mirror of
https://bitbucket.org/librepilot/librepilot.git
synced 2024-11-30 08:24:11 +01:00
904 lines
26 KiB
C
904 lines
26 KiB
C
|
/**
|
||
|
******************************************************************************
|
||
|
* @addtogroup INS INS
|
||
|
|
||
|
* @brief The INS Modules perform
|
||
|
*
|
||
|
* @{
|
||
|
* @addtogroup INS_Main
|
||
|
* @brief Main function which does the hardware dependent stuff
|
||
|
* @{
|
||
|
*
|
||
|
*
|
||
|
* @file ins.c
|
||
|
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2011.
|
||
|
* @brief INSGPS Test Program
|
||
|
* @see The GNU Public License (GPL) Version 3
|
||
|
*
|
||
|
*****************************************************************************/
|
||
|
/*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 3 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but
|
||
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License along
|
||
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
TODO:
|
||
|
BMP085 - Pressure
|
||
|
IMU3000 interrupt
|
||
|
BMA180 interrupt
|
||
|
*/
|
||
|
|
||
|
#define TYPICAL_PERIOD 3300
|
||
|
#define timer_rate() 100000
|
||
|
#define timer_count() 1
|
||
|
/* OpenPilot Includes */
|
||
|
#include "ins.h"
|
||
|
#include "pios.h"
|
||
|
#include "ahrs_spi_comm.h"
|
||
|
#include "insgps.h"
|
||
|
#include "CoordinateConversions.h"
|
||
|
#include "NMEA.h"
|
||
|
#include <stdbool.h>
|
||
|
#include "fifo_buffer.h"
|
||
|
#include "insgps_helper.h"
|
||
|
|
||
|
#define DEG_TO_RAD (M_PI / 180.0)
|
||
|
#define RAD_TO_DEG (180.0 / M_PI)
|
||
|
|
||
|
#define INSGPS_MAGLEN 1000
|
||
|
#define INSGPS_MAGTOL 0.5 /* error in magnetic vector length to use */
|
||
|
|
||
|
#define GYRO_OOB(x) ((x > (1000 * DEG_TO_RAD)) || (x < (-1000 * DEG_TO_RAD)))
|
||
|
#define ACCEL_OOB(x) (((x > 12*9.81) || (x < -12*9.81)))
|
||
|
#define ISNAN(x) (x != x)
|
||
|
// down-sampled data index
|
||
|
|
||
|
volatile int8_t ahrs_algorithm;
|
||
|
|
||
|
/* Data accessors */
|
||
|
void get_gps_data();
|
||
|
void get_mag_data();
|
||
|
void get_baro_data();
|
||
|
void get_accel_gyro_data();
|
||
|
|
||
|
void reset_values();
|
||
|
void measure_noise(void);
|
||
|
void zero_gyros(bool update_settings);
|
||
|
|
||
|
/* Communication functions */
|
||
|
//void send_calibration(void);
|
||
|
void send_attitude(void);
|
||
|
void send_velocity(void);
|
||
|
void homelocation_callback(AhrsObjHandle obj);
|
||
|
//void calibration_callback(AhrsObjHandle obj);
|
||
|
void settings_callback(AhrsObjHandle obj);
|
||
|
void affine_rotate(float scale[3][4], float rotation[3]);
|
||
|
void calibration(float result[3], float scale[3][4], float arg[3]);
|
||
|
|
||
|
extern void PIOS_Board_Init(void);
|
||
|
void panic(uint32_t blinks);
|
||
|
static void print_ekf_binary(bool ekf);
|
||
|
void simple_update();
|
||
|
|
||
|
/* Bootloader related functions and var*/
|
||
|
void firmwareiapobj_callback(AhrsObjHandle obj);
|
||
|
volatile uint8_t reset_count=0;
|
||
|
|
||
|
/**
|
||
|
