mirror of
https://github.com/arduino/Arduino.git
synced 2025-01-20 09:52:13 +01:00
503 lines
12 KiB
C
Executable File
503 lines
12 KiB
C
Executable File
/*
|
|
wiring.c - Partial implementation of the Wiring API for the ATmega8.
|
|
Part of Arduino - http://www.arduino.cc/
|
|
|
|
Copyright (c) 2005-2006 David A. Mellis
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General
|
|
Public License along with this library; if not, write to the
|
|
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
|
|
Boston, MA 02111-1307 USA
|
|
|
|
$Id$
|
|
*/
|
|
|
|
#include <avr/io.h>
|
|
#include <avr/interrupt.h>
|
|
#include <avr/signal.h>
|
|
#include <avr/delay.h>
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
|
|
#ifndef cbi
|
|
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
|
|
#endif
|
|
#ifndef sbi
|
|
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
|
|
#endif
|
|
|
|
// from Pascal's avrlib
|
|
#include "uart.h"
|
|
|
|
#include "wiring.h"
|
|
|
|
// The number of times timer 0 has overflowed since the program started.
|
|
// Must be volatile or gcc will optimize away some uses of it.
|
|
volatile unsigned long timer0_overflow_count;
|
|
|
|
// Get the hardware port of the given virtual pin number. This comes from
|
|
// the pins_*.c file for the active board configuration.
|
|
int digitalPinToPort(int pin)
|
|
{
|
|
return digital_pin_to_port[pin].port;
|
|
}
|
|
|
|
// Get the bit location within the hardware port of the given virtual pin.
|
|
// This comes from the pins_*.c file for the active board configuration.
|
|
int digitalPinToBit(int pin)
|
|
{
|
|
return digital_pin_to_port[pin].bit;
|
|
}
|
|
|
|
int analogOutPinToTimer(int pin)
|
|
{
|
|
return analog_out_pin_to_timer[pin];
|
|
}
|
|
|
|
int analogInPinToBit(int pin)
|
|
{
|
|
return analog_in_pin_to_port[pin].bit;
|
|
}
|
|
|
|
void pinMode(int pin, int mode)
|
|
{
|
|
if (digitalPinToPort(pin) != NOT_A_PIN) {
|
|
if (mode == INPUT)
|
|
cbi(_SFR_IO8(port_to_mode[digitalPinToPort(pin)]),
|
|
digitalPinToBit(pin));
|
|
else
|
|
sbi(_SFR_IO8(port_to_mode[digitalPinToPort(pin)]),
|
|
digitalPinToBit(pin));
|
|
}
|
|
}
|
|
|
|
void digitalWrite(int pin, int val)
|
|
{
|
|
if (digitalPinToPort(pin) != NOT_A_PIN) {
|
|
// If the pin that support PWM output, we need to turn it off
|
|
// before doing a digital write.
|
|
|
|
if (analogOutPinToTimer(pin) == TIMER1A)
|
|
cbi(TCCR1A, COM1A1);
|
|
|
|
if (analogOutPinToTimer(pin) == TIMER1B)
|
|
cbi(TCCR1A, COM1B1);
|
|
|
|
#if defined(__AVR_ATmega168__)
|
|
if (analogOutPinToTimer(pin) == TIMER2A)
|
|
cbi(TCCR2A, COM2A1);
|
|
|
|
if (analogOutPinToTimer(pin) == TIMER2B)
|
|
cbi(TCCR2A, COM2B1);
|
|
#else
|
|
if (analogOutPinToTimer(pin) == TIMER2)
|
|
cbi(TCCR2, COM21);
|
|
#endif
|
|
|
|
if (val == LOW)
|
|
cbi(_SFR_IO8(port_to_output[digitalPinToPort(pin)]),
|
|
digitalPinToBit(pin));
|
|
else
|
|
sbi(_SFR_IO8(port_to_output[digitalPinToPort(pin)]),
|
|
digitalPinToBit(pin));
|
|
}
|
|
}
|
|
|
|
int digitalRead(int pin)
|
|
{
|
|
if (digitalPinToPort(pin) != NOT_A_PIN) {
|
|
// If the pin that support PWM output, we need to turn it off
|
|
// before getting a digital reading.
