1
0
mirror of https://github.com/arduino/Arduino.git synced 2024-12-10 21:24:12 +01:00
Arduino/hardware/arduino/avr/cores/robot/wiring.c
Cristian Maglie 3394f61276 Merged 1.0.5
2013-05-29 18:30:36 +02:00

325 lines
9.2 KiB
C

/*
wiring.c - Partial implementation of the Wiring API for the ATmega8.
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id$
*/
#include "wiring_private.h"
// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
// the overflow handler is called every 256 ticks.
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
// the whole number of milliseconds per timer0 overflow
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
// the fractional number of milliseconds per timer0 overflow. we shift right
// by three to fit these numbers into a byte. (for the clock speeds we care
// about - 8 and 16 MHz - this doesn't lose precision.)
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
#define FRACT_MAX (1000 >> 3)
volatile unsigned long timer0_overflow_count = 0;
volatile unsigned long timer0_millis = 0;
static unsigned char timer0_fract = 0;
#if defined(__AVR_ATtiny24__) || defined(__AVR_ATtiny44__) || defined(__AVR_ATtiny84__)
ISR(TIM0_OVF_vect)
#else
ISR(TIMER0_OVF_vect)
#endif
{
// copy these to local variables so they can be stored in registers
// (volatile variables must be read from memory on every access)
unsigned long m = timer0_millis;
unsigned char f = timer0_fract;
m += MILLIS_INC;
f += FRACT_INC;
if (f >= FRACT_MAX) {
f -= FRACT_MAX;
m += 1;
}
timer0_fract = f;
timer0_millis = m;
timer0_overflow_count++;
}
unsigned long millis()
{
unsigned long m;
uint8_t oldSREG = SREG;
// disable interrupts while we read timer0_millis or we might get an
// inconsistent value (e.g. in the middle of a write to timer0_millis)
cli();
m = timer0_millis;
SREG = oldSREG;
return m;
}
unsigned long micros() {
unsigned long m;
uint8_t oldSREG = SREG, t;
cli();
m = timer0_overflow_count;
#if defined(TCNT0)
t = TCNT0;
#elif defined(TCNT0L)
t = TCNT0L;
#else
#error TIMER 0 not defined
#endif
#ifdef TIFR0
if ((TIFR0 & _BV(TOV0)) && (t < 255))
m++;
#else
if ((TIFR & _BV(TOV0)) && (t < 255))
m++;
#endif
SREG = oldSREG;
return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
}
void delay(unsigned long ms)
{
uint16_t start = (uint16_t)micros();
while (ms > 0) {
if (((uint16_t)micros() - start) >= 1000) {
ms--;
start += 1000;
}
}
}
/* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock. */
void delayMicroseconds(unsigned int us)
{
// calling avrlib's delay_us() function with low values (e.g. 1 or
// 2 microseconds) gives delays longer than desired.
//delay_us(us);
#if F_CPU >= 20000000L
// for the 20 MHz clock on rare Arduino boards
// for a one-microsecond delay, simply wait 2 cycle and return. The overhead
// of the function call yields a delay of exactly a one microsecond.
__asm__ __volatile__ (
"nop" "\n\t"
"nop"); //just waiting 2 cycle
if (--us == 0)
return;
// the following loop takes a 1/5 of a microsecond (4 cycles)
// per iteration, so execute it five times for each microsecond of
// delay requested.
us = (us<<2) + us; // x5 us
// account for the time taken in the preceeding commands.
us -= 2;
#elif F_CPU >= 16000000L
// for the 16 MHz clock on most Arduino boards
// for a one-microsecond delay, simply return. the overhead
// of the function call yields a delay of approximately 1 1/8 us.
if (--us == 0)
return;
// the following loop takes a quarter of a microsecond (4 cycles)
// per iteration, so execute it four times for each microsecond of
// delay requested.
us <<= 2;
// account for the time taken in the preceeding commands.
us -= 2;
#else
// for the 8 MHz internal clock on the ATmega168
// for a one- or two-microsecond delay, simply return. the overhead of
// the function calls takes more than two microseconds. can't just
// subtract two, since us is unsigned; we'd overflow.
if (--us == 0)
return;
if (--us == 0)
return;
// the following loop takes half of a microsecond (4 cycles)
// per iteration, so execute it twice for each microsecond of
// delay requested.
us <<= 1;
// partially compensate for the time taken by the preceeding commands.
