1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-12 20:08:48 +01:00
LibrePilot/flight/modules/Stabilization/outerloop.c

303 lines
14 KiB
C
Raw Normal View History

/**
******************************************************************************
* @addtogroup OpenPilotModules OpenPilot Modules
* @{
* @addtogroup StabilizationModule Stabilization Module
* @brief Stabilization PID loops in an airframe type independent manner
* @note This object updates the @ref ActuatorDesired "Actuator Desired" based on the
* PID loops on the @ref AttitudeDesired "Attitude Desired" and @ref AttitudeState "Attitude State"
* @{
*
* @file outerloop.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2014.
* @brief Attitude stabilization module.
*
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <openpilot.h>
#include <pios_struct_helper.h>
#include <pid.h>
#include <callbackinfo.h>
#include <ratedesired.h>
#include <stabilizationdesired.h>
#include <attitudestate.h>
#include <stabilizationstatus.h>
#include <flightstatus.h>
#include <manualcontrolcommand.h>
#include <stabilizationbank.h>
#include <stabilization.h>
#include <cruisecontrol.h>
#include <altitudeloop.h>
#include <CoordinateConversions.h>
// Private constants
#define CALLBACK_PRIORITY CALLBACK_PRIORITY_REGULAR
#define UPDATE_EXPECTED (1.0f / 666.0f)
#define UPDATE_MIN 1.0e-6f
#define UPDATE_MAX 1.0f
#define UPDATE_ALPHA 1.0e-2f
// Private variables
static DelayedCallbackInfo *callbackHandle;
static AttitudeStateData attitude;
static uint8_t previous_mode[AXES] = { 255, 255, 255, 255 };
static PiOSDeltatimeConfig timeval;
// Private functions
static void stabilizationOuterloopTask();
static void AttitudeStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev);
void stabilizationOuterloopInit()
{
RateDesiredInitialize();
StabilizationDesiredInitialize();
AttitudeStateInitialize();
StabilizationStatusInitialize();
FlightStatusInitialize();
ManualControlCommandInitialize();
PIOS_DELTATIME_Init(&timeval, UPDATE_EXPECTED, UPDATE_MIN, UPDATE_MAX, UPDATE_ALPHA);
callbackHandle = PIOS_CALLBACKSCHEDULER_Create(&stabilizationOuterloopTask, CALLBACK_PRIORITY, CBTASK_PRIORITY, CALLBACKINFO_RUNNING_STABILIZATION0, STACK_SIZE_BYTES);
AttitudeStateConnectCallback(AttitudeStateUpdatedCb);
}
/**
* WARNING! This callback executes with critical flight control priority every
* time a gyroscope update happens do NOT put any time consuming calculations
* in this loop unless they really have to execute with every gyro update
*/
static void stabilizationOuterloopTask()
{
AttitudeStateData attitudeState;
RateDesiredData rateDesired;
StabilizationDesiredData stabilizationDesired;
StabilizationStatusOuterLoopData enabled;
AttitudeStateGet(&attitudeState);
StabilizationDesiredGet(&stabilizationDesired);
RateDesiredGet(&rateDesired);
StabilizationStatusOuterLoopGet(&enabled);
float *stabilizationDesiredAxis = &stabilizationDesired.Roll;
float *rateDesiredAxis = &rateDesired.Roll;
int t;
float dT = PIOS_DELTATIME_GetAverageSeconds(&timeval);
float local_error[3];
{
#if defined(PIOS_QUATERNION_STABILIZATION)
// Quaternion calculation of error in each axis. Uses more memory.
