1
0
mirror of https://github.com/arduino/Arduino.git synced 2025-01-21 10:52:14 +01:00
Arduino/hardware/sam/system/CMSIS/Documentation/CMSIS_System_View_Description.htm
2011-08-08 16:58:06 +02:00

1157 lines
65 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html xmlns:p="urn:schemas-microsoft-com:office:powerpoint" xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml"><head>
<title>CMSIS - SVD: Cortex Microcontroller Software Interface Standard - System View Description</title><meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="ProgId" content="FrontPage.Editor.Document">
<style type="text">
</style>
<style type="text/css">
.style1 {
text-align: center;
}
.style2 {
font-weight: normal;
}
.style3 {
text-align: left;
}
.style4 {
color: #008000;
}
.style5 {
color: #0000FF;
}
.style6 {
color: #000000;
}
</style>
</head>
<body>
<h1 class="style1">Cortex Microcontroller Software Interface Standard<br>
System View Description</h1>
<p class="style1">This file describes the Cortex Microcontroller Software
Interface Standard - System View Description (CMSIS - SVD) concept and syntax.</p>
<p class="style1">Version: 1.02 - 27. July 2011</p>
<p class="style1">Information in this file, the accompany manuals, and software is<br>
Copyright © ARM Ltd.<br>All rights reserved.
</p>
<hr>
<p><span style="FONT-WEIGHT: bold">Revision History</span></p>
<ul>
<li>Version 0.91: initial proposal.</li>
<li>Version 0.92: revised proposal considering forum feedback (e.g. consider
IP-XACT constructs and naming scheme)</li>
<li>Version 1.0: new elements: peripheral version, vendor specific
extension section, interrupt mapping information, global peripheral disable
condition, naming of register arrays, enhanced naming schemes, etc.</li>
<li>Version 1.0: SVD versioning and updated schema file</li>
<li>Version 1.01: Error corrections in the example code. "include" has been removed. Restricted to one device per file.</li>
<li>Version 1.02: Adding the use case of device header file generation.</li>
</ul>
<p>&nbsp;</p>
<hr>
<h2>Contents</h2>
<ol>
<li class="LI2"><a href="#1">About</a></li>
<li class="LI2"><a href="#2">Motivation</a></li>
<li class="LI2"><a href="#3">Requirements</a></li>
<li class="LI2"><a href="#4">Format</a></li>
<li class="LI2"><a href="#5">Example</a></li>
<li class="LI2"><a href="#6">Questions &amp; Answers</a></li>
</ol>
<h2><a name="1"></a>About</h2>
<p>
The <strong>Cortex Microcontroller Software Interface Standard - System View
Description</strong> (CMSIS - SVD) answers the challenges
of accurate, detailed and timely device aware peripheral debugging support for Cortex
Microcontroller based devices by the software development
tools vendor community.
</p>
<p>
Silicon vendors shall create and maintain a formalized description of the
debug view for all the peripherals contained in their Cortex
Microcontroller based devices. Tool vendors use such descriptions to
establish device specific debug support in their debugging tools with minimal turn around times and
manageable effort. Device support across many development tools&nbsp; is
essential for silicon provider in order to promote new devices and device
variants entering the market. Device aware debug views provide fast and
convenient access to all registers and fields as well as a detailed
description. This enables software developer to
develop and debug code most efficiently and adopt new devices early and
quickly.</p>
<p>
A standardized System View Description shall provide a common approach to
capturing peripheral debug related information in a machine readable files.
The scope of the contained information is agreed to match the level usually
provided by silicon vendors in their device reference manuals, however in a
formalized XML based format. There
are other description languages already available. IP-XACT from the SPIRIT
consortium is a prominent example. IP-XACT covers the register description
sufficiently, however it comprises many other aspects of the devices like
ports, bus-protocols, modeling, tool flows, etc. making a direct use of
IP-XACT too complex. The design of the SVD language is
taking some guidance from IP-XACT thus allowing straight forward conversion
from IP-XACT to CMSIS-SVD where IP-XACT device information is already
available.</p>
<p>
In a second step the CMSIS-SVD description shall be used for automatically
generating CMSIS compliant a device header file. This enables the
information in the header file to be consistent with what the debugger will
display and CMSIS compliant by construction. The header file generation will
require some additional pieces of information and therefore a future version
of the description will need to include some extensions for this purpose.</p>
<p>
Device aware debugging support is only one aspect of device
support essential to software development environments, however it is one of
the most time consuming and error prone ones.</p>
<h2><a name="2"></a>Motivation</h2>
<p>
The software developer of microcontroller devices is faced with a growing number
of devices with an ever increasing number of peripheral blocks providing a wide
range of distinct and complex functionality. The development of drivers for
these peripherals is in the critical path of every project. Modern debuggers are supporting the software developer in getting the
software to run according to the requirements. A debugger providing peripheral awareness improves the
ability to access and interpret complex configuration and status information of
peripherals. Even though this is only one aspect of device support within microcontroller
development environments it is essential for the successful and timely adoption
of development tools and the device by the market.</p>
<p>Today software development environments address device aware
debugging in various ways. They either use documents or proprietary file formats
as input for providing peripheral views in the debuggers.
Extracting peripheral information from written documentation is a very time
consuming, tedious and error prone task. Having a file containing peripheral specific information to generate peripheral views
is going to make device support more affordable, reliable and timely.
The challenge for the tool providers is the support of many
different and incompatible file formats from a growing number of silicon vendors.
For silicon vendors it is time consuming and costly to engage with many tool
provider in order to achieve device support in a wide range of development
environments.</p>
<p>Standardizing on a System View Description aims to ease this challenge
by agreeing on a formal XML-based file format. In conjunction with supporting web server infrastructure silicon partner
shall upload and maintain such descriptions in a tool vendor agnostic device
database, hosted e.g. by the web server infrastructure
<a href="http://cmsis.arm.com">
cmsis.arm.com</a> . Access control to sensitive information is managed on a per user
basis. This allows silicon vendors to upload information for devices that have
not been made public.&nbsp; </p>
<p>Such an approach provides benefits for silicon and tool vendors as well as
software developers of Cortex-M based microcontroller devices</p>
<ul>
<li>timely and accurate device support provided by a whole range of tool providers </li>
<li>tool providers become more efficient in supporting a multitude of devices
and device variants</li>
<li>less interaction required between silicon vendors and the
tool providers</li>
<li>silicon provider has control over and maintains the System View
Description during the life cycle of the device</li>
<li>high quality device support in terms of completeness and correctness of
device aware debugging</li>
<li>improved productivity and user experience for the software developer</li>
</ul>
<h2><a name="3"></a>Requirements</h2>
<p>The debug description shall capture the information about all
the peripherals contained in a specific device. This section describes which
items of information are deemed relevant for a debugger. Silicon vendors are expected to
provide the System View Description for their devices, matching the information
contained in device reference manuals. The System View Description shall be suitable for straight forward
generation from existing databases like IP-XACT descriptions or SIDSC. The size
of device description is a concern and therefore redundancy in the description
shall be avoided. The size of SVD files affects the efficiency of
distribution as well as the loading time by the development tools. Last but not least manual editing of SVD files shall be possible for
the purpose of customization by SW developers.</p>
<h4>Required content of the description</h4>
<p>From a programmer's perspective a peripheral can be seen as a set of registers
with unique<em> names</em> being mapped to fixed<em> addresses</em> allocated
within a defined <em>range</em> of an address space.</p>
<p>From a debugger's point of view read accesses to a physical register need to be
executed in order to display its current value. The debugger executes a write
access to a register when a user edits its value. For this purpose the debugger
needs to know about the following additional attributes: </p>
<ul>
<li><em>minimal addressable unit </em>= smallest series of bits
identified by a unique address (e.g. byte-addressable memory) </li>
<li><em>register size</em> = number of bits forming a register (ARM Cortex-M usually
32 bits)</li>
<li><em>access permission</em> = read and write, read only,
write only</li>
<li><em>access side effects</em> = accesses by the debugger must
be avoided if it has side effects. Some side effects may be
reversed by the debugger to compensate for the side effect</li>
</ul>
<p>In many cases peripheral registers are partitioned into chunks of bits of
distinct functionality. In this document these chunks are referred to as <em>
field</em>. Each
register that consists of fields shall&nbsp; be described by a list
of <em>uniquely named</em> fields (Note: field names are not required to be
unique across registers). In order for a debugger to extract the
value of a field from the corresponding register the following attributes are required:</p>
<ul>
<li><em>most significant bit </em>= highest bit position of the
bit-field in the corresponding register</li>
<li><em>least significant bit</em> = lowest bit position of the
bit-field within the corresponding register</li>
<li><em>access permission</em> = read and write, read only,
write only</li>
</ul>
<p>An enumerated value maps a number to a specific descriptive string
representing the semantics of the value of a field. The debugger displays the
descriptive string rather than the number to simplify the access to the
information thus
avoiding the necessity of a look-up in the device reference manual. Each item of
an enumerated value has the following attributes:</p>
<ul>
<li><em>value</em> = value of the bit-field that corresponds to
the string attribute</li>
<li><em>name</em> = short string that describes the semantics of a
field when the corresponding value is set</li>
<li><em>description</em> = detailed description of the semantics
of the field when the corresponding value is set</li>
</ul>
<p>The hierarchical structure of the description looks like this:</p>
<p><strong>Device =</strong></p>
<ul>
<li>
<p>&nbsp;<strong>Peripherals</strong></p>
<ul>
<li>
<p class="style2"><strong>Peripheral</strong></p>
<ul>
<li>
<p class="style2"><strong>Registers</strong></p>
<ul>
<li>
<p class="style2">
<strong>Register</strong></p>
<ul>
<li>
<p class="style2">
<strong>Fields</strong></p>
<ul>
<li>
<p class="style2"><strong>Field</strong></p>
<ul>
<li>
<p class="style2"><strong>Enumerated Values</strong></p>
<ul>
<li>
<p class="style2"><strong>Enumerated Value</strong></p>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</li>
</ul>
<p>One file can only contain a description for a single device or device family
sharing the identical description. Devices consists of a one or more peripherals.
