a multiple of t1).
int IRrecv::getRClevel(decode_results *results, int *offset, int *used, int t1) {
if (*offset >= results->rawlen) {
// After end of recorded buffer, assume SPACE.
return SPACE;
}
int width = results->rawbuf[*offset];
int val = ((*offset) % 2) ? MARK : SPACE;
int correction = (val == MARK) ? MARK_EXCESS : - MARK_EXCESS;
int avail;
if (MATCH(width, t1 + correction)) {
avail = 1;
}
else if (MATCH(width, 2*t1 + correction)) {
avail = 2;
}
else if (MATCH(width, 3*t1 + correction)) {
avail = 3;
}
else {
return -1;
}
(*used)++;
if (*used >= avail) {
*used = 0;
(*offset)++;
}
#ifdef DEBUG
if (val == MARK) {
Serial.println("MARK");
}
else {
Serial.println("SPACE");
}
#endif
return val;
}
/*
long IRrecv::decodeRC5(decode_results *results) {
if (irparams.rawlen < MIN_RC5_SAMPLES + 2) {
return ERR;
}
int offset = 1; // Skip gap space
long data = 0;
int used = 0;
// Get start bits
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return ERR;
if (getRClevel(results, &offset, &used, RC5_T1) != SPACE) return ERR;
if (getRClevel(results, &offset, &used, RC5_T1) != MARK) return ERR;
int nbits;
for (nbits = 0; offset < irparams.rawlen; nbits++) {
int levelA = getRClevel(results, &offset, &used, RC5_T1);
int levelB = getRClevel(results, &offset, &used, RC5_T1);
if (levelA == SPACE && levelB == MARK) {
// 1 bit
data = (data << 1) | 1;
}
else if (levelA == MARK && levelB == SPACE) {
// zero bit
data <<= 1;
}
else {
return ERR;
}
}
// Success
results->bits = nbits;
results->value = data;
results->decode_type = RC5;
return DECODED;
}*/
/*
long IRrecv::decodeRC6(decode_results *results) {
if (results->rawlen < MIN_RC6_SAMPLES) {
return ERR;
}
int offset = 1; // Skip first space
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], RC6_HDR_MARK)) {
return ERR;
}
offset++;
if (!MATCH_SPACE(results->rawbuf[offset], RC6_HDR_SPACE)) {
return ERR;
}
offset++;
long data = 0;
int used = 0;
// Get start bit (1)
if (getRClevel(results, &offset, &used, RC6_T1) != MARK) return ERR;
if (getRClevel(results, &offset, &used, RC6_T1) != SPACE) return ERR;
int nbits;
for (nbits = 0; offset < results->rawlen; nbits++) {
int levelA, levelB; // Next two levels
levelA = getRClevel(results, &offset, &used, RC6_T1);
if (nbits == 3) {
// T bit is double wide; make sure second half matches
if (levelA != getRClevel(results, &offset, &used, RC6_T1)) return ERR;
}
levelB = getRClevel(results, &offset, &used, RC6_T1);
if (nbits == 3) {
// T bit is double wide; make sure second half matches
if (levelB != getRClevel(results, &offset, &used, RC6_T1)) return ERR;
}
if (levelA == MARK && levelB == SPACE) { // reversed compared to RC5
// 1 bit
data = (data << 1) | 1;
}
else if (levelA == SPACE && levelB == MARK) {
// zero bit
data <<= 1;
}
else {
return ERR; // Error
}
}
// Success
results->bits = nbits;
results->value = data;
results->decode_type = RC6;
return DECODED;
}*/
/*
long IRrecv::decodePanasonic(decode_results *results) {
unsigned long long data = 0;
int offset = 1;
if (!MATCH_MARK(results->rawbuf[offset], PANASONIC_HDR_MARK)) {
return ERR;
}
offset++;
if (!MATCH_MARK(results->rawbuf[offset], PANASONIC_HDR_SPACE)) {
return ERR;
}
offset++;
// decode address
for (int i = 0; i < PANASONIC_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset++], PANASONIC_BIT_MARK)) {
