1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-11 19:24:10 +01:00
LibrePilot/flight/AHRS/ahrs.c

903 lines
28 KiB
C
Raw Normal View History

/**
******************************************************************************
* @addtogroup AHRS AHRS
* @brief The AHRS Modules perform
*
* @{
* @addtogroup AHRS_Main
* @brief Main function which does the hardware dependent stuff
* @{
*
*
* @file ahrs.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief INSGPS Test Program
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* OpenPilot Includes */
#include "ahrs.h"
#include "ahrs_adc.h"
#include "ahrs_timer.h"
#include "ahrs_spi_comm.h"
#include "insgps.h"
#include "CoordinateConversions.h"
#define MAX_OVERSAMPLING 50
// For debugging the raw sensors
//#define DUMP_RAW
//#define DUMP_FRIENDLY
//#define DUMP_EKF
#ifdef DUMP_EKF
#define NUMX 13 // number of states, X is the state vector
#define NUMW 9 // number of plant noise inputs, w is disturbance noise vector
#define NUMV 10 // number of measurements, v is the measurement noise vector
#define NUMU 6 // number of deterministic inputs, U is the input vector
extern float F[NUMX][NUMX], G[NUMX][NUMW], H[NUMV][NUMX]; // linearized system matrices
extern float P[NUMX][NUMX], X[NUMX]; // covariance matrix and state vector
extern float Q[NUMW], R[NUMV]; // input noise and measurement noise variances
extern float K[NUMX][NUMV]; // feedback gain matrix
#endif
volatile int8_t ahrs_algorithm;
/**
* @addtogroup AHRS_Structures Local Structres
* @{
*/
//! Contains the data from the mag sensor chip
struct mag_sensor {
uint8_t id[4];
uint8_t updated;
struct {
int16_t axis[3];
} raw;
struct {
float axis[3];
} scaled;
struct {
float bias[3];
float scale[3];
float variance[3];
} calibration;
} mag_data;
//! Contains the data from the accelerometer
struct accel_sensor {
struct {
uint16_t x;
uint16_t y;
uint16_t z;
} raw;
struct {
float x;
float y;
float z;
} filtered;
struct {
float bias[3];
float scale[3];
float variance[3];
} calibration;
} accel_data;
//! Contains the data from the gyro
struct gyro_sensor {
struct {
uint16_t x;
uint16_t y;
uint16_t z;
} raw;
struct {
float x;
float y;
float z;
} filtered;
struct {
float bias[3];
float scale[3];
float variance[3];
} calibration;
struct {
uint16_t xy;
uint16_t z;
} temp;
} gyro_data;
//! Conains the current estimate of the attitude
struct attitude_solution {
struct {
float q1;
float q2;
float q3;
float q4;
} quaternion;
} attitude_data;
//! Contains data from the altitude sensor
struct altitude_sensor {
float altitude;
bool updated;
} altitude_data;
//! Contains data from the GPS (via the SPI link)
struct gps_sensor {
float NED[3];
float heading;
float groundspeed;
float quality;
bool updated;
} gps_data;
/**
* @}
*/
/* Function Prototypes */
void downsample_data(void);
void calibrate_sensors(void);
void reset_values();
void send_calibration(void);
void send_attitude(void);
void send_velocity(void);
void send_position(void);
void homelocation_callback(AhrsObjHandle obj);
void altitude_callback(AhrsObjHandle obj);
void calibration_callback(AhrsObjHandle obj);
void gps_callback(AhrsObjHandle obj);
void settings_callback(AhrsObjHandle obj);
