1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2025-01-07 18:46:06 +01:00
LibrePilot/flight/AHRS/ahrs.c

1010 lines
40 KiB
C
Raw Normal View History

/**
******************************************************************************
* @addtogroup AHRS AHRS Control
* @brief The AHRS Modules perform
*
* @{
* @addtogroup AHRS_Main
* @brief Main function which does the hardware dependent stuff
* @{
*
*
* @file ahrs.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief INSGPS Test Program
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* OpenPilot Includes */
#include "ahrs.h"
#include "pios_opahrs_proto.h"
#include "ahrs_fsm.h" /* lfsm_state */
#include "insgps.h"
#include "CoordinateConversions.h"
/**
* State of AHRS EKF
* @arg AHRS_IDLE - waiting for data to be available for filtering
* @arg AHRS_DATA_READY - Data ready for downsampling and processing
* @arg AHRS_PROCESSING - Performing update on the available data
*/
enum {AHRS_IDLE, AHRS_DATA_READY, AHRS_PROCESSING} ahrs_state;
enum algorithms ahrs_algorithm;
/**
* @addtogroup AHRS_ADC_Configuration ADC Configuration
* @{
* Functions to configure ADC and handle interrupts
*/
void AHRS_ADC_Config(int32_t ekf_rate, int32_t adc_oversample);
void AHRS_ADC_DMA_Handler(void);
void DMA1_Channel1_IRQHandler() __attribute__ ((alias ("AHRS_ADC_DMA_Handler")));
/**
* @}
*/
// For debugging the raw sensors
//#define DUMP_RAW
//#define DUMP_FRIENDLY
/**
* @addtogroup AHRS_Definitions
* @{
*/
// Currently analog acquistion hard coded at 480 Hz
#define ADC_OVERSAMPLE 12
#define EKF_RATE ((float) 480 / ADC_OVERSAMPLE)
#define ADC_CONTINUOUS_CHANNELS PIOS_ADC_NUM_PINS
#define CORRECTION_COUNT 4
#define VDD 3.3 /* supply voltage for ADC */
#define FULL_RANGE 4096 /* 12 bit ADC */
#define ACCEL_RANGE 2 /* adjustable by FS input */
#define ACCEL_GRAVITY 9.81 /* m s^-1 */
#define ACCEL_SENSITIVITY ( VDD / 5 )
#define ACCEL_SCALE ( (VDD / FULL_RANGE) / ACCEL_SENSITIVITY * 2 / ACCEL_RANGE * ACCEL_GRAVITY )
#define ACCEL_OFFSET -2048
#define GYRO_SENSITIVITY ( 2.0 / 1000 ) /* 2 mV / (deg s^-1) */
#define RAD_PER_DEGREE ( M_PI / 180 )
#define GYRO_SCALE ( (VDD / FULL_RANGE) / GYRO_SENSITIVITY * RAD_PER_DEGREE )
#define GYRO_OFFSET -1675 /* From data sheet, zero accel output is 1.35 v */
#define MAX_IDLE_COUNT 65e3
/**
* @}
*/
/**
* @addtogroup AHRS_Local Local Variables
* @{
*/
struct mag_sensor {
uint8_t id[4];
struct {
int16_t axis[3];
} raw;
};
struct accel_sensor {
struct {
uint16_t x;
uint16_t y;
uint16_t z;
} raw;
struct {
float x;
float y;
float z;
} filtered;
};
struct gyro_sensor {
struct {
uint16_t x;
uint16_t y;
uint16_t z;
} raw;
struct {
float x;
float y;
float z;
} filtered;
struct {
uint16_t xy;
uint16_t z;
} temp;
};
struct attitude_solution {
struct {
float q1;
float q2;
float q3;
float q4;
} quaternion;
};
struct altitude_sensor {
float altitude;
bool updated;
};
struct gps_sensor {
float NED[3];
float heading;
float groundspeed;
float quality;
bool updated;
};
static struct mag_sensor mag_data;
static struct accel_sensor accel_data;
static struct gyro_sensor gyro_data;
static struct altitude_sensor altitude_data;
static struct gps_sensor gps_data;
static struct attitude_solution attitude_data;
/**
* @}
*/
/* Function Prototypes */
void process_spi_request(void);
void downsample_data(void);
void calibrate_sensors(void);
void converge_insgps();
/**
* @addtogroup AHRS_Global_Data AHRS Global Data
* @{
* Public data. Used by both EKF and the sender
*/
//! Accelerometer variance after filter from OP or calibrate_sensors
float accel_var[3] = {1,1,1};
//! Gyro variance after filter from OP or calibrate sensors
float gyro_var[3] = {1,1,1};
//! Accelerometer scale after calibration
float accel_scale[3] = {ACCEL_SCALE, ACCEL_SCALE, ACCEL_SCALE};
//! Gyro scale after calibration
float gyro_scale[3] = {GYRO_SCALE, GYRO_SCALE, GYRO_SCALE};
//! Magnetometer variance from OP or calibrate sensors
float mag_var[3] = {1,1,1};
//! Accelerometer bias from OP or calibrate sensors
int16_t accel_bias[3] = {ACCEL_OFFSET, ACCEL_OFFSET, ACCEL_OFFSET};
//! Gyroscope bias term from OP or calibrate sensors
int16_t gyro_bias[3] = {0,0,0};
//! Magnetometer bias (direction) from OP or calibrate sensors
int16_t mag_bias[3] = {0,0,0};
//! Filter coefficients used in decimation. Limited order so filter can't run between samples
int16_t fir_coeffs[ADC_OVERSAMPLE+1];
//! Raw buffer that DMA data is dumped into
int16_t raw_data_buffer[ADC_CONTINUOUS_CHANNELS * ADC_OVERSAMPLE * 2]; // Double buffer that DMA just used
//! Swapped by interrupt handler to achieve double buffering
int16_t * valid_data_buffer;
