1
0
mirror of https://github.com/arduino/Arduino.git synced 2025-01-08 23:46:08 +01:00
Arduino/hardware/arduino/sam/system/libsam/source/uotghs.c
Thibault RICHARD d6d23c530a [SAM] HID and CDC verified okay on Linux/Mac by Cristian. Fixed OTG clock
init issue. CDC is not working correctly under Windows (possible inf
issue).
2012-05-07 20:12:00 +02:00

331 lines
7.9 KiB
C

/*
Copyright (c) 2012 Arduino. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "chip.h"
#include <stdio.h>
#if SAM3XA_SERIES
//#define TRACE_UOTGHS(x) x
#define TRACE_UOTGHS(x)
static void (*gpf_isr)(void) = (0UL);
static volatile uint32_t ul_send_fifo_ptr[MAX_ENDPOINTS];
static volatile uint32_t ul_recv_fifo_ptr[MAX_ENDPOINTS];
void UDD_SetStack(void (*pf_isr)(void))
{
gpf_isr = pf_isr;
}
void UOTGHS_Handler( void )
{
if (gpf_isr)
gpf_isr();
}
uint32_t UDD_Init(void)
{
uint32_t i;
for (i = 0; i < MAX_ENDPOINTS; ++i)
{
ul_send_fifo_ptr[i] = 0;
ul_recv_fifo_ptr[i] = 0;
}
// Enables the USB Clock
pmc_enable_periph_clk(ID_UOTGHS);
pmc_enable_upll_clock();
pmc_switch_udpck_to_upllck(0); // div=0+1
pmc_enable_udpck();
// Configure interrupts
NVIC_SetPriority((IRQn_Type) ID_UOTGHS, 0UL);
NVIC_EnableIRQ((IRQn_Type) ID_UOTGHS);
// Always authorize asynchrone USB interrupts to exit from sleep mode
// for SAM3 USB wake up device except BACKUP mode
//pmc_set_fast_startup_input(PMC_FSMR_USBAL);
// ID pin not used then force device mode
otg_disable_id_pin();
otg_force_device_mode();
// Enable USB hardware
otg_disable_pad();
otg_enable_pad();
otg_enable();
otg_unfreeze_clock();
// Check USB clock
//while (!Is_otg_clock_usable())
// ;
udd_low_speed_disable();
udd_high_speed_disable();
//otg_ack_vbus_transition();
// Force Vbus interrupt in case of Vbus always with a high level
// This is possible with a short timing between a Host mode stop/start.
/*if (Is_otg_vbus_high()) {
otg_raise_vbus_transition();
}
otg_enable_vbus_interrupt();*/
otg_freeze_clock();
return 0UL ;
}
void UDD_Attach(void)
{
irqflags_t flags = cpu_irq_save();
TRACE_UOTGHS(printf("=> UDD_Attach\r\n");)
otg_unfreeze_clock();
// Check USB clock because the source can be a PLL
while (!Is_otg_clock_usable());
// Authorize attach if Vbus is present
udd_attach_device();
// Enable USB line events
udd_enable_reset_interrupt();
//udd_enable_sof_interrupt();
cpu_irq_restore(flags);
}
void UDD_Detach(void)
{
TRACE_UOTGHS(printf("=> UDD_Detach\r\n");)
UOTGHS->UOTGHS_DEVCTRL |= UOTGHS_DEVCTRL_DETACH;
}
void UDD_InitEP( uint32_t ul_ep_nb, uint32_t ul_ep_cfg )
{
ul_ep_nb = ul_ep_nb & 0xF; // EP range is 0..9, hence mask is 0xF.