volatile uint32_t last_counter_idle_start = 0;
volatile uint32_t last_counter_idle_end = 0;
volatile uint32_t idle_counts;
volatile uint32_t running_counts;
uint32_t counter_val;
/**
* @addtogroup AHRS_Global_Data AHRS Global Data
* @{
* Public data. Used by both EKF and the sender
*/
//! Filter coefficients used in decimation. Limited order so filter can't run between samples
int16_t fir_coeffs[MAX_OVERSAMPLING];
//! The oversampling rate, ekf is 2k / this
static uint8_t adc_oversampling = 20;
/**
* @}
*/
/**
* @brief AHRS Main function
*/
int main()
{
float gyro[3], accel[3];
float vel[3] = { 0, 0, 0 };
gps_data.quality = -1;
ahrs_algorithm = AHRSSETTINGS_ALGORITHM_SIMPLE;
/* Brings up System using CMSIS functions, enables the LEDs. */
PIOS_SYS_Init();
/* Delay system */
PIOS_DELAY_Init();
/* Communication system */
PIOS_COM_Init();
/* ADC system */
AHRS_ADC_Config(adc_oversampling);
/* Setup the Accelerometer FS (Full-Scale) GPIO */
PIOS_GPIO_Enable(0);
SET_ACCEL_6G;
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
/* Magnetic sensor system */
PIOS_I2C_Init();
PIOS_HMC5843_Init();
// Get 3 ID bytes
strcpy((char *)mag_data.id, "ZZZ");
PIOS_HMC5843_ReadID(mag_data.id);
#endif
/* SPI link to master */
// PIOS_SPI_Init();
// lfsm_init();
reset_values();
INSGPSInit();
ahrs_state = AHRS_IDLE;
AhrsInitComms();
ahrs_state = AHRS_IDLE;
while(!AhrsLinkReady()) {
AhrsPoll();
while(ahrs_state != AHRS_DATA_READY) ;
ahrs_state = AHRS_PROCESSING;
downsample_data();
ahrs_state = AHRS_IDLE;
if((total_conversion_blocks % 10) == 0)
PIOS_LED_Toggle(LED1);
}
/* we didn't connect the callbacks before because we have to wait
for all data to be up to date before doing anything*/
AHRSCalibrationConnectCallback(calibration_callback);
GPSPositionConnectCallback(gps_callback);
BaroAltitudeConnectCallback(altitude_callback);
AHRSSettingsConnectCallback(settings_callback);
HomeLocationConnectCallback(homelocation_callback);
calibration_callback(AHRSCalibrationHandle()); //force an update
/* Use simple averaging filter for now */
for (int i = 0; i < adc_oversampling; i++)
fir_coeffs[i] = 1;
fir_coeffs[adc_oversampling] = adc_oversampling;
#ifdef DUMP_RAW
int previous_conversion;
while (1) {
AhrsPoll();
int result;
uint8_t framing[16] =
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15 };
while (ahrs_state != AHRS_DATA_READY) ;
ahrs_state = AHRS_PROCESSING;
if (total_conversion_blocks != previous_conversion + 1)
PIOS_LED_On(LED1); // not keeping up
else
PIOS_LED_Off(LED1);
previous_conversion = total_conversion_blocks;
downsample_data();
ahrs_state = AHRS_IDLE;;
// Dump raw buffer
result = PIOS_COM_SendBuffer(PIOS_COM_AUX, &framing[0], 16); // framing header
result += PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX,
(uint8_t *) & valid_data_buffer[0],
adc_oversampling *
ADC_CONTINUOUS_CHANNELS *
sizeof(valid_data_buffer[0]));
if (result == 0)
PIOS_LED_Off(LED1);
else {
PIOS_LED_On(LED1);
}
}
#endif
timer_start();
/******************* Main EKF loop ****************************/
while(1) {
AhrsPoll();
AhrsStatusData status;
AhrsStatusGet(&status);
status.CPULoad = ((float)running_counts /
(float)(idle_counts + running_counts)) * 100;
status.IdleTimePerCyle = idle_counts / (TIMER_RATE / 10000);
