1
0
mirror of https://github.com/arduino/Arduino.git synced 2024-12-11 22:24:13 +01:00
Arduino/hardware/arduino/sam/system/libsam/source/udphs.c
2012-04-05 12:13:48 +02:00

461 lines
12 KiB
C

/*
Copyright (c) 2012 Arduino. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "chip.h"
#if 0 //SAM3U_SERIES
#include "USB_driver.h"
#include "udphs.h"
/// Max size of the FMA FIFO
#define EPT_VIRTUAL_SIZE (16384u)
#define SHIFT_INTERUPT (8u)
int _cmark;
int _cend;
// Global variable for endpoint number
unsigned int NumEndpoint=0;
void USBD_WaitIN(void)
{
// while (!(UEINTX & (1<<TXINI)));
while (!(UDPHS->UDPHS_EPT[0].UDPHS_EPTSTA & UDPHS_EPTSTA_TX_PK_RDY));
}
void USBD_WaitOUT(void)
{
// while (!(UEINTX & (1<<RXOUTI)))
// ;
// Waiting for Status stage
while (UDPHS_EPTSTA_RX_BK_RDY != (UDPHS->UDPHS_EPT[NumEndpoint].UDPHS_EPTSTA & UDPHS_EPTSTA_RX_BK_RDY));
}
void USBD_ClearIN(void)
{
// UEINTX = ~(1<<TXINI);
UDPHS->UDPHS_EPT[NumEndpoint].UDPHS_EPTCLRSTA = UDPHS_EPTCLRSTA_TX_COMPLT;
}
void USBD_ClearOUT(void)
{
// UEINTX = ~(1<<RXOUTI);
UDPHS->UDPHS_EPT[NumEndpoint].UDPHS_EPTCLRSTA = UDPHS_EPTCLRSTA_RX_BK_RDY;
}
uint8_t USBD_WaitForINOrOUT(void)
{
// while (!(UEINTX & ((1<<TXINI)|(1<<RXOUTI))))
// ;
// return (UEINTX & (1<<RXOUTI)) == 0;
while (!(UDPHS->UDPHS_EPT[NumEndpoint].UDPHS_EPTSTA & (UDPHS_EPTSTA_RX_BK_RDY | UDPHS_EPTSTA_TX_PK_RDY)));
return (UDPHS->UDPHS_EPT[NumEndpoint].UDPHS_EPTSTA & UDPHS_EPTSTA_RX_BK_RDY) == 0;
}
void USBD_ClearRxFlag(unsigned char bEndpoint)
{
UDPHS->UDPHS_EPT[NumEndpoint].UDPHS_EPTCLRSTA = UDPHS_EPTCLRSTA_RX_BK_RDY;
}
void USBD_Stall(void)
{
// UECONX = (1<<STALLRQ) | (1<<EPEN);
UDPHS->UDPHS_EPT[NumEndpoint].UDPHS_EPTSETSTA = UDPHS_EPTSETSTA_FRCESTALL;
}
uint8_t USBD_Stalled(void)
{
// return UEINTX & (1<<STALLEDI);
// Check if the data has been STALLed
return ( UDPHS_EPTSTA_FRCESTALL == (UDPHS->UDPHS_EPT[NumEndpoint].UDPHS_EPTSTA & UDPHS_EPTSTA_FRCESTALL));
}
uint8_t USBD_ReceivedSetupInt(void)
{
// return UEINTX & (1<<RXSTPI);
return ( UDPHS_EPTSTA_RX_SETUP == (UDPHS->UDPHS_EPT[NumEndpoint].UDPHS_EPTSTA & UDPHS_EPTSTA_RX_SETUP) );
}
void USBD_ClearSetupInt(void)
{
// UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI));
UDPHS->UDPHS_EPT[NumEndpoint].UDPHS_EPTCLRSTA = UDPHS_EPTSTA_RX_SETUP | UDPHS_EPTCLRSTA_RX_BK_RDY | UDPHS_EPTCLRSTA_TX_COMPLT;
}
uint8_t USBD_ReadWriteAllowed(void)
{
//return UEINTX & (1<<RWAL);
return 1;
}
void USBD_SetEP(uint8_t ep)
{
// UENUM = ep;
NumEndpoint = ep & 7;
}
uint16_t USBD_FifoByteCount(void)
{
// return UEBCLX;
// SAM3X