Each peripheral contains
one or more registers, where each register may consist of one or more fields.
The values of a field maybe represented through descriptive strings and detailed
descriptions, the enumerated values.</p>
<p>In many cases there are multiple
instances of the same peripheral in a device (e.g. Timer0, Timer1, etc.). For
this reason the description has the concept of deriving a peripheral from a peripheral
that has already been described. The attribute <em>derivedFrom </em>specifies
such a relationship.
Similarly registers or fields can be reused within the device description. The
grouping of&nbsp; peripherals providing
similar functionality (e.g. Simple Timer, Complex Timer) is controlled via the element <em>groupName</em>.
All peripherals associated with the same group name are collectively listed under this group
in the order they have been specified in the file.
Collecting&nbsp;
similar or related peripherals into peripheral groups helps structuring the list
of peripherals e.g. in a drop down menu (tool dependent). Devices with a large
set of peripherals will benefit from this additional level of structure.</p>
<p>Each of the items (i.e. Device, Peripheral, Register and
Field) owns an <em>description </em>element containing verbose information about
the respective element. The description field plays
an important part in improving the software development productivity. Instead of
searching through the reference manual the detailed explanation from the manual
could become immediately accessible from within the development environment.</p>
<p>Details about the exact display format and layout of the peripheral view are
considered beyond the scope of the description. It is up to the tool vendor to
visualize the contained information appropriately. The
silicon vendor provides details about the device's peripherals that is commonly available. </p>
<p>System View Description files need to be validated for:</p>
<ol>
<li>syntactical correctness using XML-Schema checking utilities</li>
<li>consistency&nbsp; of the provided information (e.g. multiple registers mapped to the same address,
all registers located within the specified address ranges of a
peripheral, all fields are within the range of the register
size, etc.) by a utility developed by ARM (SVDConv.exe)</li>
<li>&nbsp;semantical correctness of the System View Description
against the silicon specification executed by the silicon vendor</li>
</ol>
<p>The SVD description format was extended by numerous elements during the
review period targeting version 1.0 and new extensions are expected for future
versions of this format. A new section named &quot;vendorExtensions&quot; has been added
to the end of the top level to allow silicon vendors and tool partners to
innovate and expand the description in order to overcome limitations of the
current specification until these can be incorporated into new versions of
CMSIS-SVD. <br>
</p>
<h2>&nbsp;<a name="4"></a><span class="style9">Format</span></h2>
<p>
The following section describes the SVD file format in detail. Each subsection
defines a single hierarchy level of the description and lists all mandatory
and optional language elements for that specific level including type
information for each element. Each element is discussed in more detail and a
brief snippet is provided as an example. The sequence of elements shown
below is binding. Optional elements are highlighted in green, blue elements
are mandatory unless they have been already specified globally on a higher
level.</p>
<p>
An XML-schema file is provided alongside this document for syntactical
checking of descriptions being developed.</p>
<h4>&lt;device schemaVersion=&quot;xs:decimal&quot; <span class="style2"><em>xmlns:xs=&quot;http://www.w3.org/2001/XMLSchema-instance&quot; xs:noNamespaceSchemaLocation=&quot;CMSIS-SVD_Schema_1_0.xsd</em></span>&quot;&gt;</h4>
<p>&nbsp;&nbsp; &lt;<span class="style2">name&gt;<em>xs:Name</em>&lt;/name&gt;<br>
&nbsp;&nbsp; &lt;version<em>&gt;xs:string&lt;</em>/version&gt;<br>
&nbsp;&nbsp; &lt;description&gt;<em>xs:string</em>&lt;/description&gt;<br>
</span>&nbsp;&nbsp; &lt;<span class="style2">addressUnitBits&gt;<em>scaledNonNegativeInteger</em>&lt;/addressUnitBits&gt;<br>
&nbsp;&nbsp; &lt;width&gt;<em>scaledNonNegativeInteger</em> &lt;/width&gt;</span><br>
<br>
&nbsp;&nbsp;<span class="style4"> &lt;</span><span class="style2"><span class="style4">size&gt;<em>scaledNonNegativeInteger</em>&lt;/size&gt;<em><br>
</em>&nbsp;&nbsp; &lt;access&gt;<em>accessType</em>&lt;/access&gt;<br>
&nbsp;&nbsp; &lt;resetValue&gt;<em>scaledNonNegativeIntege</em>r&lt;/resetValue&gt;<br>
&nbsp;&nbsp; &lt;resetMask&gt;<em>scaledNonNegativeInteger</em>&lt;/resetMask&gt;</span></span></p>
<p>&nbsp;&nbsp; &lt;peripherals&gt;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ...<br>
&nbsp;&nbsp; &lt;/peripherals&gt;<br>
<span class="style4">&nbsp;&nbsp; &lt;vendorExtensions&gt;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ...<br>
&nbsp;&nbsp;&nbsp; &lt;/vendorExtensions&gt;</span></p>
<h4>&lt;/device&gt;</h4>
<p>The <strong>device</strong> provides the outermost frame of the description. All other
elements like peripherals, registers and fields are described inside of this scope. A device contains one or more peripherals.
The optional elements size, access, resetValue and resetMask are used as default values throughout the
device description unless they get overruled on a lower level of the description
(e.g. peripheral or register).</p>
<h4>Mandatory items:</h4>
<p><strong>name = </strong>the unique name string is used to identify the device.