* @addtogroup INS_Global_Data INS Global Data
|
||
|
* @{
|
||
|
* Public data. Used by both EKF and the sender
|
||
|
*/
|
||
|
|
||
|
//! Contains the data from the mag sensor chip
|
||
|
struct mag_sensor mag_data;
|
||
|
|
||
|
//! Contains the data from the accelerometer
|
||
|
struct accel_sensor accel_data;
|
||
|
|
||
|
//! Contains the data from the gyro
|
||
|
struct gyro_sensor gyro_data;
|
||
|
|
||
|
//! Conains the current estimate of the attitude
|
||
|
struct attitude_solution attitude_data;
|
||
|
|
||
|
//! Contains data from the altitude sensor
|
||
|
struct altitude_sensor altitude_data;
|
||
|
|
||
|
//! Contains data from the GPS (via the SPI link)
|
||
|
struct gps_sensor gps_data;
|
||
|
|
||
|
static float mag_len = 0;
|
||
|
|
||
|
typedef enum { INS_IDLE, INS_DATA_READY, INS_PROCESSING } states;
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* @brief INS Main function
|
||
|
*/
|
||
|
|
||
|
uint32_t total_conversion_blocks;
|
||
|
static bool bias_corrected_raw;
|
||
|
|
||
|
float pressure, altitude;
|
||
|
|
||
|
int32_t dr;
|
||
|
|
||
|
static volatile bool init_algorithm = false;
|
||
|
static bool zeroed_gyros = false;
|
||
|
int32_t sclk, sclk_prev;
|
||
|
int32_t sclk_count;
|
||
|
uint32_t loop_time;
|
||
|
int main()
|
||
|
{
|
||
|
// *(volatile unsigned long *)0xE000ED88 |= (0xf << 20);
|
||
|
|
||
|
PIOS_Board_Init();
|
||
|
PIOS_LED_Off(LED1);
|
||
|
PIOS_LED_On(LED2);
|
||
|
|
||
|
// Sensors need a second to start
|
||
|
PIOS_DELAY_WaitmS(100);
|
||
|
|
||
|
ahrs_algorithm = INSSETTINGS_ALGORITHM_SIMPLE;
|
||
|
reset_values();
|
||
|
gps_data.quality = -1;
|
||
|
#if 0
|
||
|
// Sensor test
|
||
|
if(PIOS_IMU3000_Test() != 0)
|
||
|
panic(1);
|
||
|
|
||
|
if(PIOS_BMA180_Test() != 0)
|
||
|
panic(2);
|
||
|
|
||
|
if(PIOS_HMC5883_Test() != 0)
|
||
|
panic(3);
|
||
|
|
||
|
if(PIOS_BMP085_Test() != 0)
|
||
|
panic(4);
|
||
|
#endif
|
||
|
|
||
|
PIOS_LED_On(LED1);
|
||
|
PIOS_LED_Off(LED2);
|
||
|
|
||
|
// Kickstart BMP085 measurements until driver improved
|
||
|
PIOS_BMP085_StartADC(TemperatureConv);
|
||
|
|
||
|
// Flash warning light while trying to connect
|
||
|
uint32_t time_val1 = PIOS_DELAY_GetRaw();
|
||
|
uint32_t time_val2;
|
||
|
uint32_t ms_count = 0;
|
||
|
while(!AhrsLinkReady()) {
|
||
|
AhrsPoll();
|
||
|
if(PIOS_DELAY_DiffuS(time_val1) > 1000) {
|
||
|
ms_count += 1;
|
||
|
time_val1 = PIOS_DELAY_GetRaw();
|
||
|
}
|
||
|
if(ms_count > 100) {
|
||
|
PIOS_LED_Toggle(LED2);
|
||
|
ms_count = 0;
|
||
|
}
|
||
|
}
|
||
|
PIOS_LED_Off(LED2);
|
||
|
|
||
|
/* we didn't connect the callbacks before because we have to wait
|
||
|
for all data to be up to date before doing anything*/
|
||
|
InsSettingsConnectCallback(settings_callback);
|
||
|
HomeLocationConnectCallback(homelocation_callback);
|
||
|
//FirmwareIAPObjConnectCallback(firmwareiapobj_callback);
|
||
|
|
||
|
for(uint32_t i = 0; i < 200; i++) {
|
||
|
get_accel_gyro_data(); // This function blocks till data avilable
|
||
|
get_mag_data();
|
||
|
get_baro_data();
|
||
