mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2025-01-09 20:46:07 +01:00
1073 lines
45 KiB
C++
1073 lines
45 KiB
C++
|
/**
|
||
|
******************************************************************************
|
||
|
*
|
||
|
* @file worldmagmodel.cpp
|
||
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
|
||
|
* @brief Utilities to find the location of openpilot GCS files:
|
||
|
* - Plugins Share directory path
|
||
|
*
|
||
|
* @brief Source file for the World Magnetic Model
|
||
|
* This is a port of code available from the US NOAA.
|
||
|
*
|
||
|
* The hard coded coefficients should be valid until 2015.
|
||
|
*
|
||
|
* Updated coeffs from ..
|
||
|
* http://www.ngdc.noaa.gov/geomag/WMM/wmm_ddownload.shtml
|
||
|
*
|
||
|
* NASA C source code ..
|
||
|
* http://www.ngdc.noaa.gov/geomag/WMM/wmm_wdownload.shtml
|
||
|
*
|
||
|
* Major changes include:
|
||
|
* - No geoid model (altitude must be geodetic WGS-84)
|
||
|
* - Floating point calculation (not double precision)
|
||
|
* - Hard coded coefficients for model
|
||
|
* - Elimination of user interface
|
||
|
* - Elimination of dynamic memory allocation
|
||
|
*
|
||
|
* @see The GNU Public License (GPL) Version 3
|
||
|
*
|
||
|
*****************************************************************************/
|
||
|
/*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 3 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but
|
||
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License along
|
||
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
*/
|
||
|
|
||
|
#include "worldmagmodel.h"
|
||
|
|
||
|
#include <stdint.h>
|
||
|
#include <QDebug>
|
||
|
#include <math.h>
|
||
|
|
||
|
#define RAD2DEG(rad) ((rad) * (180.0 / M_PI))
|
||
|
#define DEG2RAD(deg) ((deg) * (M_PI / 180.0))
|
||
|
|
||
|
// updated coeffs available from http://www.ngdc.noaa.gov/geomag/WMM/wmm_ddownload.shtml
|
||
|
const double CoeffFile[91][6] = {
|
||
|
{0, 0, 0, 0, 0, 0},
|
||
|
{1, 0, -29496.6, 0.0, 11.6, 0.0},
|
||
|
{1, 1, -1586.3, 4944.4, 16.5, -25.9},
|
||
|
{2, 0, -2396.6, 0.0, -12.1, 0.0},
|
||
|
{2, 1, 3026.1, -2707.7, -4.4, -22.5},
|
||
|
{2, 2, 1668.6, -576.1, 1.9, -11.8},
|
||
|
{3, 0, 1340.1, 0.0, 0.4, 0.0},
|
||
|
{3, 1, -2326.2, -160.2, -4.1, 7.3},
|
||
|
{3, 2, 1231.9, 251.9, -2.9, -3.9},
|
||
|
{3, 3, 634.0, -536.6, -7.7, -2.6},
|
||
|
{4, 0, 912.6, 0.0, -1.8, 0.0},
|
||
|
{4, 1, 808.9, 286.4, 2.3, 1.1},
|
||
|
{4, 2, 166.7, -211.2, -8.7, 2.7},
|
||
|
{4, 3, -357.1, 164.3, 4.6, 3.9},
|
||
|
{4, 4, 89.4, -309.1, -2.1, -0.8},
|
||
|
{5, 0, -230.9, 0.0, -1.0, 0.0},
|
||
|
{5, 1, 357.2, 44.6, 0.6, 0.4},
|
||
|
{5, 2, 200.3, 188.9, -1.8, 1.8},
|
||
|
{5, 3, -141.1, -118.2, -1.0, 1.2},
|
||
|
{5, 4, -163.0, 0.0, 0.9, 4.0},
|
||
|
{5, 5, -7.8, 100.9, 1.0, -0.6},
|
||
|
{6, 0, 72.8, 0.0, -0.2, 0.0},
|
||
|
{6, 1, 68.6, -20.8, -0.2, -0.2},
|
||
|
{6, 2, 76.0, 44.1, -0.1, -2.1},
|
||
|
{6, 3, -141.4, 61.5, 2.0, -0.4},
|
||
|
{6, 4, -22.8, -66.3, -1.7, -0.6},
|
||
|
{6, 5, 13.2, 3.1, -0.3, 0.5},
|
||
|
{6, 6, -77.9, 55.0, 1.7, 0.9},
|
||
|
{7, 0, 80.5, 0.0, 0.1, 0.0},
|
||
|
{7, 1, -75.1, -57.9, -0.1, 0.7},
|
||
|
{7, 2, -4.7, -21.1, -0.6, 0.3},
|
||
|
{7, 3, 45.3, 6.5, 1.3, -0.1},
|
||
|
{7, 4, 13.9, 24.9, 0.4, -0.1},
|
||
|
{7, 5, 10.4, 7.0, 0.3, -0.8},
|
||
|
{7, 6, 1.7, -27.7, -0.7, -0.3},
|
||
|
{7, 7, 4.9, -3.3, 0.6, 0.3},
|
||
|
{8, 0, 24.4, 0.0, -0.1, 0.0},
|
||
|
{8, 1, 8.1, 11.0, 0.1, -0.1},
|
||
|
{8, 2, -14.5, -20.0, -0.6, 0.2},
|
||
|
{8, 3, -5.6, 11.9, 0.2, 0.4},
|
||
|
{8, 4, -19.3, -17.4, -0.2, 0.4},
|
||
|
{8, 5, 11.5, 16.7, 0.3, 0.1},
|
||
|
{8, 6, 10.9, 7.0, 0.3, -0.1},
|
||
|
{8, 7, -14.1, -10.8, -0.6, 0.4},
|
||
|
{8, 8, -3.7, 1.7, 0.2, 0.3},
|
||
|
{9, 0, 5.4, 0.0, 0.0, 0.0},
|
||
|
{9, 1, 9.4, -20.5, -0.1, 0.0},
|
||
|
{9, 2, 3.4, 11.5, 0.0, -0.2},
|
||
|
{9, 3, -5.2, 12.8, 0.3, 0.0},
|
||
|
{9, 4, 3.1, -7.2, -0.4, -0.1},
|
||
|
{9, 5, -12.4, -7.4, -0.3, 0.1},
|
||
|
{9, 6, -0.7, 8.0, 0.1, 0.0},
|
||
|
{9, 7, 8.4, 2.1, -0.1, -0.2},
|
||
|
{9, 8, -8.5, -6.1, -0.4, 0.3},
|
||
|
{9, 9, -10.1, 7.0, -0.2, 0.2},
|
||
|
{10, 0, -2.0, 0.0, 0.0, 0.0},
|
||
|
{10, 1, -6.3, 2.8, 0.0, 0.1},
|
||
|
{10, 2, 0.9, -0.1, -0.1, -0.1},
|
||
|
{10, 3, -1.1, 4.7, 0.2, 0.0},
|
||
|
{10, 4, -0.2, 4.4, 0.0, -0.1},
|
||
|
{10, 5, 2.5, -7.2, -0.1, -0.1},
|
||
|
{10, 6, -0.3, -1.0, -0.2, 0.0},