|
|
|
|
if (analogOutPinToTimer(pin) == TIMER1A)
|
|
cbi(TCCR1A, COM1A1);
|
|
|
|
if (analogOutPinToTimer(pin) == TIMER1B)
|
|
cbi(TCCR1A, COM1B1);
|
|
|
|
#if defined(__AVR_ATmega168__)
|
|
if (analogOutPinToTimer(pin) == TIMER2A)
|
|
cbi(TCCR2A, COM2A1);
|
|
|
|
if (analogOutPinToTimer(pin) == TIMER2B)
|
|
cbi(TCCR2A, COM2B1);
|
|
#else
|
|
if (analogOutPinToTimer(pin) == TIMER2)
|
|
cbi(TCCR2, COM21);
|
|
#endif
|
|
|
|
return (_SFR_IO8(port_to_input[digitalPinToPort(pin)]) >>
|
|
digitalPinToBit(pin)) & 0x01;
|
|
}
|
|
|
|
return LOW;
|
|
}
|
|
|
|
int analogRead(int pin)
|
|
{
|
|
unsigned int low, high, ch = analogInPinToBit(pin);
|
|
|
|
// the low 4 bits of ADMUX select the ADC channel
|
|
ADMUX = (ADMUX & (unsigned int) 0xf0) | (ch & (unsigned int) 0x0f);
|
|
|
|
// without a delay, we seem to read from the wrong channel
|
|
delay(1);
|
|
|
|
// start the conversion
|
|
sbi(ADCSRA, ADSC);
|
|
|
|
// ADSC is cleared when the conversion finishes
|
|
while (bit_is_set(ADCSRA, ADSC));
|
|
|
|
// we have to read ADCL first; doing so locks both ADCL
|
|
// and ADCH until ADCH is read. reading ADCL second would
|
|
// cause the results of each conversion to be discarded,
|
|
// as ADCL and ADCH would be locked when it completed.
|
|
low = ADCL;
|
|
high = ADCH;
|
|
|
|
// combine the two bytes
|
|
return (high << 8) | low;
|
|
}
|
|
|
|
// Right now, PWM output only works on the pins with
|
|
// hardware support. These are defined in the appropriate
|
|
// pins_*.c file. For the rest of the pins, we default
|
|
// to digital output.
|
|
void analogWrite(int pin, int val)
|
|
{
|
|
// We need to make sure the PWM output is enabled for those pins
|
|
// that support it, as we turn it off when digitally reading or
|
|
// writing with them. Also, make sure the pin is in output mode
|
|
// for consistenty with Wiring, which doesn't require a pinMode
|
|
// call for the analog output pins.
|
|
pinMode(pin, OUTPUT);
|
|
|
|
if (analogOutPinToTimer(pin) == TIMER1A) {
|
|
// connect pwm to pin on timer 1, channel A
|
|
sbi(TCCR1A, COM1A1);
|
|
// set pwm duty
|
|
OCR1A = val;
|
|
} else if (analogOutPinToTimer(pin) == TIMER1B) {
|
|
// connect pwm to pin on timer 1, channel B
|
|
sbi(TCCR1A, COM1B1);
|
|
// set pwm duty
|
|
OCR1B = val;
|
|
#if defined(__AVR_ATmega168__)
|
|
} else if (analogOutPinToTimer(pin) == TIMER2A) {
|
|
// connect pwm to pin on timer 2, channel A
|
|
sbi(TCCR2A, COM2A1);
|
|
// set pwm duty
|
|
OCR2A = val;
|
|
} else if (analogOutPinToTimer(pin) == TIMER2B) {
|
|
// connect pwm to pin on timer 2, channel B
|
|
sbi(TCCR2A, COM2B1);
|
|
// set pwm duty
|
|
OCR2B = val;
|
|
#else
|
|
} else if (analogOutPinToTimer(pin) == TIMER2) {
|
|
// connect pwm to pin on timer 2, channel B
|
|
sbi(TCCR2, COM21);
|
|
// set pwm duty
|
|
OCR2 = val;
|
|
#endif
|
|
} else if (val < 128)
|
|
digitalWrite(pin, LOW);
|
|
else
|
|
digitalWrite(pin, HIGH);
|
|
}
|
|
|
|
void beginSerial(long baud)
|
|
{
|
|
uartInit();
|
|
uartSetBaudRate(baud);
|
|
}
|
|
|
|
void serialWrite(unsigned char c)
|
|
{
|
|
uartSendByte(c);
|
|
}
|
|
|
|
int serialAvailable()
|
|
{
|
|
return uartGetRxBuffer()->datalength;
|
|
}
|
|
|
|
int serialRead()
|
|
{
|
|
return uartGetByte();
|
|
}
|
|
|
|
void printMode(int mode)
|
|
{
|
|
// do nothing, we only support serial printing, not lcd.