TRACE_UOTGHS(printf("=> UDD_InitEP : init EP %d\r\n", ul_ep_nb);)
// Configure EP
UOTGHS->UOTGHS_DEVEPTCFG[ul_ep_nb] = ul_ep_cfg;
// Enable EP
udd_enable_endpoint(ul_ep_nb);
if (!Is_udd_endpoint_configured(ul_ep_nb)) {
TRACE_UOTGHS(printf("=> UDD_InitEP : ERROR FAILED TO INIT EP %d\r\n", ul_ep_nb);)
}
}
void UDD_InitEndpoints(const uint32_t* eps_table, const uint32_t ul_eps_table_size)
{
uint32_t ul_ep_nb ;
for (ul_ep_nb = 1; ul_ep_nb < ul_eps_table_size; ul_ep_nb++)
{
// Configure EP
UOTGHS->UOTGHS_DEVEPTCFG[ul_ep_nb] = eps_table[ul_ep_nb];
// Enable EP
udd_enable_endpoint(ul_ep_nb);
if (!Is_udd_endpoint_configured(ul_ep_nb)) {
TRACE_UOTGHS(printf("=> UDD_InitEP : ERROR FAILED TO INIT EP %d\r\n", ul_ep_nb);)
}
}
}
// Wait until ready to accept IN packet.
void UDD_WaitIN(void)
{
while (!(UOTGHS->UOTGHS_DEVEPTISR[EP0] & UOTGHS_DEVEPTISR_TXINI))
;
}
void UDD_WaitOUT(void)
{
while (!(UOTGHS->UOTGHS_DEVEPTISR[EP0] & UOTGHS_DEVEPTISR_RXOUTI))
;
}
// Send packet.
void UDD_ClearIN(void)
{
TRACE_UOTGHS(printf("=> UDD_ClearIN: sent %d bytes\r\n", ul_send_fifo_ptr[EP0]);)
UOTGHS->UOTGHS_DEVEPTICR[EP0] = UOTGHS_DEVEPTICR_TXINIC;
ul_send_fifo_ptr[EP0] = 0;
}
void UDD_ClearOUT(void)
{
UOTGHS->UOTGHS_DEVEPTICR[EP0] = UOTGHS_DEVEPTICR_RXOUTIC;
ul_recv_fifo_ptr[EP0] = 0;
}
// Wait for IN FIFO to be ready to accept data or OUT FIFO to receive data.
// Return true if new IN FIFO buffer available.
uint32_t UDD_WaitForINOrOUT(void)
{
while (!(UOTGHS->UOTGHS_DEVEPTISR[EP0] & (UOTGHS_DEVEPTISR_TXINI | UOTGHS_DEVEPTISR_RXOUTI)))
;
return ((UOTGHS->UOTGHS_DEVEPTISR[EP0] & UOTGHS_DEVEPTISR_RXOUTI) == 0);
}
uint32_t UDD_ReceivedSetupInt(void)
{
return UOTGHS->UOTGHS_DEVEPTISR[EP0] & UOTGHS_DEVEPTISR_RXSTPI;
}
void UDD_ClearSetupInt(void)
{
UOTGHS->UOTGHS_DEVEPTICR[EP0] = (UOTGHS_DEVEPTICR_RXSTPIC);
}
uint32_t UDD_Send(uint32_t ep, const void* data, uint32_t len)
{
const uint8_t *ptr_src = data;
uint8_t *ptr_dest = (uint8_t *) &udd_get_endpoint_fifo_access8(ep);
uint32_t i;
TRACE_UOTGHS(printf("=> UDD_Send (1): ep=%d ul_send_fifo_ptr=%d len=%d\r\n", ep, ul_send_fifo_ptr[ep], len);)
if (ep == EP0)
{
if (ul_send_fifo_ptr[ep] + len > EP0_SIZE)
len = EP0_SIZE - ul_send_fifo_ptr[ep];
}
else
{
if (ul_send_fifo_ptr[ep] + len > EPX_SIZE)
len = EPX_SIZE - ul_send_fifo_ptr[ep];
}
for (i = 0, ptr_dest += ul_send_fifo_ptr[ep]; i < len; ++i)
*ptr_dest++ = *ptr_src++;
ul_send_fifo_ptr[ep] += i;
if (ep == EP0)
{