|
||
|
{10, 7, 2.2, -3.9, 0.0, -0.1},
|
||
|
{10, 8, 3.1, -2.0, -0.1, -0.2},
|
||
|
{10, 9, -1.0, -2.0, -0.2, 0.0},
|
||
|
{10, 10, -2.8, -8.3, -0.2, -0.1},
|
||
|
{11, 0, 3.0, 0.0, 0.0, 0.0},
|
||
|
{11, 1, -1.5, 0.2, 0.0, 0.0},
|
||
|
{11, 2, -2.1, 1.7, 0.0, 0.1},
|
||
|
{11, 3, 1.7, -0.6, 0.1, 0.0},
|
||
|
{11, 4, -0.5, -1.8, 0.0, 0.1},
|
||
|
{11, 5, 0.5, 0.9, 0.0, 0.0},
|
||
|
{11, 6, -0.8, -0.4, 0.0, 0.1},
|
||
|
{11, 7, 0.4, -2.5, 0.0, 0.0},
|
||
|
{11, 8, 1.8, -1.3, 0.0, -0.1},
|
||
|
{11, 9, 0.1, -2.1, 0.0, -0.1},
|
||
|
{11, 10, 0.7, -1.9, -0.1, 0.0},
|
||
|
{11, 11, 3.8, -1.8, 0.0, -0.1},
|
||
|
{12, 0, -2.2, 0.0, 0.0, 0.0},
|
||
|
{12, 1, -0.2, -0.9, 0.0, 0.0},
|
||
|
{12, 2, 0.3, 0.3, 0.1, 0.0},
|
||
|
{12, 3, 1.0, 2.1, 0.1, 0.0},
|
||
|
{12, 4, -0.6, -2.5, -0.1, 0.0},
|
||
|
{12, 5, 0.9, 0.5, 0.0, 0.0},
|
||
|
{12, 6, -0.1, 0.6, 0.0, 0.1},
|
||
|
{12, 7, 0.5, 0.0, 0.0, 0.0},
|
||
|
{12, 8, -0.4, 0.1, 0.0, 0.0},
|
||
|
{12, 9, -0.4, 0.3, 0.0, 0.0},
|
||
|
{12, 10, 0.2, -0.9, 0.0, 0.0},
|
||
|
{12, 11, -0.8, -0.2, -0.1, 0.0},
|
||
|
{12, 12, 0.0, 0.9, 0.1, 0.0}
|
||
|
};
|
||
|
|
||
|
namespace Utils {
|
||
|
|
||
|
WorldMagModel::WorldMagModel()
|
||
|
{
|
||
|
Initialize();
|
||
|
}
|
||
|
|
||
|
int WorldMagModel::GetMagVector(double Lat, double Lon, double AltEllipsoid, int Month, int Day, int Year, double *X, double *Y, double *Z)
|
||
|
{
|
||
|
// ***********
|
||
|
// range check supplied params
|
||
|
|
||
|
if (Lat < -90) return -1; // error
|
||
|
if (Lat > 90) return -2; // error
|
||
|
|
||
|
if (Lon < -180) return -3; // error
|
||
|
if (Lon > 180) return -4; // error
|
||
|
|
||
|
// ***********
|
||
|
|
||
|
WMMtype_CoordSpherical CoordSpherical;
|
||
|
WMMtype_CoordGeodetic CoordGeodetic;
|
||
|
WMMtype_GeoMagneticElements GeoMagneticElements;
|
||
|
|
||
|
Initialize();
|
||
|
|
||
|
CoordGeodetic.lambda = Lon;
|
||
|
CoordGeodetic.phi = Lat;
|
||
|
CoordGeodetic.HeightAboveEllipsoid = AltEllipsoid;
|
||
|
|
||
|
// Convert from geodeitic to Spherical Equations: 17-18, WMM Technical report
|
||
|
GeodeticToSpherical(&CoordGeodetic, &CoordSpherical);
|
||
|
|
||
|
if (DateToYear(Month, Day, Year) < 0)
|
||
|
return -5; // error
|
||
|
|
||
|
// Compute the geoMagnetic field elements and their time change
|
||
|
if (Geomag(&CoordSpherical, &CoordGeodetic, &GeoMagneticElements) < 0)
|
||
|
return -6; // error
|
||
|
|
||
|
// set the returned values
|
||
|
*X = GeoMagneticElements.X;
|
||
|
*Y = GeoMagneticElements.Y;
|
||
|
*Z = GeoMagneticElements.Z;
|
||
|
|
||
|
// ***********
|
||
|
|
||
|
return 0; // OK
|
||
|
}
|
||
|
|
||
|
void WorldMagModel::Initialize()
|
||
|
{ // Sets default values for WMM subroutines.
|
||
|
// UPDATES : Ellip and MagneticModel
|
||
|
|
||
|
// Sets WGS-84 parameters
|
||
|
Ellip.a = 6378.137; // semi-major axis of the ellipsoid in km
|
||
|
Ellip.b = 6356.7523142; // semi-minor axis of the ellipsoid in km
|
||
|
Ellip.fla = 1 / 298.257223563; // flattening
|
||
|
Ellip.eps = sqrt(1 - (Ellip.b * Ellip.b) / (Ellip.a * Ellip.a)); // first eccentricity
|
||
|
Ellip.epssq = (Ellip.eps * Ellip.eps); // first eccentricity squared
|
||
|
Ellip.re = 6371.2; // Earth's radius in km
|
||
|
|
||
|
// Sets Magnetic Model parameters
|
||
|
MagneticModel.nMax = WMM_MAX_MODEL_DEGREES;
|
||
|
MagneticModel.nMaxSecVar = WMM_MAX_SECULAR_VARIATION_MODEL_DEGREES;
|
||
|
MagneticModel.SecularVariationUsed = 0;
|
||
|
|
||
|
// Really, Really needs to be read from a file - out of date in 2015 at latest
|
||
|
MagneticModel.EditionDate = 5.7863328170559505e-307;
|
||
|
MagneticModel.epoch = 2010.0;
|
||
|
sprintf(MagneticModel.ModelName, "WMM-2010");
|
||
|
}
|
||
|
|
||
|
|
||
|
int WorldMagModel::Geomag(WMMtype_CoordSpherical *CoordSpherical, WMMtype_CoordGeodetic *CoordGeodetic, WMMtype_GeoMagneticElements *GeoMagneticElements)
|
||
|
/*
|
||
|
The main subroutine that calls a sequence of WMM sub-functions to calculate the magnetic field elements for a single point.
|
||
|
The function expects the model coefficients and point coordinates as input and returns the magnetic field elements and
|
||
|
their rate of change. Though, this subroutine can be called successively to calculate a time series, profile or grid
|
||
|
of magnetic field, these are better achieved by the subroutine WMM_Grid.