|
PIOS_DELAY_WaituS(TYPICAL_PERIOD);
|
||
|
}
|
||
|
|
||
|
settings_callback(InsSettingsHandle());
|
||
|
ins_init_algorithm();
|
||
|
|
||
|
/******************* Main EKF loop ****************************/
|
||
|
while(1) {
|
||
|
AhrsPoll();
|
||
|
InsStatusData status;
|
||
|
InsStatusGet(&status);
|
||
|
|
||
|
// Alive signal
|
||
|
if ((total_conversion_blocks++ % 100) == 0)
|
||
|
PIOS_LED_Toggle(LED1);
|
||
|
|
||
|
loop_time = PIOS_DELAY_DiffuS(time_val1);
|
||
|
time_val1 = PIOS_DELAY_GetRaw();
|
||
|
|
||
|
get_accel_gyro_data(); // This function blocks till data avilable
|
||
|
get_mag_data();
|
||
|
get_baro_data();
|
||
|
get_gps_data();
|
||
|
|
||
|
status.IdleTimePerCycle = PIOS_DELAY_DiffuS(time_val1);
|
||
|
|
||
|
if(ISNAN(accel_data.filtered.x + accel_data.filtered.y + accel_data.filtered.z) ||
|
||
|
ISNAN(gyro_data.filtered.x + gyro_data.filtered.y + gyro_data.filtered.z) ||
|
||
|
ACCEL_OOB(accel_data.filtered.x) || ACCEL_OOB(accel_data.filtered.y) || ACCEL_OOB(accel_data.filtered.z) ||
|
||
|
GYRO_OOB(gyro_data.filtered.x) || GYRO_OOB(gyro_data.filtered.y) || GYRO_OOB(gyro_data.filtered.z)) {
|
||
|
// If any values are NaN or huge don't update
|
||
|
//TODO: add field to ahrs status to track number of these events
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if(total_conversion_blocks <= 100 && !zeroed_gyros) {
|
||
|
// TODO: Replace this with real init
|
||
|
zero_gyros(total_conversion_blocks == 100);
|
||
|
if(total_conversion_blocks == 100)
|
||
|
zeroed_gyros = true;
|
||
|
PIOS_DELAY_WaituS(TYPICAL_PERIOD);
|
||
|
|
||
|
float zeros[3] = {0,0,0};
|
||
|
INSSetGyroBias(zeros);
|
||
|
|
||
|
continue;
|
||
|
}
|
||
|
/* If algorithm changed reinit. This could go in callback but wouldn't be synchronous */
|
||
|
if (init_algorithm) {
|
||
|
ins_init_algorithm();
|
||
|
init_algorithm = false;
|
||
|
}
|
||
|
|
||
|
time_val2 = PIOS_DELAY_GetRaw();
|
||
|
|
||
|
print_ekf_binary(true);
|
||
|
|
||
|
switch(ahrs_algorithm) {
|
||
|
case INSSETTINGS_ALGORITHM_SIMPLE:
|
||
|
simple_update();
|
||
|
break;
|
||
|
case INSSETTINGS_ALGORITHM_INSGPS_OUTDOOR:
|
||
|
ins_outdoor_update();
|
||
|
break;
|
||
|
case INSSETTINGS_ALGORITHM_INSGPS_INDOOR:
|
||
|
case INSSETTINGS_ALGORITHM_INSGPS_INDOOR_NOMAG:
|
||
|
ins_indoor_update();
|
||
|
break;
|
||
|
case INSSETTINGS_ALGORITHM_CALIBRATION:
|
||
|
measure_noise();
|
||
|
break;
|
||
|
case INSSETTINGS_ALGORITHM_SENSORRAW:
|
||
|
print_ekf_binary(false);
|
||
|
// Run at standard rate
|
||
|
while(PIOS_DELAY_DiffuS(time_val1) < TYPICAL_PERIOD);
|
||
|
break;
|
||
|
case INSSETTINGS_ALGORITHM_ZEROGYROS:
|
||
|
zero_gyros(false);
|
||
|
// Run at standard rate
|
||
|
while(PIOS_DELAY_DiffuS(time_val1) < TYPICAL_PERIOD);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
status.RunningTimePerCycle = PIOS_DELAY_DiffuS(time_val2);
|
||
|
InsStatusSet(&status);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @brief Simple update using just mag and accel. Yaw biased and big attitude changes.