return ERR;
}
if (MATCH_SPACE(results->rawbuf[offset],PANASONIC_ONE_SPACE)) {
data = (data << 1) | 1;
} else if (MATCH_SPACE(results->rawbuf[offset],PANASONIC_ZERO_SPACE)) {
data <<= 1;
} else {
return ERR;
}
offset++;
}
results->value = (unsigned long)data;
results->panasonicAddress = (unsigned int)(data >> 32);
results->decode_type = PANASONIC;
results->bits = PANASONIC_BITS;
return DECODED;
}*/
/*
long IRrecv::decodeJVC(decode_results *results) {
long data = 0;
int offset = 1; // Skip first space
// Check for repeat
if (irparams.rawlen - 1 == 33 &&
MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK) &&
MATCH_MARK(results->rawbuf[irparams.rawlen-1], JVC_BIT_MARK)) {
results->bits = 0;
results->value = REPEAT;
results->decode_type = JVC;
return DECODED;
}
// Initial mark
if (!MATCH_MARK(results->rawbuf[offset], JVC_HDR_MARK)) {
return ERR;
}
offset++;
if (irparams.rawlen < 2 * JVC_BITS + 1 ) {
return ERR;
}
// Initial space
if (!MATCH_SPACE(results->rawbuf[offset], JVC_HDR_SPACE)) {
return ERR;
}
offset++;
for (int i = 0; i < JVC_BITS; i++) {
if (!MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK)) {
return ERR;
}
offset++;
if (MATCH_SPACE(results->rawbuf[offset], JVC_ONE_SPACE)) {
data = (data << 1) | 1;
}
else if (MATCH_SPACE(results->rawbuf[offset], JVC_ZERO_SPACE)) {
data <<= 1;
}
else {
return ERR;
}
offset++;
}
//Stop bit
if (!MATCH_MARK(results->rawbuf[offset], JVC_BIT_MARK)){
return ERR;
}
// Success
results->bits = JVC_BITS;
results->value = data;
results->decode_type = JVC;
return DECODED;
}*/
/* -----------------------------------------------------------------------
* hashdecode - decode an arbitrary IR code.
* Instead of decoding using a standard encoding scheme
* (e.g. Sony, NEC, RC5), the code is hashed to a 32-bit value.
*
* The algorithm: look at the sequence of MARK signals, and see if each one
* is shorter (0), the same length (1), or longer (2) than the previous.
* Do the same with the SPACE signals. Hszh the resulting sequence of 0's,
* 1's, and 2's to a 32-bit value. This will give a unique value for each
* different code (probably), for most code systems.
*
* http://arcfn.com/2010/01/using-arbitrary-remotes-with-arduino.html
*/
// Compare two tick values, returning 0 if newval is shorter,
// 1 if newval is equal, and 2 if newval is longer
// Use a tolerance of 20%
int IRrecv::compare(unsigned int oldval, unsigned int newval) {
if (newval < oldval * .8) {
return 0;
}
else if (oldval < newval * .8) {
return 2;
}
else {
return 1;
}
}
// Use FNV hash algorithm: http://isthe.com/chongo/tech/comp/fnv/#FNV-param
#define FNV_PRIME_32 16777619
#define FNV_BASIS_32 2166136261
/* Converts the raw code values into a 32-bit hash code.
* Hopefully this code is unique for each button.
* This isn't a "real" decoding, just an arbitrary value.
*/
long IRrecv::decodeHash(decode_results *results) {
// Require at least 6 samples to prevent triggering on noise
if (results->rawlen < 6) {
return ERR;
}
long hash = FNV_BASIS_32;
for (int i = 1; i+2 < results->rawlen; i++) {
int value = compare(results->rawbuf[i], results->rawbuf[i+2]);
// Add value into the hash
hash = (hash * FNV_PRIME_32) ^ value;
}
results->value = hash;
results->bits = 32;
results->decode_type = UNKNOWN;
return DECODED;
}