All devices of a silicon vendor are required to have a unique name. In case an
SVD description covers a family or series of devices, the name of the series or
family is placed here. The device names of the members of the series or family
are listed in &lt;memberDevices&gt;</p>
<p><strong>description = </strong>string describing main features of a device
(e.g. CPU, clock frequency, peripheral overview, etc.)</p>
<p><strong>version = </strong>the string is defining the version of the
description for this device. Silicon vendors will maintain the description
throughout the lifecycle of the device and need to ensure that all updated and
released copies have a unique version string indicating the order in which. Note: this must not be used for
detailing the version of the device.</p>
<p>&nbsp;</p>
<p><strong>addressUnitBits = </strong>defines the number of data bits for each address
increment. The value for Cortex-M based devices is&nbsp; 8 (byte-addressable).</p>
<p><strong>width = </strong>defines the number of bits for the maximum single
transfer size allowed by the bus interface hence the maximum size of a single
register that can be defined for the address space. This information is relevant
for debuggers when determining the size of debug transfers. The expected value
for Cortex-M based devices is 32.</p>
<p><strong>peripherals = </strong>next level of description (see next section
for details)</p>
<h4>Optional Items:</h4>
<p><strong>size = </strong>defines the default bit-width of registers contained
in the device. This element can be overruled by re-specifying the size element on a lower level of the
description.</p>
<p><strong>access =</strong> defines the default access permissions for all
registers in the device. The allowed tokens are:<br>
&nbsp; - <em>read-only</em>: read access is permitted. Write operations have an undefined
result.<br>
&nbsp; - <em>write-only</em>: write access is permitted. Read operations have an
undefined result. <br>
&nbsp; -<em>read-write</em>: both read and write accesses are permitted. Writes affect
the state of the register and reads return a value related to the register<br>
&nbsp; -<em>writeOnce</em>: only the first write after reset has an effect on the
register. Read operations deliver undefined results<br>
&nbsp; -<em>read-writeOnce</em>: Read operations deliver a result related to the register
content. Only the first write access to this register after a reset will have an
effect on the register content.</p>
<p><strong>resetValue = </strong>defines the default value of all registers
after a reset. There are scenarios where SW developers need to know, what the
reset value of a register or field is. Even though listed as optional on this
level of the description, silicon vendors should ensure that this information is
provided for all registers. </p>
<p><strong>resetMask =</strong> defines those bit positions set to one to be
taken from resetValue element. All other elements are undefined. If a register
does not have a defined reset value the resetMask needs to be set to 0.</p>
<p><strong>vendorExtensions </strong>= the content and format of this section of
the description is unspecified. Silicon vendors may choose to provide additional
information. The assumption is that by default this section is completely
ignored by the debugger. It is up to the silicon vendor to specify the content
of this section and share the specification with the tool vendors. The new
elements shall be considered for a future version of the description format.</p>
<h4>Example:</h4>
<pre>&lt;device schemaVersion=&quot;1.0&quot; xmlns:xs=&quot;http://www.w3.org/2001/XMLSchema-instance&quot; xs:noNamespaceSchemaLocation=&quot;CMSIS-SVD_Schema_1_0.xsd&quot; &gt;
&lt;name&gt;CMSIS_Cortex-M3&lt;/name&gt;
&lt;version&gt;0.1&lt;/version&gt;
&lt;description&gt;ARM Cortex-M3 based Microcontroller demonstration device&lt;/description&gt;
&lt;addressUnitBits&gt;8&lt;/addressUnitBits&gt;
&lt;width&gt;32&lt;/width&gt;
&lt;size&gt;32&lt;/size&gt;
&lt;access&gt;read-write&lt;/access&gt;
&lt;resetValue&gt;0&lt;/resetValue&gt;
&lt;resetMask&gt;0xffffffff&lt;/resetMask&gt;</pre>
<pre> &lt;peripherals&gt;
...
&lt;/peripherals&gt;
&lt;/device&gt;</pre>
<p>The device description above is at version 0.1 and uniquely identifies the
device by the name &quot;CMSIS_Cortex-M3&quot;. The peripherals are memory mapped in a
byte-addressable address space with a bus width of 32 bits. The default size of
the registers contained in the peripherals is set to 32 bits. Unless redefined
for specific peripherals, registers or fields all registers are read-write
accessible. A reset value of 0 valid for all 32 bits as specified by the reset
mask is set for all registers unless overruled at a lower level of the description.</p>
<hr>
<h4>&lt;peripherals&gt;</h4>
<p>&nbsp;&nbsp; &lt;peripheral&gt;<br>
&nbsp;&nbsp;&nbsp;&nbsp; ...<br>
&nbsp;&nbsp; &lt;/peripheral&gt;</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp; ...</p>
<p>&nbsp;&nbsp; &lt;peripheral&gt;<br>
&nbsp;&nbsp;&nbsp;&nbsp; ...<br>
&nbsp;&nbsp; &lt;/peripheral&gt;</p>
<h4>&lt;/peripherals&gt;</h4>
<p>This construct sets the frame for all peripherals and peripheral groups contained in a device. This
creates a container element which ease-up processing with languages like Java.</p>
<hr>
<h4>&lt;peripheral <span class="style2"><span class="style4">derivedFrom=<em>&quot;xs:Name&quot;</em></span></span>&gt;</h4>
<p>&nbsp;&nbsp; &lt;name&gt;<em>xs:Name</em>&lt;/name&gt;<br>
&nbsp;&nbsp; <span class="style4">&lt;version&gt;xs:string&lt;/name&gt;</span><br>
&nbsp;&nbsp; &lt;description&gt;<em>xs:string </em>&lt;/description&gt;<br>
&nbsp;&nbsp; <span class="style4">&lt;groupName&gt;<em>xs:string</em>&lt;/groupName&gt;<br>
&nbsp;&nbsp; &lt;prependToName&gt;<em>xs:string</em>&lt;/prependToName&gt;<br>
&nbsp;&nbsp; &lt;appendToName&gt;<em>xs:string</em>&lt;/appendToName&gt;</span><br>
&nbsp;&nbsp; <span class="style4">&lt;disableCondition&gt;<em>xs:string</em>&lt;/disableCondition&gt;</span><br>
&nbsp;&nbsp; &lt;baseAddress&gt;<em>scaledNonNegativeInteger</em>&lt;/baseAddress&gt;<br>
&nbsp;&nbsp;<span class="style4"> &lt;</span><span class="style2"><span class="style4">size&gt;<em>scaledNonNegativeInteger</em>&lt;/size&gt;<em><br>
</em>&nbsp;&nbsp; &lt;access&gt;<em>accessType</em>&lt;/access&gt;<br>
&nbsp;&nbsp; &lt;resetValue&gt;<em>scaledNonNegativeIntege</em>r&lt;/resetValue&gt;<br>
&nbsp;&nbsp; &lt;resetMask&gt;<em>scaledNonNegativeInteger</em>&lt;/resetMask&gt;</span></span></p>
<p>&nbsp;&nbsp; <span class="style10">&lt;addressBlock&gt;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &lt;offset&gt;</span><em>scaledNonNegativeInteger</em><span class="style10">&lt;/offset&gt;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &lt;size&gt;</span><em>scaledNonNegativeInteger</em><span class="style10">&lt;/size&gt;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &lt;usage<em>&gt;usageType&lt;</em>/usage&gt;<br>
<em>&nbsp;&nbsp; &lt;/</em>addressBlock&gt;<em><br>
</em>&nbsp;&nbsp; ...<br>
</span>&nbsp; <span class="style10"><span class="style4">&lt;addressBlock&gt;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &lt;offset&gt;</span></span><span class="style4"><em>scaledNonNegativeInteger</em></span><span class="style10"><span class="style4">&lt;/offset&gt;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &lt;size&gt;</span></span><span class="style4"><em>scaledNonNegativeInteger</em></span><span class="style10"><span class="style4">&lt;/size&gt;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &lt;usage&gt;<em>usageType</em>&lt;/usage&gt;<br>
<em>&nbsp;&nbsp; &lt;/</em>addressBlock&gt;<br>
&nbsp;&nbsp; &lt;interrupt&gt;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &lt;name&gt;<em>xs:string</em>&lt;/name&gt;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &lt;value&gt;<em>scaledNonNegativeInteger</em>&lt;/value&gt;<br>
&nbsp;&nbsp; &lt;/interrupt&gt;</span><em><br>
</em></span>&nbsp;&nbsp; &lt;registers&gt;<br>
&nbsp;&nbsp; ...<br>
&nbsp;&nbsp; &lt;/registers&gt;</p>
<h4>&lt;/peripheral&gt;</h4>
<p>A peripheral encloses the description of one or more registers belonging to
this named peripheral. The address range allocated in the address space for this
peripheral is defined through one or more address ranges. An address range is
specified relative to the base address of the peripheral. This information
allows to display a memory map overview for all peripherals. Please note that
such a memory map does not contain any information for memories and unoccupied
address ranges.</p>
<h4>Mandatory items:</h4>
<p><strong>name = </strong>name string used to identify the peripheral. Peripheral
names are required to be unique within the scope of a device.</p>
<p><strong>baseAddress </strong>= lowest address reserved or used by the peripheral</p>
<p><strong>description = </strong>string providing an overview of the purpose
and functionality of the peripheral</p>
<p><strong>addressBlock = </strong>a peripheral may occupy one or more disparate
blocks in the address space. An addressBlock is a complex element consisting of
the mandatory elements:<br>
&nbsp;&nbsp;&nbsp; <strong>offset</strong>: specifying the start address of an address block. It
is calculated from the sum of baseAddress and offset<br>
&nbsp;&nbsp;&nbsp; <strong>size</strong>: specifying the number of addressUnitBits being covered
by this address block. The end address of an address block is the sum of start
address and the size - 1.<br>
&nbsp;&nbsp;&nbsp; <strong>usage</strong>: the usage element is of <em>usageType </em>specifying
if the addresses within the specified address block is used for<strong> </strong>
<em>registers</em><strong> </strong>or <em>buffer</em><strong> </strong>or is <em>reserved</em>.
