1
0
mirror of https://github.com/arduino/Arduino.git synced 2024-11-29 10:24:12 +01:00
Arduino/build/macosx/dist/eeprom.h

443 lines
13 KiB
C

/* Copyright (c) 2002, 2003, 2004, 2007 Marek Michalkiewicz
Copyright (c) 2005, 2006 Bjoern Haase
Copyright (c) 2008 Atmel Corporation
Copyright (c) 2008 Wouter van Gulik
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of the copyright holders nor the names of
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE. */
/* $Id: eeprom.h,v 1.21.2.6 2008/08/19 22:10:39 arcanum Exp $ */
#ifndef _AVR_EEPROM_H_
#define _AVR_EEPROM_H_ 1
#include <avr/io.h>
#include <stddef.h> /* size_t */
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
#ifndef __ATTR_PURE__
# ifdef __DOXYGEN__
# define __ATTR_PURE__
# else
# define __ATTR_PURE__ __attribute__((__pure__))
# endif
#endif
#if (! (defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__)) )
uint16_t __eerd_word (const uint16_t *, uint8_t (*)(const uint8_t *))
__ATTR_PURE__;
uint32_t __eerd_dword (const uint32_t *, uint8_t (*)(const uint8_t *))
__ATTR_PURE__;
void __eerd_block (void *, const void *, size_t, uint8_t (*)(const uint8_t *));
void __eewr_word (uint16_t *, uint16_t, void (*)(uint8_t *, uint8_t));
void __eewr_dword (uint32_t *, uint32_t, void (*)(uint8_t *, uint8_t));
void __eewr_block (void *, const void *, size_t, void (*)(uint8_t *, uint8_t));
#endif /* (! (defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__)) ) */
#if !E2END && !defined(__DOXYGEN__)
# ifndef __COMPILING_AVR_LIBC__
# warning "Device does not have EEPROM available."
# endif
/* Omit below for chips without EEPROM. */
#else
/** \defgroup avr_eeprom <avr/eeprom.h>: EEPROM handling
\code #include <avr/eeprom.h> \endcode
This header file declares the interface to some simple library
routines suitable for handling the data EEPROM contained in the
AVR microcontrollers. The implementation uses a simple polled
mode interface. Applications that require interrupt-controlled
EEPROM access to ensure that no time will be wasted in spinloops
will have to deploy their own implementation.
\note All of the read/write functions first make sure the EEPROM
is ready to be accessed. Since this may cause long delays if a
write operation is still pending, time-critical applications
should first poll the EEPROM e. g. using eeprom_is_ready() before
attempting any actual I/O. But this functions are not wait until
SELFPRGEN in SPMCSR becomes zero. Do this manually, if your
softwate contains the Flash burning.
\note As these functions modify IO registers, they are known to be
non-reentrant. If any of these functions are used from both,
standard and interrupt context, the applications must ensure
proper protection (e.g. by disabling interrupts before accessing
them).
\note All write functions force erase_and_write programming mode.
*/
/** \def EEMEM
\ingroup avr_eeprom
Attribute expression causing a variable to be allocated within the
.eeprom section. */
#define EEMEM __attribute__((section(".eeprom")))
/* Register definitions */
/* Check for aliases. */
#if !defined(EEWE) && defined(EEPE)
# define EEWE EEPE
#endif
#if !defined(EEMWE) && defined(EEMPE)
# define EEMWE EEMPE
#endif
#if !defined(EECR) && defined(DEECR)
/* AT86RF401 */
# define EECR DEECR
# define EEAR DEEAR
# define EEARL DEEAR
# define EEDR DEEDR
# define EERE EER
# define EEWE EEL
# define EEMWE EEU
#endif
#if !defined(EECR) || !defined(EEDR) || !defined(EEARL)
# if !defined(__EEPROM_REG_LOCATIONS__) \
&& !defined(EEPROM_REG_LOCATIONS_OVERRIDE)
/* 6-byte string denoting where to find the EEPROM registers in memory
space. Adresses denoted in hex syntax with uppercase letters. Used
by the EEPROM subroutines.
First two letters: EECR address.
Second two letters: EEDR address.
Last two letters: EEAR address.