float rpy_desired[3];
float q_desired[4];
float q_error[4];
for (t = 0; t < 3; t++) {
switch (cast_struct_to_array(enabled, enabled.Roll)[t]) {
case STABILIZATIONSTATUS_OUTERLOOP_ATTITUDE:
case STABILIZATIONSTATUS_OUTERLOOP_RATTITUDE:
case STABILIZATIONSTATUS_OUTERLOOP_WEAKLEVELING:
rpy_desired[t] = stabilizationDesiredAxis[t];
break;
case STABILIZATIONSTATUS_OUTERLOOP_DIRECT:
default:
rpy_desired[t] = ((float *)&attitudeState.Roll)[t];
break;
}
}
RPY2Quaternion(rpy_desired, q_desired);
quat_inverse(q_desired);
quat_mult(q_desired, &attitudeState.q1, q_error);
quat_inverse(q_error);
Quaternion2RPY(q_error, local_error);
#else /* if defined(PIOS_QUATERNION_STABILIZATION) */
// Simpler algorithm for CC, less memory
local_error[0] = stabilizationDesiredAxis[0] - attitudeState.Roll;
local_error[1] = stabilizationDesiredAxis[1] - attitudeState.Pitch;
local_error[2] = stabilizationDesiredAxis[2] - attitudeState.Yaw;
// find shortest way
float modulo = fmodf(local_error[2] + 180.0f, 360.0f);
if (modulo < 0) {
local_error[2] = modulo + 180.0f;
} else {
local_error[2] = modulo - 180.0f;
}
#endif /* if defined(PIOS_QUATERNION_STABILIZATION) */
}
for (t = 0; t < AXES; t++) {
bool reinit = (cast_struct_to_array(enabled, enabled.Roll)[t] != previous_mode[t]);
previous_mode[t] = cast_struct_to_array(enabled, enabled.Roll)[t];
if (t < STABILIZATIONSTATUS_OUTERLOOP_THRUST) {
if (reinit) {
stabSettings.outerPids[t].iAccumulator = 0;
}
switch (cast_struct_to_array(enabled, enabled.Roll)[t]) {
case STABILIZATIONSTATUS_OUTERLOOP_ATTITUDE:
rateDesiredAxis[t] = pid_apply(&stabSettings.outerPids[t], local_error[t], dT);
break;
2014-05-01 18:52:39 +02:00
case STABILIZATIONSTATUS_OUTERLOOP_RATTITUDE:
{
float stickinput[3];
stickinput[0] = boundf(stabilizationDesiredAxis[0] / stabSettings.stabBank.RollMax, -1.0f, 1.0f);
stickinput[1] = boundf(stabilizationDesiredAxis[1] / stabSettings.stabBank.PitchMax, -1.0f, 1.0f);
stickinput[2] = boundf(stabilizationDesiredAxis[2] / stabSettings.stabBank.YawMax, -1.0f, 1.0f);
float rateDesiredAxisRate = stickinput[t] * cast_struct_to_array(stabSettings.stabBank.ManualRate, stabSettings.stabBank.ManualRate.Roll)[t];
// limit corrective rate to maximum rates to not give it overly large impact over manual rate when joined together
rateDesiredAxis[t] = boundf(pid_apply(&stabSettings.outerPids[t], local_error[t], dT),
-cast_struct_to_array(stabSettings.stabBank.ManualRate, stabSettings.stabBank.ManualRate.Roll)[t],
cast_struct_to_array(stabSettings.stabBank.ManualRate, stabSettings.stabBank.ManualRate.Roll)[t]
);
// Compute the weighted average rate desired
// Using max() rather than sqrt() for cpu speed;
// - this makes the stick region into a square;
// - this is a feature!
// - hold a roll angle and add just pitch without the stick sensitivity changing
float magnitude = fabsf(stickinput[t]);
if (t < 2) {
magnitude = fmaxf(fabsf(stickinput[0]), fabsf(stickinput[1]));
}
// modify magnitude to move the Att to Rate transition to the place
// specified by the user
// we are looking for where the stick angle == transition angle
// and the Att rate equals the Rate rate
// that's where Rate x (1-StickAngle) [Attitude pulling down max X Ratt proportion]
// == Rate x StickAngle [Rate pulling up according to stick angle]
// * StickAngle [X Ratt proportion]
// so 1-x == x*x or x*x+x-1=0 where xE(0,1)
// (-1+-sqrt(1+4))/2 = (-1+sqrt(5))/2
// and quadratic formula says that is 0.618033989f
// I tested 14.01 and came up with .61 without even remembering this number
// I thought that moving the P,I, and maxangle terms around would change this value
// and that I would have to take these into account, but varying
// all P's and I's by factors of 1/2 to 2 didn't change it noticeably
// and varying maxangle from 4 to 120 didn't either.
// so for now I'm not taking these into account
// while working with this, it occurred to me that Attitude mode,
// set up with maxangle=190 would be similar to Ratt, and it is.