|
||
|
*/
|
||
|
void simple_update() {
|
||
|
float q[4];
|
||
|
float rpy[3];
|
||
|
/***************** SIMPLE ATTITUDE FROM NORTH AND ACCEL ************/
|
||
|
/* Very simple computation of the heading and attitude from accel. */
|
||
|
rpy[2] = atan2((mag_data.raw.axis[1]), (-1 * mag_data.raw.axis[0])) * RAD_TO_DEG;
|
||
|
rpy[1] = atan2(accel_data.filtered.x, accel_data.filtered.z) * RAD_TO_DEG;
|
||
|
rpy[0] = atan2(accel_data.filtered.y, accel_data.filtered.z) * RAD_TO_DEG;
|
||
|
|
||
|
RPY2Quaternion(rpy, q);
|
||
|
attitude_data.quaternion.q1 = q[0];
|
||
|
attitude_data.quaternion.q2 = q[1];
|
||
|
attitude_data.quaternion.q3 = q[2];
|
||
|
attitude_data.quaternion.q4 = q[3];
|
||
|
send_attitude();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Output all the important inputs and states of the ekf through serial port
|
||
|
*/
|
||
|
static void print_ekf_binary(bool ekf)
|
||
|
{
|
||
|
static uint32_t timeval;
|
||
|
uint16_t delay;
|
||
|
delay = PIOS_DELAY_DiffuS(timeval);
|
||
|
timeval = PIOS_DELAY_GetRaw();
|
||
|
|
||
|
PIOS_DELAY_WaituS(500);
|
||
|
|
||
|
uint8_t framing[] = { 0xff, 0x00, 0xc3, 0x7d };
|
||
|
// Dump raw buffer
|
||
|
|
||
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, &framing[0], sizeof(framing));
|
||
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & total_conversion_blocks, sizeof(total_conversion_blocks));
|
||
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & accel_data.filtered.x, 4*3);
|
||
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & gyro_data.filtered.x, 4*3);
|
||
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & mag_data.updated, 1);
|
||
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & mag_data.scaled.axis, 3*4);
|
||
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & altitude_data.updated, 1);
|
||
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & altitude_data.altitude, 4);
|
||
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) &gyro_data.temperature, 4);
|
||
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) &accel_data.temperature, 4);
|
||
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) &delay, 2);
|
||
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & gps_data, sizeof(gps_data));
|
||
|
|
||
|
if(ekf)
|
||
|
PIOS_COM_SendBuffer(PIOS_COM_AUX, (uint8_t *) & Nav, sizeof(Nav)); // X (86:149)
|
||
|
else {
|
||
|
mag_data.updated = 0;
|
||
|
altitude_data.updated = 0;
|
||
|
gps_data.updated = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void panic(uint32_t blinks)
|
||
|
{
|
||
|
int blinked = 0;
|
||
|
while(1) {
|
||
|
PIOS_LED_On(LED2);
|
||
|
PIOS_DELAY_WaitmS(200);
|
||
|
PIOS_LED_Off(LED2);
|
||
|
PIOS_DELAY_WaitmS(200);
|
||
|
|
||
|
blinked++;
|
||
|
if(blinked >= blinks) {
|
||
|
blinked = 0;
|
||
|
PIOS_DELAY_WaitmS(1000);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Get the accel and gyro data from whichever source when available
|
||
|
*
|
||
|
* This function will act as the HAL for the new INS sensors
|
||
|
*/
|
||
|
|
||
|
uint32_t accel_samples;
|
||
|
uint32_t gyro_samples;
|
||
|
struct pios_bma180_data accel;
|
||
|
struct pios_imu3000_data gyro;
|
||
|
AttitudeRawData raw;
|
||
|
int32_t accel_accum[3] = {0, 0, 0};
|
||
|
int32_t gyro_accum[3] = {0,0,0};
|
||
|
float scaling;
|
||
|
|
||
|
void get_accel_gyro_data()
|
||
|
{
|
||
|
int32_t read_good;
|
||
|
int32_t count;
|
||
|
|
||
|
for (int i = 0; i < 3; i++) {
|
||
|
accel_accum[i] = 0;
|
||
|
gyro_accum[i] = 0;
|
||
|
}
|
||
|
accel_samples = 0;
|
||
|
gyro_samples = 0;
|
||
|
|
||
|
// Make sure we get one sample
|
||
|
count = 0;
|
||
|
while((read_good = PIOS_BMA180_ReadFifo(&accel)) != 0);
|
||
|