// we can't subtract any more than this or we'd overflow w/ small delays.
us--;
#endif
// busy wait
__asm__ __volatile__ (
"1: sbiw %0,1" "\n\t" // 2 cycles
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
);
}
void init()
{
// this needs to be called before setup() or some functions won't
// work there
sei();
// on the ATmega168, timer 0 is also used for fast hardware pwm
// (using phase-correct PWM would mean that timer 0 overflowed half as often
// resulting in different millis() behavior on the ATmega8 and ATmega168)
#if defined(TCCR0A) && defined(WGM01)
sbi(TCCR0A, WGM01);
sbi(TCCR0A, WGM00);
#endif
// set timer 0 prescale factor to 64
#if defined(__AVR_ATmega128__)
// CPU specific: different values for the ATmega128
sbi(TCCR0, CS02);
#elif defined(TCCR0) && defined(CS01) && defined(CS00)
// this combination is for the standard atmega8
sbi(TCCR0, CS01);
sbi(TCCR0, CS00);
#elif defined(TCCR0B) && defined(CS01) && defined(CS00)
// this combination is for the standard 168/328/1280/2560
sbi(TCCR0B, CS01);
sbi(TCCR0B, CS00);
#elif defined(TCCR0A) && defined(CS01) && defined(CS00)
// this combination is for the __AVR_ATmega645__ series
sbi(TCCR0A, CS01);
sbi(TCCR0A, CS00);
#else
#error Timer 0 prescale factor 64 not set correctly
#endif
// enable timer 0 overflow interrupt
#if defined(TIMSK) && defined(TOIE0)
sbi(TIMSK, TOIE0);
#elif defined(TIMSK0) && defined(TOIE0)
sbi(TIMSK0, TOIE0);
#else
#error Timer 0 overflow interrupt not set correctly
#endif
// timers 1 and 2 are used for phase-correct hardware pwm
// this is better for motors as it ensures an even waveform
// note, however, that fast pwm mode can achieve a frequency of up
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
#if defined(TCCR1B) && defined(CS11) && defined(CS10)
TCCR1B = 0;
// set timer 1 prescale factor to 64
sbi(TCCR1B, CS11);
#if F_CPU >= 8000000L
sbi(TCCR1B, CS10);
#endif
#elif defined(TCCR1) && defined(CS11) && defined(CS10)
sbi(TCCR1, CS11);
#if F_CPU >= 8000000L
sbi(TCCR1, CS10);
#endif
#endif
// put timer 1 in 8-bit phase correct pwm mode
#if defined(TCCR1A) && defined(WGM10)
sbi(TCCR1A, WGM10);
#elif defined(TCCR1)
#warning this needs to be finished
#endif
// set timer 2 prescale factor to 64
#if defined(TCCR2) && defined(CS22)
sbi(TCCR2, CS22);
#elif defined(TCCR2B) && defined(CS22)
sbi(TCCR2B, CS22);
#else
#warning Timer 2 not finished (may not be present on this CPU)
#endif
// configure timer 2 for phase correct pwm (8-bit)
#if defined(TCCR2) && defined(WGM20)
sbi(TCCR2, WGM20);
#elif defined(TCCR2A) && defined(WGM20)
sbi(TCCR2A, WGM20);
#else
#warning Timer 2 not finished (may not be present on this CPU)
#endif
#if defined(TCCR3B) && defined(CS31) && defined(WGM30)
sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64
sbi(TCCR3B, CS30);
sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
#endif
#if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */
sbi(TCCR4B, CS42); // set timer4 prescale factor to 64
sbi(TCCR4B, CS41);
sbi(TCCR4B, CS40);
sbi(TCCR4D, WGM40); // put timer 4 in phase- and frequency-correct PWM mode
sbi(TCCR4A, PWM4A); // enable PWM mode for comparator OCR4A
sbi(TCCR4C, PWM4D); // enable PWM mode for comparator OCR4D
#else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */
#if defined(TCCR4B) && defined(CS41) && defined(WGM40)
sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64
sbi(TCCR4B, CS40);
sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode
#endif
#endif /* end timer4 block for ATMEGA1280/2560 and similar */
#if defined(TCCR5B) && defined(CS51) && defined(WGM50)
sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64
sbi(TCCR5B, CS50);
sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode
#endif
#if defined(ADCSRA)
// set a2d prescale factor to 128
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
// XXX: this will not work properly for other clock speeds, and
// this code should use F_CPU to determine the prescale factor.
sbi(ADCSRA, ADPS2);
sbi(ADCSRA, ADPS1);
sbi(ADCSRA, ADPS0);
// enable a2d conversions
sbi(ADCSRA, ADEN);
#endif
// the bootloader connects pins 0 and 1 to the USART; disconnect them
// here so they can be used as normal digital i/o; they will be
// reconnected in Serial.begin()
#if defined(UCSRB)
UCSRB = 0;
#elif defined(UCSR0B)
UCSR0B = 0;
#endif
}