status.RunningTimePerCyle = running_counts / (TIMER_RATE / 10000);
status.DroppedUpdates = ekf_too_slow;
AhrsStatusSet(&status);
// Alive signal
if ((total_conversion_blocks % 100) == 0)
PIOS_LED_Toggle(LED1);
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
// Get magnetic readings
if (PIOS_HMC5843_NewDataAvailable()) {
PIOS_HMC5843_ReadMag(mag_data.raw.axis);
// Swap the axis here to acount for orientation of mag chip (notice 0 and 1 swapped in raw)
mag_data.scaled.axis[0] = (mag_data.raw.axis[1] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0];
mag_data.scaled.axis[1] = (mag_data.raw.axis[0] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1];
mag_data.scaled.axis[2] = (mag_data.raw.axis[2] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
mag_data.updated = 1;
}
#endif
// Delay for valid data
counter_val = timer_count();
running_counts = counter_val - last_counter_idle_end;
last_counter_idle_start = counter_val;
while (ahrs_state != AHRS_DATA_READY) ;
counter_val = timer_count();
idle_counts = counter_val - last_counter_idle_start;
last_counter_idle_end = counter_val;
ahrs_state = AHRS_PROCESSING;
downsample_data();
/******************** INS ALGORITHM **************************/
if (ahrs_algorithm != AHRSSETTINGS_ALGORITHM_SIMPLE) {
// format data for INS algo
gyro[0] = gyro_data.filtered.x;
gyro[1] = gyro_data.filtered.y;
gyro[2] = gyro_data.filtered.z;
accel[0] = accel_data.filtered.x,
accel[1] = accel_data.filtered.y,
accel[2] = accel_data.filtered.z,
INSStatePrediction(gyro, accel, 1 / (float)EKF_RATE);
send_attitude(); // get message out quickly
send_velocity();
send_position();
INSCovariancePrediction(1 / (float)EKF_RATE);
if (gps_data.updated && ahrs_algorithm == AHRSSETTINGS_ALGORITHM_INSGPS_OUTDOOR) {
// Compute velocity from Heading and groundspeed
vel[0] =
gps_data.groundspeed *
cos(gps_data.heading * M_PI / 180);
vel[1] =
gps_data.groundspeed *
sin(gps_data.heading * M_PI / 180);
INSSetPosVelVar(0.004);
if (mag_data.updated) {
//TOOD: add check for altitude updates
FullCorrection(mag_data.scaled.axis,
gps_data.NED,
vel,
altitude_data.
altitude);
mag_data.updated = 0;
} else {
GpsBaroCorrection(gps_data.NED,
vel,
altitude_data.
altitude);
}
gps_data.updated = false;
} else if (ahrs_algorithm == AHRSSETTINGS_ALGORITHM_INSGPS_OUTDOOR
&& mag_data.updated == 1) {
MagCorrection(mag_data.scaled.axis); // only trust mags if outdoors
mag_data.updated = 0;
} else {
// Indoors, update with zero position and velocity and high covariance
AHRSSettingsData settings;
AHRSSettingsGet(&settings);
INSSetPosVelVar(settings.IndoorVelocityVariance);
vel[0] = 0;
vel[1] = 0;
vel[2] = 0;
if((mag_data.updated == 1) && (ahrs_algorithm == AHRSSETTINGS_ALGORITHM_INSGPS_INDOOR)) {
MagVelBaroCorrection(mag_data.scaled.axis,
vel,altitude_data.altitude); // only trust mags if outdoors
mag_data.updated = 0;
} else {
VelBaroCorrection(vel, altitude_data.altitude);
}
}
attitude_data.quaternion.q1 = Nav.q[0];
attitude_data.quaternion.q2 = Nav.q[1];
attitude_data.quaternion.q3 = Nav.q[2];
attitude_data.quaternion.q4 = Nav.q[3];
} else if (ahrs_algorithm == AHRSSETTINGS_ALGORITHM_SIMPLE) {
float q[4];
float rpy[3];