while(read_good == 0) {
|
||
|
count++;
|
||
|
|
||
|
accel_accum[0] += accel.x;
|
||
|
accel_accum[1] += accel.y;
|
||
|
accel_accum[2] += accel.z;
|
||
|
|
||
|
read_good = PIOS_BMA180_ReadFifo(&accel);
|
||
|
}
|
||
|
accel_samples = count;
|
||
|
|
||
|
// Make sure we get one sample
|
||
|
count = 0;
|
||
|
while((read_good = PIOS_IMU3000_ReadFifo(&gyro)) != 0);
|
||
|
while(read_good == 0) {
|
||
|
count++;
|
||
|
|
||
|
gyro_accum[0] += gyro.x;
|
||
|
gyro_accum[1] += gyro.y;
|
||
|
gyro_accum[2] += gyro.z;
|
||
|
|
||
|
read_good = PIOS_IMU3000_ReadFifo(&gyro);
|
||
|
}
|
||
|
gyro_samples = count;
|
||
|
|
||
|
// Not the swaping of channel orders
|
||
|
scaling = PIOS_BMA180_GetScale() / accel_samples;
|
||
|
accel_data.filtered.x = accel_accum[0] * scaling * accel_data.calibration.scale[0] + accel_data.calibration.bias[0];
|
||
|
accel_data.filtered.y = -accel_accum[1] * scaling * accel_data.calibration.scale[1] + accel_data.calibration.bias[1];
|
||
|
accel_data.filtered.z = -accel_accum[2] * scaling * accel_data.calibration.scale[2] + accel_data.calibration.bias[2];
|
||
|
|
||
|
scaling = PIOS_IMU3000_GetScale() / gyro_samples;
|
||
|
gyro_data.filtered.x = -((float) gyro_accum[1]) * scaling * gyro_data.calibration.scale[0] + gyro_data.calibration.bias[0];
|
||
|
gyro_data.filtered.y = -((float) gyro_accum[0]) * scaling * gyro_data.calibration.scale[1] + gyro_data.calibration.bias[1];
|
||
|
gyro_data.filtered.z = -((float) gyro_accum[2]) * scaling * gyro_data.calibration.scale[2] + gyro_data.calibration.bias[2];
|
||
|
|
||
|
raw.accels[0] = accel_data.filtered.x;
|
||
|
raw.accels[1] = accel_data.filtered.y;
|
||
|
raw.accels[2] = accel_data.filtered.z;
|
||
|
raw.gyros[0] = gyro_data.filtered.x * RAD_TO_DEG;
|
||
|
raw.gyros[1] = gyro_data.filtered.y * RAD_TO_DEG;
|
||
|
raw.gyros[2] = gyro_data.filtered.z * RAD_TO_DEG;
|
||
|
|
||
|
// From data sheet 35 deg C corresponds to -13200, and 280 LSB per C
|
||
|
gyro_data.temperature = 35.0f + ((float) gyro.temperature + 13200) / 280;
|
||
|
// From the data sheet 25 deg C corresponds to 2 and 2 LSB per C
|
||
|
accel_data.temperature = 25.0f + ((float) accel.temperature - 2) / 2;
|
||
|
|
||
|
if (bias_corrected_raw)
|
||
|
{
|
||
|
raw.gyros[0] -= Nav.gyro_bias[0] * RAD_TO_DEG;
|
||
|
raw.gyros[1] -= Nav.gyro_bias[1] * RAD_TO_DEG;
|
||
|
raw.gyros[2] -= Nav.gyro_bias[2] * RAD_TO_DEG;
|
||
|
|
||
|
raw.accels[0] -= Nav.accel_bias[0];
|
||
|
raw.accels[1] -= Nav.accel_bias[1];
|
||
|
raw.accels[2] -= Nav.accel_bias[2];
|
||
|
}
|
||
|
|
||
|
raw.temperature[ATTITUDERAW_TEMPERATURE_GYRO] = gyro_data.temperature;
|
||
|
raw.temperature[ATTITUDERAW_TEMPERATURE_ACCEL] = accel_data.temperature;
|
||
|
|
||
|
raw.magnetometers[0] = mag_data.scaled.axis[0];
|
||
|
raw.magnetometers[1] = mag_data.scaled.axis[1];
|
||
|
raw.magnetometers[2] = mag_data.scaled.axis[2];
|
||
|
AttitudeRawSet(&raw);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Get the mag data from the I2C sensor and load into structure
|
||
|
* @return none
|
||
|
*
|
||
|
* This function also considers if the home location is set and has a valid
|
||
|
* magnetic field before updating the mag data to prevent data being used that
|
||
|
* cannot be interpreted. In addition the mag data is not used for the first
|
||
|
* five seconds to allow the filter to start to converge
|
||
|
*/
|
||
|
void get_mag_data()
|
||
|
{
|
||
|
// Get magnetic readings
|
||
|
// For now don't use mags until the magnetic field is set AND until 5 seconds
|
||
|
// after initialization otherwise it seems to have problems
|
||
|
// TODO: Follow up this initialization issue
|
||
|
HomeLocationData home;
|
||
|
HomeLocationGet(&home);