//return ((UOTGHS->UOTGHS_DEVEPTISR[ep] & UOTGHS_DEVEPTISR_BYCT_Msk) >> UOTGHS_DEVEPTISR_BYCT_Pos);
// SAM3U //AT91C_UDPHS_BYTE_COUNT (0x7FF << 20)
return ((UDPHS->UDPHS_EPT[NumEndpoint].UDPHS_EPTSTA & UDPHS_EPTSTA_BYTE_COUNT_Msk) >> UDPHS_EPTSTA_BYTE_COUNT_Pos);
}
uint8_t USBD_FifoFree(void)
{
// return UEINTX & (1<<FIFOCON);
return( 0 != (UDPHS->UDPHS_EPT[NumEndpoint].UDPHS_EPTSTA & UDPHS_EPTSTA_TX_PK_RDY ));
}
void USBD_ReleaseRX(void)
{
UEINTX = 0x6B; // FIFOCON=0 NAKINI=1 RWAL=1 NAKOUTI=0 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=1
}
void USBD_ReleaseTX()
{
UEINTX = 0x3A; // FIFOCON=0 NAKINI=0 RWAL=1 NAKOUTI=1 RXSTPI=1 RXOUTI=0 STALLEDI=1 TXINI=0
}
uint8_t USBD_FrameNumber(void)
{
return UDFNUML;
}
uint8_t USBD_GetConfiguration(void)
{
return _usbConfiguration;
}
void USBD_Recv(volatile uint8_t* data, uint8_t count)
{
uint8_t *pFifo;
pFifo = (uint8_t*)((uint32_t *)UDPHS_RAM_ADDR + (EPT_VIRTUAL_SIZE * NumEndpoint));
while (count--)
{
*data++ = pFifo[0];
}
// RXLED1; // light the RX LED
// RxLEDPulse = TX_RX_LED_PULSE_MS;
}
uint8_t USBD_Recv8(void)
{
uint8_t *pFifo;
// RXLED1; // light the RX LED
// RxLEDPulse = TX_RX_LED_PULSE_MS;
pFifo = (uint8_t*)((uint32_t *)UDPHS_RAM_ADDR + (EPT_VIRTUAL_SIZE * NumEndpoint));
// return UEDATX;
return (pFifo[0]);
}
void USBD_Send8(uint8_t d)
{
uint8_t *pFifo;
pFifo = (uint8_t*)((uint32_t *)UDPHS_RAM_ADDR + (EPT_VIRTUAL_SIZE * NumEndpoint));
// UEDATX = d;
pFifo[0] =d;
}
// Blocking Send of data to an endpoint
int USBD_Send(uint8_t ep, const void* d, int len)
{
if (!_usbConfiguration)
return -1;
int r = len;
const uint8_t* data = (const uint8_t*)d;
uint8_t zero = ep & TRANSFER_ZERO;
uint8_t timeout = 250; // 250ms timeout on send? TODO
while (len)
{
uint8_t n = USB_SendSpace(ep);
if (n == 0)
{
if (!(--timeout))
return -1;
delay(1);
continue;
}
if (n > len)
n = len;
len -= n;
{
SetEP(ep);
if (ep & TRANSFER_ZERO)
{
while (n--)
Send8(0);
}
else if (ep & TRANSFER_PGM)
{
while (n--)
Send8(*data++);
}
else
{
while (n--)
Send8(*data++);
}
// if (!ReadWriteAllowed() || ((len == 0) && (ep & TRANSFER_RELEASE))) // Release full buffer
// ReleaseTX();
}
}
TXLED1; // light the TX LED
TxLEDPulse = TX_RX_LED_PULSE_MS;
return r;
}
// Space in send EP
uint8_t USBD_SendSpace(uint8_t ep)
{
SetEP(ep);
if (!ReadWriteAllowed())
{
return 0;
}
return 64 - FifoByteCount();
}
// Number of bytes, assumes a rx endpoint
uint8_t USBD_Available(uint8_t ep)
{
SetEP(ep);
return FifoByteCount();
}
void USBD_InitEP(uint8_t index, uint8_t type, uint8_t size)
{
UENUM = index;
UECONX = 1;
UECFG0X = type;
