mirror of
https://github.com/arduino/Arduino.git
synced 2024-12-04 15:24:12 +01:00
2ba54d2cbf
- changing random(max) to use stdlib.h random() - not generating .eep files to avoid warning when EEMEM isn't used - removing cast macros (since they are automatically defined in C++) - writing a digital LOW for PWM value of 0 on pins 5 or 6
131 lines
3.9 KiB
C
Executable File
131 lines
3.9 KiB
C
Executable File
/*
|
|
wiring_analog.c - analog input and output
|
|
Part of Arduino - http://www.arduino.cc/
|
|
|
|
Copyright (c) 2005-2006 David A. Mellis
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General
|
|
Public License along with this library; if not, write to the
|
|
Free Software Foundation, Inc., 59 Temple Place, Suite 330,
|
|
Boston, MA 02111-1307 USA
|
|
|
|
$Id: wiring.c 248 2007-02-03 15:36:30Z mellis $
|
|
*/
|
|
|
|
#include "wiring_private.h"
|
|
#include "pins_arduino.h"
|
|
|
|
uint8_t analog_reference = DEFAULT;
|
|
|
|
void analogReference(uint8_t mode)
|
|
{
|
|
// can't actually set the register here because the default setting
|
|
// will connect AVCC and the AREF pin, which would cause a short if
|
|
// there's something connected to AREF.
|
|
analog_reference = mode;
|
|
}
|
|
|
|
int analogRead(uint8_t pin)
|
|
{
|
|
uint8_t low, high, ch = analogInPinToBit(pin);
|
|
|
|
// set the analog reference (high two bits of ADMUX) and select the
|
|
// channel (low 4 bits). this also sets ADLAR (left-adjust result)
|
|
// to 0 (the default).
|
|
ADMUX = (analog_reference << 6) | (pin & 0x0f);
|
|
|
|
// without a delay, we seem to read from the wrong channel
|
|
//delay(1);
|
|
|
|
// start the conversion
|
|
sbi(ADCSRA, ADSC);
|
|
|
|
// ADSC is cleared when the conversion finishes
|
|
while (bit_is_set(ADCSRA, ADSC));
|
|
|
|
// we have to read ADCL first; doing so locks both ADCL
|
|
// and ADCH until ADCH is read. reading ADCL second would
|
|
// cause the results of each conversion to be discarded,
|
|
// as ADCL and ADCH would be locked when it completed.
|
|
low = ADCL;
|
|
high = ADCH;
|
|
|
|
// combine the two bytes
|
|
return (high << 8) | low;
|
|
}
|
|
|
|
// Right now, PWM output only works on the pins with
|
|
// hardware support. These are defined in the appropriate
|
|
// pins_*.c file. For the rest of the pins, we default
|
|
// to digital output.
|
|
void analogWrite(uint8_t pin, int val)
|
|
{
|
|
// We need to make sure the PWM output is enabled for those pins
|
|
// that support it, as we turn it off when digitally reading or
|
|
// writing with them. Also, make sure the pin is in output mode
|
|
// for consistenty with Wiring, which doesn't require a pinMode
|
|
// call for the analog output pins.
|
|
pinMode(pin, OUTPUT);
|
|
|
|
if (digitalPinToTimer(pin) == TIMER1A) {
|
|
// connect pwm to pin on timer 1, channel A
|
|
sbi(TCCR1A, COM1A1);
|
|
// set pwm duty
|
|
OCR1A = val;
|
|
} else if (digitalPinToTimer(pin) == TIMER1B) {
|
|
// connect pwm to pin on timer 1, channel B
|
|
sbi(TCCR1A, COM1B1);
|
|
// set pwm duty
|
|
OCR1B = val;
|
|
#if defined(__AVR_ATmega168__)
|
|
} else if (digitalPinToTimer(pin) == TIMER0A) {
|
|
if (val == 0) {
|
|
digitalWrite(pin, LOW);
|
|
} else {
|
|
// connect pwm to pin on timer 0, channel A
|
|
sbi(TCCR0A, COM0A1);
|
|
// set pwm duty
|
|
OCR0A = val;
|
|
}
|
|
} else if (digitalPinToTimer(pin) == TIMER0B) {
|
|
if (val == 0) {
|
|
digitalWrite(pin, LOW);
|
|
} else {
|
|
// connect pwm to pin on timer 0, channel B
|
|
sbi(TCCR0A, COM0B1);
|
|
// set pwm duty
|
|
OCR0B = val;
|
|
}
|
|
} else if (digitalPinToTimer(pin) == TIMER2A) {
|
|
// connect pwm to pin on timer 2, channel A
|
|
sbi(TCCR2A, COM2A1);
|
|
// set pwm duty
|
|
OCR2A = val;
|
|
} else if (digitalPinToTimer(pin) == TIMER2B) {
|
|
// connect pwm to pin on timer 2, channel B
|
|
sbi(TCCR2A, COM2B1);
|
|
// set pwm duty
|
|
OCR2B = val;
|
|
#else
|
|
} else if (digitalPinToTimer(pin) == TIMER2) {
|
|
// connect pwm to pin on timer 2, channel B
|
|
sbi(TCCR2, COM21);
|
|
// set pwm duty
|
|
OCR2 = val;
|
|
#endif
|
|
} else if (val < 128)
|
|
digitalWrite(pin, LOW);
|
|
else
|
|
digitalWrite(pin, HIGH);
|
|
}
|