<br>
Note: registers must not be allocated
to an address within a reserved or buffer address range.</p>
<p><strong>registers = </strong>next lower level of description (see next section
for details)</p>
<h4>Optional items:</h4>
<p><strong>derivedFrom = </strong>this attribute specifies the name of a peripheral
that has already been described for this device. The description of that device
will be copied. It is mandatory to overwrite the name as well as the
addressOffset. All other specified information will overwrite the respective
elements in the copy.</p>
<p><strong>version = </strong>the string specifies the version of this
peripheral description.</p>
<p><strong>disableCondition = </strong>C language compliant logical expression
resulting in a true or false result. If &quot;true&quot; the refresh of the display
for this peripheral is disabled
and related accesses by the debugger are suppressed. Only constants and references to other registers
contained in the description are allowed:&nbsp;
&lt;peripheral&gt;-&gt;&lt;register&gt;-&gt;&lt;field&gt; (e.g.: (System-&gt;ClockControl-&gt;apbEnable == 0)).
Only the following operators are allowed [&amp;&amp;,||, ==, !=, &gt;&gt;, &lt;&lt;, &amp;, |]. Warning!
This feature must only be use in case accesses from the debugger to registers of
un-clocked peripherals result in severe debugging failures. SVD is intended to
be fully static information and not include any run-time computation or
functions such capabilities may be added by the tools but is considered beyond
the scope of this description language.</p>
<p><strong>prependToName = </strong>all register names of this peripheral have
their names prepended with the string specified</p>
<p><strong>appendToName = </strong>all register names of this peripheral have
their names appended with the string specified</p>
<p><strong>size = </strong>defines the default bit-width of registers contained
in the device. This element can be overruled by re-specifying the size element on a lower level of the
description.</p>
<p><strong>access =</strong> defines the default access permissions for all
registers in the peripheral. The value can be reset on a lower level of the
description. The allowed tokens are:<br>
&nbsp; - <em>read-only</em>: read access is permitted. Write operations have an undefined
result.<br>
&nbsp; - <em>write-only</em>: write access is permitted. Read operations have an
undefined result. <br>
&nbsp; -<em>read-write</em>: both read and write accesses are permitted. Writes affect
the state of the register and reads return a value related to the register<br>
&nbsp; -<em>writeOnce</em>: only the first write after reset has an effect on the
register. Read operations deliver undefined results<br>
&nbsp; -<em>read-writeOnce</em>: Read operations deliver a result related to the register
content. Only the first write access to this register after a reset will have an
effect on the register content.</p>
<p><strong>resetValue = </strong>defines the default value of all registers
after a reset but can be set for individual registers and fields on a lower
level of the description.</p>
<p><strong>resetMask =</strong> defines those bit positions set to one to be
taken from resetValue element. All other elements are undefined. This is the
default value for the whole peripheral but can be readjusted on lower levels. If
a register does not have a defined reset value the resetMask needs to be set to
0.</p>
<p><strong>interrupt = </strong>is a complex type that consists of the <strong>name</strong> of
the interrupt and the associated enumeration<strong> value</strong>. A peripheral can also have
multiple associated interrupts. This entry is mainly intended for information
only purposes in order to display the interrupts and respective interrupt
numbers associated with a peripheral.</p>
<h4>Example:</h4>
<pre>...&nbsp;
&lt;peripheral&gt;
&lt;name&gt;Timer0&lt;/name&gt;
&lt;version&gt;1.0.32&lt;/version&gt;
&lt;description&gt;Timer 0 is a simple 16 bit timer counting down ... &lt;/description&gt;
&lt;baseAddress&gt;0x40000000&lt;/baseAddress&gt;
&lt;addressBlock&gt;
&lt;offset&gt;0x0&lt;/offset&gt;
&lt;size&gt;0x400&lt;/size&gt;
&lt;usage&gt;registers&lt;/usage&gt;
&lt;/addressBlock&gt;
&lt;interrupt&gt;&lt;name&gt;TIM0_INT&lt;/name&gt;&lt;value&gt;34&lt;/value&gt;&lt;/interrupt&gt;
&lt;registers&gt;
...
&lt;/registers&gt;
&lt;/peripheral&gt;
&lt;peripheral derivedFrom=&quot;Timer0&quot;&gt;
&lt;name&gt;Timer1&lt;/name&gt;
&lt;baseAddress&gt;0x40000400&lt;/baseAddress&gt;
&lt;/peripheral&gt;
...</pre>
<hr>
<h4>&lt;registers&gt; ... &lt;/registers&gt;</h4>
<p>This construct sets the frame for all registers contained in a peripheral.
This creates container elements which ease-up processing with languages like Java.</p>
<hr>
<h4>&lt;register <span class="style2">derivedFrom=<em>xs:Name</em></span>&gt;</h4>
<p>&nbsp;&nbsp; <span class="style4">&lt;dim&gt;<em>scaledNonNegativeInteger</em>&lt;/dim&gt;<br>
&nbsp;&nbsp; &lt;dimIncrement&gt;<em>scaledNonNegativeInteger</em>&lt;/dimIncrement&gt;<br>
&nbsp;&nbsp; &lt;dimIndex&gt;<em>xs:string</em>&lt;/dimIndex&gt;</span><br>
&nbsp;&nbsp; &lt;<span class="style2">name&gt;<em>xs:Name</em>&lt;/name&gt;<br>
&nbsp;&nbsp; <span class="style4">&lt;displayName&gt;<em>xs:string</em>&lt;/displayName&gt;</span><br>
</span>&nbsp;&nbsp; <span class="style2">&lt;description&gt;<em>xs:string</em>&lt;/description&gt;</span><br>
&nbsp;<span class="style2">&nbsp; <span class="style4">&lt;alternateGroup&gt;<em>xs:Name</em>&lt;/alternateGroup&gt;</span><br>
</span>&nbsp; <span class="style2">&nbsp;&lt;addressOffset&gt;<em>scaledNonNegativeInteger</em>
&lt;/addressOffset&gt;<br>
&nbsp;<span class="style5">&nbsp;&nbsp; &lt;size&gt;<em>scaledNonNegativeInteger</em>&lt;/size&gt;<br>
</span><span class="style4">&nbsp;</span><span class="style5">&nbsp; &lt;access&gt;<em>accessType</em>&lt;/access&gt;<br>
&nbsp;&nbsp; </span><span class="style4">&lt;</span><span class="style5">resetValue&gt;<em>scaledNonNegativeInteger</em>&lt;/resetValue&gt;<br>
&nbsp;&nbsp; &lt;resetMask&gt;<em>scaledNonNegativeInteger</em>&lt;/resetMask&gt;<br>
</span>
</span><span class="style4">&nbsp;&nbsp; &lt;modifiedWriteValues&gt;<em>writeValueType</em>&lt;/modifiedWriteValues&gt;<br>
&nbsp;&nbsp; &lt;writeConstraint&gt;<em>writeConstraintType</em>&lt;/writeConstraint&gt;<br>
&nbsp;&nbsp; &lt;readAction&gt;<em>readActionType</em> &lt;/readAction&gt;</span><span class="style2"><br>
</span>&nbsp;&nbsp; <span class="style4">&lt;fields&gt;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ...<br>
&nbsp;&nbsp; &lt;/fields&gt;</span> </p>
<h4>&lt;/register&gt;</h4>
<p>The definition of registers is the central part of the description. A
register may use its complete size for a single purpose and therefore not
consist of fields. Otherwise the description
of fields is mandatory.</p>
<h4>Mandatory items:<br>
</h4>
<p><strong>name = </strong>name string used to identify the register. Register
names are required to be unique within the scope of a peripheral.</p>
<p><strong>description = </strong>string describing the details of the register.</p>
<p><strong>addressOffset = </strong>value defining the address of the register relative to
the baseAddress defined by the peripheral the register belongs to.<br>
</p>
<p><span class="style5">The following elements can be omitted</span> if the corresponding value has been set
on a higher level of the description and matches the value required for this register:</p>
<p><strong>size =</strong>value defining the bit-width of the register</p>
<p><strong>access =</strong> predefined tokens: read-only, write-only, read-write,
writeOnce, read-writeOnce strings defining the allowed
accesses for this register.</p>
<p><strong>resetValue =</strong> element defining the value of the register
immediately after a reset.</p>
<p><strong>resetMask= </strong>element specifying those bits of the resetValue that
are defined<strong> </strong>(bit positions containing a 0 bit are ignored, bit
positions containing a 1 bit are taken from the corresponding bit position of
the resetValue). If a register does not have a defined reset value the resetMask
needs to be set to 0.</p>
<h4>Optional items:</h4>
<p><strong>dim = </strong>if this field is specified the value defines the
number of elements in an array of registers.</p>
<p><strong>dimIncrement =</strong> if dim is specified this element becomes
mandatory and specifies the address increment in between
two neighboring registers of the register array in the address map.</p>
<p><strong>dimIndex = </strong>this element specifies the substrings within the
register array names that will replace the %s within the register name. By
default the index is a decimal value starting with 0 for the first register.
