1
0
mirror of https://github.com/arduino/Arduino.git synced 2024-12-03 14:24:15 +01:00
Arduino/libraries/Servo/arch/sam/Servo.cpp
2013-06-27 13:12:07 +02:00

285 lines
10 KiB
C++

/*
Servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers - Version 2
Copyright (c) 2009 Michael Margolis. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <Arduino.h>
#include <Servo.h>
#define usToTicks(_us) (( clockCyclesPerMicrosecond() * _us) / 32) // converts microseconds to tick
#define ticksToUs(_ticks) (( (unsigned)_ticks * 32)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays
static servo_t servos[MAX_SERVOS]; // static array of servo structures
uint8_t ServoCount = 0; // the total number of attached servos
static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
// convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER) // returns the index of the servo on this timer
#define SERVO_INDEX(_timer,_channel) ((_timer*SERVOS_PER_TIMER) + _channel) // macro to access servo index by timer and channel
#define SERVO(_timer,_channel) (servos[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
/************ static functions common to all instances ***********************/
//timer16_Sequence_t timer;
//------------------------------------------------------------------------------
/// Interrupt handler for the TC0 channel 1.
//------------------------------------------------------------------------------
void Servo_Handler(timer16_Sequence_t timer, Tc *pTc, uint8_t channel);
#if defined (_useTimer1)
void HANDLER_FOR_TIMER1(void) {
Servo_Handler(_timer1, TC_FOR_TIMER1, CHANNEL_FOR_TIMER1);
}
#endif
#if defined (_useTimer2)
void HANDLER_FOR_TIMER2(void) {
Servo_Handler(_timer2, TC_FOR_TIMER2, CHANNEL_FOR_TIMER2);
}
#endif
#if defined (_useTimer3)
void HANDLER_FOR_TIMER3(void) {
Servo_Handler(_timer3, TC_FOR_TIMER3, CHANNEL_FOR_TIMER3);
}
#endif
#if defined (_useTimer4)
void HANDLER_FOR_TIMER4(void) {
Servo_Handler(_timer4, TC_FOR_TIMER4, CHANNEL_FOR_TIMER4);
}
#endif
#if defined (_useTimer5)
void HANDLER_FOR_TIMER5(void) {
Servo_Handler(_timer5, TC_FOR_TIMER5, CHANNEL_FOR_TIMER5);
}
#endif
void Servo_Handler(timer16_Sequence_t timer, Tc *tc, uint8_t channel)
{
// clear interrupt
tc->TC_CHANNEL[channel].TC_SR;
if (Channel[timer] < 0) {
tc->TC_CHANNEL[channel].TC_CCR |= TC_CCR_SWTRG; // channel set to -1 indicated that refresh interval completed so reset the timer
} else {
if (SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true) {
digitalWrite(SERVO(timer,Channel[timer]).Pin.nbr, LOW); // pulse this channel low if activated
}
}
Channel[timer]++; // increment to the next channel
if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + SERVO(timer,Channel[timer]).ticks;
if(SERVO(timer,Channel[timer]).Pin.isActive == true) { // check if activated
digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
}
}
else {
// finished all channels so wait for the refresh period to expire before starting over
if( (tc->TC_CHANNEL[channel].TC_CV) + 4 < usToTicks(REFRESH_INTERVAL) ) { // allow a few ticks to ensure the next OCR1A not missed
tc->TC_CHANNEL[channel].TC_RA = (unsigned int)usToTicks(REFRESH_INTERVAL);
}
else {
tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + 4; // at least REFRESH_INTERVAL has elapsed
}
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
}
}
static void _initISR(Tc *tc, uint32_t channel, uint32_t id, IRQn_Type irqn)
{
pmc_enable_periph_clk(id);
TC_Configure(tc, channel,
TC_CMR_TCCLKS_TIMER_CLOCK3 | // MCK/32
TC_CMR_WAVE | // Waveform mode
TC_CMR_WAVSEL_UP_RC ); // Counter running up and reset when equals to RC
/* 84MHz, MCK/32, for 1.5ms: 3937 */
TC_SetRA(tc, channel, 2625); // 1ms
/* Configure and enable interrupt */
NVIC_EnableIRQ(irqn);
// TC_IER_CPAS: RA Compare
tc->TC_CHANNEL[channel].TC_IER = TC_IER_CPAS;
// Enables the timer clock and performs a software reset to start the counting
TC_Start(tc, channel);
}