/***************** SIMPLE ATTITUDE FROM NORTH AND ACCEL ************/
/* Very simple computation of the heading and attitude from accel. */
rpy[2] =
atan2((mag_data.raw.axis[0]),
(-1 * mag_data.raw.axis[1])) * 180 /
M_PI;
rpy[1] =
atan2(accel_data.filtered.x,
accel_data.filtered.z) * 180 / M_PI;
rpy[0] =
atan2(accel_data.filtered.y,
accel_data.filtered.z) * 180 / M_PI;
RPY2Quaternion(rpy, q);
attitude_data.quaternion.q1 = q[0];
attitude_data.quaternion.q2 = q[1];
attitude_data.quaternion.q3 = q[2];
attitude_data.quaternion.q4 = q[3];
send_attitude();
}
ahrs_state = AHRS_IDLE;
#ifdef DUMP_FRIENDLY
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX, "b: %d\r\n",
total_conversion_blocks);
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX,"a: %d %d %d\r\n",
(int16_t) (accel_data.filtered.x * 1000),
(int16_t) (accel_data.filtered.y * 1000),
(int16_t) (accel_data.filtered.z * 1000));
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX, "g: %d %d %d\r\n",
(int16_t) (gyro_data.filtered.x * 1000),
(int16_t) (gyro_data.filtered.y * 1000),
(int16_t) (gyro_data.filtered.z * 1000));
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX,"m: %d %d %d\r\n",
mag_data.raw.axis[0],
mag_data.raw.axis[1],
mag_data.raw.axis[2]);
PIOS_COM_SendFormattedStringNonBlocking(PIOS_COM_AUX,
"q: %d %d %d %d\r\n",
(int16_t) (Nav.q[0] * 1000),
(int16_t) (Nav.q[1] * 1000),
(int16_t) (Nav.q[2] * 1000),
(int16_t) (Nav.q[3] * 1000));
#endif
#ifdef DUMP_EKF
uint8_t framing[16] =
{ 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
0 };
extern float F[NUMX][NUMX], G[NUMX][NUMW], H[NUMV][NUMX]; // linearized system matrices
extern float P[NUMX][NUMX], X[NUMX]; // covariance matrix and state vector
extern float Q[NUMW], R[NUMV]; // input noise and measurement noise variances
extern float K[NUMX][NUMV]; // feedback gain matrix
// Dump raw buffer
int8_t result;
result = PIOS_COM_SendBuffer(PIOS_COM_AUX, &framing[0], 16); // framing header
result += PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX,
(uint8_t *) & mag_data,
sizeof(mag_data));
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX,
(uint8_t *) & gps_data,
sizeof(gps_data));
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX,
(uint8_t *) & accel_data,
sizeof(accel_data));
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX,
(uint8_t *) & gyro_data,
sizeof(gyro_data));
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & Q,
sizeof(float) * NUMX * NUMX);
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & K,
sizeof(float) * NUMX * NUMV);
result +=
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & X,
sizeof(float) * NUMX * NUMX);
if (result == 0)
PIOS_LED_Off(LED1);
else {
PIOS_LED_On(LED1);
}
#endif
}
return 0;
}
/**
* @brief Downsample the analog data
* @return none
*
* Tried to make as much of the filtering fixed point when possible. Need to account
* for offset for each sample before the multiplication if filter not a boxcar. Could
* precompute fixed offset as sum[fir_coeffs[i]] * ACCEL_OFFSET. Puts data into global
* data structures @ref accel_data and @ref gyro_data.
*
* The accel_data values are converted into a coordinate system where X is forwards along
* the fuselage, Y is along right the wing, and Z is down.