//! Counts how many times the EKF wasn't idle when DMA handler called
uint32_t ekf_too_slow = 0;
//! Total number of data blocks converted
uint32_t total_conversion_blocks = 0;
//! Home location in ECEF coordinates
double BaseECEF[3] = {0, 0, 0};
//! Rotation matrix from LLA to Rne
float Rne[3][3];
//! Indicates the communications are requesting a calibration
uint8_t calibration_pending = FALSE;
//! Counter for tracking the idle level
static uint32_t idle_counter = 0;
/**
* @}
*/
/**
* @brief AHRS Main function
*/
int main()
{
float gyro[3], accel[3], mag[3];
float vel[3] = {0,0,0};
ahrs_algorithm = INSGPS_Algo;
/* Brings up System using CMSIS functions, enables the LEDs. */
PIOS_SYS_Init();
/* Delay system */
PIOS_DELAY_Init();
/* Communication system */
PIOS_COM_Init();
/* ADC system */
AHRS_ADC_Config(EKF_RATE, ADC_OVERSAMPLE);
/* Magnetic sensor system */
PIOS_I2C_Init();
PIOS_HMC5843_Init();
/* Setup the Accelerometer FS (Full-Scale) GPIO */
PIOS_GPIO_Enable(0);
SET_ACCEL_2G;
/* Configure the HMC5843 Sensor */
PIOS_HMC5843_ConfigTypeDef HMC5843_InitStructure;
HMC5843_InitStructure.M_ODR = PIOS_HMC5843_ODR_10;
HMC5843_InitStructure.Meas_Conf = PIOS_HMC5843_MEASCONF_NORMAL;
HMC5843_InitStructure.Gain = PIOS_HMC5843_GAIN_2;
HMC5843_InitStructure.Mode = PIOS_HMC5843_MODE_CONTINUOUS;
PIOS_HMC5843_Config(&HMC5843_InitStructure);
// Get 3 ID bytes
strcpy ((char *)mag_data.id, "ZZZ");
PIOS_HMC5843_ReadID(mag_data.id);
/* SPI link to master */
PIOS_SPI_Init();
lfsm_init();
ahrs_state = AHRS_IDLE;;
/* Use simple averaging filter for now */
for (int i = 0; i < ADC_OVERSAMPLE; i++)
fir_coeffs[i] = 1;
fir_coeffs[ADC_OVERSAMPLE] = ADC_OVERSAMPLE;
if(ahrs_algorithm == INSGPS_Algo) {
// compute a data point and initialize INS
downsample_data();
converge_insgps();
}
#ifdef DUMP_RAW
while(1) {
int result;
uint8_t sync[4] = {7,7,7,7};
while( ahrs_state != AHRS_DATA_READY );
ahrs_state = AHRS_PROCESSING;
downsample_data();
ahrs_state = AHRS_IDLE;;
// Dump raw buffer
result = PIOS_COM_SendBuffer(PIOS_COM_AUX, &sync[0], 4); // dump block number
result += PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) &total_conversion_blocks, sizeof(total_conversion_blocks)); // dump block number
result += PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) &valid_data_buffer[0], ADC_OVERSAMPLE * ADC_CONTINUOUS_CHANNELS * sizeof(valid_data_buffer[0]));
if(result == 0)
PIOS_LED_Off(LED1);
else {
PIOS_LED_On(LED1);
}
}
#endif
/******************* Main EKF loop ****************************/
while (1) {
// Alive signal
PIOS_LED_Toggle(LED1);
if(calibration_pending)
{
calibrate_sensors();
calibration_pending = FALSE;
}
// Get magnetic readings
PIOS_HMC5843_ReadMag(mag_data.raw.axis);
// Delay for valid data
idle_counter = 0;
while( ahrs_state != AHRS_DATA_READY )
idle_counter ++;
ahrs_state = AHRS_PROCESSING;
downsample_data();
/***************** SEND BACK SOME RAW DATA ************************/
// Hacky - grab one sample from buffer to populate this. Need to send back
// all raw data if it's happening
accel_data.raw.x = valid_data_buffer[0];
accel_data.raw.y = valid_data_buffer[2];
accel_data.raw.z = valid_data_buffer[4];
gyro_data.raw.x = valid_data_buffer[1];
gyro_data.raw.y = valid_data_buffer[3];
gyro_data.raw.z = valid_data_buffer[5];
gyro_data.temp.xy = valid_data_buffer[6];
gyro_data.temp.z = valid_data_buffer[7];
if(ahrs_algorithm == INSGPS_Algo)
{
/******************** INS ALGORITHM **************************/
// format data for INS algo
gyro[0] = gyro_data.filtered.x;
gyro[1] = gyro_data.filtered.y;
gyro[2] = gyro_data.filtered.z;
accel[0] = accel_data.filtered.x,
accel[1] = accel_data.filtered.y,
accel[2] = accel_data.filtered.z,
// Note: The magnetometer driver returns registers X,Y,Z from the chip which are
// (left, backward, up). Remapping to (forward, right, down).
mag[0] = -(mag_data.raw.axis[1] - mag_bias[1]);
mag[1] = -(mag_data.raw.axis[0] - mag_bias[0]);
mag[2] = -(mag_data.raw.axis[2] - mag_bias[2]);
INSPrediction(gyro, accel, 1 / (float) EKF_RATE);
if ( gps_data.updated )
{
if(gps_data.quality == 1)
{
// Compute velocity from Heading and groundspeed
vel[0] = gps_data.groundspeed * cos(gps_data.heading * M_PI / 180);
vel[1] = gps_data.groundspeed * sin(gps_data.heading * M_PI / 180);
// Completely unprincipled way to make the position variance
// increase as data quality decreases but keep it bounded
// Variance becomes 40 m^2 and 40 (m/s)^2 when no gps
INSSetPosVelVar(0.004);
FullCorrection(mag, gps_data.NED, vel, altitude_data.altitude);
gps_data.updated = false;
} else if(gps_data.quality == 0) {
// Not indoors but lost lock.