Examples:<br>
&nbsp;&nbsp; &lt;dim&gt;6&lt;/dim&gt; &lt;dimIncrement&gt;4&lt;/dimIncrement&gt; &lt;dimIndex&gt;A,B,C,D,E,Z&lt;/dimIndex&gt;
&lt;name&gt;GPIO_%s_CTRL&lt;/name&gt; ...<br>
&nbsp;&nbsp; =&gt; GPIO_A_CTRL, GPIO_B_CTRL, GPIO_C_CTRL, GPIO_D_CTRL, GPIO_E_CTRL,
GPIO_Z_CTRL<br>
&nbsp;&nbsp; &lt;dim&gt;4&lt;/dim&gt; &lt;dimIncrement&gt;4&lt;/dimIncrement&gt; &lt;dimIndex&gt;3-6&lt;/dimIndex&gt;
&lt;name&gt;IRQ%s&lt;/name&gt; ... <br>
&nbsp;&nbsp; =&gt; IRQ3, IRQ4, IRQ5, IRQ6&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </p>
<p><strong>displayName = </strong>when used, this is the string being used by a
graphical frontend to visualize the register otherwise the name element is used.
Note: the display name may contain special characters and white spaces. It also
uses &quot;%s&quot; as the place holder for the dimIndex substring.</p>
<p><strong>alternateGroup =</strong> when used, this element specifies a name of
a group that all alternate register with the same name a associated with. At the
same time it indicates that there is a register description allocating the same
absolute address in the address space. </p>
<p><strong>modifiedWriteValues = </strong>element to describe the manipulation of
data written to a register. If not specified the value written to the field is the
value stored in the field. The other options are bitwise operations: <br>
&nbsp; <em>oneToClear:</em> write data bits of one shall clear (set to zero) the
corresponding bit in the register<br>
&nbsp; <em>oneToSet:</em> write data bits of one shall set (set to one) the
corresponding bit in the register<br>
&nbsp; <em>oneToToggle:</em> write data bits of one shall toggle (invert) the
corresponding bit in the register<br>
&nbsp; <em>zeroToClear:</em> write data bits of zero shall clear (set to zero)
the corresponding bit in the register<br>
&nbsp; <em>zeroToSet:</em> write data bits of zero shall set (set to one) the
corresponding bit in the register<br>
&nbsp; <em>zeroToToggle:</em> write data bits of zero shall toggle (invert) the
corresponding bit in the register<br>
&nbsp; <em>clear:</em> after a write operation all bits in the field are cleared (set to
zero)<br>
&nbsp; <em>set:</em> after a write operation all bits in the field are set (set to one)<br>
&nbsp; <em>modify:</em> after a write operation all bit in the field may be modified
(default)</p>
<p><strong>writeConstraint: </strong>has a set of options:<br>
&nbsp; <em>writeAsRead</em> = if true only the last read value can be written<br>
&nbsp; <em>useEnumeratedValues</em> = if true only those values listed in the
enumeratedValues list are considered valid write values<br>
&nbsp; <em>minimum</em> = specifies the smallest number to be written to the
register<br>
&nbsp; <em>maximum</em> = specifies the largest number to be written to the
register</p>
<p><strong>readAction: </strong>if set it specifies the side effect following
read operations. If not set the register is not modified following a read
operations. The defined side effects are:<br>
&nbsp; <em>clear:</em> indicates that the register is cleared (set to zero)
following a read operation<br>
&nbsp; <em>set:</em> indicates that the register is set (set to ones) following a
read operation<br>
&nbsp; <em>modify</em>: indicates that the register is modified in some way
after a read operation<br>
&nbsp; <em>modifyExternal: </em>indicates that one or more dependent resources
other than the current register
are immediately affected by a read (it is recommended that the register
description specifies these dependencies). Debuggers are not expected to read
this register location unless explicitly instructed by user.</p>
<p><strong>fields = </strong>next lower level of description (see next section
for details).</p>
<h4>Optional attribute:</h4>
<p><strong>derivedFrom = </strong>specifies the name of the register to be
replicated. Elements being specified underneath will override the values specified
from the register being derived from. Note that it is mandatory to overwrite at
least name and addressOffset.</p>
<h4>Example:</h4>
<pre>...&nbsp;
&lt;register&gt;
&lt;name&gt;TimerCtrl0&lt;/name&gt;
&lt;description&gt;Timer Control Register&lt;/description&gt;
&lt;addressOffset&gt;0x0&lt;/addressOffset&gt;
&lt;access&gt;read-write&lt;/access&gt;
&lt;resetValue&gt;0x00008001&lt;/resetValue&gt;
&lt;resetMask&gt;0x0000ffff&lt;/resetMask&gt;
&lt;size&gt;32&lt;size&gt;
&lt;fields&gt;
...
&lt;/fields&gt;
&lt;/register&gt;
&lt;register derivedFrom=&quot;TimerCtrl0&quot;&gt;
&lt;name&gt;TimerCtrl1&lt;/name&gt;
&lt;addressOffset&gt;0x4&lt;addressOffset&gt;
&lt;/register&gt;
...</pre>
<hr>
<h4>&lt;fields&gt; ... &lt;/fields&gt;</h4>
<p>This construct sets the frame for all fields contained in a register.