|
||
|
|
||
|
INPUT: Ellip
|
||
|
CoordSpherical
|
||
|
CoordGeodetic
|
||
|
TimedMagneticModel
|
||
|
|
||
|
OUTPUT : GeoMagneticElements
|
||
|
*/
|
||
|
{
|
||
|
WMMtype_MagneticResults MagneticResultsSph;
|
||
|
WMMtype_MagneticResults MagneticResultsGeo;
|
||
|
WMMtype_MagneticResults MagneticResultsSphVar;
|
||
|
WMMtype_MagneticResults MagneticResultsGeoVar;
|
||
|
WMMtype_LegendreFunction LegendreFunction;
|
||
|
WMMtype_SphericalHarmonicVariables SphVariables;
|
||
|
|
||
|
// Compute Spherical Harmonic variables
|
||
|
ComputeSphericalHarmonicVariables(CoordSpherical, MagneticModel.nMax, &SphVariables);
|
||
|
|
||
|
// Compute ALF
|
||
|
if (AssociatedLegendreFunction(CoordSpherical, MagneticModel.nMax, &LegendreFunction) < 0)
|
||
|
return -1; // error
|
||
|
|
||
|
// Accumulate the spherical harmonic coefficients
|
||
|
Summation(&LegendreFunction, &SphVariables, CoordSpherical, &MagneticResultsSph);
|
||
|
|
||
|
// Sum the Secular Variation Coefficients
|
||
|
SecVarSummation(&LegendreFunction, &SphVariables, CoordSpherical, &MagneticResultsSphVar);
|
||
|
|
||
|
// Map the computed Magnetic fields to Geodeitic coordinates
|
||
|
RotateMagneticVector(CoordSpherical, CoordGeodetic, &MagneticResultsSph, &MagneticResultsGeo);
|
||
|
|
||
|
// Map the secular variation field components to Geodetic coordinates
|
||
|
RotateMagneticVector(CoordSpherical, CoordGeodetic, &MagneticResultsSphVar, &MagneticResultsGeoVar);
|
||
|
|
||
|
// Calculate the Geomagnetic elements, Equation 18 , WMM Technical report
|
||
|
CalculateGeoMagneticElements(&MagneticResultsGeo, GeoMagneticElements);
|
||
|
|
||
|
// Calculate the secular variation of each of the Geomagnetic elements
|
||
|
CalculateSecularVariation(&MagneticResultsGeoVar, GeoMagneticElements);
|
||
|
|
||
|
return 0; // OK
|
||
|
}
|
||
|
|
||
|
void WorldMagModel::ComputeSphericalHarmonicVariables(WMMtype_CoordSpherical *CoordSpherical, int nMax, WMMtype_SphericalHarmonicVariables *SphVariables)
|
||
|
{
|
||
|
/* Computes Spherical variables
|
||
|
Variables computed are (a/r)^(n+2), cos_m(lamda) and sin_m(lambda) for spherical harmonic
|
||
|
summations. (Equations 10-12 in the WMM Technical Report)
|
||
|
INPUT Ellip data structure with the following elements
|
||
|
float a; semi-major axis of the ellipsoid
|
||
|
float b; semi-minor axis of the ellipsoid
|
||
|
float fla; flattening
|
||
|
float epssq; first eccentricity squared
|
||
|
float eps; first eccentricity
|
||
|
float re; mean radius of ellipsoid
|
||
|
CoordSpherical A data structure with the following elements
|
||
|
float lambda; ( longitude)
|
||
|
float phig; ( geocentric latitude )
|
||
|
float r; ( distance from the center of the ellipsoid)
|
||
|
nMax integer ( Maxumum degree of spherical harmonic secular model)\
|
||
|
|
||
|
OUTPUT SphVariables Pointer to the data structure with the following elements
|
||
|
float RelativeRadiusPower[WMM_MAX_MODEL_DEGREES+1]; [earth_reference_radius_km sph. radius ]^n
|
||
|
float cos_mlambda[WMM_MAX_MODEL_DEGREES+1]; cp(m) - cosine of (mspherical coord. longitude)
|
||
|
float sin_mlambda[WMM_MAX_MODEL_DEGREES+1]; sp(m) - sine of (mspherical coord. longitude)
|
||
|
*/
|
||
|
double cos_lambda = cos(DEG2RAD(CoordSpherical->lambda));
|
||
|
double sin_lambda = sin(DEG2RAD(CoordSpherical->lambda));
|
||
|
|
||
|
/* for n = 0 ... model_order, compute (Radius of Earth / Spherica radius r)^(n+2)
|
||
|
for n 1..nMax-1 (this is much faster than calling pow MAX_N+1 times). */
|
||
|
|
||
|
SphVariables->RelativeRadiusPower[0] = (Ellip.re / CoordSpherical->r) * (Ellip.re / CoordSpherical->r);
|
||
|
for (int n = 1; n <= nMax; n++)
|
||
|
SphVariables->RelativeRadiusPower[n] = SphVariables->RelativeRadiusPower[n - 1] * (Ellip.re / CoordSpherical->r);
|
||
|
|
||
|
/*
|
||
|
Compute cos(m*lambda), sin(m*lambda) for m = 0 ... nMax
|
||
|
cos(a + b) = cos(a)*cos(b) - sin(a)*sin(b)
|
||
|
sin(a + b) = cos(a)*sin(b) + sin(a)*cos(b)
|
||
|
*/
|
||
|
SphVariables->cos_mlambda[0] = 1.0;
|
||
|
SphVariables->sin_mlambda[0] = 0.0;
|
||
|
|
||
|
SphVariables->cos_mlambda[1] = cos_lambda;
|
||
|
SphVariables->sin_mlambda[1] = sin_lambda;
|
||
|
for (int m = 2; m <= nMax; m++)
|
||
|
{
|
||
|
SphVariables->cos_mlambda[m] = SphVariables->cos_mlambda[m - 1] * cos_lambda - SphVariables->sin_mlambda[m - 1] * sin_lambda;
|
||
|
SphVariables->sin_mlambda[m] = SphVariables->cos_mlambda[m - 1] * sin_lambda + SphVariables->sin_mlambda[m - 1] * cos_lambda;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int WorldMagModel::AssociatedLegendreFunction(WMMtype_CoordSpherical *CoordSpherical, int nMax, WMMtype_LegendreFunction *LegendreFunction)
|
||
|
{
|
||
|
/* Computes all of the Schmidt-semi normalized associated Legendre
|
||
|
functions up to degree nMax. If nMax <= 16, function WMM_PcupLow is used.
|
||
|
Otherwise WMM_PcupHigh is called.
|
||
|
INPUT CoordSpherical A data structure with the following elements
|
||
|
float lambda; ( longitude)
|
||
|
float phig; ( geocentric latitude )
|
||
|
float r; ( distance from the center of the ellipsoid)
|
||
|
nMax integer ( Maxumum degree of spherical harmonic secular model)
|
||
|
LegendreFunction Pointer to data structure with the following elements
|
||
|
float *Pcup; ( pointer to store Legendre Function )
|
||
|
float *dPcup; ( pointer to store Derivative of Lagendre function )
|
||
|
|
||
|
OUTPUT LegendreFunction Calculated Legendre variables in the data structure
|
||
|
*/
|
||
|
|
||
|
double sin_phi = sin(DEG2RAD(CoordSpherical->phig)); // sin (geocentric latitude)
|
||
|
|
||
|
if (nMax <= 16 || (1 - fabs(sin_phi)) < 1.0e-10) /* If nMax is less tha 16 or at the poles */
|
||
|
PcupLow(LegendreFunction->Pcup, LegendreFunction->dPcup, sin_phi, nMax);
|
||
|
else
|
||
|
{
|
||
|
if (PcupHigh(LegendreFunction->Pcup, LegendreFunction->dPcup, sin_phi, nMax) < 0)
|
||
|
return -1; // error
|
||
|
}
|
||
|
|
||
|
return 0; // OK
|
||
|
}
|
||
|
|
||
|
void WorldMagModel::Summation( WMMtype_LegendreFunction *LegendreFunction,
|
||
|
WMMtype_SphericalHarmonicVariables *SphVariables,
|
||
|
WMMtype_CoordSpherical *CoordSpherical,
|
||
|
WMMtype_MagneticResults *MagneticResults)
|
||
|
{
|
||
|
/* Computes Geomagnetic Field Elements X, Y and Z in Spherical coordinate system using spherical harmonic summation.