// TODO: Want to clamp coviance matrix to initial conditions on diagonal
MagCorrection(mag);
} else if(gps_data.quality == -1) {
// Indoors, update with zero position and velocity and high covariance
INSSetPosVelVar(10);
vel[0] = 0;
vel[1] = 0;
vel[2] = 0;
VelBaroCorrection(vel,altitude_data.altitude);
}
}
else if(gps_data.quality != -1)
MagCorrection(mag); // only trust mags if outdoors
attitude_data.quaternion.q1 = Nav.q[0];
attitude_data.quaternion.q2 = Nav.q[1];
attitude_data.quaternion.q3 = Nav.q[2];
attitude_data.quaternion.q4 = Nav.q[3];
}
else if( ahrs_algorithm == SIMPLE_Algo )
{
float q[4];
float rpy[3];
/***************** SIMPLE ATTITUDE FROM NORTH AND ACCEL ************/
/* Very simple computation of the heading and attitude from accel. */
rpy[2] = atan2((mag_data.raw.axis[0]), (-1 * mag_data.raw.axis[1])) * 180 / M_PI;
rpy[1] = atan2(accel_data.filtered.x, accel_data.filtered.z) * 180 / M_PI;
rpy[0] = atan2(accel_data.filtered.y,accel_data.filtered.z) * 180 / M_PI;
RPY2Quaternion(rpy,q);
attitude_data.quaternion.q1 = q[0];
attitude_data.quaternion.q2 = q[1];
attitude_data.quaternion.q3 = q[2];
attitude_data.quaternion.q4 = q[3];
}
ahrs_state = AHRS_IDLE;
#ifdef DUMP_FRIENDLY
PIOS_COM_SendFormattedString(PIOS_COM_AUX, "a: %d %d %d\r\n", (int16_t)(accel_data.filtered.x * 100), (int16_t)(accel_data.filtered.y * 100), (int16_t)(accel_data.filtered.z * 100));
PIOS_COM_SendFormattedString(PIOS_COM_AUX, "g: %d %d %d\r\n", (int16_t)(gyro_data.filtered.x * 100), (int16_t)(gyro_data.filtered.y * 100), (int16_t)(gyro_data.filtered.z * 100));
PIOS_COM_SendFormattedString(PIOS_COM_AUX, "m: %d %d %d\r\n", mag_data.raw.axis[0], mag_data.raw.axis[1], mag_data.raw.axis[2]);
PIOS_COM_SendFormattedString(PIOS_COM_AUX, "q: %d %d %d %d\r\n", (int16_t)(Nav.q[0] * 100), (int16_t)(Nav.q[1] * 100), (int16_t)(Nav.q[2] * 100), (int16_t)(Nav.q[3] * 100));
#endif
process_spi_request();
}
return 0;
}
/**
* @brief Downsample the analog data
* @return none
*
* Tried to make as much of the filtering fixed point when possible. Need to account
* for offset for each sample before the multiplication if filter not a boxcar. Could
* precompute fixed offset as sum[fir_coeffs[i]] * ACCEL_OFFSET. Puts data into global
* data structures @ref accel_data and @ref gyro_data.
*
* The accel_data values are converted into a coordinate system where X is forwards along
* the fuselage, Y is along right the wing, and Z is down.
*/
void downsample_data()
{
int16_t temp;
int32_t accel_raw[3], gyro_raw[3];
uint16_t i;
// Get the Y data. Third byte in. Convert to m/s
accel_raw[0] = 0;
for( i = 0; i < ADC_OVERSAMPLE; i++ )
{
temp = ( valid_data_buffer[0 + i * ADC_CONTINUOUS_CHANNELS] + accel_bias[1] ) * fir_coeffs[i];
accel_raw[0] += temp;
}
accel_data.filtered.y = (float) accel_raw[0] / (float) fir_coeffs[ADC_OVERSAMPLE] * accel_scale[1];
// Get the X data which projects forward/backwards. Fifth byte in. Convert to m/s
accel_raw[1] = 0;
for( i = 0; i < ADC_OVERSAMPLE; i++ )
accel_raw[1] += ( valid_data_buffer[2 + i * ADC_CONTINUOUS_CHANNELS] + accel_bias[0] ) * fir_coeffs[i];
accel_data.filtered.x = (float) accel_raw[1] / (float) fir_coeffs[ADC_OVERSAMPLE] * accel_scale[0];
// Get the Z data. Third byte in. Convert to m/s
accel_raw[2] = 0;
for( i = 0; i < ADC_OVERSAMPLE; i++ )
accel_raw[2] += ( valid_data_buffer[4 + i * ADC_CONTINUOUS_CHANNELS] + accel_bias[2] ) * fir_coeffs[i];
accel_data.filtered.z = -(float) accel_raw[2] / (float) fir_coeffs[ADC_OVERSAMPLE] * accel_scale[2];
// Get the X gyro data. Seventh byte in. Convert to deg/s.