|
|
}
|
|
|
|
void printByte(unsigned char c)
|
|
{
|
|
serialWrite(c);
|
|
}
|
|
|
|
void printNewline()
|
|
{
|
|
printByte('\n');
|
|
}
|
|
|
|
void printString(char *s)
|
|
{
|
|
while (*s)
|
|
printByte(*s++);
|
|
}
|
|
|
|
void printIntegerInBase(unsigned long n, unsigned long base)
|
|
{
|
|
unsigned char buf[8 * sizeof(long)]; // Assumes 8-bit chars.
|
|
unsigned long i = 0;
|
|
|
|
if (n == 0) {
|
|
printByte('0');
|
|
return;
|
|
}
|
|
|
|
while (n > 0) {
|
|
buf[i++] = n % base;
|
|
n /= base;
|
|
}
|
|
|
|
for (; i > 0; i--)
|
|
printByte(buf[i - 1] < 10 ?
|
|
'0' + buf[i - 1] :
|
|
'A' + buf[i - 1] - 10);
|
|
}
|
|
|
|
void printInteger(long n)
|
|
{
|
|
if (n < 0) {
|
|
printByte('-');
|
|
n = -n;
|
|
}
|
|
|
|
printIntegerInBase(n, 10);
|
|
}
|
|
|
|
void printHex(unsigned long n)
|
|
{
|
|
printIntegerInBase(n, 16);
|
|
}
|
|
|
|
void printOctal(unsigned long n)
|
|
{
|
|
printIntegerInBase(n, 8);
|
|
}
|
|
|
|
void printBinary(unsigned long n)
|
|
{
|
|
printIntegerInBase(n, 2);
|
|
}
|
|
|
|
/* Including print() adds approximately 1500 bytes to the binary size,
|
|
* so we replace it with the smaller and less-confusing printString(),
|
|
* printInteger(), etc.
|
|
void print(const char *format, ...)
|
|
{
|
|
char buf[256];
|
|
va_list ap;
|
|
|
|
va_start(ap, format);
|
|
vsnprintf(buf, 256, format, ap);
|
|
va_end(ap);
|
|
|
|
printString(buf);
|
|
}
|
|
*/
|
|
|
|
SIGNAL(SIG_OVERFLOW0)
|
|
{
|
|
timer0_overflow_count++;
|
|
}
|
|
|
|
unsigned long millis()
|
|
{
|
|
// timer 0 increments every 8 cycles, and overflows when it reaches 256.
|
|
// we calculate the total number of clock cycles, then divide by the
|
|
// number of clock cycles per millisecond.
|
|
//return timer0_overflow_count * 8UL * 256UL / (F_CPU / 1000UL);
|
|
|
|
// calculating the total number of clock cycles overflows an
|
|
// unsigned long, so instead find 1/128th the number of clock cycles
|
|
// and divide by 1/128th the number of clock cycles per millisecond.
|
|
return timer0_overflow_count * 8UL * 2UL / (F_CPU / 128000UL);
|
|
}
|
|
|
|
void delay(unsigned long ms)
|
|
{
|
|
unsigned long start = millis();
|
|
|
|
while (millis() - start < ms)
|
|
;
|
|
}
|
|
|
|
/* Delay for the given number of microseconds. Assumes a 16 MHz clock.
|
|
* Disables interrupts, which will disrupt the millis() function if used
|
|
* too frequently. */
|
|
void delayMicroseconds(unsigned int us)
|
|
{
|
|
// calling avrlib's delay_us() function with low values (e.g. 1 or
|
|
// 2 microseconds) gives delays longer than desired.
|
|
//delay_us(us);
|
|
|
|
// for a one-microsecond delay, simply return. the overhead
|
|
// of the function call yields a delay of approximately 1 1/8 us.
|
|
if (--us == 0)
|
|
return;
|
|
|
|
// the following loop takes a quarter of a microsecond (4 cycles)
|
|
// per iteration, so execute it four times for each microsecond of
|
|
// delay requested.
|
|
us <<= 2;
|
|
|
|
// account for the time taken in the preceeding commands.
|
|
us -= 2;
|
|
|
|
// disable interrupts, otherwise the timer 0 overflow interrupt that
|
|
// tracks milliseconds will make us delay longer than we want.
|
|
cli();
|
|
|
|
// busy wait
|
|
__asm__ __volatile__ (
|
|
"1: sbiw %0,1" "\n\t" // 2 cycles
|
|
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
|
|
);
|
|
|
|
// reenable interrupts.
