1
0
mirror of https://github.com/arduino/Arduino.git synced 2024-12-02 13:24:12 +01:00
Arduino/targets/arduino/wiring.c

368 lines
8.3 KiB
C
Executable File

/*
wiring.c - Wiring API Partial Implementation
Part of Arduino / Wiring Lite
Copyright (c) 2005 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id$
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/signal.h>
#include <avr/delay.h>
#include <stdio.h>
#include <stdarg.h>
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
// from Pascal's avrlib
#include "global.h"
//#include "a2d.h"
#include "timer.h"
#include "uart.h"
// timer.h #defines delay to be delay_us, we need to undefine
// it so our delay can be in milliseconds.
#undef delay
#include "wiring.h"
// Get the hardware port of the given virtual pin number. This comes from
// the pins_*.c file for the active board configuration.
int digitalPinToPort(int pin)
{
return digital_pin_to_port[pin].port;
}
// Get the bit location within the hardware port of the given virtual pin.
// This comes from the pins_*.c file for the active board configuration.
int digitalPinToBit(int pin)
{
return digital_pin_to_port[pin].bit;
}
int analogOutPinToPort(int pin)
{
return analog_out_pin_to_port[pin].port;
}
int analogOutPinToBit(int pin)
{
return analog_out_pin_to_port[pin].bit;
}
int analogInPinToBit(int pin)
{
return analog_in_pin_to_port[pin].bit;
}
void pinMode(int pin, int mode)
{
if (digitalPinToPort(pin) != NOT_A_PIN) {
if (mode == INPUT)
cbi(_SFR_IO8(port_to_mode[digitalPinToPort(pin)]), digitalPinToBit(pin));
else
sbi(_SFR_IO8(port_to_mode[digitalPinToPort(pin)]), digitalPinToBit(pin));
}
}
void digitalWrite(int pin, int val)
{
if (digitalPinToPort(pin) != NOT_A_PIN) {
// If the pin that support PWM output, we need to turn it off
// before doing a digital write.
if (analogOutPinToBit(pin) == 1)
timer1PWMAOff();
if (analogOutPinToBit(pin) == 2)
timer1PWMBOff();
if (val == LOW)
cbi(_SFR_IO8(port_to_output[digitalPinToPort(pin)]), digitalPinToBit(pin));
else
sbi(_SFR_IO8(port_to_output[digitalPinToPort(pin)]), digitalPinToBit(pin));
}
}
int digitalRead(int pin)
{
if (digitalPinToPort(pin) != NOT_A_PIN) {
// If the pin that support PWM output, we need to turn it off
// before getting a digital reading.
if (analogOutPinToBit(pin) == 1)
timer1PWMAOff();
if (analogOutPinToBit(pin) == 2)
timer1PWMBOff();
return (_SFR_IO8(port_to_input[digitalPinToPort(pin)]) >> digitalPinToBit(pin)) & 0x01;
}
return LOW;
}
int analogRead(int pin)
{
unsigned int low, high, ch = analogInPinToBit(pin);
// the low 4 bits of ADMUX select the ADC channel
ADMUX = (ADMUX & (unsigned int) 0xf0) | (ch & (unsigned int) 0x0f);
// without a delay, we seem to read from the wrong channel
delay(1);
// start the conversion
sbi(ADCSRA, ADSC);
// ADSC is cleared when the conversion finishes
while (bit_is_set(ADCSRA, ADSC));
// we have to read ADCL first; doing so locks both ADCL
// and ADCH until ADCH is read. reading ADCL second would
// cause the results of each conversion to be discarded,
// as ADCL and ADCH would be locked when it completed.
low = ADCL;
high = ADCH;
// combine the two bytes
return (high << 8) | low;
}
// Right now, PWM output only works on the pins with
// hardware support. These are defined in the appropriate
// pins_*.c file. For the rest of the pins, we default
// to digital output.
void analogWrite(int pin, int val)
{
// We need to make sure the PWM output is enabled for those pins
// that support it, as we turn it off when digitally reading or
// writing with them. Also, make sure the pin is in output mode
// for consistenty with Wiring, which doesn't require a pinMode
// call for the analog output pins.