|
||
|
|
||
|
The vector Magnetic field is given by -grad V, where V is Geomagnetic scalar potential
|
||
|
The gradient in spherical coordinates is given by:
|
||
|
|
||
|
dV ^ 1 dV ^ 1 dV ^
|
||
|
grad V = -- r + - -- t + -------- -- p
|
||
|
dr r dt r sin(t) dp
|
||
|
|
||
|
INPUT : LegendreFunction
|
||
|
MagneticModel
|
||
|
SphVariables
|
||
|
CoordSpherical
|
||
|
OUTPUT : MagneticResults
|
||
|
|
||
|
Manoj Nair, June, 2009 Manoj.C.Nair@Noaa.Gov
|
||
|
*/
|
||
|
|
||
|
MagneticResults->Bz = 0.0;
|
||
|
MagneticResults->By = 0.0;
|
||
|
MagneticResults->Bx = 0.0;
|
||
|
|
||
|
for (int n = 1; n <= MagneticModel.nMax; n++)
|
||
|
{
|
||
|
for (int m = 0; m <= n; m++)
|
||
|
{
|
||
|
int index = (n * (n + 1) / 2 + m);
|
||
|
|
||
|
/* nMax (n+2) n m m m
|
||
|
Bz = -SUM (a/r) (n+1) SUM [g cos(m p) + h sin(m p)] P (sin(phi))
|
||
|
n=1 m=0 n n n */
|
||
|
/* Equation 12 in the WMM Technical report. Derivative with respect to radius.*/
|
||
|
MagneticResults->Bz -=
|
||
|
SphVariables->RelativeRadiusPower[n] *
|
||
|
(get_main_field_coeff_g(index) *
|
||
|
SphVariables->cos_mlambda[m] + get_main_field_coeff_h(index) * SphVariables->sin_mlambda[m])
|
||
|
* (double)(n + 1) * LegendreFunction->Pcup[index];
|
||
|
|
||
|
/* 1 nMax (n+2) n m m m
|
||
|
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
||
|
n=1 m=0 n n n */
|
||
|
/* Equation 11 in the WMM Technical report. Derivative with respect to longitude, divided by radius. */
|
||
|
MagneticResults->By +=
|
||
|
SphVariables->RelativeRadiusPower[n] *
|
||
|
(get_main_field_coeff_g(index) *
|
||
|
SphVariables->sin_mlambda[m] - get_main_field_coeff_h(index) * SphVariables->cos_mlambda[m])
|
||
|
* (double)(m) * LegendreFunction->Pcup[index];
|
||
|
/* nMax (n+2) n m m m
|
||
|
Bx = - SUM (a/r) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
||
|
n=1 m=0 n n n */
|
||
|
/* Equation 10 in the WMM Technical report. Derivative with respect to latitude, divided by radius. */
|
||
|
|
||
|
MagneticResults->Bx -=
|
||
|
SphVariables->RelativeRadiusPower[n] *
|
||
|
(get_main_field_coeff_g(index) *
|
||
|
SphVariables->cos_mlambda[m] + get_main_field_coeff_h(index) * SphVariables->sin_mlambda[m])
|
||
|
* LegendreFunction->dPcup[index];
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double cos_phi = cos(DEG2RAD(CoordSpherical->phig));
|
||
|
if (fabs(cos_phi) > 1.0e-10)
|
||
|
{
|
||
|
MagneticResults->By = MagneticResults->By / cos_phi;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Special calculation for component - By - at Geographic poles.
|
||
|
* If the user wants to avoid using this function, please make sure that
|
||
|
* the latitude is not exactly +/-90. An option is to make use the function
|
||
|
* WMM_CheckGeographicPoles.
|
||
|
*/
|
||
|
SummationSpecial(SphVariables, CoordSpherical, MagneticResults);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void WorldMagModel::SecVarSummation( WMMtype_LegendreFunction *LegendreFunction,
|
||
|
WMMtype_SphericalHarmonicVariables *SphVariables,
|
||
|
WMMtype_CoordSpherical *CoordSpherical,
|
||
|
WMMtype_MagneticResults *MagneticResults)
|
||
|
{
|
||
|
/*This Function sums the secular variation coefficients to get the secular variation of the Magnetic vector.
|
||
|
INPUT : LegendreFunction
|
||
|
MagneticModel
|
||
|
SphVariables
|
||
|
CoordSpherical
|
||
|
OUTPUT : MagneticResults
|
||
|
*/
|
||
|
|
||
|
MagneticModel.SecularVariationUsed = true;
|
||
|
|
||
|
MagneticResults->Bz = 0.0;
|
||
|
MagneticResults->By = 0.0;
|
||
|
MagneticResults->Bx = 0.0;
|
||
|
|
||
|
for (int n = 1; n <= MagneticModel.nMaxSecVar; n++)
|
||
|
{
|
||
|
for (int m = 0; m <= n; m++)
|
||
|
{
|
||
|
int index = (n * (n + 1) / 2 + m);
|
||
|
|
||
|
/* nMax (n+2) n m m m
|
||
|
Bz = -SUM (a/r) (n+1) SUM [g cos(m p) + h sin(m p)] P (sin(phi))
|
||
|
n=1 m=0 n n n */
|
||
|
/* Derivative with respect to radius.*/
|
||
|
MagneticResults->Bz -=
|
||
|
SphVariables->RelativeRadiusPower[n] *
|
||
|
(get_secular_var_coeff_g(index) *
|
||
|
SphVariables->cos_mlambda[m] + get_secular_var_coeff_h(index) * SphVariables->sin_mlambda[m])
|
||
|
* (double)(n + 1) * LegendreFunction->Pcup[index];
|
||
|
|
||
|
/* 1 nMax (n+2) n m m m
|
||
|
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
||
|
n=1 m=0 n n n */
|
||
|
/* Derivative with respect to longitude, divided by radius. */
|
||
|
MagneticResults->By +=
|
||
|
SphVariables->RelativeRadiusPower[n] *
|
||
|
(get_secular_var_coeff_g(index) *
|
||
|
SphVariables->sin_mlambda[m] - get_secular_var_coeff_h(index) * SphVariables->cos_mlambda[m])
|
||
|
* (double)(m) * LegendreFunction->Pcup[index];
|
||
|
/* nMax (n+2) n m m m
|
||
|
Bx = - SUM (a/r) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
||
|
n=1 m=0 n n n */
|
||
|
/* Derivative with respect to latitude, divided by radius. */
|
||
|
|
||
|
MagneticResults->Bx -=
|
||
|
SphVariables->RelativeRadiusPower[n] *
|
||
|
(get_secular_var_coeff_g(index) *
|
||
|
SphVariables->cos_mlambda[m] + get_secular_var_coeff_h(index) * SphVariables->sin_mlambda[m])
|
||
|
* LegendreFunction->dPcup[index];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double cos_phi = cos(DEG2RAD(CoordSpherical->phig));
|
||
|
if (fabs(cos_phi) > 1.0e-10)
|
||
|
{
|
||
|
MagneticResults->By = MagneticResults->By / cos_phi;
|
||
|
}
|
||
|
else
|
||
|
{ /* Special calculation for component By at Geographic poles */
|
||
|
SecVarSummationSpecial(SphVariables, CoordSpherical, MagneticResults);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void WorldMagModel::RotateMagneticVector( WMMtype_CoordSpherical *CoordSpherical,
|
||
|
WMMtype_CoordGeodetic *CoordGeodetic,
|
||
|
WMMtype_MagneticResults *MagneticResultsSph,
|
||
|
WMMtype_MagneticResults *MagneticResultsGeo)
|
||
|
{
|
||
|
/* Rotate the Magnetic Vectors to Geodetic Coordinates
|
||
|