UECFG1X = size;
}
void USBD_InitEndpoints(void)
{
for (uint8_t i = 1; i < sizeof(_initEndpoints); i++)
{
// Reset Endpoint Fifos
UDPHS->UDPHS_EPT[i].UDPHS_EPTCLRSTA = UDPHS_EPTCLRSTA_TOGGLESQ | UDPHS_EPTCLRSTA_FRCESTALL;
UDPHS->UDPHS_EPTRST = 1<<i;
//UECONX = 1;
//UECFG0X = pgm_read_byte(_initEndpoints+i);
UDPHS->UDPHS_EPT[i].UDPHS_EPTCFG = _initEndpoints[i];
while( (signed int)UDPHS_EPTCFG_EPT_MAPD != (signed int)((UDPHS->UDPHS_EPT[i].UDPHS_EPTCFG) & (unsigned int)UDPHS_EPTCFG_EPT_MAPD) )
;
UDPHS->UDPHS_EPT[i].UDPHS_EPTCTLENB = UDPHS_EPTCTLENB_EPT_ENABL;
// UECFG1X = EP_DOUBLE_64;
}
///\// UERST = 0x7E; // And reset them
///\// UERST = 0;
}
void USBD_InitControl(int end)
{
SetEP(0);
UDPHS->UDPHS_EPT[0].UDPHS_EPTCFG = _initEndpoints[0];
while( (signed int)UDPHS_EPTCFG_EPT_MAPD != (signed int)((UDPHS->UDPHS_EPT[0].UDPHS_EPTCFG) & (unsigned int)UDPHS_EPTCFG_EPT_MAPD) )
;
UDPHS->UDPHS_EPT[0].UDPHS_EPTCTLENB = UDPHS_EPTCTLENB_RX_BK_RDY
| UDPHS_EPTCTLENB_RX_SETUP
| UDPHS_EPTCTLENB_EPT_ENABL;
_cmark = 0;
_cend = end;
}
void UDPHS_Handler( void )
{
unsigned int status;
unsigned char numIT;
// Get interrupts status
status = UDPHS->UDPHS_INTSTA & UDPHS->UDPHS_IEN;
// Handle all UDPHS interrupts
while (status != 0) {
// Start of Frame - happens every millisecond so we use it for TX and RX LED one-shot timing, too
if ((status & UDPHS_IEN_INT_SOF) != 0) {
#ifdef CDC_ENABLED
USB_Flush(CDC_TX); // Send a tx frame if found
#endif
// check whether the one-shot period has elapsed. if so, turn off the LED
if (TxLEDPulse && !(--TxLEDPulse))
TXLED0;
if (RxLEDPulse && !(--RxLEDPulse))
RXLED0;
// Acknowledge interrupt
UDPHS->UDPHS_CLRINT = UDPHS_CLRINT_INT_SOF;
status &= ~UDPHS_IEN_INT_SOF;
}
// Suspend
// This interrupt is always treated last (hence the '==')
else if (status == UDPHS_IEN_DET_SUSPD) {
//UDPHS_DisableBIAS();
// Enable wakeup
UDPHS->UDPHS_IEN |= UDPHS_IEN_WAKE_UP | UDPHS_IEN_ENDOFRSM;
UDPHS->UDPHS_IEN &= ~UDPHS_IEN_DET_SUSPD;
// Acknowledge interrupt
UDPHS->UDPHS_CLRINT = UDPHS_CLRINT_DET_SUSPD | UDPHS_CLRINT_WAKE_UP;
//UDPHS_DisableUsbClock();
}
// Resume
else if( ((status & UDPHS_IEN_WAKE_UP) != 0) // line activity
|| ((status & UDPHS_IEN_ENDOFRSM) != 0)) { // pc wakeup
{
//UDPHS_EnableUsbClock();
//UDPHS_EnableBIAS();
UDPHS->UDPHS_CLRINT = UDPHS_CLRINT_WAKE_UP | UDPHS_CLRINT_ENDOFRSM
| UDPHS_CLRINT_DET_SUSPD;
UDPHS->UDPHS_IEN |= UDPHS_IEN_ENDOFRSM | UDPHS_IEN_DET_SUSPD;
UDPHS->UDPHS_CLRINT = UDPHS_CLRINT_WAKE_UP | UDPHS_CLRINT_ENDOFRSM;
UDPHS->UDPHS_IEN &= ~UDPHS_IEN_WAKE_UP;
}
}
// End of Reset