This creates container elements which ease-up processing with languages like Java.</p>
<hr>
<h4>&nbsp;&lt;field <span class="style2">derivedFrom=<em>&quot;xs:Name</em>&quot;</span>&gt;</h4>
<p>&nbsp;<span class="style2">&nbsp; &lt;name&gt;<em>xs:Name&lt;/name&gt;<br>
&nbsp;</em></span>&nbsp; &lt;description&gt;<em>xs:string</em>&lt;/description&gt;<br>
<span class="style5">&nbsp;</span><span class="style2"><span class="style5"><em>&nbsp; </em>
</span>&lt;<span class="style5">bitOffset&gt;<em>scaledNonNegativeInteger&lt;/</em>bitOffset&gt;
</span>&lt;<span class="style5">bitWidth&gt;<em>scaledNonNegativeInteger</em>&lt;/bitWidth&gt;<br>
&nbsp;&nbsp; </span><span class="style6">or</span><span class="style5"><br>
&nbsp;&nbsp; &lt;lsb&gt;scaledNonNegativeInteger&lt;/lsb&gt; &lt;msb&gt;scaledNonNegativeInteger&lt;/msb&gt;<br>
&nbsp;&nbsp; </span><span class="style6">or</span><span class="style5"><br>
&nbsp;&nbsp; &lt;bitRange&gt;<em>pattern</em>&lt;/bitRange&gt;<br>
&nbsp;&nbsp; &lt;access&gt;<em>accessType</em>&lt;/access&gt;<br>
</span></span><span class="style4">&nbsp;&nbsp; &lt;modifiedWriteValues&gt;<em>writeValueType</em>&lt;/modifiedWriteValues&gt;<br>
&nbsp;&nbsp; &lt;writeConstraint&gt;<em>writeConstraintType</em>&lt;/writeConstraint&gt;<br>
&nbsp;&nbsp; &lt;readAction&gt;<em>readActionType</em> &lt;/readAction&gt;</span><span class="style2"><br>
&nbsp;</span>&nbsp; <span class="style4">&lt;enumeratedValues&gt;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ...<br>
&nbsp;&nbsp; &lt;/enumeratedValues&gt;</span></p>
<h4>&lt;/field&gt;</h4>
<p>A bit-field has a name that is unique for the register it belongs to. The
position and size within the register is either described by the combination of
the least significant bit's position (lsb) and the most significant bit's
position (msb) or the lsb and the size, specifying the bit-width of the
field.&nbsp; A field may define an enumeratedValue in order to make the display
more intuitive to read. </p>
<h4>Mandatory items:</h4>
<p><strong>name = </strong>name string used to identify the field. Field names
are required to be unique within the scope of a register.<br>
</p>
<p><strong>description = </strong>string describing the details of the register.<br>
</p>
<p>There are 3 ways to describe a field to be used mutually exclusive:<br>
a) specifying bitOffset and bitWidth (IP-XACT like)<br>
b) specifying lsb and msb of the field.<br>
c) specifying a bit range in the format &quot;[&lt;msb&gt;:&lt;lsb&gt;]&quot;</p>
<p><strong>bitOffset = </strong>value defining the position of the least significant bit
of the field within the register it belongs to.<br>
<strong>bitWidth = </strong>value defining the bit-width of the bitfield within the
register it belongs to.<br>
</p>
<p>
<strong>lsb =</strong> value defining the bit position of the least significant
bit within the register it belongs to.<br>
<strong>msb =</strong> value defining the bit position of the most significant
bit within the register it belongs to.
</p>
<p><strong>bitRange = </strong>a string in the format: [&lt;msb&gt;:&lt;lsb&gt;]<br>
</p>
<h4>Optional items:</h4>
<p><strong>derivedFrom = </strong>the field is cloned
from a previously defined field with a unique name.</p>
<p><strong>access =</strong> predefined strings defining the allowed
accesses for this register: <em>read-only, write-only, read-write, writeOnce,
read-writeOnce</em><strong>.</strong> Can be omitted if it matches the access permission set for the parent register.</p>
<p><strong>enumeratedValues = </strong>next lower level of description (see next section
for details)</p>
<p><strong>modifiedWriteValues = </strong>element to describe the manipulation of
data written to a field. If not specified the value written to the field is the
value stored in the field. The other options are bitwise operations: <br>
&nbsp; <em>oneToClear:</em> write data bit of one shall clear (set to zero) the
corresponding bit in the field<br>
&nbsp; <em>oneToSet:</em> write data bit of one shall set (set to one) the corresponding
bit in the field<br>
&nbsp; <em>oneToToggle:</em> write data bit of one shall toggle (invert) the
corresponding bit in the field<br>
&nbsp; <em>zeroToClear:</em> write data bit of zero shall clear (set to zero) the
corresponding bit in the field<br>
&nbsp; <em>zeroToSet:</em> write data bit of zero shall set (set to one) the
corresponding bit in the field<br>
&nbsp; <em>zeroToToggle:</em> write data bit of zero shall toggle (invert) the
corresponding bit in the field<br>
&nbsp; <em>clear:</em> after a write operation all bits in the field are cleared (set to
zero)<br>
&nbsp; <em>set:</em> after a write operation all bits in the field are set (set to one)<br>
&nbsp; <em>modify:</em> after a write operation all bit in the field may be modified
(default)</p>
<p><strong>writeConstraint: </strong>has a set of options:<br>
&nbsp; <em>writeAsRead</em> = if true only the last read value can be written<br>
&nbsp; <em>useEnumeratedValues</em> = if true only those values listed in the
enumeratedValues list are considered valid write values<br>
&nbsp; <em>minimum</em> = specifies the smallest number to be written to the field<br>
&nbsp; <em>maximum</em> = specifies the largest number to be written to the field</p>
<p><strong>readAction: </strong>if set it specifies the side effect following
read operations. If not set the field is not modified following a read
operations. The defined side effects are:<br>
&nbsp; <em>clear:</em> indicates that the field is cleared (set to zero)
following a read operation<br>
&nbsp; <em>set:</em> indicates that the field is set (set to ones) following a
read operation<br>
&nbsp; <em>modify</em>: indicates that the field is modified in some way after a
read operation&nbsp;
<br>
&nbsp; <em>modifyExternal: </em>indicates that one or more dependent resources
other than this field are immediately affected by a read (it is recommended that
the field description specifies these dependencies). Debuggers are not expected
to read the field unless explicitly instructed by user.</p>
<h4>Example:</h4>
<pre>...
&lt;field&gt;
&lt;name&gt;TimerCtrl0_IntSel&lt;/name&gt;
&lt;description&gt;Select interrupt line t<span class="style8">hat is triggered by timer overflow</span>.&lt;/description&gt;
&lt;bitOffset&gt;1&lt;/bitOffset&gt;
&lt;bitWidth&gt;3&lt;/bitWidth&gt;
&lt;access&gt;read-write&lt;/access&gt;
&lt;resetValue&gt;0x0&lt;/resetValue&gt;
&lt;modifiedWriteValues&gt;oneToSet&lt;/modifiedWriteValues&gt;
&lt;writeConstraint&gt;
&lt;range&gt;
&lt;minimum&gt;0&lt;/minimum&gt;
&lt;maximum&gt;5&lt;/maximum&gt;
&lt;/range&gt;
&lt;/writeConstraint&gt;
&lt;readAction&gt;clear&lt;/readAction&gt;
&lt;enumeratedValues&gt;
...
&lt;/enumeratedValues&gt;
&lt;/field&gt;
...</pre>
<hr>
<h4 class="style3">&lt;enumeratedValues <span class="style2">
<span class="style4">derivedFrom=</span><em>&quot;<span class="style4">xs:Name&quot;</span></em></span>&gt;</h4>
<p>&nbsp;<span class="style2"><span class="style4">&nbsp; &lt;name&gt;<em>xs:Name</em>&lt;/name</span></span>&gt;<span class="style4"><br>
&nbsp;&nbsp; &lt;usage&gt;<em>usageType</em>&lt;/usage&gt;</span><br>
&nbsp;&nbsp; &lt;enumeratedValue&gt;<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ...<br>
&nbsp;&nbsp; &lt;/enumeratedValue&gt;</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ...&nbsp;</p>
<p>&nbsp;&nbsp;&nbsp;&lt;enumeratedValue&gt;<br>
&nbsp;&nbsp; &nbsp;&nbsp; ...<br>
&nbsp;&nbsp; &lt;/enumeratedValue&gt;</p>
<h4>&lt;/enumeratedValues&gt;</h4>
<p>An enumerated value provides one or more enumeration items (enumeratedValue), defining a map
between all possible values of the bit-field it belongs to and the corresponding
human readable semantics of that value.</p>
<p>Mandatory items:<br>
<strong>enumeratedValue = </strong>next lower level of description (see next section
for details)</p>
<p>Optional items:<br>
<strong>derivedFrom = </strong>the enumeratedValues can be copied or derived
from a previously defined enumeratedValue that has been given a unique name.<br>
<strong>name =</strong> name string to identify an enumeratedValue. Named
enumeratedValues need to be unique in the scope of a device in order to be reusable
throughout the description of a device.<br>
<strong>usage = </strong>possible values are <strong>read, write </strong>or
<strong>read-write.</strong> This allows to specify two different enumerated values
depending whether it is to be used for a read or a write access. If not specified the enueratedValues are valid for read and write.</p>
<h4>Example:</h4>
<pre>...