if (analogOutPinToBit(pin) == 1) {
pinMode(pin, OUTPUT);
timer1PWMAOn();
timer1PWMASet(val);
} else if (analogOutPinToBit(pin) == 2) {
pinMode(pin, OUTPUT);
timer1PWMBOn();
timer1PWMBSet(val);
} else if (val < 128)
digitalWrite(pin, LOW);
else
digitalWrite(pin, HIGH);
}
void beginSerial(long baud)
{
uartInit();
uartSetBaudRate(baud);
}
void serialWrite(unsigned char c)
{
uartSendByte(c);
}
int serialAvailable()
{
return uartGetRxBuffer()->datalength;
}
int serialRead()
{
return uartGetByte();
}
void printMode(int mode)
{
// do nothing, we only support serial printing, not lcd.
}
void printByte(unsigned char c)
{
serialWrite(c);
}
void printNewline()
{
printByte('\n');
}
void printString(unsigned char *s)
{
while (*s)
printByte(*s++);
}
void printIntegerInBase(unsigned int n, int base)
{
unsigned char buf[8 * sizeof(int)]; // Assumes 8-bit chars.
int i = 0;
if (n == 0) {
printByte('0');
return;
}
while (n > 0) {
buf[i++] = n % base;
n /= base;
}
for (i--; i >= 0; i--)
printByte(buf[i] < 10 ? '0' + buf[i] : 'A' + buf[i] - 10);
}
void printInteger(int n)
{
if (n < 0) {
printByte('-');
n = -n;
}
printIntegerInBase(n, 10);
}
void printHex(unsigned int n)
{
printIntegerInBase(n, 16);
}
void printOctal(unsigned int n)
{
printIntegerInBase(n, 8);
}
void printBinary(unsigned int n)
{
printIntegerInBase(n, 2);
}
/* Including print() adds approximately 1500 bytes to the binary size,
* so we replace it with the smaller and less-confusing printString(),
* printInteger(), etc.
void print(const char *format, ...)
{
char buf[256];
va_list ap;
va_start(ap, format);
vsnprintf(buf, 256, format, ap);
va_end(ap);
printString(buf);
}
*/
unsigned long millis()
{
// timer 0 increments every timer0GetPrescaler() cycles, and
// overflows when it reaches 256. we calculate the total
// number of clock cycles, then divide by the number of clock
// cycles per millisecond.
return timer0GetOverflowCount() * timer0GetPrescaler() * 256L / (F_CPU / 1000L);
}
void delay(unsigned long ms)
{
timerPause(ms);
}
/* Delay for the given number of microseconds. Assumes a 16 MHz clock.
* Disables interrupts, which will disrupt the millis() function if used
* too frequently. */
void delayMicroseconds(unsigned int us)
{
// calling avrlib's delay_us() function with low values (e.g. 1 or
// 2 microseconds) gives delays longer than desired.
//delay_us(us);
// for a one-microsecond delay, simply return. the overhead
// of the function call yields a delay of approximately 1 1/8 us.
if (--us == 0)
return;
// the following loop takes a quarter of a microsecond (4 cycles)
// per iteration, so execute it four times for each microsecond of
// delay requested.
us <<= 2;
// account for the time taken in the preceeding commands.
us -= 2;
// disable interrupts, otherwise the timer 0 overflow interrupt that
// tracks milliseconds will make us delay longer than we want.
cli();
// busy wait
__asm__ __volatile__ (
"1: sbiw %0,1" "\n\t" // 2 cycles
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
);
// reenable interrupts.
sei();
}
int main(void)
{
sei();
// timer 0 is used for millis() and delay()
timer0Init();
// timer 1 is used for the hardware pwm
timer1Init();
timer1SetPrescaler(TIMER_CLK_DIV1);
timer1PWMInit(8);
//a2dInit();
//a2dSetPrescaler(ADC_PRESCALE_DIV128);
// set a2d reference to AVCC (5 volts)
cbi(ADMUX, REFS1);
sbi(ADMUX, REFS0);
// set a2d prescale factor to 128
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
// XXX: this will not work properly for other clock speeds, and
// this code should use F_CPU to determine the prescale factor.
sbi(ADCSRA, ADPS2);
sbi(ADCSRA, ADPS1);
sbi(ADCSRA, ADPS0);
// enable a2d conversions
sbi(ADCSRA, ADEN);
setup();
for (;;)
loop();
return 0;
}