|
||
|
if (PIOS_HMC5883_NewDataAvailable()) {
|
||
|
PIOS_HMC5883_ReadMag(mag_data.raw.axis);
|
||
|
|
||
|
mag_data.scaled.axis[0] = -(mag_data.raw.axis[0] * mag_data.calibration.scale[0]) + mag_data.calibration.bias[0];
|
||
|
mag_data.scaled.axis[1] = -(mag_data.raw.axis[1] * mag_data.calibration.scale[1]) + mag_data.calibration.bias[1];
|
||
|
mag_data.scaled.axis[2] = -(mag_data.raw.axis[2] * mag_data.calibration.scale[2]) + mag_data.calibration.bias[2];
|
||
|
|
||
|
mag_data.updated = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Get the barometer data
|
||
|
* @return none
|
||
|
*/
|
||
|
uint32_t baro_conversions = 0;
|
||
|
void get_baro_data()
|
||
|
{
|
||
|
int32_t retval = PIOS_BMP085_ReadADC();
|
||
|
if (retval == 0) { // Conversion completed
|
||
|
pressure = PIOS_BMP085_GetPressure();
|
||
|
altitude = 44330.0 * (1.0 - powf(pressure / BMP085_P0, (1.0 / 5.255)));
|
||
|
|
||
|
BaroAltitudeData data;
|
||
|
BaroAltitudeGet(&data);
|
||
|
data.Altitude = altitude;
|
||
|
data.Pressure = pressure / 1000.0f;
|
||
|
data.Temperature = PIOS_BMP085_GetTemperature() / 10.0f; // Convert to deg C
|
||
|
BaroAltitudeSet(&data);
|
||
|
|
||
|
if((baro_conversions++) % 2)
|
||
|
PIOS_BMP085_StartADC(PressureConv);
|
||
|
else
|
||
|
PIOS_BMP085_StartADC(TemperatureConv);
|
||
|
|
||
|
altitude_data.altitude = data.Altitude;
|
||
|
altitude_data.updated = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Process any data coming in the gps port
|
||
|
*/
|
||
|
void get_gps_data()
|
||
|
{
|
||
|
uint8_t c;
|
||
|
static bool start_flag = false;
|
||
|
static bool found_cr = false;
|
||
|
static char gps_rx_buffer[NMEA_MAX_PACKET_LENGTH];
|
||
|
static uint32_t rx_count = 0;
|
||
|
static uint32_t numChecksumErrors = 0;
|
||
|
static uint32_t numParsingErrors = 0;
|
||
|
static uint32_t numOverflowErrors = 0;
|
||
|
static uint32_t numUpdates = 0;
|
||
|
while(PIOS_COM_ReceiveBuffer(pios_com_gps_id, &c, 1, 0) == 1)
|
||
|
{
|
||
|
// Echo data back out aux port
|
||
|
//PIOS_COM_SendBufferNonBlocking(pios_com_aux_id, &c, 1);
|
||
|
|
||
|
// detect start while acquiring stream
|
||
|
if (!start_flag && (c == '$'))
|
||
|
{
|
||
|
start_flag = true;
|
||
|
found_cr = false;
|
||
|
rx_count = 0;
|
||
|
}
|
||
|
else if (!start_flag)
|
||
|
continue;
|
||
|
|
||
|
if (rx_count >= NMEA_MAX_PACKET_LENGTH)
|
||
|
{
|
||
|
// The buffer is already full and we haven't found a valid NMEA sentence.
|
||
|
// Flush the buffer and note the overflow event.
|
||
|
start_flag = false;
|
||
|
found_cr = false;
|
||
|
rx_count = 0;
|
||
|
numOverflowErrors++;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
gps_rx_buffer[rx_count] = c;
|
||
|
rx_count++;
|
||
|
}
|
||
|
|
||
|
// look for ending '\r\n' sequence
|
||
|
if (!found_cr && (c == '\r') )
|
||
|
found_cr = true;
|
||
|
else if (found_cr && (c != '\n') )
|
||
|
found_cr = false; // false end flag
|
||
|
else if (found_cr && (c == '\n') )
|
||
|
{
|
||
|
// The NMEA functions require a zero-terminated string
|
||
|
// As we detected \r\n, the string as for sure 2 bytes long, we will also strip the \r\n
|
||
|
gps_rx_buffer[rx_count-2] = 0;
|
||
|
|
||
|
// prepare to parse next sentence
|
||
|
start_flag = false;
|
||
|
found_cr = false;
|
||
|
rx_count = 0;
|
||
|
// Our rxBuffer must look like this now:
|
||
|
// [0] = '$'
|
||
|
// ... = zero or more bytes of sentence payload
|
||
|
// [end_pos - 1] = '\r'
|
||
|
// [end_pos] = '\n'
|
||
|
//
|
||
|
// Prepare to consume the sentence from the buffer
|
||
|
|
||
|
// Validate the checksum over the sentence
|
||
|
if (!NMEA_checksum(&gps_rx_buffer[1]))
|
||
|
{ // Invalid checksum. May indicate dropped characters on Rx.