&lt;enumeratedValues&gt;
&lt;name&gt;TimerIntSelect&lt;/name&gt;
&lt;usage&gt;read-write&lt;/usage&gt;
&lt;enumeratedValue&gt;
&lt;name&gt;disabled&lt;/name&gt;
&lt;description&gt;disabled bit&lt;/description&gt;
&lt;value&gt;0&lt;/value&gt;
&lt;/enumeratedValue&gt;
...
&lt;enumeratedValue&gt;
&lt;name&gt;reserved&lt;/name&gt;
&lt;description&gt;reserved values. Do not use&lt;/description&gt;
&lt;isDefault&gt;true&lt;/isDefault&gt;
&lt;/enumeratedValue&gt;
&lt;/enumeratedValues&gt;
...</pre>
<hr>
<h4>&lt;enumeratedValue&gt;</h4>
<p>&nbsp;&nbsp; &lt;name<em>&gt;xs:name</em>&lt;/name&gt;<br>
&nbsp;&nbsp; <span class="style10"><span class="style4">&lt;description&gt;xs:<em>string</em>&lt;/description&gt;</span><br>
</span><em>&nbsp;&nbsp; &lt;</em>value<span class="style2">&gt;<em>scaledNonNegativeInteger</em>&lt;/value&gt;<em><br>
&nbsp;&nbsp;
</em>or<em><br>
&nbsp;&nbsp; &lt;</em>isDefault&gt;<em>xs:boolean</em>&lt;/isDefault&gt;<em><br>
</em></span></p>
<h4>&lt;/enumeratedValue&gt;</h4>
<p>An enumeratedValue defines a map between a value and the string reading the
corresponding human readable semantics for that value in a brief and a detailed
version</p>
<h4>Mandatory items:</h4>
<p><strong>name=</strong> brief string verbally describing the semantics of the value
defined for this enumeratedValue. E.g. used for display in visualization of a bit-field
instead of the value.</p>
<p>
<strong>value = </strong>defines the constant of the bit-field that the name
corresponds to<strong>.</strong></p>
<p><strong>isDefault = </strong>defines the name and description for all other
values that are not explicitly listed</p>
<h4>Optional item:</h4>
<p><strong>description = </strong>extended string verbally describing the semantics
of the value defined for this enumeratedValue in full detail.</p>
<h4>Example:</h4>
<pre>...
&lt;enumeratedValue&gt;
&lt;name&gt;disabled&lt;/name&gt;
&lt;description&gt;Timer does not generate interrupts&lt;/description&gt;
&lt;value&gt;0&lt;/value&gt;
&lt;/enumeratedValue&gt;
...
&lt;enumeratedValue&gt;
&lt;name&gt;enabled&lt;/name&gt;
&lt;description&gt;Timer does not generate interrupts&lt;/description&gt;
&lt;isDefault&gt;true&lt;/isDefault&gt;
&lt;/enumeratedValue&gt;
...</pre>
<hr>
<h4>Names</h4>
<p>Names shall comply with ANSI C variable naming restrictions.</p>
<h4>Constants</h4>
<p>Number constants shall be entered in hexadecimal, decimal or binary format.</p>
<ul>
<li>hexadecimal is indicated by a leading &quot;0x&quot;</li>
<li>binary format is indicated by a leading&nbsp; &quot;#&quot;</li>
<li>all other formats are interpreted as decimal numbers</li>
<li>the value tag in enumeratedValue accepts do not care bits
represented by &quot;x&quot;</li>
</ul>
<h4><b>Comments</b> </h4>
<p>Comments have the standard XML format <strong>&quot;&lt;!--&quot;</strong> starts a comment
<strong><span class="style2">&quot;--&gt;&quot;</span></strong> terminates a comment</p>
<h2>Example</h2>
<pre>
&lt;?xml version=&quot;1.0&quot; encoding=&quot;utf-8&quot;?&gt;
&nbsp;
&lt;device schemaVersion=&quot;1.0&quot; xmlns:xs=&quot;http://www.w3.org/2001/XMLSchema-instance&quot; xs:noNamespaceSchemaLocation=&quot;CMSIS-SVD_Schema_1_0.xsd&quot; &gt;
&lt;name&gt;Cortex_M3_Sample&lt;/name&gt;
&lt;version&gt;0.1&lt;/version&gt;
&lt;description&gt;ARM Cortex-M3 based Microcontroller dummy device&lt;/description&gt;
&lt;!-- Bus Interface Properties --&gt;
&lt;!-- Cortex-M3 is byte addressable --&gt;
&lt;addressUnitBits&gt;8&lt;/addressUnitBits&gt;
&lt;!-- the maximum data bit width accessible within a single transfer is 32bits --&gt;
&lt;width&gt;32&lt;/width&gt;
&lt;!-- Register Default Properties --&gt;
&lt;!-- the size of the registers is set to a bit width of 32. This can be overruled for individual peripherals and/or registers --&gt;
&lt;size&gt;32&lt;/size&gt;
&lt;!-- the access to all registers is set to be readable and writeable. This can be overruled for individual peripherals and/or registers --&gt;
&lt;access&gt;read-write&lt;/access&gt;
&lt;!-- for demonstration purposes the resetValue for all registers of the device is set to be 0. This can be overruled within the description --&gt;
&lt;resetValue&gt;0&lt;/resetValue&gt;
&lt;!-- the resetMask = 0 specifies that by default no register of this device has a defined reset value --&gt;
&lt;resetMask&gt;0&lt;/resetMask&gt;
&lt;peripherals&gt;
&lt;peripheral&gt;
&lt;name&gt;Timer0&lt;/name&gt;
&lt;description&gt;A simple 16 bit timer counting down ... &lt;/description&gt;
&lt;groupName&gt;Timer&lt;/groupName&gt;
&lt;baseAddress&gt;0x40000000&lt;/baseAddress&gt;
&lt;!-- the first addressBlock is occupied by registers. The second block is reserved -&gt; no access permission --&gt;
&lt;addressBlock&gt;
&lt;offset&gt;0&lt;/offset&gt;
&lt;size&gt;0x8&lt;/size&gt;
&lt;usage&gt;registers&lt;/usage&gt;
&lt;/addressBlock&gt;
&lt;addressBlock&gt;
&lt;offset&gt;0x8&lt;/offset&gt;
&lt;size&gt;0x3f8&lt;/size&gt;
&lt;usage&gt;reserved&lt;/usage&gt;
&lt;/addressBlock&gt;
&lt;interrupt&gt;
&lt;name&gt;TIM0_IRQn&lt;/name&gt;
&lt;value&gt;34&lt;/value&gt;
&lt;/interrupt&gt;
&lt;registers&gt;
&lt;register&gt;
&lt;name&gt;TimerCtrl0&lt;/name&gt;
&lt;!-- the display name is an unrestricted string. --&gt;
&lt;displayName&gt;Timer Ctrl 0&lt;/displayName&gt;
&lt;description&gt;Timer Control Register&lt;/description&gt;
&lt;addressOffset&gt;0x0&lt;/addressOffset&gt;
&lt;!-- size=32, access=read-write, resetValue=0x0, resetMask=0xffffffff, volatile=false --&gt;
&lt;fields&gt;
&lt;field&gt;
&lt;name&gt;TimerCtrl0_En&lt;/name&gt;
&lt;description&gt;Enable Bit activates the timer.&lt;/description&gt;
&lt;!-- Spirit like bit range description: [0:0] --&gt;
&lt;bitOffset&gt;0&lt;/bitOffset&gt;
&lt;bitWidth&gt;1&lt;/bitWidth&gt;
&lt;!-- Writing 1 enables, writing 0 has no effect --&gt;
&lt;modifiedWriteValues&gt;oneToSet&lt;/modifiedWriteValues&gt;
&lt;!-- The write constraint is defined to be that only the values provided by the enumeratedValues below are allowed --&gt;
&lt;writeConstraint&gt;
&lt;useEnumeratedValues&gt;true&lt;/useEnumeratedValues&gt;
&lt;/writeConstraint&gt;
&lt;!-- there is no side effect on reads, therefore &lt;readAction&gt; is not set --&gt;
&lt;!-- oneBitEnable named enumeration that can be reused in other parts of the description --&gt;
&lt;enumeratedValues&gt;
&lt;name&gt;oneBitEnable&lt;/name&gt;