gyro_raw[0] = 0;
for( i = 0; i < ADC_OVERSAMPLE; i++ )
gyro_raw[0] += ( valid_data_buffer[1 + i * ADC_CONTINUOUS_CHANNELS] + gyro_bias[0] ) * fir_coeffs[i];
gyro_data.filtered.x = (float) gyro_raw[0] / (float) fir_coeffs[ADC_OVERSAMPLE] * gyro_scale[0];
// Get the Y gyro data. Second byte in. Convert to deg/s.
gyro_raw[1] = 0;
for( i = 0; i < ADC_OVERSAMPLE; i++ )
gyro_raw[1] += ( valid_data_buffer[3 + i * ADC_CONTINUOUS_CHANNELS] + gyro_bias[1] ) * fir_coeffs[i];
gyro_data.filtered.y = (float) gyro_raw[1] / (float) fir_coeffs[ADC_OVERSAMPLE] * gyro_scale[1];
// Get the Z gyro data. Fifth byte in. Convert to deg/s.
gyro_raw[2] = 0;
for( i = 0; i < ADC_OVERSAMPLE; i++ )
gyro_raw[2] += ( valid_data_buffer[5 + i * ADC_CONTINUOUS_CHANNELS] + gyro_bias[2] ) * fir_coeffs[i];
gyro_data.filtered.z = (float) gyro_raw[2] / (float) fir_coeffs[ADC_OVERSAMPLE] * gyro_scale[2];
}
/**
* @brief Assumes board is not moving computes biases and variances of sensors
* @returns None
*
* All data is stored in global structures. This function should be called from OP when
* aircraft is in stable state and then the data stored to SD card.
*/
void calibrate_sensors() {
int i;
int16_t mag_raw[3];
// local biases for noise analysis
float accel_bias[3], gyro_bias[3], mag_bias[3];
// run few loops to get mean
gyro_bias[0] = gyro_bias[1] = gyro_bias[2] = 0;
accel_bias[0] = accel_bias[1] = accel_bias[2] = 0;
mag_bias[0] = mag_bias[1] = mag_bias[2] = 0;
for(i = 0; i < 50; i++) {
while( ahrs_state != AHRS_DATA_READY );
ahrs_state = AHRS_PROCESSING;
downsample_data();
gyro_bias[0] += gyro_data.filtered.x;
gyro_bias[1] += gyro_data.filtered.y;
gyro_bias[2] += gyro_data.filtered.z;
accel_bias[0] += accel_data.filtered.x;
accel_bias[1] += accel_data.filtered.y;
accel_bias[2] += accel_data.filtered.z;
PIOS_HMC5843_ReadMag(mag_raw);
mag_bias[0] += mag_raw[0];
mag_bias[1] += mag_raw[1];
mag_bias[2] += mag_raw[2];
ahrs_state = AHRS_IDLE;
process_spi_request();
}
gyro_bias[0] /= i;
gyro_bias[1] /= i;
gyro_bias[2] /= i;
accel_bias[0] /= i;
accel_bias[1] /= i;
accel_bias[2] /= i;
mag_bias[0] /= i;
mag_bias[1] /= i;
mag_bias[2] /= i;
// more iterations for variance
accel_var[0] = accel_var[1] = accel_var[2] = 0;
gyro_var[0] = gyro_var[1] = gyro_var[2] = 0;
mag_var[0] = mag_var[1] = mag_var[2] = 0;
for(i = 0; i < 500; i++)
{
while( ahrs_state != AHRS_DATA_READY );
ahrs_state = AHRS_PROCESSING;
downsample_data();
gyro_var[0] += (gyro_data.filtered.x - gyro_bias[0]) * (gyro_data.filtered.x - gyro_bias[0]);
gyro_var[1] += (gyro_data.filtered.y - gyro_bias[1]) * (gyro_data.filtered.y - gyro_bias[1]);
gyro_var[2] += (gyro_data.filtered.z - gyro_bias[2]) * (gyro_data.filtered.z - gyro_bias[2]);
accel_var[0] += (accel_data.filtered.x - accel_bias[0]) * (accel_data.filtered.x - accel_bias[0]);
accel_var[1] += (accel_data.filtered.y - accel_bias[1]) * (accel_data.filtered.y - accel_bias[1]);
accel_var[2] += (accel_data.filtered.z - accel_bias[2]) * (accel_data.filtered.z - accel_bias[2]);
PIOS_HMC5843_ReadMag(mag_raw);
mag_var[0] += (mag_raw[0] - mag_bias[0]) * (mag_raw[0] - mag_bias[0]);
mag_var[1] += (mag_raw[1] - mag_bias[1]) * (mag_raw[1] - mag_bias[1]);
mag_var[2] += (mag_raw[2] - mag_bias[2]) * (mag_raw[2] - mag_bias[2]);
ahrs_state = AHRS_IDLE;
process_spi_request();
}
gyro_var[0] /= i;
gyro_var[1] /= i;
gyro_var[2] /= i;
accel_var[0] /= i;
accel_var[1] /= i;
accel_var[2] /= i;
mag_var[0] /= i;
mag_var[1] /= i;
mag_var[2] /= i;
float mag_length2 = mag_bias[0] * mag_bias[0] + mag_bias[1] * mag_bias[1] + mag_bias[2] * mag_bias[2];
mag_var[0] = mag_var[0] / mag_length2;
mag_var[1] = mag_var[1] / mag_length2;
mag_var[2] = mag_var[2] / mag_length2;
if(ahrs_algorithm == INSGPS_Algo)
converge_insgps();
}
/**
* @brief Quickly initialize INS assuming stationary and gravity is down
*
* Currently this is done iteratively but I'm sure it can be directly computed
* when I sit down and work it out
*/
void converge_insgps()
{
float pos[3] = {0,0,0}, vel[3] = {0,0,0}, BaroAlt = 0, mag[3], accel[3], temp_gyro[3] = {0, 0, 0};
INSGPSInit();
INSSetAccelVar(accel_var);
INSSetGyroBias(temp_gyro); // set this to zero - crude bias corrected from downsample_data
INSSetGyroVar(gyro_var);
INSSetMagVar(mag_var);
float temp_var[3] = {10, 10, 10};
INSSetGyroVar(temp_var); // ignore gyro's
accel[0] = accel_data.filtered.x;
accel[1] = accel_data.filtered.y;
accel[2] = accel_data.filtered.z;
// Iteratively constrain pitch and roll while updating yaw to align magnetic axis.