*/
void downsample_data()
{
uint16_t i;
// Get the Y data. Third byte in. Convert to m/s
accel_data.filtered.y = 0;
for (i = 0; i < adc_oversampling; i++)
accel_data.filtered.y += valid_data_buffer[0 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
accel_data.filtered.y /= (float) fir_coeffs[adc_oversampling];
accel_data.filtered.y = (accel_data.filtered.y * accel_data.calibration.scale[1]) + accel_data.calibration.bias[1];
// Get the X data which projects forward/backwards. Fifth byte in. Convert to m/s
accel_data.filtered.x = 0;
for (i = 0; i < adc_oversampling; i++)
accel_data.filtered.x += valid_data_buffer[2 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
accel_data.filtered.x /= (float) fir_coeffs[adc_oversampling];
accel_data.filtered.x = (accel_data.filtered.x * accel_data.calibration.scale[0]) + accel_data.calibration.bias[0];
// Get the Z data. Third byte in. Convert to m/s
accel_data.filtered.z = 0;
for (i = 0; i < adc_oversampling; i++)
accel_data.filtered.z += valid_data_buffer[4 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
accel_data.filtered.z /= (float) fir_coeffs[adc_oversampling];
accel_data.filtered.z = (accel_data.filtered.z * accel_data.calibration.scale[2]) + accel_data.calibration.bias[2];
// Get the X gyro data. Seventh byte in. Convert to deg/s.
gyro_data.filtered.x = 0;
for (i = 0; i < adc_oversampling; i++)
gyro_data.filtered.x += valid_data_buffer[1 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
gyro_data.filtered.x /= fir_coeffs[adc_oversampling];
gyro_data.filtered.x = (gyro_data.filtered.x * gyro_data.calibration.scale[0]) + gyro_data.calibration.bias[0];
// Get the Y gyro data. Second byte in. Convert to deg/s.
gyro_data.filtered.y = 0;
for (i = 0; i < adc_oversampling; i++)
gyro_data.filtered.y += valid_data_buffer[3 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
gyro_data.filtered.y /= fir_coeffs[adc_oversampling];
gyro_data.filtered.y = (gyro_data.filtered.y * gyro_data.calibration.scale[1]) + gyro_data.calibration.bias[1];
// Get the Z gyro data. Fifth byte in. Convert to deg/s.
gyro_data.filtered.z = 0;
for (i = 0; i < adc_oversampling; i++)
gyro_data.filtered.z += valid_data_buffer[5 + i * PIOS_ADC_NUM_PINS] * fir_coeffs[i];
gyro_data.filtered.z /= fir_coeffs[adc_oversampling];
gyro_data.filtered.z = (gyro_data.filtered.z * gyro_data.calibration.scale[2]) + gyro_data.calibration.bias[2];
AttitudeRawData raw;
raw.gyros[0] = valid_data_buffer[1];
raw.gyros[1] = valid_data_buffer[3];
raw.gyros[2] = valid_data_buffer[5];
raw.gyrotemp[0] = valid_data_buffer[6];
raw.gyrotemp[1] = valid_data_buffer[7];
raw.gyros_filtered[0] = gyro_data.filtered.x * 180 / M_PI;
raw.gyros_filtered[1] = gyro_data.filtered.y * 180 / M_PI;
raw.gyros_filtered[2] = gyro_data.filtered.z * 180 / M_PI;
raw.accels[0] = valid_data_buffer[2];
raw.accels[1] = valid_data_buffer[0];
raw.accels[2] = valid_data_buffer[4];
raw.accels_filtered[0] = accel_data.filtered.x;
raw.accels_filtered[1] = accel_data.filtered.y;
raw.accels_filtered[2] = accel_data.filtered.z;
raw.magnetometers[0] = mag_data.scaled.axis[0];
raw.magnetometers[1] = mag_data.scaled.axis[1];
raw.magnetometers[2] = mag_data.scaled.axis[2];
AttitudeRawSet(&raw);
}
/**
* @brief Assumes board is not moving computes biases and variances of sensors
* @returns None
*
* All data is stored in global structures. This function should be called from OP when
* aircraft is in stable state and then the data stored to SD card.
*
* After this function the bias for each sensor will be the mean value. This doesn't make
* sense for the z accel so make sure 6 point calibration is also run and those values set
* after these read.