*/
# error "Unknown EEPROM register(s) location."
# endif
/* If needed, override the locations defined in the IO headers. */
# ifdef EEPROM_REG_LOCATIONS_OVERRIDE
# undef __EEPROM_REG_LOCATIONS__
# define __EEPROM_REG_LOCATIONS__ EEPROM_REG_LOCATIONS_OVERRIDE
# endif
# define CONCAT1(a, b) CONCAT2(a, b)
# define CONCAT2(a, b) a ## b
# define HEXNR CONCAT1(0x, __EEPROM_REG_LOCATIONS__)
# undef EECR
# define EECR _SFR_IO8((HEXNR >> 16) & 0xFF)
# undef EEDR
# define EEDR _SFR_IO8((HEXNR >> 8) & 0xFF)
# undef EEAR
# define EEAR _SFR_IO8(HEXNR & 0xFF)
# undef EEARH
# undef EEARL
# define EEARL EEAR
#endif
/** \def eeprom_is_ready
\ingroup avr_eeprom
\returns 1 if EEPROM is ready for a new read/write operation, 0 if not.
*/
#if defined(__DOXYGEN__)
# define eeprom_is_ready()
#elif defined(DEECR)
# define eeprom_is_ready() bit_is_clear(DEECR, BSY)
#else
# define eeprom_is_ready() bit_is_clear(EECR, EEWE)
#endif
/** \def eeprom_busy_wait
\ingroup avr_eeprom
Loops until the eeprom is no longer busy.
\returns Nothing.
*/
#define eeprom_busy_wait() do {} while (!eeprom_is_ready())
/** \ingroup avr_eeprom
Read one byte from EEPROM address \a __p.
*/
__ATTR_PURE__ static __inline__ uint8_t eeprom_read_byte (const uint8_t *__p)
{
do {} while (!eeprom_is_ready ());
#if E2END <= 0xFF
EEARL = (uint8_t)(uint16_t)__p;
#else
EEAR = (uint16_t)__p;
#endif
/* Use inline assembly below as some AVRs have problems with accessing
EECR with STS instructions. For example, see errata for ATmega64.
The code below also assumes that EECR and EEDR are in the I/O space.
*/
uint8_t __result;
__asm__ __volatile__
(
"/* START EEPROM READ CRITICAL SECTION */ \n\t"
"sbi %1, %2 \n\t"
"in %0, %3 \n\t"
"/* END EEPROM READ CRITICAL SECTION */ \n\t"
: "=r" (__result)
: "i" (_SFR_IO_ADDR(EECR)),
"i" (EERE),
"i" (_SFR_IO_ADDR(EEDR))
);
return __result;
}
/** \ingroup avr_eeprom
Read one 16-bit word (little endian) from EEPROM address \a __p.
*/
__ATTR_PURE__ static __inline__ uint16_t eeprom_read_word (const uint16_t *__p)
{
#if (! (defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__)) )
return __eerd_word (__p, eeprom_read_byte);
#else
/* If ATmega256x device, do not call function. */
union
{
uint16_t word;
struct
{
uint8_t lo;
uint8_t hi;
} byte;
} x;
x.byte.lo = eeprom_read_byte ((const uint8_t *)__p);
x.byte.hi = eeprom_read_byte ((const uint8_t *)__p + 1);
return x.word;
#endif
}
/** \ingroup avr_eeprom
Read one 32-bit double word (little endian) from EEPROM address \a __p.
*/
__ATTR_PURE__ static __inline__
uint32_t eeprom_read_dword (const uint32_t *__p)
{
#if (! (defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__)) )
return __eerd_dword (__p, eeprom_read_byte);
#else
/* If ATmega256x device, do not call function. */
union
{
uint32_t dword;
struct
{
uint8_t byte0;
uint8_t byte1;
uint8_t byte2;
uint8_t byte3;
} byte;
} x;
x.byte.byte0 = eeprom_read_byte ((const uint8_t *)__p);
x.byte.byte1 = eeprom_read_byte ((const uint8_t *)__p + 1);
x.byte.byte2 = eeprom_read_byte ((const uint8_t *)__p + 2);
x.byte.byte3 = eeprom_read_byte ((const uint8_t *)__p + 3);
return x.dword;
#endif
}
/** \ingroup avr_eeprom
Read a block of \a __n bytes from EEPROM address \a __src to SRAM
\a __dst.
*/
static __inline__ void
eeprom_read_block (void *__dst, const void *__src, size_t __n)
{
#if (! (defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__)) )
__eerd_block (__dst, __src, __n, eeprom_read_byte);
#else
/* If ATmega256x device, do not call function. */
char *_myDstPtr;
char *_mySrcPtr;
_myDstPtr = (char *)__dst;
_mySrcPtr = (char *)__src;
while (__n--)
{
//* Jul 6, 2010 modifed by Mark Sproul to work with the 2560
// *(char *)__dst++ = eeprom_read_byte((const uint8_t *)__src++);
*_myDstPtr = eeprom_read_byte((const uint8_t *)_mySrcPtr);
_myDstPtr++;
_mySrcPtr++;
}
#endif
}
/** \ingroup avr_eeprom
Write a byte \a __value to EEPROM address \a __p.
