1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-04 12:24:11 +01:00
LibrePilot/flight/libraries/paths.c

227 lines
7.9 KiB
C
Raw Normal View History

/**
******************************************************************************
*
* @file paths.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2012.
* @brief Library path manipulation
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "pios.h"
#include "paths.h"
#include "uavobjectmanager.h" // <--.
#include "pathdesired.h" //<-- needed only for correct ENUM macro usage with path modes (PATHDESIRED_MODE_xxx,
// no direct UAVObject usage allowed in this file
// private functions
static void path_endpoint( float * start_point, float * end_point, float * cur_point, struct path_status * status);
static void path_vector( float * start_point, float * end_point, float * cur_point, struct path_status * status);
static void path_circle(float * start_point, float * end_point, float * cur_point, struct path_status * status, bool clockwise);
/**
* @brief Compute progress along path and deviation from it
* @param[in] start_point Starting point
* @param[in] end_point Ending point
* @param[in] cur_point Current location
* @param[in] mode Path following mode
* @param[out] status Structure containing progress along path and deviation
*/
void path_progress(float * start_point, float * end_point, float * cur_point, struct path_status * status, uint8_t mode)
{
switch(mode) {
case PATHDESIRED_MODE_FLYVECTOR:
case PATHDESIRED_MODE_DRIVEVECTOR:
return path_vector(start_point, end_point, cur_point, status);
break;
case PATHDESIRED_MODE_FLYCIRCLERIGHT:
case PATHDESIRED_MODE_DRIVECIRCLERIGHT:
return path_circle(start_point, end_point, cur_point, status, 1);
break;
case PATHDESIRED_MODE_FLYCIRCLELEFT:
case PATHDESIRED_MODE_DRIVECIRCLELEFT:
return path_circle(start_point, end_point, cur_point, status, 0);
break;
case PATHDESIRED_MODE_FLYENDPOINT:
case PATHDESIRED_MODE_DRIVEENDPOINT:
default:
// use the endpoint as default failsafe if called in unknown modes
return path_endpoint(start_point, end_point, cur_point, status);
break;
}
}
/**
* @brief Compute progress towards endpoint. Deviation equals distance
* @param[in] start_point Starting point
* @param[in] end_point Ending point
* @param[in] cur_point Current location
* @param[out] status Structure containing progress along path and deviation
*/
static void path_endpoint( float * start_point, float * end_point, float * cur_point, struct path_status * status)
{
float path_north, path_east, diff_north, diff_east;
float dist_path, dist_diff;
// we do not correct in this mode
status->correction_direction[0] = status->correction_direction[1] = 0;
// Distance to go
path_north = end_point[0] - start_point[0];
path_east = end_point[1] - start_point[1];
// Current progress location relative to end
diff_north = end_point[0] - cur_point[0];
diff_east = end_point[1] - cur_point[1];
dist_diff = sqrtf( diff_north * diff_north + diff_east * diff_east );
dist_path = sqrtf( path_north * path_north + path_east * path_east );
if (dist_diff < 1e-6f ) {
status->fractional_progress = 1;
status->error = 0;
status->path_direction[0] = status->path_direction[1] = 0;
return;
}
status->fractional_progress = 1 - dist_diff / (1 + dist_path);
status->error = dist_diff;
// Compute direction to travel
status->path_direction[0] = diff_north / dist_diff;
status->path_direction[1] = diff_east / dist_diff;
}
/**
* @brief Compute progress along path and deviation from it
* @param[in] start_point Starting point
* @param[in] end_point Ending point
* @param[in] cur_point Current location
* @param[out] status Structure containing progress along path and deviation
*/
static void path_vector( float * start_point, float * end_point, float * cur_point, struct path_status * status)
{
float path_north, path_east, diff_north, diff_east;
float dist_path;
float dot;
float normal[2];
// Distance to go
path_north = end_point[0] - start_point[0];
path_east = end_point[1] - start_point[1];
// Current progress location relative to start
diff_north = cur_point[0] - start_point[0];
diff_east = cur_point[1] - start_point[1];
dot = path_north * diff_north + path_east * diff_east;
dist_path = sqrtf( path_north * path_north + path_east * path_east );
if (dist_path < 1e-6f){
// if the path is too short, we cannot determine vector direction.
// Fly towards the endpoint to prevent flying away,
// but assume progress=1 either way.
path_endpoint( start_point, end_point, cur_point, status );
status->fractional_progress = 1;
return;
}
// Compute the normal to the path
normal[0] = -path_east / dist_path;
normal[1] = path_north / dist_path;
status->fractional_progress = dot / (dist_path * dist_path);
status->error = normal[0] * diff_north + normal[1] * diff_east;
// Compute direction to correct error
status->correction_direction[0] = (status->error > 0) ? -normal[0] : normal[0];
status->correction_direction[1] = (status->error > 0) ? -normal[1] : normal[1];
// Now just want magnitude of error
status->error = fabs(status->error);
// Compute direction to travel
status->path_direction[0] = path_north / dist_path;
status->path_direction[1] = path_east / dist_path;
}
/**
* @brief Compute progress along circular path and deviation from it
* @param[in] start_point Starting point
* @param[in] end_point Center point
* @param[in] cur_point Current location
* @param[out] status Structure containing progress along path and deviation
*/
static void path_circle(float * start_point, float * end_point, float * cur_point, struct path_status * status, bool clockwise)
{
float radius_north, radius_east, diff_north, diff_east;
float radius,cradius;
float normal[2];
// Radius
radius_north = end_point[0] - start_point[0];
radius_east = end_point[1] - start_point[1];
// Current location relative to center
diff_north = cur_point[0] - end_point[0];
diff_east = cur_point[1] - end_point[1];
radius = sqrtf( radius_north * radius_north + radius_east * radius_east );
cradius = sqrtf( diff_north * diff_north + diff_east * diff_east );
if (cradius < 1e-6f) {
// cradius is zero, just fly somewhere and make sure correction is still a normal
status->fractional_progress = 1;
status->error = radius;
status->correction_direction[0] = 0;
status->correction_direction[1] = 1;
status->path_direction[0] = 1;
status->path_direction[1] = 0;
return;
}
if (clockwise) {
// Compute the normal to the radius clockwise
normal[0] = -diff_east / cradius;
normal[1] = diff_north / cradius;
} else {
// Compute the normal to the radius counter clockwise
normal[0] = diff_east / cradius;
normal[1] = -diff_north / cradius;
}
status->fractional_progress = (clockwise?1:-1) * atan2f( diff_north, diff_east) - atan2f( radius_north, radius_east);
// error is current radius minus wanted radius - positive if too close
status->error = radius - cradius;
// Compute direction to correct error
status->correction_direction[0] = (status->error>0?1:-1) * diff_north / cradius;
status->correction_direction[1] = (status->error>0?1:-1) * diff_east / cradius;
// Compute direction to travel
status->path_direction[0] = normal[0];
status->path_direction[1] = normal[1];
status->error = fabs(status->error);
}