|
||
|
//PIOS_DEBUG_PinHigh(2);
|
||
|
++numChecksumErrors;
|
||
|
//PIOS_DEBUG_PinLow(2);
|
||
|
}
|
||
|
else
|
||
|
{ // Valid checksum, use this packet to update the GPS position
|
||
|
if (!NMEA_update_position(&gps_rx_buffer[1])) {
|
||
|
//PIOS_DEBUG_PinHigh(2);
|
||
|
++numParsingErrors;
|
||
|
//PIOS_DEBUG_PinLow(2);
|
||
|
}
|
||
|
else {
|
||
|
++numUpdates;
|
||
|
|
||
|
GPSPositionData pos;
|
||
|
GPSPositionGet(&pos);
|
||
|
HomeLocationData home;
|
||
|
HomeLocationGet(&home);
|
||
|
|
||
|
// convert from cm back to meters
|
||
|
double LLA[3] = {(double) pos.Latitude / 1e7, (double) pos.Longitude / 1e7, (double) (pos.GeoidSeparation + pos.Altitude)};
|
||
|
// put in local NED frame
|
||
|
double ECEF[3] = {(double) (home.ECEF[0] / 100), (double) (home.ECEF[1] / 100), (double) (home.ECEF[2] / 100)};
|
||
|
LLA2Base(LLA, ECEF, (float (*)[3]) home.RNE, gps_data.NED);
|
||
|
|
||
|
gps_data.heading = pos.Heading;
|
||
|
gps_data.groundspeed = pos.Groundspeed;
|
||
|
gps_data.quality = pos.Satellites;
|
||
|
gps_data.updated = true;
|
||
|
|
||
|
const uint32_t INSGPS_GPS_MINSAT = 6;
|
||
|
const float INSGPS_GPS_MINPDOP = 4;
|
||
|
|
||
|
// if poor don't use this update
|
||
|
if((ahrs_algorithm != INSSETTINGS_ALGORITHM_INSGPS_OUTDOOR) ||
|
||
|
(pos.Satellites < INSGPS_GPS_MINSAT) ||
|
||
|
(pos.PDOP >= INSGPS_GPS_MINPDOP) ||
|
||
|
(home.Set == HOMELOCATION_SET_FALSE) ||
|
||
|
((home.ECEF[0] == 0) && (home.ECEF[1] == 0) && (home.ECEF[2] == 0)))
|
||
|
{
|
||
|
gps_data.updated = false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Assumes board is not moving computes biases and variances of sensors
|
||
|
* @returns None
|
||
|
*
|
||
|
* All data is stored in global structures. This function should be called from OP when
|
||
|
* aircraft is in stable state and then the data stored to SD card.
|
||
|
*
|
||
|
* After this function the bias for each sensor will be the mean value. This doesn't make
|
||
|
* sense for the z accel so make sure 6 point calibration is also run and those values set
|
||
|
* after these read.