*/
static __inline__ void eeprom_write_byte (uint8_t *__p, uint8_t __value)
{
do {} while (!eeprom_is_ready ());
#if defined(EEPM0) && defined(EEPM1)
EECR = 0; /* Set programming mode: erase and write. */
#elif defined(EEPM0) || defined(EEPM1)
# warning "Unknown EECR register, eeprom_write_byte() has become outdated."
#endif
#if E2END <= 0xFF
EEARL = (unsigned)__p;
#else
EEAR = (unsigned)__p;
#endif
EEDR = __value;
__asm__ __volatile__ (
"/* START EEPROM WRITE CRITICAL SECTION */\n\t"
"in r0, %[__sreg] \n\t"
"cli \n\t"
"sbi %[__eecr], %[__eemwe] \n\t"
"sbi %[__eecr], %[__eewe] \n\t"
"out %[__sreg], r0 \n\t"
"/* END EEPROM WRITE CRITICAL SECTION */"
:
: [__eecr] "i" (_SFR_IO_ADDR(EECR)),
[__sreg] "i" (_SFR_IO_ADDR(SREG)),
[__eemwe] "i" (EEMWE),
[__eewe] "i" (EEWE)
: "r0"
);
}
/** \ingroup avr_eeprom
Write a word \a __value to EEPROM address \a __p.
*/
static __inline__ void eeprom_write_word (uint16_t *__p, uint16_t __value)
{
#if (! (defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__)) )
__eewr_word (__p, __value, eeprom_write_byte);
#else
/* If ATmega256x device, do not call function. */
union
{
uint16_t word;
struct
{
uint8_t lo;
uint8_t hi;
} byte;
} x;
x.word = __value;
eeprom_write_byte ((uint8_t *)__p, x.byte.lo);
eeprom_write_byte ((uint8_t *)__p + 1, x.byte.hi);
#endif
}
/** \ingroup avr_eeprom
Write a 32-bit double word \a __value to EEPROM address \a __p.
*/
static __inline__ void eeprom_write_dword (uint32_t *__p, uint32_t __value)
{
#if (! (defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__)) )
__eewr_dword (__p, __value, eeprom_write_byte);
#else
/* If ATmega256x device, do not call function. */
union
{
uint32_t dword;
struct
{
uint8_t byte0;
uint8_t byte1;
uint8_t byte2;
uint8_t byte3;
} byte;
} x;
x.dword = __value;
eeprom_write_byte ((uint8_t *)__p, x.byte.byte0);
eeprom_write_byte ((uint8_t *)__p + 1, x.byte.byte1);
eeprom_write_byte ((uint8_t *)__p + 2, x.byte.byte2);
eeprom_write_byte ((uint8_t *)__p + 3, x.byte.byte3);
#endif
}
/** \ingroup avr_eeprom
Write a block of \a __n bytes to EEPROM address \a __dst from \a __src.
\note The argument order is mismatch with common functions like strcpy().
*/
static __inline__ void
eeprom_write_block (const void *__src, void *__dst, size_t __n)
{
#if (! (defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__)) )
__eewr_block (__dst, __src, __n, eeprom_write_byte);
#else
/* If ATmega256x device, do not call function. */
uint8_t *_myDstPtr;
uint8_t *_mySrcPtr;
//* Jul 6, 2010 modifed by Mark Sproul to work with the 2560
_myDstPtr = (uint8_t *)__dst;
_mySrcPtr = (uint8_t *)__src;
while (__n--)
{
// eeprom_write_byte((uint8_t *)__dst++, *(uint8_t *)__src++);
eeprom_write_byte(_myDstPtr++, *_mySrcPtr++);
}
#endif
}
/** \name IAR C compatibility defines */
/*@{*/
/** \def _EEPUT
\ingroup avr_eeprom
Write a byte to EEPROM. Compatibility define for IAR C. */
#define _EEPUT(addr, val) eeprom_write_byte ((uint8_t *)(addr), (uint8_t)(val))
/** \def _EEGET
\ingroup avr_eeprom
Read a byte from EEPROM. Compatibility define for IAR C. */
#define _EEGET(var, addr) (var) = eeprom_read_byte ((const uint8_t *)(addr))
/*@}*/
#endif /* E2END || defined(__DOXYGEN__) */
#ifdef __cplusplus
}
#endif
#endif /* !_AVR_EEPROM_H */