*/
#define NBIAS 100
#define NVAR 500
void calibrate_sensors()
{
int i,j;
float accel_bias[3] = {0, 0, 0};
float gyro_bias[3] = {0, 0, 0};
float mag_bias[3] = {0, 0, 0};
for (i = 0, j = 0; i < NBIAS; i++) {
while (ahrs_state != AHRS_DATA_READY) ;
ahrs_state = AHRS_PROCESSING;
downsample_data();
gyro_bias[0] += gyro_data.filtered.x / NBIAS;
gyro_bias[1] += gyro_data.filtered.y / NBIAS;
gyro_bias[2] += gyro_data.filtered.z / NBIAS;
accel_bias[0] += accel_data.filtered.x / NBIAS;
accel_bias[1] += accel_data.filtered.y / NBIAS;
accel_bias[2] += accel_data.filtered.z / NBIAS;
ahrs_state = AHRS_IDLE;
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
if(PIOS_HMC5843_NewDataAvailable()) {
j ++;
PIOS_HMC5843_ReadMag(mag_data.raw.axis);
mag_data.scaled.axis[0] = (mag_data.raw.axis[0] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0];
mag_data.scaled.axis[1] = (mag_data.raw.axis[1] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1];
mag_data.scaled.axis[2] = (mag_data.raw.axis[2] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
mag_bias[0] += mag_data.scaled.axis[0];
mag_bias[1] += mag_data.scaled.axis[1];
mag_bias[2] += mag_data.scaled.axis[2];
}
#endif
}
mag_bias[0] /= j;
mag_bias[1] /= j;
mag_bias[2] /= j;
gyro_data.calibration.variance[0] = 0;
gyro_data.calibration.variance[1] = 0;
gyro_data.calibration.variance[2] = 0;
mag_data.calibration.variance[0] = 0;
mag_data.calibration.variance[1] = 0;
mag_data.calibration.variance[2] = 0;
accel_data.calibration.variance[0] = 0;
accel_data.calibration.variance[1] = 0;
accel_data.calibration.variance[2] = 0;
for (i = 0, j = 0; j < NVAR; j++) {
while (ahrs_state != AHRS_DATA_READY) ;
ahrs_state = AHRS_PROCESSING;
downsample_data();
gyro_data.calibration.variance[0] += pow(gyro_data.filtered.x-gyro_bias[0],2) / NVAR;
gyro_data.calibration.variance[1] += pow(gyro_data.filtered.y-gyro_bias[1],2) / NVAR;
gyro_data.calibration.variance[2] += pow(gyro_data.filtered.z-gyro_bias[2],2) / NVAR;
accel_data.calibration.variance[0] += pow(accel_data.filtered.x-accel_bias[0],2) / NVAR;
accel_data.calibration.variance[1] += pow(accel_data.filtered.y-accel_bias[1],2) / NVAR;
accel_data.calibration.variance[2] += pow(accel_data.filtered.z-accel_bias[2],2) / NVAR;
ahrs_state = AHRS_IDLE;
#if defined(PIOS_INCLUDE_HMC5843) && defined(PIOS_INCLUDE_I2C)
if(PIOS_HMC5843_NewDataAvailable()) {
j ++;
PIOS_HMC5843_ReadMag(mag_data.raw.axis);
mag_data.scaled.axis[0] = (mag_data.raw.axis[0] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0];
mag_data.scaled.axis[1] = (mag_data.raw.axis[1] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1];
mag_data.scaled.axis[2] = (mag_data.raw.axis[2] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
mag_data.calibration.variance[0] += pow(mag_data.scaled.axis[0]-mag_bias[0],2);
mag_data.calibration.variance[1] += pow(mag_data.scaled.axis[1]-mag_bias[1],2);
mag_data.calibration.variance[2] += pow(mag_data.scaled.axis[2]-mag_bias[2],2);
}
#endif
}