Manoj Nair, June, 2009 Manoj.C.Nair@Noaa.Gov
|
||
|
Equation 16, WMM Technical report
|
||
|
|
||
|
INPUT : CoordSpherical : Data structure WMMtype_CoordSpherical with the following elements
|
||
|
float lambda; ( longitude)
|
||
|
float phig; ( geocentric latitude )
|
||
|
float r; ( distance from the center of the ellipsoid)
|
||
|
|
||
|
CoordGeodetic : Data structure WMMtype_CoordGeodetic with the following elements
|
||
|
float lambda; (longitude)
|
||
|
float phi; ( geodetic latitude)
|
||
|
float HeightAboveEllipsoid; (height above the ellipsoid (HaE) )
|
||
|
float HeightAboveGeoid;(height above the Geoid )
|
||
|
|
||
|
MagneticResultsSph : Data structure WMMtype_MagneticResults with the following elements
|
||
|
float Bx; North
|
||
|
float By; East
|
||
|
float Bz; Down
|
||
|
|
||
|
OUTPUT: MagneticResultsGeo Pointer to the data structure WMMtype_MagneticResults, with the following elements
|
||
|
float Bx; North
|
||
|
float By; East
|
||
|
float Bz; Down
|
||
|
*/
|
||
|
|
||
|
/* Difference between the spherical and Geodetic latitudes */
|
||
|
double Psi = DEG2RAD(CoordSpherical->phig - CoordGeodetic->phi);
|
||
|
|
||
|
/* Rotate spherical field components to the Geodeitic system */
|
||
|
MagneticResultsGeo->Bz = MagneticResultsSph->Bx * sin(Psi) + MagneticResultsSph->Bz * cos(Psi);
|
||
|
MagneticResultsGeo->Bx = MagneticResultsSph->Bx * cos(Psi) - MagneticResultsSph->Bz * sin(Psi);
|
||
|
MagneticResultsGeo->By = MagneticResultsSph->By;
|
||
|
}
|
||
|
|
||
|
void WorldMagModel::CalculateGeoMagneticElements(WMMtype_MagneticResults *MagneticResultsGeo, WMMtype_GeoMagneticElements *GeoMagneticElements)
|
||
|
{
|
||
|
/* Calculate all the Geomagnetic elements from X,Y and Z components
|
||
|
INPUT MagneticResultsGeo Pointer to data structure with the following elements
|
||
|
float Bx; ( North )
|
||
|
float By; ( East )
|
||
|
float Bz; ( Down )
|
||
|
OUTPUT GeoMagneticElements Pointer to data structure with the following elements
|
||
|
float Decl; (Angle between the magnetic field vector and true north, positive east)
|
||
|
float Incl; Angle between the magnetic field vector and the horizontal plane, positive down
|
||
|
float F; Magnetic Field Strength
|
||
|
float H; Horizontal Magnetic Field Strength
|
||
|
float X; Northern component of the magnetic field vector
|
||
|
float Y; Eastern component of the magnetic field vector
|
||
|
float Z; Downward component of the magnetic field vector
|
||
|
*/
|
||
|
|
||
|
GeoMagneticElements->X = MagneticResultsGeo->Bx;
|
||
|
GeoMagneticElements->Y = MagneticResultsGeo->By;
|
||
|
GeoMagneticElements->Z = MagneticResultsGeo->Bz;
|
||
|
|
||
|
GeoMagneticElements->H = sqrt(MagneticResultsGeo->Bx * MagneticResultsGeo->Bx + MagneticResultsGeo->By * MagneticResultsGeo->By);
|
||
|
GeoMagneticElements->F = sqrt(GeoMagneticElements->H * GeoMagneticElements->H + MagneticResultsGeo->Bz * MagneticResultsGeo->Bz);
|
||
|
GeoMagneticElements->Decl = RAD2DEG(atan2(GeoMagneticElements->Y, GeoMagneticElements->X));
|
||
|
GeoMagneticElements->Incl = RAD2DEG(atan2(GeoMagneticElements->Z, GeoMagneticElements->H));
|
||
|
}
|
||
|
|
||
|
void WorldMagModel::CalculateSecularVariation(WMMtype_MagneticResults *MagneticVariation, WMMtype_GeoMagneticElements *MagneticElements)
|
||
|
{
|
||
|
/* This takes the Magnetic Variation in x, y, and z and uses it to calculate the secular variation of each of the Geomagnetic elements.
|
||
|
INPUT MagneticVariation Data structure with the following elements
|
||
|
float Bx; ( North )
|
||
|
float By; ( East )
|
||
|
float Bz; ( Down )
|
||
|
OUTPUT MagneticElements Pointer to the data structure with the following elements updated
|
||
|
float Decldot; Yearly Rate of change in declination
|
||
|
float Incldot; Yearly Rate of change in inclination
|
||
|
float Fdot; Yearly rate of change in Magnetic field strength
|
||
|
float Hdot; Yearly rate of change in horizontal field strength
|
||
|
float Xdot; Yearly rate of change in the northern component
|
||
|
float Ydot; Yearly rate of change in the eastern component
|
||
|
float Zdot; Yearly rate of change in the downward component
|
||
|
float GVdot;Yearly rate of chnage in grid variation
|
||
|
*/
|
||
|
|
||
|
MagneticElements->Xdot = MagneticVariation->Bx;
|
||
|
MagneticElements->Ydot = MagneticVariation->By;
|
||
|
MagneticElements->Zdot = MagneticVariation->Bz;
|
||
|
MagneticElements->Hdot = (MagneticElements->X * MagneticElements->Xdot + MagneticElements->Y * MagneticElements->Ydot) / MagneticElements->H; //See equation 19 in the WMM technical report
|
||
|
MagneticElements->Fdot =
|
||
|
(MagneticElements->X * MagneticElements->Xdot +
|
||
|
MagneticElements->Y * MagneticElements->Ydot + MagneticElements->Z * MagneticElements->Zdot) / MagneticElements->F;
|
||
|
MagneticElements->Decldot =
|
||
|
180.0 / M_PI * (MagneticElements->X * MagneticElements->Ydot -
|
||
|
MagneticElements->Y * MagneticElements->Xdot) / (MagneticElements->H * MagneticElements->H);
|
||
|
MagneticElements->Incldot =
|
||
|
180.0 / M_PI * (MagneticElements->H * MagneticElements->Zdot -
|
||
|
MagneticElements->Z * MagneticElements->Hdot) / (MagneticElements->F * MagneticElements->F);
|
||
|
MagneticElements->GVdot = MagneticElements->Decldot;
|
||
|
}
|
||
|
|
||
|
int WorldMagModel::PcupHigh(double *Pcup, double *dPcup, double x, int nMax)
|
||
|
{
|
||
|
/* This function evaluates all of the Schmidt-semi normalized associated Legendre
|
||
|
functions up to degree nMax. The functions are initially scaled by
|
||
|
10^280 sin^m in order to minimize the effects of underflow at large m
|
||
|
near the poles (see Holmes and Featherstone 2002, J. Geodesy, 76, 279-299).
|
||
|
Note that this function performs the same operation as WMM_PcupLow.
|
||
|
However this function also can be used for high degree (large nMax) models.