for(int i = 0; i < 50; i++)
{
// This should be done directly but I'm too dumb.
float rpy[3];
Quaternion2RPY(Nav.q, rpy);
rpy[1] = -atan2(accel_data.filtered.x, accel_data.filtered.z) * 180 / M_PI;
rpy[0] = -atan2(accel_data.filtered.y, accel_data.filtered.z) * 180 / M_PI;
// Get magnetic readings
PIOS_HMC5843_ReadMag(mag_data.raw.axis);
mag[0] = -mag_data.raw.axis[1];
mag[1] = -mag_data.raw.axis[0];
mag[2] = -mag_data.raw.axis[2];
RPY2Quaternion(rpy,Nav.q);
INSPrediction( temp_gyro, accel, 1 / (float) EKF_RATE );
FullCorrection(mag,pos,vel,BaroAlt);
process_spi_request(); // again we must keep this hear to prevent SPI connection dropping
}
INSSetGyroVar(gyro_var);
}
/**
* @addtogroup AHRS_SPI SPI Messaging
* @{
* @brief SPI protocol handling requests for data from OP mainboard
*/
/**
* @brief What is this meant to do
* @param[in] port
* @param[in] prefix
* @param[in] data
* @param[in] len
* @return None
*/
void dump_spi_message(uint8_t port, const char * prefix, uint8_t * data, uint32_t len)
{
}
static struct opahrs_msg_v1 link_tx_v1;
static struct opahrs_msg_v1 link_rx_v1;
static struct opahrs_msg_v1 user_rx_v1;
static struct opahrs_msg_v1 user_tx_v1;
void process_spi_request(void)
{
bool msg_to_process = FALSE;
PIOS_IRQ_Disable();
/* Figure out if we're in an interesting stable state */
switch (lfsm_get_state()) {
case LFSM_STATE_USER_BUSY:
msg_to_process = TRUE;
break;
case LFSM_STATE_INACTIVE:
/* Queue up a receive buffer */
lfsm_user_set_rx_v1 (&user_rx_v1);
lfsm_user_done ();
break;
case LFSM_STATE_STOPPED:
/* Get things going */
lfsm_set_link_proto_v1 (&link_tx_v1, &link_rx_v1);
break;
default:
/* Not a stable state */
break;
}
PIOS_IRQ_Enable();
if (!msg_to_process) {
/* Nothing to do */
//PIOS_COM_SendFormattedString(PIOS_COM_AUX, ".");
return;
}
if (user_rx_v1.tail.magic != OPAHRS_MSG_MAGIC_TAIL) {
PIOS_COM_SendFormattedString(PIOS_COM_AUX, "x");
}
/* We've got a message to process */
//dump_spi_message(PIOS_COM_AUX, "+", (uint8_t *)&user_rx_v1, sizeof(user_rx_v1));
switch (user_rx_v1.payload.user.t) {
case OPAHRS_MSG_V1_REQ_SYNC:
opahrs_msg_v1_init_user_tx (&user_tx_v1, OPAHRS_MSG_V1_RSP_SYNC);
user_tx_v1.payload.user.v.rsp.sync.i_am_a_bootloader = FALSE;
user_tx_v1.payload.user.v.rsp.sync.hw_version = 1;
user_tx_v1.payload.user.v.rsp.sync.bl_version = 2;
user_tx_v1.payload.user.v.rsp.sync.fw_version = 3;
user_tx_v1.payload.user.v.rsp.sync.cookie = user_rx_v1.payload.user.v.req.sync.cookie;
dump_spi_message(PIOS_COM_AUX, "S", (uint8_t *)&user_tx_v1, sizeof(user_tx_v1));
lfsm_user_set_tx_v1 (&user_tx_v1);
break;
case OPAHRS_MSG_V1_REQ_RESET:
PIOS_DELAY_WaitmS(user_rx_v1.payload.user.v.req.reset.reset_delay_in_ms);
PIOS_SYS_Reset();
break;
case OPAHRS_MSG_V1_REQ_SERIAL:
opahrs_msg_v1_init_user_tx (&user_tx_v1, OPAHRS_MSG_V1_RSP_SERIAL);
PIOS_SYS_SerialNumberGet((char *)&(user_tx_v1.payload.user.v.rsp.serial.serial_bcd));
dump_spi_message(PIOS_COM_AUX, "I", (uint8_t *)&user_tx_v1, sizeof(user_tx_v1));
lfsm_user_set_tx_v1 (&user_tx_v1);
break;
case OPAHRS_MSG_V1_REQ_ALGORITHM:
opahrs_msg_v1_init_user_tx (&user_tx_v1, OPAHRS_MSG_V1_RSP_ALGORITHM);
ahrs_algorithm = user_rx_v1.payload.user.v.req.algorithm.algorithm;
dump_spi_message(PIOS_COM_AUX, "A", (uint8_t *)&user_rx_v1, sizeof(user_rx_v1));
lfsm_user_set_tx_v1 (&user_tx_v1);
break;
case OPAHRS_MSG_V1_REQ_NORTH:
opahrs_msg_v1_init_user_tx (&user_tx_v1, OPAHRS_MSG_V1_RSP_NORTH);
INSSetMagNorth(user_rx_v1.payload.user.v.req.north.Be);
INSGPSInit(); // TODO: Better reinitialization when North is finally established
dump_spi_message(PIOS_COM_AUX, "N", (uint8_t *)&user_rx_v1, sizeof(user_rx_v1));
lfsm_user_set_tx_v1 (&user_tx_v1);
break;
case OPAHRS_MSG_V1_REQ_CALIBRATION:
if(user_rx_v1.payload.user.v.req.calibration.measure_var == AHRS_MEASURE) {
calibration_pending = TRUE;
} else if (user_rx_v1.payload.user.v.req.calibration.measure_var == AHRS_SET) {
accel_var[0] = user_rx_v1.payload.user.v.req.calibration.accel_var[0];
accel_var[1] = user_rx_v1.payload.user.v.req.calibration.accel_var[1];
accel_var[2] = user_rx_v1.payload.user.v.req.calibration.accel_var[2];
gyro_bias[0] = user_rx_v1.payload.user.v.req.calibration.gyro_bias[0];
gyro_bias[1] = user_rx_v1.payload.user.v.req.calibration.gyro_bias[1];
gyro_bias[2] = user_rx_v1.payload.user.v.req.calibration.gyro_bias[2];
gyro_var[0] = user_rx_v1.payload.user.v.req.calibration.gyro_var[0];
gyro_var[1] = user_rx_v1.payload.user.v.req.calibration.gyro_var[1];
gyro_var[2] = user_rx_v1.payload.user.v.req.calibration.gyro_var[2];
mag_var[0] = user_rx_v1.payload.user.v.req.calibration.mag_var[0];
mag_var[1] = user_rx_v1.payload.user.v.req.calibration.mag_var[1];
mag_var[2] = user_rx_v1.payload.user.v.req.calibration.mag_var[2];
INSSetAccelVar(accel_var);
float gyro_bias_ins[3] = {0,0,0};
INSSetGyroBias(gyro_bias_ins); //gyro bias corrects in preprocessing
INSSetGyroVar(gyro_var);
INSSetMagVar(mag_var);
}
if(user_rx_v1.payload.user.v.req.calibration.measure_var != AHRS_ECHO) {
/* if echoing don't set anything */
accel_bias[0] = user_rx_v1.payload.user.v.req.calibration.accel_bias[0];
accel_bias[1] = user_rx_v1.payload.user.v.req.calibration.accel_bias[1];
accel_bias[2] = user_rx_v1.payload.user.v.req.calibration.accel_bias[2];
accel_scale[0] = user_rx_v1.payload.user.v.req.calibration.accel_scale[0];
accel_scale[1] = user_rx_v1.payload.user.v.req.calibration.accel_scale[1];
accel_scale[2] = user_rx_v1.payload.user.v.req.calibration.accel_scale[2];
gyro_scale[0] = user_rx_v1.payload.user.v.req.calibration.gyro_scale[0];
gyro_scale[1] = user_rx_v1.payload.user.v.req.calibration.gyro_scale[1];
gyro_scale[2] = user_rx_v1.payload.user.v.req.calibration.gyro_scale[2];
mag_bias[0] = user_rx_v1.payload.user.v.req.calibration.mag_bias[0];
mag_bias[1] = user_rx_v1.payload.user.v.req.calibration.mag_bias[1];
mag_bias[2] = user_rx_v1.payload.user.v.req.calibration.mag_bias[2];
}
// echo back the values used
opahrs_msg_v1_init_user_tx (&user_tx_v1, OPAHRS_MSG_V1_RSP_CALIBRATION);
user_tx_v1.payload.user.v.rsp.calibration.accel_var[0] = accel_var[0];
user_tx_v1.payload.user.v.rsp.calibration.accel_var[1] = accel_var[1];
user_tx_v1.payload.user.v.rsp.calibration.accel_var[2] = accel_var[2];
user_tx_v1.payload.user.v.rsp.calibration.gyro_bias[0] = gyro_bias[0];
user_tx_v1.payload.user.v.rsp.calibration.gyro_bias[1] = gyro_bias[1];
user_tx_v1.payload.user.v.rsp.calibration.gyro_bias[2] = gyro_bias[2];
user_tx_v1.payload.user.v.rsp.calibration.gyro_var[0] = gyro_var[0];
user_tx_v1.payload.user.v.rsp.calibration.gyro_var[1] = gyro_var[1];
user_tx_v1.payload.user.v.rsp.calibration.gyro_var[2] = gyro_var[2];
user_tx_v1.payload.user.v.rsp.calibration.mag_var[0] = mag_var[0];
user_tx_v1.payload.user.v.rsp.calibration.mag_var[1] = mag_var[1];
user_tx_v1.payload.user.v.rsp.calibration.mag_var[2] = mag_var[2];
dump_spi_message(PIOS_COM_AUX, "C", (uint8_t *)&user_rx_v1, sizeof(user_rx_v1));
lfsm_user_set_tx_v1 (&user_tx_v1);
break;
case OPAHRS_MSG_V1_REQ_ATTITUDERAW:
opahrs_msg_v1_init_user_tx (&user_tx_v1, OPAHRS_MSG_V1_RSP_ATTITUDERAW);
user_tx_v1.payload.user.v.rsp.attituderaw.mags.x = mag_data.raw.axis[0];
user_tx_v1.payload.user.v.rsp.attituderaw.mags.y = mag_data.raw.axis[1];
user_tx_v1.payload.user.v.rsp.attituderaw.mags.z = mag_data.raw.axis[2];
user_tx_v1.payload.user.v.rsp.attituderaw.gyros.x = gyro_data.raw.x;
user_tx_v1.payload.user.v.rsp.attituderaw.gyros.y = gyro_data.raw.y;