mag_data.calibration.variance[0] /= j;
mag_data.calibration.variance[1] /= j;
mag_data.calibration.variance[2] /= j;
gyro_data.calibration.bias[0] -= gyro_bias[0];
gyro_data.calibration.bias[1] -= gyro_bias[1];
gyro_data.calibration.bias[2] -= gyro_bias[2];
}
/**
* @brief Populate fields with initial values
*/
void reset_values() {
accel_data.calibration.scale[0] = 0.012;
accel_data.calibration.scale[1] = 0.012;
accel_data.calibration.scale[2] = -0.012;
accel_data.calibration.bias[0] = 24;
accel_data.calibration.bias[1] = 24;
accel_data.calibration.bias[2] = -24;
accel_data.calibration.variance[0] = 1e-4;
accel_data.calibration.variance[1] = 1e-4;
accel_data.calibration.variance[2] = 1e-4;
gyro_data.calibration.scale[0] = -0.014;
gyro_data.calibration.scale[1] = 0.014;
gyro_data.calibration.scale[2] = -0.014;
gyro_data.calibration.bias[0] = -24;
gyro_data.calibration.bias[1] = -24;
gyro_data.calibration.bias[2] = -24;
gyro_data.calibration.variance[0] = 1;
gyro_data.calibration.variance[1] = 1;
gyro_data.calibration.variance[2] = 1;
mag_data.calibration.scale[0] = 1;
mag_data.calibration.scale[1] = 1;
mag_data.calibration.scale[2] = 1;
mag_data.calibration.bias[0] = 0;
mag_data.calibration.bias[1] = 0;
mag_data.calibration.bias[2] = 0;
mag_data.calibration.variance[0] = 1;
mag_data.calibration.variance[1] = 1;
mag_data.calibration.variance[2] = 1;
}
void send_attitude(void)
{
AttitudeActualData attitude;
AHRSSettingsData settings;
AHRSSettingsGet(&settings);
attitude.q1 = attitude_data.quaternion.q1;
attitude.q2 = attitude_data.quaternion.q2;
attitude.q3 = attitude_data.quaternion.q3;
attitude.q4 = attitude_data.quaternion.q4;
float rpy[3];
Quaternion2RPY(&attitude_data.quaternion.q1, rpy);
attitude.Roll = rpy[0] + settings.RollBias;
attitude.Pitch = rpy[1] + settings.PitchBias;
attitude.Yaw = rpy[2] + settings.YawBias;
if(attitude.Yaw > 360)
attitude.Yaw -= 360;
AttitudeActualSet(&attitude);
}
void send_velocity(void)
{
VelocityActualData velocityActual;
VelocityActualGet(&velocityActual);
// convert into cm
velocityActual.North = Nav.Vel[0] * 100;
velocityActual.East = Nav.Vel[1] * 100;
velocityActual.Down = Nav.Vel[2] * 100;
VelocityActualSet(&velocityActual);
}
void send_position(void)
{
PositionActualData positionActual;
PositionActualGet(&positionActual);
// convert into cm
positionActual.North = Nav.Pos[0] * 100;
positionActual.East = Nav.Pos[1] * 100;
positionActual.Down = Nav.Pos[2] * 100;
PositionActualSet(&positionActual);
}
void send_calibration(void)
{
AHRSCalibrationData cal;
AHRSCalibrationGet(&cal);
for(int ct=0; ct<3; ct++)
{
cal.accel_var[ct] = accel_data.calibration.variance[ct];
cal.gyro_bias[ct] = gyro_data.calibration.bias[ct];
cal.gyro_var[ct] = gyro_data.calibration.variance[ct];
cal.mag_var[ct] = mag_data.calibration.variance[ct];
}
cal.measure_var = AHRSCALIBRATION_MEASURE_VAR_SET;
AHRSCalibrationSet(&cal);
}
/**
* @brief AHRS calibration callback
*
* Called when the OP board sets the calibration
*/
void calibration_callback(AhrsObjHandle obj)