&lt;!-- the same enumerated Values are used for read and write. This default is assumed when this tag is missing --&gt;
&lt;usage&gt;read-write&lt;/usage&gt;
&lt;enumeratedValue&gt;
&lt;name&gt;enabled&lt;/name&gt;
&lt;description&gt;Timer is enabled and active&lt;/description&gt;
&lt;value&gt;0x0&lt;/value&gt;
&lt;/enumeratedValue&gt;
&lt;enumeratedValue&gt;
&lt;name&gt;disabled&lt;/name&gt;
&lt;description&gt;Timer is disabled and inactive&lt;/description&gt;
&lt;value&gt;0x1&lt;/value&gt;
&lt;/enumeratedValue&gt;
&lt;/enumeratedValues&gt;
&lt;/field&gt;
&lt;field&gt;
&lt;name&gt;TimerCtrl0_Dis&lt;/name&gt;
&lt;description&gt;Disable Bit deactivates the timer.&lt;/description&gt;
&lt;!-- Spirit like bit range description: [1:1] --&gt;
&lt;bitOffset&gt;1&lt;/bitOffset&gt;
&lt;bitWidth&gt;1&lt;/bitWidth&gt;
&lt;!-- Writing 1 sets, writing 0 has no effect --&gt;
&lt;modifiedWriteValues&gt;oneToSet&lt;/modifiedWriteValues&gt;
&lt;!-- The write constraint is defined to be that only the values provided by the enumeratedValues below are allowed --&gt;
&lt;writeConstraint&gt;
&lt;useEnumeratedValues&gt;true&lt;/useEnumeratedValues&gt;
&lt;/writeConstraint&gt;
&lt;!-- there is no side effect on reads, therefore &lt;readAction&gt; is not set --&gt;
&lt;!-- oneBitEnable named enumeration that can be reused in other parts of the description --&gt;
&lt;enumeratedValues derivedFrom=&quot;oneBitEnable&quot;&gt;&lt;/enumeratedValues&gt;
&lt;/field&gt;
&lt;field&gt;
&lt;name&gt;TimerCtrl0_Int&lt;/name&gt;
&lt;description&gt;Select interrupt line that is triggered by timer overflow.&lt;/description&gt;
&lt;!-- the position of the bit field is described in the bitRange style. --&gt;
&lt;bitRange&gt;[4:2]&lt;/bitRange&gt;
&lt;enumeratedValues&gt;
&lt;enumeratedValue&gt;
&lt;name&gt;disabled&lt;/name&gt;
&lt;description&gt;Timer does not generate interrupts&lt;/description&gt;
&lt;value&gt;0&lt;/value&gt;
&lt;/enumeratedValue&gt;
&lt;enumeratedValue&gt;
&lt;name&gt;int 0&lt;/name&gt;
&lt;description&gt;Timer does generate interrupts on interrupt line 0&lt;/description&gt;
&lt;value&gt;1&lt;/value&gt;
&lt;/enumeratedValue&gt;
&lt;enumeratedValue&gt;
&lt;name&gt;int 1&lt;/name&gt;
&lt;description&gt;Timer does generate interrupts on interrupt line 1&lt;/description&gt;
&lt;value&gt;2&lt;/value&gt;
&lt;/enumeratedValue&gt;
&lt;enumeratedValue&gt;
&lt;name&gt;int 2&lt;/name&gt;
&lt;description&gt;Timer does generate interrupts on interrupt line 2&lt;/description&gt;
&lt;value&gt;3&lt;/value&gt;
&lt;/enumeratedValue&gt;
&lt;enumeratedValue&gt;
&lt;name&gt;int 3&lt;/name&gt;
&lt;description&gt;Timer does generate interrupts on interrupt line 3&lt;/description&gt;
&lt;value&gt;4&lt;/value&gt;
&lt;/enumeratedValue&gt;
&lt;enumeratedValue&gt;
&lt;name&gt;int 4&lt;/name&gt;
&lt;description&gt;Timer does generate interrupts on interrupt line 4&lt;/description&gt;
&lt;value&gt;5&lt;/value&gt;
&lt;/enumeratedValue&gt;
&lt;!-- this is the default element. All the valid value not listed above (6,7) have the following name and description --&gt;
&lt;enumeratedValue&gt;
&lt;name&gt;reserved&lt;/name&gt;
&lt;description&gt;Timer is configured incorrectly and the functionality is considered unpredictable&lt;/description&gt;
&lt;isDefault&gt;true&lt;/isDefault&gt;
&lt;/enumeratedValue&gt;
&lt;/enumeratedValues&gt;
&lt;/field&gt;
&lt;/fields&gt;
&lt;/register&gt;
&lt;register&gt;
&lt;name&gt;TimerCounter0&lt;/name&gt;
&lt;description&gt;Timer0 16 Bit Counter Register&lt;/description&gt;
&lt;addressOffset&gt;0x4&lt;/addressOffset&gt;
&lt;size&gt;16&lt;/size&gt;
&lt;/register&gt;
&lt;!-- a copy of the counter register TimerCounter0 with the name=&quot;TimerCounter1&quot; and the addressOffset=&quot;0x8&quot; --&gt;
&lt;register derivedFrom=&quot;TimerCounter0&quot;&gt;
&lt;name&gt;TimerCounter1&lt;/name&gt;
&lt;addressOffset&gt;0x6&lt;/addressOffset&gt;
&lt;/register&gt;
&lt;!-- ... this is a restricted demo example and a real timer peripheral would have more register to be complete --&gt;
&lt;/registers&gt;
&lt;/peripheral&gt;
&lt;!-- a copy of Timer0 with the name=&quot;Timer1 and the baseAddress=&quot;0x40000400&quot; --&gt;
&lt;peripheral derivedFrom=&quot;Timer0&quot;&gt;
&lt;name&gt;Timer1&lt;/name&gt;
&lt;baseAddress&gt;0x40000400&lt;/baseAddress&gt;
&lt;interrupt&gt;
&lt;name&gt;TIM1_IRQn&lt;/name&gt;
&lt;value&gt;35&lt;/value&gt;
&lt;/interrupt&gt;
&lt;/peripheral&gt;
&lt;/peripherals&gt;
&lt;/device&gt;</pre>
<h2><a name="6"></a>Questions &amp; Answers</h2>
<h3>Is there any relation between the System View Description and the CMSIS
standard?</h3>
<p>Initiallly there was no immediate link but both initiatives had a common goal:
Create a sound software development eco-system for Cortex-M based
Microcontroller, giving the customers the free choice of devices and software
development environments and all resources required for a successful product
development in a single location.&nbsp;Meanwhile we have started to generate
CMSIS compliant device header files from the same CMSIS-SVD description. We will
introduce a small number of additional description tags in the next version of
the specification. The benefit is the synchronization between symbols used in
the application and the symbols displayed by the debugger.&nbsp; </p>
<h3>Why does the format not provide constructs like macros and
conditional statements?</h3>
<p>It is assumed that the description is generated from other sources and
therefore such concepts would only complicate the language unnecessarily. It is
recommended to use a standard C pre-processor to generate the debug description
format from a redundancy optimized description.</p>
<h3>Do we need to consider endianess in the description?</h3>
<p>This should be specified on a device configuration level and is not specific
to the visualization of peripheral details in a System View. Endianess becomes
relevant when using bit fields in the CMSIS compliant device header file.</p>
<h3>Is the System View Description limited to Cortex-M based devices ?</h3>
<p>There may have been assumptions made about the structure of the device due to
it being developed around a Cortex-M processor. E.g. that all peripherals are
assumed to be memory mapped and to reside in a single address space. It is quite
likely that the description format may also serve other architectures
sufficiently. There is no intent to limit the format to Cortex-M
processor based devices. </p>
</body></html>