1
0
mirror of https://github.com/arduino/Arduino.git synced 2025-01-22 11:52:14 +01:00
Arduino/hardware/cores/arduino/wiring_analog.c

180 lines
5.3 KiB
C
Executable File

/*
wiring_analog.c - analog input and output
Part of Arduino - http://www.arduino.cc/
Copyright (c) 2005-2006 David A. Mellis
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General
Public License along with this library; if not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA
$Id: wiring.c 248 2007-02-03 15:36:30Z mellis $
*/
#include "wiring_private.h"
#include "pins_arduino.h"
uint8_t analog_reference = DEFAULT;
void analogReference(uint8_t mode)
{
// can't actually set the register here because the default setting
// will connect AVCC and the AREF pin, which would cause a short if
// there's something connected to AREF.
analog_reference = mode;
}
int analogRead(uint8_t pin)
{
uint8_t low, high;
// set the analog reference (high two bits of ADMUX) and select the
// channel (low 4 bits). this also sets ADLAR (left-adjust result)
// to 0 (the default).
ADMUX = (analog_reference << 6) | (pin & 0x07);
#if defined(__AVR_ATmega1280__)
// the MUX5 bit of ADCSRB selects whether we're reading from channels
// 0 to 7 (MUX5 low) or 8 to 15 (MUX5 high).
ADCSRB = (ADCSRB & ~(1 << MUX5)) | (((pin >> 3) & 0x01) << MUX5);
#endif
// without a delay, we seem to read from the wrong channel
//delay(1);
// start the conversion
sbi(ADCSRA, ADSC);
// ADSC is cleared when the conversion finishes
while (bit_is_set(ADCSRA, ADSC));
// we have to read ADCL first; doing so locks both ADCL
// and ADCH until ADCH is read. reading ADCL second would
// cause the results of each conversion to be discarded,
// as ADCL and ADCH would be locked when it completed.
low = ADCL;
high = ADCH;
// combine the two bytes
return (high << 8) | low;
}
// Right now, PWM output only works on the pins with
// hardware support. These are defined in the appropriate
// pins_*.c file. For the rest of the pins, we default
// to digital output.
void analogWrite(uint8_t pin, int val)
{
// We need to make sure the PWM output is enabled for those pins
// that support it, as we turn it off when digitally reading or
// writing with them. Also, make sure the pin is in output mode
// for consistenty with Wiring, which doesn't require a pinMode
// call for the analog output pins.
pinMode(pin, OUTPUT);
if (digitalPinToTimer(pin) == TIMER1A) {
// connect pwm to pin on timer 1, channel A
sbi(TCCR1A, COM1A1);
// set pwm duty
OCR1A = val;
} else if (digitalPinToTimer(pin) == TIMER1B) {
// connect pwm to pin on timer 1, channel B
sbi(TCCR1A, COM1B1);
// set pwm duty
OCR1B = val;
#if defined(__AVR_ATmega8__)
} else if (digitalPinToTimer(pin) == TIMER2) {
// connect pwm to pin on timer 2, channel B
sbi(TCCR2, COM21);
// set pwm duty
OCR2 = val;
#else
} else if (digitalPinToTimer(pin) == TIMER0A) {
if (val == 0) {
digitalWrite(pin, LOW);
} else {
// connect pwm to pin on timer 0, channel A
sbi(TCCR0A, COM0A1);
// set pwm duty
OCR0A = val;
}
} else if (digitalPinToTimer(pin) == TIMER0B) {
if (val == 0) {
digitalWrite(pin, LOW);
} else {
// connect pwm to pin on timer 0, channel B
sbi(TCCR0A, COM0B1);
// set pwm duty
OCR0B = val;
}
} else if (digitalPinToTimer(pin) == TIMER2A) {
// connect pwm to pin on timer 2, channel A
sbi(TCCR2A, COM2A1);
// set pwm duty
OCR2A = val;
} else if (digitalPinToTimer(pin) == TIMER2B) {
// connect pwm to pin on timer 2, channel B
sbi(TCCR2A, COM2B1);
// set pwm duty
OCR2B = val;
#endif
#if defined(__AVR_ATmega1280__)
// XXX: need to handle other timers here
} else if (digitalPinToTimer(pin) == TIMER3A) {
// connect pwm to pin on timer 3, channel A
sbi(TCCR3A, COM3A1);
// set pwm duty
OCR3A = val;
} else if (digitalPinToTimer(pin) == TIMER3B) {
// connect pwm to pin on timer 3, channel B
sbi(TCCR3A, COM3B1);
// set pwm duty
OCR3B = val;
} else if (digitalPinToTimer(pin) == TIMER3C) {
// connect pwm to pin on timer 3, channel C
sbi(TCCR3A, COM3C1);
// set pwm duty
OCR3C = val;
} else if (digitalPinToTimer(pin) == TIMER4A) {
// connect pwm to pin on timer 4, channel A
sbi(TCCR4A, COM4A1);
// set pwm duty
OCR4A = val;
} else if (digitalPinToTimer(pin) == TIMER4B) {
// connect pwm to pin on timer 4, channel B
sbi(TCCR4A, COM4B1);
// set pwm duty
OCR4B = val;
} else if (digitalPinToTimer(pin) == TIMER4C) {
// connect pwm to pin on timer 4, channel C
sbi(TCCR4A, COM4C1);
// set pwm duty
OCR4C = val;
} else if (digitalPinToTimer(pin) == TIMER5A) {
// connect pwm to pin on timer 5, channel A
sbi(TCCR5A, COM5A1);
// set pwm duty
OCR5A = val;
} else if (digitalPinToTimer(pin) == TIMER5B) {
// connect pwm to pin on timer 5, channel B
sbi(TCCR5A, COM5B1);
// set pwm duty
OCR5B = val;
#endif
} else if (val < 128)
digitalWrite(pin, LOW);
else
digitalWrite(pin, HIGH);
}