user_tx_v1.payload.user.v.rsp.attituderaw.gyros.z = gyro_data.raw.z;
user_tx_v1.payload.user.v.rsp.attituderaw.gyros_filtered.x = gyro_data.filtered.x;
user_tx_v1.payload.user.v.rsp.attituderaw.gyros_filtered.y = gyro_data.filtered.y;
user_tx_v1.payload.user.v.rsp.attituderaw.gyros_filtered.z = gyro_data.filtered.z;
user_tx_v1.payload.user.v.rsp.attituderaw.gyros.xy_temp = gyro_data.temp.xy;
user_tx_v1.payload.user.v.rsp.attituderaw.gyros.z_temp = gyro_data.temp.z;
user_tx_v1.payload.user.v.rsp.attituderaw.accels.x = accel_data.raw.x;
user_tx_v1.payload.user.v.rsp.attituderaw.accels.y = accel_data.raw.y;
user_tx_v1.payload.user.v.rsp.attituderaw.accels.z = accel_data.raw.z;
user_tx_v1.payload.user.v.rsp.attituderaw.accels_filtered.x = accel_data.filtered.x;
user_tx_v1.payload.user.v.rsp.attituderaw.accels_filtered.y = accel_data.filtered.y;
user_tx_v1.payload.user.v.rsp.attituderaw.accels_filtered.z = accel_data.filtered.z;
dump_spi_message(PIOS_COM_AUX, "R", (uint8_t *)&user_tx_v1, sizeof(user_tx_v1));
lfsm_user_set_tx_v1 (&user_tx_v1);
break;
case OPAHRS_MSG_V1_REQ_UPDATE:
// process incoming data
opahrs_msg_v1_init_user_tx (&user_tx_v1, OPAHRS_MSG_V1_RSP_UPDATE);
if(user_rx_v1.payload.user.v.req.update.barometer.updated)
{
altitude_data.altitude = user_rx_v1.payload.user.v.req.update.barometer.altitude;
altitude_data.updated = user_rx_v1.payload.user.v.req.update.barometer.updated;
}
if(user_rx_v1.payload.user.v.req.update.gps.updated)
{
gps_data.updated = true;
gps_data.NED[0] = user_rx_v1.payload.user.v.req.update.gps.NED[0];
gps_data.NED[1] = user_rx_v1.payload.user.v.req.update.gps.NED[1];
gps_data.NED[2] = user_rx_v1.payload.user.v.req.update.gps.NED[2];
gps_data.heading = user_rx_v1.payload.user.v.req.update.gps.heading;
gps_data.groundspeed = user_rx_v1.payload.user.v.req.update.gps.groundspeed;
gps_data.quality = user_rx_v1.payload.user.v.req.update.gps.quality;
}
// send out attitude/position estimate
user_tx_v1.payload.user.v.rsp.update.quaternion.q1 = attitude_data.quaternion.q1;
user_tx_v1.payload.user.v.rsp.update.quaternion.q2 = attitude_data.quaternion.q2;
user_tx_v1.payload.user.v.rsp.update.quaternion.q3 = attitude_data.quaternion.q3;
user_tx_v1.payload.user.v.rsp.update.quaternion.q4 = attitude_data.quaternion.q4;
// TODO: separate this from INSGPS
user_tx_v1.payload.user.v.rsp.update.NED[0] = Nav.Pos[0];
user_tx_v1.payload.user.v.rsp.update.NED[1] = Nav.Pos[1];
user_tx_v1.payload.user.v.rsp.update.NED[2] = Nav.Pos[2];
user_tx_v1.payload.user.v.rsp.update.Vel[0] = Nav.Vel[0];
user_tx_v1.payload.user.v.rsp.update.Vel[1] = Nav.Vel[1];
user_tx_v1.payload.user.v.rsp.update.Vel[2] = Nav.Vel[2];
// compute the idle fraction
user_tx_v1.payload.user.v.rsp.update.load = (MAX_IDLE_COUNT - idle_counter) * 100 / MAX_IDLE_COUNT;
dump_spi_message(PIOS_COM_AUX, "U", (uint8_t *)&user_tx_v1, sizeof(user_tx_v1));
lfsm_user_set_tx_v1 (&user_tx_v1);
break;
default:
break;
}
/* Finished processing the received message, requeue it */
lfsm_user_set_rx_v1 (&user_rx_v1);
lfsm_user_done ();
}
/**
* @}
*/
/* Local Variables */
static GPIO_TypeDef* ADC_GPIO_PORT[PIOS_ADC_NUM_PINS] = PIOS_ADC_PORTS;
static const uint32_t ADC_GPIO_PIN[PIOS_ADC_NUM_PINS] = PIOS_ADC_PINS;
static const uint32_t ADC_CHANNEL[PIOS_ADC_NUM_PINS] = PIOS_ADC_CHANNELS;
static ADC_TypeDef* ADC_MAPPING[PIOS_ADC_NUM_PINS] = PIOS_ADC_MAPPING;
static const uint32_t ADC_CHANNEL_MAPPING[PIOS_ADC_NUM_PINS] = PIOS_ADC_CHANNEL_MAPPING;
/**
* @brief Initialise the ADC Peripheral
* @param[in] ekf_rate
* @param[in] adc_oversample
*
* Currently ignores rates and uses hardcoded values. Need a little logic to
* map from sampling rates and such to ADC constants.