static void initISR(timer16_Sequence_t timer)
{
#if defined (_useTimer1)
if (timer == _timer1)
_initISR(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, ID_TC_FOR_TIMER1, IRQn_FOR_TIMER1);
#endif
#if defined (_useTimer2)
if (timer == _timer2)
_initISR(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, ID_TC_FOR_TIMER2, IRQn_FOR_TIMER2);
#endif
#if defined (_useTimer3)
if (timer == _timer3)
_initISR(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3, ID_TC_FOR_TIMER3, IRQn_FOR_TIMER3);
#endif
#if defined (_useTimer4)
if (timer == _timer4)
_initISR(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4, ID_TC_FOR_TIMER4, IRQn_FOR_TIMER4);
#endif
#if defined (_useTimer5)
if (timer == _timer5)
_initISR(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5, ID_TC_FOR_TIMER5, IRQn_FOR_TIMER5);
#endif
}
static void finISR(timer16_Sequence_t timer)
{
#if defined (_useTimer1)
TC_Stop(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1);
#endif
#if defined (_useTimer2)
TC_Stop(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2);
#endif
#if defined (_useTimer3)
TC_Stop(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3);
#endif
#if defined (_useTimer4)
TC_Stop(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4);
#endif
#if defined (_useTimer5)
TC_Stop(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5);
#endif
}
static boolean isTimerActive(timer16_Sequence_t timer)
{
// returns true if any servo is active on this timer
for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
if(SERVO(timer,channel).Pin.isActive == true)
return true;
}
return false;
}
/****************** end of static functions ******************************/
Servo::Servo()
{
if (ServoCount < MAX_SERVOS) {
this->servoIndex = ServoCount++; // assign a servo index to this instance
servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values
} else {
this->servoIndex = INVALID_SERVO; // too many servos
}
}
uint8_t Servo::attach(int pin)
{
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
uint8_t Servo::attach(int pin, int min, int max)
{
timer16_Sequence_t timer;
if (this->servoIndex < MAX_SERVOS) {
pinMode(pin, OUTPUT); // set servo pin to output
servos[this->servoIndex].Pin.nbr = pin;
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
this->min = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
this->max = (MAX_PULSE_WIDTH - max)/4;
// initialize the timer if it has not already been initialized
timer = SERVO_INDEX_TO_TIMER(servoIndex);
if (isTimerActive(timer) == false) {
initISR(timer);
}
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
}
return this->servoIndex;
}
void Servo::detach()
{
timer16_Sequence_t timer;
servos[this->servoIndex].Pin.isActive = false;
timer = SERVO_INDEX_TO_TIMER(servoIndex);
if(isTimerActive(timer) == false) {
finISR(timer);
}
}
void Servo::write(int value)
{
// treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if (value < MIN_PULSE_WIDTH)
{
if (value < 0)
value = 0;
else if (value > 180)
value = 180;
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
}
writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value)
{
// calculate and store the values for the given channel
byte channel = this->servoIndex;
if( (channel < MAX_SERVOS) ) // ensure channel is valid
{
if (value < SERVO_MIN()) // ensure pulse width is valid
value = SERVO_MIN();
else if (value > SERVO_MAX())
value = SERVO_MAX();
value = value - TRIM_DURATION;
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead
servos[channel].ticks = value;
}
}
int Servo::read() // return the value as degrees
{
return map(readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
}
int Servo::readMicroseconds()
{
unsigned int pulsewidth;
if (this->servoIndex != INVALID_SERVO)
pulsewidth = ticksToUs(servos[this->servoIndex].ticks) + TRIM_DURATION;
else
pulsewidth = 0;
return pulsewidth;
}
bool Servo::attached()
{
return servos[this->servoIndex].Pin.isActive;
}