|
|
sei();
|
|
}
|
|
|
|
/*
|
|
unsigned long pulseIn(int pin, int state)
|
|
{
|
|
unsigned long width = 0;
|
|
|
|
while (digitalRead(pin) == !state)
|
|
;
|
|
|
|
while (digitalRead(pin) != !state)
|
|
width++;
|
|
|
|
return width * 17 / 2; // convert to microseconds
|
|
}
|
|
*/
|
|
|
|
/* Measures the length (in microseconds) of a pulse on the pin; state is HIGH
|
|
* or LOW, the type of pulse to measure. Works on pulses from 10 microseconds
|
|
* to 3 minutes in length, but must be called at least N microseconds before
|
|
* the start of the pulse. */
|
|
unsigned long pulseIn(int pin, int state)
|
|
{
|
|
// cache the port and bit of the pin in order to speed up the
|
|
// pulse width measuring loop and achieve finer resolution. calling
|
|
// digitalRead() instead yields much coarser resolution.
|
|
int r = port_to_input[digitalPinToPort(pin)];
|
|
int bit = digitalPinToBit(pin);
|
|
int mask = 1 << bit;
|
|
unsigned long width = 0;
|
|
|
|
// compute the desired bit pattern for the port reading (e.g. set or
|
|
// clear the bit corresponding to the pin being read). the !!state
|
|
// ensures that the function treats any non-zero value of state as HIGH.
|
|
state = (!!state) << bit;
|
|
|
|
// wait for the pulse to start
|
|
while ((_SFR_IO8(r) & mask) != state)
|
|
;
|
|
|
|
// wait for the pulse to stop
|
|
while ((_SFR_IO8(r) & mask) == state)
|
|
width++;
|
|
|
|
// convert the reading to microseconds. the slower the CPU speed, the
|
|
// proportionally fewer iterations of the loop will occur (e.g. a
|
|
// 4 MHz clock will yield a width that is one-fourth of that read with
|
|
// a 16 MHz clock). each loop was empirically determined to take
|
|
// approximately 23/20 of a microsecond with a 16 MHz clock.
|
|
return width * (16000000UL / F_CPU) * 20 / 23;
|
|
}
|
|
|
|
int main(void)
|
|
{
|
|
// this needs to be called before setup() or some functions won't
|
|
// work there
|
|
sei();
|
|
|
|
// timer 0 is used for millis() and delay()
|
|
timer0_overflow_count = 0;
|
|
// set timer 0 prescale factor to 8
|
|
#if defined(__AVR_ATmega168__)
|
|
sbi(TCCR0B, CS01);
|
|
#else
|
|
sbi(TCCR0, CS01);
|
|
#endif
|
|
// enable timer 0 overflow interrupt
|
|
#if defined(__AVR_ATmega168__)
|
|
sbi(TIMSK0, TOIE0);
|
|
#else
|
|
sbi(TIMSK, TOIE0);
|
|
#endif
|
|
|
|
// timers 1 and 2 are used for phase-correct hardware pwm
|
|
// this is better for motors as it ensures an even waveform
|
|
// note, however, that fast pwm mode can achieve a frequency of up
|
|
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
|
|
|
|
// set timer 1 prescale factor to 64
|
|
sbi(TCCR1B, CS11);
|
|
sbi(TCCR1B, CS10);
|
|
// put timer 1 in 8-bit phase correct pwm mode
|
|
sbi(TCCR1A, WGM10);
|
|
|
|
// set timer 2 prescale factor to 64
|
|
#if defined(__AVR_ATmega168__)
|
|
sbi(TCCR2B, CS22);
|
|
#else
|
|
sbi(TCCR2, CS22);
|
|
#endif
|
|
// configure timer 2 for phase correct pwm (8-bit)
|
|
#if defined(__AVR_ATmega168__)
|
|
sbi(TCCR2A, WGM20);
|
|
#else
|
|
sbi(TCCR2, WGM20);
|
|
#endif
|
|
|
|
// set a2d reference to AVCC (5 volts)
|
|
cbi(ADMUX, REFS1);
|
|
sbi(ADMUX, REFS0);
|
|
|
|
// set a2d prescale factor to 128
|
|
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
|
|
// XXX: this will not work properly for other clock speeds, and
|
|
// this code should use F_CPU to determine the prescale factor.
|
|
sbi(ADCSRA, ADPS2);
|
|
sbi(ADCSRA, ADPS1);
|
|
sbi(ADCSRA, ADPS0);
|
|
|
|
// enable a2d conversions
|
|
sbi(ADCSRA, ADEN);
|
|
|
|
setup();
|
|
|
|
for (;;)
|
|
loop();
|
|
|
|
return 0;
|
|
}
|