#define STICK_VALUE_AT_MODE_TRANSITION 0.618033989f
// the following assumes the transition would otherwise be at 0.618033989f
// and THAT assumes that Att ramps up to max roll rate
// when a small number of degrees off of where it should be
// if below the transition angle (still in attitude mode)
// '<=' instead of '<' keeps rattitude_mode_transition_stick_position==1.0 from causing DZ
if (magnitude <= stabSettings.rattitude_mode_transition_stick_position) {
magnitude *= STICK_VALUE_AT_MODE_TRANSITION / stabSettings.rattitude_mode_transition_stick_position;
} else {
magnitude = (magnitude - stabSettings.rattitude_mode_transition_stick_position)
* (1.0f - STICK_VALUE_AT_MODE_TRANSITION)
/ (1.0f - stabSettings.rattitude_mode_transition_stick_position)
+ STICK_VALUE_AT_MODE_TRANSITION;
}
rateDesiredAxis[t] = (1.0f - magnitude) * rateDesiredAxis[t] + magnitude * rateDesiredAxisRate;
}
break;
2014-05-01 18:52:39 +02:00
case STABILIZATIONSTATUS_OUTERLOOP_WEAKLEVELING:
// FIXME: local_error[] is rate - attitude for Weak Leveling
// The only ramifications are:
// Weak Leveling Kp is off by a factor of 3 to 12 and may need a different default in GCS
// Changing Rate mode max rate currently requires a change to Kp
// That would be changed to Attitude mode max angle affecting Kp
// Also does not take dT into account
{
2014-08-22 22:38:53 +02:00
float stickinput[3];
stickinput[0] = boundf(stabilizationDesiredAxis[0] / stabSettings.stabBank.RollMax, -1.0f, 1.0f);
stickinput[1] = boundf(stabilizationDesiredAxis[1] / stabSettings.stabBank.PitchMax, -1.0f, 1.0f);
stickinput[2] = boundf(stabilizationDesiredAxis[2] / stabSettings.stabBank.YawMax, -1.0f, 1.0f);
float rate_input = stickinput[t] * cast_struct_to_array(stabSettings.stabBank.ManualRate, stabSettings.stabBank.ManualRate.Roll)[t];
float weak_leveling = local_error[t] * stabSettings.settings.WeakLevelingKp;
weak_leveling = boundf(weak_leveling, -stabSettings.settings.MaxWeakLevelingRate, stabSettings.settings.MaxWeakLevelingRate);
// Compute desired rate as input biased towards leveling
rateDesiredAxis[t] = rate_input + weak_leveling;
}
break;
case STABILIZATIONSTATUS_OUTERLOOP_DIRECT:
default:
rateDesiredAxis[t] = stabilizationDesiredAxis[t];
break;
}
} else {
switch (cast_struct_to_array(enabled, enabled.Roll)[t]) {
#ifdef REVOLUTION
case STABILIZATIONSTATUS_OUTERLOOP_ALTITUDE:
rateDesiredAxis[t] = stabilizationAltitudeHold(stabilizationDesiredAxis[t], ALTITUDEHOLD, reinit);
break;
case STABILIZATIONSTATUS_OUTERLOOP_ALTITUDEVARIO:
rateDesiredAxis[t] = stabilizationAltitudeHold(stabilizationDesiredAxis[t], ALTITUDEVARIO, reinit);
break;
#endif /* REVOLUTION */
case STABILIZATIONSTATUS_OUTERLOOP_DIRECT:
default:
rateDesiredAxis[t] = stabilizationDesiredAxis[t];
break;
}
}
}
RateDesiredSet(&rateDesired);
{
uint8_t armed;
FlightStatusArmedGet(&armed);
float throttleDesired;
ManualControlCommandThrottleGet(&throttleDesired);
if (armed != FLIGHTSTATUS_ARMED_ARMED ||
((stabSettings.settings.LowThrottleZeroIntegral == STABILIZATIONSETTINGS_LOWTHROTTLEZEROINTEGRAL_TRUE) && throttleDesired < 0)) {
// Force all axes to reinitialize when engaged
for (t = 0; t < AXES; t++) {
previous_mode[t] = 255;
}
}
}
// update cruisecontrol based on attitude
cruisecontrol_compute_factor(&attitudeState, rateDesired.Thrust);
stabSettings.monitor.rateupdates = 0;
}
static void AttitudeStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
{
// to reduce CPU utilisation, outer loop is not executed every state update
static uint8_t cpusafer = 0;
if ((cpusafer++ % OUTERLOOP_SKIPCOUNT) == 0) {
// this does not need mutex protection as both eventdispatcher and stabi run in same callback task!
AttitudeStateGet(&attitude);
PIOS_CALLBACKSCHEDULER_Dispatch(callbackHandle);
}
}
/**
* @}
* @}
*/