|
||
|
|
||
|
Calling Parameters:
|
||
|
INPUT
|
||
|
nMax: Maximum spherical harmonic degree to compute.
|
||
|
x: cos(colatitude) or sin(latitude).
|
||
|
|
||
|
OUTPUT
|
||
|
Pcup: A vector of all associated Legendgre polynomials evaluated at
|
||
|
x up to nMax. The lenght must by greater or equal to (nMax+1)*(nMax+2)/2.
|
||
|
dPcup: Derivative of Pcup(x) with respect to latitude
|
||
|
Notes:
|
||
|
|
||
|
Adopted from the FORTRAN code written by Mark Wieczorek September 25, 2005.
|
||
|
|
||
|
Manoj Nair, Nov, 2009 Manoj.C.Nair@Noaa.Gov
|
||
|
|
||
|
Change from the previous version
|
||
|
The prevous version computes the derivatives as
|
||
|
dP(n,m)(x)/dx, where x = sin(latitude) (or cos(colatitude) ).
|
||
|
However, the WMM Geomagnetic routines requires dP(n,m)(x)/dlatitude.
|
||
|
Hence the derivatives are multiplied by sin(latitude).
|
||
|
Removed the options for CS phase and normalizations.
|
||
|
|
||
|
Note: In geomagnetism, the derivatives of ALF are usually found with
|
||
|
respect to the colatitudes. Here the derivatives are found with respect
|
||
|
to the latitude. The difference is a sign reversal for the derivative of
|
||
|
the Associated Legendre Functions.
|
||
|
|
||
|
The derivates can't be computed for latitude = |90| degrees.
|
||
|
*/
|
||
|
double f1[WMM_NUMPCUP];
|
||
|
double f2[WMM_NUMPCUP];
|
||
|
double PreSqr[WMM_NUMPCUP];
|
||
|
int m;
|
||
|
|
||
|
if (fabs(x) == 1.0)
|
||
|
{
|
||
|
// printf("Error in PcupHigh: derivative cannot be calculated at poles\n");
|
||
|
return -2;
|
||
|
}
|
||
|
|
||
|
double scalef = 1.0e-280;
|
||
|
|
||
|
for (int n = 0; n <= 2 * nMax + 1; ++n)
|
||
|
PreSqr[n] = sqrt((double)(n));
|
||
|
|
||
|
int k = 2;
|
||
|
|
||
|
for (int n = 2; n <= nMax; n++)
|
||
|
{
|
||
|
k = k + 1;
|
||
|
f1[k] = (double)(2 * n - 1) / n;
|
||
|
f2[k] = (double)(n - 1) / n;
|
||
|
for (int m = 1; m <= n - 2; m++)
|
||
|
{
|
||
|
k = k + 1;
|
||
|
f1[k] = (double)(2 * n - 1) / PreSqr[n + m] / PreSqr[n - m];
|
||
|
f2[k] = PreSqr[n - m - 1] * PreSqr[n + m - 1] / PreSqr[n + m] / PreSqr[n - m];
|
||
|
}
|
||
|
k = k + 2;
|
||
|
}
|
||
|
|
||
|
/*z = sin (geocentric latitude) */
|
||
|
double z = sqrt((1.0 - x) * (1.0 + x));
|
||
|
double pm2 = 1.0;
|
||
|
Pcup[0] = 1.0;
|
||
|
dPcup[0] = 0.0;
|
||
|
if (nMax == 0)
|
||
|
return -3;
|
||
|
double pm1 = x;
|
||
|
Pcup[1] = pm1;
|
||
|
dPcup[1] = z;
|
||
|
k = 1;
|
||
|
|
||
|
for (int n = 2; n <= nMax; n++)
|
||
|
{
|
||
|
k = k + n;
|
||
|
double plm = f1[k] * x * pm1 - f2[k] * pm2;
|
||
|
Pcup[k] = plm;
|
||
|
dPcup[k] = (double)(n) * (pm1 - x * plm) / z;
|
||
|
pm2 = pm1;
|
||
|
pm1 = plm;
|
||
|
}
|
||
|
|
||
|
double pmm = PreSqr[2] * scalef;
|
||
|
double rescalem = 1.0 / scalef;
|
||
|
int kstart = 0;
|
||
|
|
||
|
for (m = 1; m <= nMax - 1; ++m)
|
||
|
{
|
||
|
rescalem = rescalem * z;
|
||
|
|
||
|
/* Calculate Pcup(m,m) */
|
||
|
kstart = kstart + m + 1;
|
||
|
pmm = pmm * PreSqr[2 * m + 1] / PreSqr[2 * m];
|
||
|
Pcup[kstart] = pmm * rescalem / PreSqr[2 * m + 1];
|
||
|
dPcup[kstart] = -((double)(m) * x * Pcup[kstart] / z);
|
||
|
pm2 = pmm / PreSqr[2 * m + 1];
|
||
|
/* Calculate Pcup(m+1,m) */
|
||
|
k = kstart + m + 1;
|
||
|
pm1 = x * PreSqr[2 * m + 1] * pm2;
|
||
|
Pcup[k] = pm1 * rescalem;
|
||
|
dPcup[k] = ((pm2 * rescalem) * PreSqr[2 * m + 1] - x * (double)(m + 1) * Pcup[k]) / z;
|
||
|
/* Calculate Pcup(n,m) */
|
||
|
for (int n = m + 2; n <= nMax; ++n)
|
||
|
{
|
||
|
k = k + n;
|
||
|
double plm = x * f1[k] * pm1 - f2[k] * pm2;
|
||
|
Pcup[k] = plm * rescalem;
|
||
|
dPcup[k] = (PreSqr[n + m] * PreSqr[n - m] * (pm1 * rescalem) - (double)(n) * x * Pcup[k]) / z;
|
||
|
pm2 = pm1;
|
||
|
pm1 = plm;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Calculate Pcup(nMax,nMax) */
|
||
|
rescalem = rescalem * z;
|
||
|
kstart = kstart + m + 1;
|
||
|
pmm = pmm / PreSqr[2 * nMax];
|
||
|
Pcup[kstart] = pmm * rescalem;
|
||
|
dPcup[kstart] = -(double)(nMax) * x * Pcup[kstart] / z;
|
||
|
|
||
|
// *********
|
||
|
|
||
|
return 0; // OK
|
||
|
}
|
||
|
|
||
|
void WorldMagModel::PcupLow(double *Pcup, double *dPcup, double x, int nMax)
|
||
|
{
|
||
|
/* This function evaluates all of the Schmidt-semi normalized associated Legendre functions up to degree nMax.
|
||
|
|
||
|
Calling Parameters:
|
||
|
INPUT
|
||
|
nMax: Maximum spherical harmonic degree to compute.
|
||
|
x: cos(colatitude) or sin(latitude).
|
||
|
|
||
|
OUTPUT
|
||
|
Pcup: A vector of all associated Legendgre polynomials evaluated at
|
||
|
x up to nMax.
|
||
|
dPcup: Derivative of Pcup(x) with respect to latitude
|
||
|
|
||
|
Notes: Overflow may occur if nMax > 20 , especially for high-latitudes.
|
||
|
Use WMM_PcupHigh for large nMax.
|
||
|
|
||
|
Writted by Manoj Nair, June, 2009 . Manoj.C.Nair@Noaa.Gov.