TRACE_UOTGHS(printf("=> UDD_Send (2): ep=%d ptr_dest=%d maxlen=%d\r\n", ep, ul_send_fifo_ptr[ep], EP0_SIZE);)
if (ul_send_fifo_ptr[ep] == EP0_SIZE)
{
UDD_ClearIN(); // Fifo is full, release this packet
UDD_WaitIN(); // Wait for new FIFO buffer to be ready
}
}
else
{
if (ul_send_fifo_ptr[ep] == EPX_SIZE)
{
UDD_ClearIN(); // Fifo is full, release this packet
UDD_WaitIN(); // Wait for new FIFO buffer to be ready
}
}
return len;
}
void UDD_Send8(uint32_t ep, uint8_t data )
{
uint8_t *ptr_dest = (uint8_t *) &udd_get_endpoint_fifo_access8(ep);
TRACE_UOTGHS(printf("=> UDD_Send8 : ul_send_fifo_ptr=%d data=0x%x\r\n", ul_send_fifo_ptr[ep], data);)
ptr_dest[ul_send_fifo_ptr[ep]] = data;
ul_send_fifo_ptr[ep] += 1;
}
uint8_t UDD_Recv8(uint32_t ep)
{
uint8_t *ptr_dest = (uint8_t *) &udd_get_endpoint_fifo_access8(ep);
uint8_t data = ptr_dest[ul_recv_fifo_ptr[ep]];
TRACE_UOTGHS(printf("=> UDD_Recv8 : ul_recv_fifo_ptr=%d\r\n", ul_recv_fifo_ptr[ep]);)
ul_recv_fifo_ptr[ep] += 1;
return data;
}
void UDD_Recv(uint32_t ep, uint8_t* data, uint32_t len)
{
uint8_t *ptr_src = (uint8_t *) &udd_get_endpoint_fifo_access8(ep);
uint8_t *ptr_dest = data;
uint32_t i;
for (i = 0, ptr_src += ul_recv_fifo_ptr[ep]; i < len; ++i)
*ptr_dest++ = *ptr_src++;
ul_recv_fifo_ptr[ep] += i;
}
void UDD_Stall(void)
{
UOTGHS->UOTGHS_DEVEPT = (UOTGHS_DEVEPT_EPEN0 << EP0);
UOTGHS->UOTGHS_DEVEPTIER[EP0] = UOTGHS_DEVEPTIER_STALLRQS;
}
uint32_t UDD_FifoByteCount(uint32_t ep)
{
return ((UOTGHS->UOTGHS_DEVEPTISR[ep] & UOTGHS_DEVEPTISR_BYCT_Msk) >> UOTGHS_DEVEPTISR_BYCT_Pos);
}
void UDD_ReleaseRX(uint32_t ep)
{
TRACE_UOTGHS(puts("=> UDD_ReleaseRX\r\n");)
UOTGHS->UOTGHS_DEVEPTICR[ep] = (UOTGHS_DEVEPTICR_NAKOUTIC | UOTGHS_DEVEPTICR_RXOUTIC);
UOTGHS->UOTGHS_DEVEPTIDR[ep] = UOTGHS_DEVEPTIDR_FIFOCONC;
ul_recv_fifo_ptr[ep] = 0;
}
void UDD_ReleaseTX(uint32_t ep)
{
TRACE_UOTGHS(printf("=> UDD_ReleaseTX ep=%d\r\n", ep);)
UOTGHS->UOTGHS_DEVEPTICR[ep] = (UOTGHS_DEVEPTICR_NAKINIC | UOTGHS_DEVEPTICR_RXOUTIC | UOTGHS_DEVEPTICR_TXINIC);
UOTGHS->UOTGHS_DEVEPTIDR[ep] = UOTGHS_DEVEPTIDR_FIFOCONC;
ul_send_fifo_ptr[ep] = 0;
}
// Return true if the current bank is not full.
uint32_t UDD_ReadWriteAllowed(uint32_t ep)
{
return (UOTGHS->UOTGHS_DEVEPTISR[ep] & UOTGHS_DEVEPTISR_RWALL);
}
void UDD_SetAddress(uint32_t addr)
{
TRACE_UOTGHS(printf("=> UDD_SetAddress : setting address to %d\r\n", addr);)
udd_configure_address(addr);
udd_enable_address();
}
uint32_t UDD_GetFrameNumber(void)
{
return udd_frame_number();
}
#endif /* SAM3XA_SERIES */