else if ((status & UDPHS_IEN_ENDRESET) == UDPHS_IEN_ENDRESET) {
InitControl(0); // init ep0
_usbConfiguration = 0; // not configured yet
//UEIENX = 1 << RXSTPE; // Enable interrupts for ep0
//UDPHS_ResetEndpoints();
//UDPHS_DisableEndpoints();
//USBD_ConfigureEndpoint(0);
UDPHS->UDPHS_IEN |= (1<<SHIFT_INTERUPT<<0);
// Flush and enable the Suspend interrupt
UDPHS->UDPHS_CLRINT = UDPHS_CLRINT_WAKE_UP | UDPHS_CLRINT_DET_SUSPD;
//// Enable the Start Of Frame (SOF) interrupt if needed
UDPHS->UDPHS_IEN |= UDPHS_IEN_INT_SOF;
// Acknowledge end of bus reset interrupt
UDPHS->UDPHS_CLRINT = UDPHS_CLRINT_ENDRESET;
UDPHS->UDPHS_IEN |= UDPHS_IEN_DET_SUSPD;
}
// Handle upstream resume interrupt
else if (status & UDPHS_IEN_UPSTR_RES) {
// - Acknowledge the IT
UDPHS->UDPHS_CLRINT = UDPHS_CLRINT_UPSTR_RES;
}
// Endpoint interrupts
else {
// Handle endpoint interrupts
for (numIT = 0; numIT < NUM_IT_MAX; numIT++) {
if ((status & (1 << SHIFT_INTERUPT << numIT)) != 0) {
USB_ISR();
//EndpointHandler(numIT); // TODO: interrupt for bulk
}
}
}
// Retrieve new interrupt status
status = UDPHS->UDPHS_INTSTA & UDPHS->UDPHS_IEN;
}
}
void USBD_Attach( void )
{/*
_usbConfiguration = 0;
//UHWCON = 0x01; // power internal reg
//USBCON = (1<<USBE)|(1<<FRZCLK); // clock frozen, usb enabled
//PLLCSR = 0x12; // Need 16 MHz xtal
//while (!(PLLCSR & (1<<PLOCK))) // wait for lock pll
// ;
PMC->PMC_PCER = (1 << ID_UDPHS);
// Enable 480MHZ
//AT91C_BASE_CKGR->CKGR_UCKR |= (AT91C_CKGR_PLLCOUNT & (3 << 20)) | AT91C_CKGR_UPLLEN;
CKGR->CKGR_UCKR |= ((0xf << 20) & (3 << 20)) | AT91C_CKGR_UPLLEN;
// Wait until UTMI PLL is locked
while ((PMC->PMC_SR & PMC_LOCKU) == 0);
// Reset and enable IP UDPHS
UDPHS->UDPHS_CTRL &= ~UDPHS_CTRL_EN_UDPHS;
UDPHS->UDPHS_CTRL |= UDPHS_CTRL_EN_UDPHS;
//USBCON = ((1<<USBE)|(1<<OTGPADE)); // start USB clock
UDPHS->UDPHS_IEN = 0;
UDPHS->UDPHS_CLRINT = UDPHS_CLRINT_UPSTR_RES
| UDPHS_CLRINT_ENDOFRSM
| UDPHS_CLRINT_WAKE_UP
| UDPHS_CLRINT_ENDRESET
| UDPHS_CLRINT_INT_SOF
| UDPHS_CLRINT_MICRO_SOF
| UDPHS_CLRINT_DET_SUSPD;
// Enable interrupts for EOR (End of Reset), wake up and SOF (start of frame)
//UDIEN = (1<<EORSTE)|(1<<SOFE);
UDPHS->UDPHS_IEN = UDPHS_IEN_ENDOFRSM
| UDPHS_IEN_WAKE_UP
| UDPHS_IEN_DET_SUSPD;
// enable attach resistor
//UDCON = 0;
UDPHS->UDPHS_CTRL &= ~UDPHS_CTRL_DETACH; // Pull Up on DP
UDPHS->UDPHS_CTRL |= UDPHS_CTRL_PULLD_DIS; // Disable Pull Down
TX_RX_LED_INIT;
*/}
void USBD_Detach( void )
{
UDPHS->UDPHS_CTRL |= UDPHS_CTRL_DETACH; // detach
UDPHS->UDPHS_CTRL &= ~UDPHS_CTRL_PULLD_DIS; // Enable Pull Down
}
#endif /* SAM3U_SERIES */