|
||
|
|
||
|
Note: In geomagnetism, the derivatives of ALF are usually found with
|
||
|
respect to the colatitudes. Here the derivatives are found with respect
|
||
|
to the latitude. The difference is a sign reversal for the derivative of
|
||
|
the Associated Legendre Functions.
|
||
|
*/
|
||
|
|
||
|
double schmidtQuasiNorm[WMM_NUMPCUP];
|
||
|
|
||
|
Pcup[0] = 1.0;
|
||
|
dPcup[0] = 0.0;
|
||
|
|
||
|
/*sin (geocentric latitude) - sin_phi */
|
||
|
double z = sqrt((1.0 - x) * (1.0 + x));
|
||
|
|
||
|
/* First, Compute the Gauss-normalized associated Legendre functions */
|
||
|
for (int n = 1; n <= nMax; n++)
|
||
|
{
|
||
|
for (int m = 0; m <= n; m++)
|
||
|
{
|
||
|
int index = (n * (n + 1) / 2 + m);
|
||
|
if (n == m)
|
||
|
{
|
||
|
int index1 = (n - 1) * n / 2 + m - 1;
|
||
|
Pcup[index] = z * Pcup[index1];
|
||
|
dPcup[index] = z * dPcup[index1] + x * Pcup[index1];
|
||
|
}
|
||
|
else
|
||
|
if (n == 1 && m == 0)
|
||
|
{
|
||
|
int index1 = (n - 1) * n / 2 + m;
|
||
|
Pcup[index] = x * Pcup[index1];
|
||
|
dPcup[index] = x * dPcup[index1] - z * Pcup[index1];
|
||
|
}
|
||
|
else
|
||
|
if (n > 1 && n != m)
|
||
|
{
|
||
|
int index1 = (n - 2) * (n - 1) / 2 + m;
|
||
|
int index2 = (n - 1) * n / 2 + m;
|
||
|
if (m > n - 2)
|
||
|
{
|
||
|
Pcup[index] = x * Pcup[index2];
|
||
|
dPcup[index] = x * dPcup[index2] - z * Pcup[index2];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
double k = (double)(((n - 1) * (n - 1)) - (m * m)) / (double)((2 * n - 1) * (2 * n - 3));
|
||
|
Pcup[index] = x * Pcup[index2] - k * Pcup[index1];
|
||
|
dPcup[index] = x * dPcup[index2] - z * Pcup[index2] - k * dPcup[index1];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*Compute the ration between the Gauss-normalized associated Legendre
|
||
|
functions and the Schmidt quasi-normalized version. This is equivalent to
|
||
|
sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)! */
|
||
|
|
||
|
schmidtQuasiNorm[0] = 1.0;
|
||
|
for (int n = 1; n <= nMax; n++)
|
||
|
{
|
||
|
int index = (n * (n + 1) / 2);
|
||
|
int index1 = (n - 1) * n / 2;
|
||
|
/* for m = 0 */
|
||
|
schmidtQuasiNorm[index] = schmidtQuasiNorm[index1] * (double)(2 * n - 1) / (double)n;
|
||
|
|
||
|
for (int m = 1; m <= n; m++)
|
||
|
{
|
||
|
index = (n * (n + 1) / 2 + m);
|
||
|
index1 = (n * (n + 1) / 2 + m - 1);
|
||
|
schmidtQuasiNorm[index] = schmidtQuasiNorm[index1] * sqrt((double)((n - m + 1) * (m == 1 ? 2 : 1)) / (double)(n + m));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Converts the Gauss-normalized associated Legendre
|
||
|
functions to the Schmidt quasi-normalized version using pre-computed
|
||
|
relation stored in the variable schmidtQuasiNorm */
|
||
|
|
||
|
for (int n = 1; n <= nMax; n++)
|
||
|
{
|
||
|
for (int m = 0; m <= n; m++)
|
||
|
{
|
||
|
int index = (n * (n + 1) / 2 + m);
|
||
|
Pcup[index] = Pcup[index] * schmidtQuasiNorm[index];
|
||
|
dPcup[index] = -dPcup[index] * schmidtQuasiNorm[index];
|
||
|
/* The sign is changed since the new WMM routines use derivative with respect to latitude insted of co-latitude */
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void WorldMagModel::SummationSpecial(WMMtype_SphericalHarmonicVariables *SphVariables, WMMtype_CoordSpherical *CoordSpherical, WMMtype_MagneticResults *MagneticResults)
|
||
|
{
|
||
|
/* Special calculation for the component By at Geographic poles.
|
||
|
Manoj Nair, June, 2009 manoj.c.nair@noaa.gov
|
||
|
INPUT: MagneticModel
|
||
|
SphVariables
|
||
|
CoordSpherical
|
||
|
OUTPUT: MagneticResults
|
||
|
CALLS : none
|
||
|
See Section 1.4, "SINGULARITIES AT THE GEOGRAPHIC POLES", WMM Technical report
|
||
|
*/
|
||
|
|
||
|
double PcupS[WMM_NUMPCUPS];
|
||
|
|
||
|
PcupS[0] = 1;
|
||
|
double schmidtQuasiNorm1 = 1.0;
|
||
|
|
||
|
MagneticResults->By = 0.0;
|
||
|
double sin_phi = sin(DEG2RAD(CoordSpherical->phig));
|
||
|
|
||
|
for (int n = 1; n <= MagneticModel.nMax; n++)
|
||
|
{
|
||
|
/*Compute the ration between the Gauss-normalized associated Legendre
|
||
|
functions and the Schmidt quasi-normalized version. This is equivalent to
|
||
|
sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)! */
|
||
|
|
||
|
int index = (n * (n + 1) / 2 + 1);
|
||
|
double schmidtQuasiNorm2 = schmidtQuasiNorm1 * (double)(2 * n - 1) / (double)n;
|
||
|
double schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt((double)(n * 2) / (double)(n + 1));
|
||
|
schmidtQuasiNorm1 = schmidtQuasiNorm2;
|
||
|
if (n == 1)
|
||
|
{
|
||
|
PcupS[n] = PcupS[n - 1];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
double k = (double)(((n - 1) * (n - 1)) - 1) / (double)((2 * n - 1) * (2 * n - 3));
|
||
|
PcupS[n] = sin_phi * PcupS[n - 1] - k * PcupS[n - 2];
|
||
|
}
|
||
|
|
||
|
/* 1 nMax (n+2) n m m m
|
||
|
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
||
|
n=1 m=0 n n n */
|
||
|
/* Equation 11 in the WMM Technical report. Derivative with respect to longitude, divided by radius. */
|
||
|
|
||
|
MagneticResults->By +=
|
||
|
SphVariables->RelativeRadiusPower[n] *
|
||
|
(get_main_field_coeff_g(index) *
|
||
|
SphVariables->sin_mlambda[1] - get_main_field_coeff_h(index) * SphVariables->cos_mlambda[1])
|
||
|
* PcupS[n] * schmidtQuasiNorm3;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void WorldMagModel::SecVarSummationSpecial(WMMtype_SphericalHarmonicVariables *SphVariables, WMMtype_CoordSpherical *CoordSpherical, WMMtype_MagneticResults *MagneticResults)
|
||
|
{
|
||
|
/*Special calculation for the secular variation summation at the poles.