{
AHRSCalibrationData cal;
AHRSCalibrationGet(&cal);
if(cal.measure_var == AHRSCALIBRATION_MEASURE_VAR_SET){
for(int ct=0; ct<3; ct++)
{
accel_data.calibration.scale[ct] = cal.accel_scale[ct];
accel_data.calibration.bias[ct] = cal.accel_bias[ct];
accel_data.calibration.variance[ct] = cal.accel_var[ct];
gyro_data.calibration.scale[ct] = cal.gyro_scale[ct];
gyro_data.calibration.bias[ct] = cal.gyro_bias[ct];
gyro_data.calibration.variance[ct] = cal.gyro_var[ct];
mag_data.calibration.bias[ct] = cal.mag_bias[ct];
mag_data.calibration.scale[ct] = cal.mag_scale[ct];
mag_data.calibration.variance[ct] = cal.mag_var[ct];
}
// Note: We need the divided by 1000^2 since we scale mags to have a norm of 1000 and they are scaled to
// one in code
float mag_var[3] = {mag_data.calibration.variance[0] / 1000 / 1000,
mag_data.calibration.variance[1] / 1000 / 1000,
mag_data.calibration.variance[2] / 1000 / 1000};
INSSetMagVar(mag_var);
INSSetAccelVar(accel_data.calibration.variance);
INSSetGyroVar(gyro_data.calibration.variance);
}else if(cal.measure_var == AHRSCALIBRATION_MEASURE_VAR_MEASURE){
calibrate_sensors();
send_calibration();
}
}
void gps_callback(AhrsObjHandle obj)
{
GPSPositionData pos;
GPSPositionGet(&pos);
HomeLocationData home;
HomeLocationGet(&home);
if(ahrs_algorithm != AHRSSETTINGS_ALGORITHM_INSGPS_OUTDOOR) {
return;
}
if(pos.Status != GPSPOSITION_STATUS_FIX3D) //FIXME: Will this work? the old ahrs_comms does it differently.
{
gps_data.quality = 0;
gps_data.updated = true;
return;
}
double LLA[3] = {(double) pos.Latitude / 1e7, (double) pos.Longitude / 1e7, (double) (pos.GeoidSeparation + pos.Altitude)};
// convert from cm back to meters
double ECEF[3] = {(double) (home.ECEF[0] / 100), (double) (home.ECEF[1] / 100), (double) (home.ECEF[2] / 100)};
LLA2Base(LLA, ECEF, (float (*)[3]) home.RNE, gps_data.NED);
gps_data.heading = pos.Heading;
gps_data.groundspeed = pos.Groundspeed;
gps_data.quality = 1;
gps_data.updated = true;
}
void altitude_callback(AhrsObjHandle obj)
{
BaroAltitudeData alt;
BaroAltitudeGet(&alt);
altitude_data.altitude = alt.Altitude;
altitude_data.updated = true;
}
void settings_callback(AhrsObjHandle obj)
{
AHRSSettingsData settings;
AHRSSettingsGet(&settings);
ahrs_algorithm = settings.Algorithm;
if(settings.Downsampling != adc_oversampling) {
adc_oversampling = settings.Downsampling;
if(adc_oversampling > MAX_OVERSAMPLING) {
adc_oversampling = MAX_OVERSAMPLING;
settings.Downsampling = MAX_OVERSAMPLING;
AHRSSettingsSet(&settings);
}
AHRS_ADC_Config(adc_oversampling);
/* Use simple averaging filter for now */
for (int i = 0; i < adc_oversampling; i++)
fir_coeffs[i] = 1;
fir_coeffs[adc_oversampling] = adc_oversampling;
}
}
void homelocation_callback(AhrsObjHandle obj)
{
HomeLocationData data;
HomeLocationGet(&data);
float Bmag = sqrt(pow(data.Be[0],2) + pow(data.Be[1],2) + pow(data.Be[2],2));
float Be[3] = {data.Be[0] / Bmag, data.Be[1] / Bmag, data.Be[2] / Bmag};
INSSetMagNorth(Be);
}
/**
* @}
*/