*/
void AHRS_ADC_Config(int32_t ekf_rate, int32_t adc_oversample)
{
int32_t i;
/* Setup analog pins */
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_StructInit(&GPIO_InitStructure);
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
/* Enable each ADC pin in the array */
for(i = 0; i < PIOS_ADC_NUM_PINS; i++) {
GPIO_InitStructure.GPIO_Pin = ADC_GPIO_PIN[i];
GPIO_Init(ADC_GPIO_PORT[i], &GPIO_InitStructure);
}
/* Enable ADC clocks */
PIOS_ADC_CLOCK_FUNCTION;
/* Map channels to conversion slots depending on the channel selection mask */
for(i = 0; i < PIOS_ADC_NUM_PINS; i++) {
ADC_RegularChannelConfig(ADC_MAPPING[i], ADC_CHANNEL[i], ADC_CHANNEL_MAPPING[i], PIOS_ADC_SAMPLE_TIME);
}
#if (PIOS_ADC_USE_TEMP_SENSOR)
ADC_TempSensorVrefintCmd(ENABLE);
ADC_RegularChannelConfig(PIOS_ADC_TEMP_SENSOR_ADC, ADC_Channel_14, PIOS_ADC_TEMP_SENSOR_ADC_CHANNEL, PIOS_ADC_SAMPLE_TIME);
#endif
// TODO: update ADC to continuous sampling, configure the sampling rate
/* Configure ADCs */
ADC_InitTypeDef ADC_InitStructure;
ADC_StructInit(&ADC_InitStructure);
ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 4; //((PIOS_ADC_NUM_CHANNELS + 1) >> 1);
ADC_Init(ADC1, &ADC_InitStructure);
#if (PIOS_ADC_USE_ADC2)
ADC_Init(ADC2, &ADC_InitStructure);
/* Enable ADC2 external trigger conversion (to synch with ADC1) */
ADC_ExternalTrigConvCmd(ADC2, ENABLE);
#endif
RCC_ADCCLKConfig(PIOS_ADC_ADCCLK);
RCC_PCLK2Config(RCC_HCLK_Div16);
/* Enable ADC1->DMA request */
ADC_DMACmd(ADC1, ENABLE);
/* ADC1 calibration */
ADC_Cmd(ADC1, ENABLE);
ADC_ResetCalibration(ADC1);
while(ADC_GetResetCalibrationStatus(ADC1));
ADC_StartCalibration(ADC1);
while(ADC_GetCalibrationStatus(ADC1));
#if (PIOS_ADC_USE_ADC2)
/* ADC2 calibration */
ADC_Cmd(ADC2, ENABLE);
ADC_ResetCalibration(ADC2);
while(ADC_GetResetCalibrationStatus(ADC2));
ADC_StartCalibration(ADC2);
while(ADC_GetCalibrationStatus(ADC2));
#endif
/* Enable DMA1 clock */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
/* Configure DMA1 channel 1 to fetch data from ADC result register */
DMA_InitTypeDef DMA_InitStructure;
DMA_StructInit(&DMA_InitStructure);
DMA_DeInit(DMA1_Channel1);
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC1->DR;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&raw_data_buffer[0];
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
/* We are double buffering half words from the ADC. Make buffer appropriately sized */
DMA_InitStructure.DMA_BufferSize = (ADC_CONTINUOUS_CHANNELS * ADC_OVERSAMPLE * 2) >> 1;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
/* Note: We read ADC1 and ADC2 in parallel making a word read, also hence the half buffer size */
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &DMA_InitStructure);
DMA_Cmd(DMA1_Channel1, ENABLE);
/* Trigger interrupt when for half conversions too to indicate double buffer */
DMA_ITConfig(DMA1_Channel1, DMA_IT_TC, ENABLE);
DMA_ITConfig(DMA1_Channel1, DMA_IT_HT, ENABLE);
/* Configure and enable DMA interrupt */
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = PIOS_ADC_IRQ_PRIO;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Finally start initial conversion */
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
}
/**
* @brief Interrupt for half and full buffer transfer
*
* This interrupt handler swaps between the two halfs of the double buffer to make
* sure the ahrs uses the most recent data. Only swaps data when AHRS is idle, but
* really this is a pretense of a sanity check since the DMA engine is consantly
* running in the background. Keep an eye on the ekf_too_slow variable to make sure
* it's keeping up.
*/
void AHRS_ADC_DMA_Handler(void)
{
if ( ahrs_state == AHRS_IDLE )
{
// Ideally this would have a mutex, but I think we can avoid it (and don't have RTOS features)
if( DMA_GetFlagStatus( DMA1_IT_TC1 ) ) // whole double buffer filled
valid_data_buffer = &raw_data_buffer[ 1 * ADC_CONTINUOUS_CHANNELS * ADC_OVERSAMPLE ];
else if ( DMA_GetFlagStatus(DMA1_IT_HT1) )
valid_data_buffer = &raw_data_buffer[ 0 * ADC_CONTINUOUS_CHANNELS * ADC_OVERSAMPLE ];
else {
// lets cause a seg fault and catch whatever is going on
valid_data_buffer = 0;
}
ahrs_state = AHRS_DATA_READY;
}
else {
// Track how many times an interrupt occurred before EKF finished processing
ekf_too_slow++;
}
total_conversion_blocks++;
// Clear all interrupt from DMA 1 - regardless if buffer swapped
DMA_ClearFlag( DMA1_IT_GL1 );
}