|
||
|
|
||
|
INPUT: MagneticModel
|
||
|
SphVariables
|
||
|
CoordSpherical
|
||
|
OUTPUT: MagneticResults
|
||
|
*/
|
||
|
|
||
|
double PcupS[WMM_NUMPCUPS];
|
||
|
|
||
|
PcupS[0] = 1;
|
||
|
double schmidtQuasiNorm1 = 1.0;
|
||
|
|
||
|
MagneticResults->By = 0.0;
|
||
|
double sin_phi = sin(DEG2RAD(CoordSpherical->phig));
|
||
|
|
||
|
for (int n = 1; n <= MagneticModel.nMaxSecVar; n++)
|
||
|
{
|
||
|
int index = (n * (n + 1) / 2 + 1);
|
||
|
double schmidtQuasiNorm2 = schmidtQuasiNorm1 * (double)(2 * n - 1) / (double)n;
|
||
|
double schmidtQuasiNorm3 = schmidtQuasiNorm2 * sqrt((double)(n * 2) / (double)(n + 1));
|
||
|
schmidtQuasiNorm1 = schmidtQuasiNorm2;
|
||
|
if (n == 1)
|
||
|
{
|
||
|
PcupS[n] = PcupS[n - 1];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
double k = (double)(((n - 1) * (n - 1)) - 1) / (double)((2 * n - 1) * (2 * n - 3));
|
||
|
PcupS[n] = sin_phi * PcupS[n - 1] - k * PcupS[n - 2];
|
||
|
}
|
||
|
|
||
|
/* 1 nMax (n+2) n m m m
|
||
|
By = SUM (a/r) (m) SUM [g cos(m p) + h sin(m p)] dP (sin(phi))
|
||
|
n=1 m=0 n n n */
|
||
|
/* Derivative with respect to longitude, divided by radius. */
|
||
|
|
||
|
MagneticResults->By +=
|
||
|
SphVariables->RelativeRadiusPower[n] *
|
||
|
(get_secular_var_coeff_g(index) *
|
||
|
SphVariables->sin_mlambda[1] - get_secular_var_coeff_h(index) * SphVariables->cos_mlambda[1])
|
||
|
* PcupS[n] * schmidtQuasiNorm3;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// brief Comput the MainFieldCoeffH accounting for the date
|
||
|
double WorldMagModel::get_main_field_coeff_g(int index)
|
||
|
{
|
||
|
if (index >= WMM_NUMTERMS)
|
||
|
return 0;
|
||
|
|
||
|
double coeff = CoeffFile[index][2];
|
||
|
|
||
|
int a = MagneticModel.nMaxSecVar;
|
||
|
int b = (a * (a + 1) / 2 + a);
|
||
|
for (int n = 1; n <= MagneticModel.nMax; n++)
|
||
|
{
|
||
|
for (int m = 0; m <= n; m++)
|
||
|
{
|
||
|
int sum_index = (n * (n + 1) / 2 + m);
|
||
|
|
||
|
/* Hacky for now, will solve for which conditions need summing analytically */
|
||
|
if (sum_index != index)
|
||
|
continue;
|
||
|
|
||
|
if (index <= b)
|
||
|
coeff += (decimal_date - MagneticModel.epoch) * get_secular_var_coeff_g(sum_index);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return coeff;
|
||
|
}
|
||
|
|
||
|
double WorldMagModel::get_main_field_coeff_h(int index)
|
||
|
{
|
||
|
if (index >= WMM_NUMTERMS)
|
||
|
return 0;
|
||
|
|
||
|
double coeff = CoeffFile[index][3];
|
||
|
|
||
|
int a = MagneticModel.nMaxSecVar;
|
||
|
int b = (a * (a + 1) / 2 + a);
|
||
|
for (int n = 1; n <= MagneticModel.nMax; n++)
|
||
|
{
|
||
|
for (int m = 0; m <= n; m++)
|
||
|
{
|
||
|
int sum_index = (n * (n + 1) / 2 + m);
|
||
|
|
||
|
/* Hacky for now, will solve for which conditions need summing analytically */
|
||
|
if (sum_index != index)
|
||
|
continue;
|
||
|
|
||
|
if (index <= b)
|
||
|
coeff += (decimal_date - MagneticModel.epoch) * get_secular_var_coeff_h(sum_index);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return coeff;
|
||
|
}
|
||
|
|
||
|
double WorldMagModel::get_secular_var_coeff_g(int index)
|
||
|
{
|
||
|
if (index >= WMM_NUMTERMS)
|
||
|
return 0;
|
||
|
|
||
|
return CoeffFile[index][4];
|
||
|
}
|
||
|
|
||
|
double WorldMagModel::get_secular_var_coeff_h(int index)
|
||
|
{
|
||
|
if (index >= WMM_NUMTERMS)
|
||
|
return 0;
|
||
|
|
||
|
return CoeffFile[index][5];
|
||
|
}
|
||
|
|
||
|
int WorldMagModel::DateToYear(int month, int day, int year)
|
||
|
{
|
||
|
// Converts a given calendar date into a decimal year
|
||
|
|
||
|
int temp = 0; // Total number of days
|
||
|
int MonthDays[13] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
|
||
|
int ExtraDay = 0;
|
||
|
|
||
|
if ((year % 4 == 0 && year % 100 != 0) || (year % 400 == 0))
|
||
|
ExtraDay = 1;
|
||
|
MonthDays[2] += ExtraDay;
|
||
|
|
||
|
/******************Validation********************************/
|
||
|
|
||
|
if (month <= 0 || month > 12)
|
||
|
return -1; // error
|
||
|
|
||
|
if (day <= 0 || day > MonthDays[month])
|
||
|
return -2; // error
|
||
|
|
||
|
/****************Calculation of t***************************/
|
||
|
for (int i = 1; i <= month; i++)
|
||
|
temp += MonthDays[i - 1];
|
||
|
temp += day;
|
||
|
|
||
|
decimal_date = year + (temp - 1) / (365.0 + ExtraDay);
|
||
|
|
||
|
return 0; // OK
|
||
|
}
|
||
|
|
||
|
void WorldMagModel::GeodeticToSpherical(WMMtype_CoordGeodetic *CoordGeodetic, WMMtype_CoordSpherical *CoordSpherical)
|
||
|
{
|
||
|
// Converts Geodetic coordinates to Spherical coordinates
|
||
|
// Convert geodetic coordinates, (defined by the WGS-84
|
||
|
// reference ellipsoid), to Earth Centered Earth Fixed Cartesian
|
||
|
// coordinates, and then to spherical coordinates.
|
||
|
|
||
|
double CosLat = cos(DEG2RAD(CoordGeodetic->phi));
|
||
|
double SinLat = sin(DEG2RAD(CoordGeodetic->phi));
|
||
|
|
||
|
// compute the local radius of curvature on the WGS-84 reference ellipsoid
|
||
|
double rc = Ellip.a / sqrt(1.0 - Ellip.epssq * SinLat * SinLat);
|
||
|
|
||
|
// compute ECEF Cartesian coordinates of specified point (for longitude=0)
|
||
|
double xp = (rc + CoordGeodetic->HeightAboveEllipsoid) * CosLat;
|
||
|
double zp = (rc * (1.0 - Ellip.epssq) + CoordGeodetic->HeightAboveEllipsoid) * SinLat;
|
||
|
|
||
|
// compute spherical radius and angle lambda and phi of specified point
|
||
|
CoordSpherical->r = sqrt(xp * xp + zp * zp);
|
||
|
CoordSpherical->phig = RAD2DEG(asin(zp / CoordSpherical->r)); // geocentric latitude
|
||
|
CoordSpherical->lambda = CoordGeodetic->lambda; // longitude
|
||
|
}
|
||
|
|
||
|
}
|