|
||
|
*/
|
||
|
#define NMEAN 500
|
||
|
#define NVAR 1000
|
||
|
#define CHANNELS 6
|
||
|
static uint32_t calibrate_count = 0;
|
||
|
float f_means[CHANNELS];
|
||
|
float f_var[CHANNELS] = {0, 0, 0, 0, 0, 0};
|
||
|
void measure_noise()
|
||
|
{
|
||
|
uint32_t i;
|
||
|
|
||
|
float data[CHANNELS] = {accel_data.filtered.x,
|
||
|
accel_data.filtered.y,
|
||
|
accel_data.filtered.z,
|
||
|
gyro_data.filtered.x,
|
||
|
gyro_data.filtered.y,
|
||
|
gyro_data.filtered.z
|
||
|
};
|
||
|
|
||
|
// First step, zero all sufficient statistics
|
||
|
if(calibrate_count == 0) {
|
||
|
for (i = 0; i < CHANNELS; i++) {
|
||
|
f_means[i] = 0;
|
||
|
f_var[i] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Accumulate for an estimate of mean
|
||
|
if(calibrate_count < NMEAN)
|
||
|
for (i = 0; i < CHANNELS; i++)
|
||
|
f_means[i] += data[i];
|
||
|
|
||
|
if(calibrate_count == NMEAN)
|
||
|
for (i = 0; i < CHANNELS; i++)
|
||
|
f_means[i] /= (float) NMEAN;
|
||
|
|
||
|
// Accumulate for estimate of variance. This needs to be done
|
||
|
// sequentially because storing second moment would go out of
|
||
|
// float precision
|
||
|
if(calibrate_count >= NMEAN && calibrate_count < (NMEAN + NVAR))
|
||
|
for (i = 0; i < CHANNELS; i++)
|
||
|
f_var[i] += pow(f_means[i] - data[i],2);
|
||
|
|
||
|
if(calibrate_count == (NMEAN + NVAR)) {
|
||
|
for (i = 0; i < CHANNELS; i++)
|
||
|
f_var[i] /= (float) (NVAR - 1);
|
||
|
|
||
|
calibrate_count = 0;
|
||
|
|
||
|
InsSettingsData settings;
|
||
|
InsSettingsGet(&settings);
|
||
|
|
||
|
settings.Algorithm = INSSETTINGS_ALGORITHM_NONE;
|
||
|
settings.accel_var[0] = f_var[0];
|
||
|
settings.accel_var[1] = f_var[1];
|
||
|
settings.accel_var[2] = f_var[2];
|
||
|
settings.gyro_var[0] = f_var[3];
|
||
|
settings.gyro_var[1] = f_var[4];
|
||
|
settings.gyro_var[2] = f_var[5];
|
||
|
|
||
|
InsSettingsSet(&settings);
|
||
|
settings_callback(InsSettingsHandle());
|
||
|
} else {
|
||
|
PIOS_DELAY_WaituS(TYPICAL_PERIOD);
|
||
|
calibrate_count++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void zero_gyros(bool update_settings)
|
||
|
{
|
||
|
const float rate = 1e-2;
|
||
|
gyro_data.calibration.bias[0] += -gyro_data.filtered.x * rate;
|
||
|
gyro_data.calibration.bias[1] += -gyro_data.filtered.y * rate;
|
||
|
gyro_data.calibration.bias[2] += -gyro_data.filtered.z * rate;
|
||
|
|
||
|
if(update_settings) {
|
||
|
InsSettingsData settings;
|
||
|
InsSettingsGet(&settings);
|
||
|
settings.gyro_bias[INSSETTINGS_GYRO_BIAS_X] = gyro_data.calibration.bias[0];
|
||
|
settings.gyro_bias[INSSETTINGS_GYRO_BIAS_Y] = gyro_data.calibration.bias[1];
|
||
|
settings.gyro_bias[INSSETTINGS_GYRO_BIAS_Z] = gyro_data.calibration.bias[2];
|
||
|
InsSettingsSet(&settings);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @brief Populate fields with initial values
|
||
|
*/
|
||
|
void reset_values()
|
||
|
{
|
||
|
accel_data.calibration.scale[0] = 1;
|
||
|
accel_data.calibration.scale[1] = 1;
|
||
|
accel_data.calibration.scale[2] = 1;
|
||
|
accel_data.calibration.bias[0] = 0;
|
||
|
accel_data.calibration.bias[1] = 0;
|
||
|
accel_data.calibration.bias[2] = 0;
|
||
|
accel_data.calibration.variance[0] = 1;
|
||
|
accel_data.calibration.variance[1] = 1;
|
||
|
accel_data.calibration.variance[2] = 1;
|
||
|
|
||
|
gyro_data.calibration.scale[0] = 1;
|
||
|
gyro_data.calibration.scale[1] = 1;
|
||
|
gyro_data.calibration.scale[2] = 1;
|
||
|
gyro_data.calibration.bias[0] = 0;
|
||
|
gyro_data.calibration.bias[1] = 0;
|
||
|
gyro_data.calibration.bias[2] = 0;
|
||
|
gyro_data.calibration.variance[0] = 1;
|
||
|
gyro_data.calibration.variance[1] = 1;
|
||
|
gyro_data.calibration.variance[2] = 1;
|
||
|
|
||
|
mag_data.calibration.scale[0] = 1;
|
||
|
mag_data.calibration.scale[1] = 1;
|
||
|
mag_data.calibration.scale[2] = 1;
|
||
|
mag_data.calibration.bias[0] = 0;
|
||
|
mag_data.calibration.bias[1] = 0;
|
||
|
mag_data.calibration.bias[2] = 0;
|
||
|
mag_data.calibration.variance[0] = 50;
|
||
|
mag_data.calibration.variance[1] = 50;
|
||
|
mag_data.calibration.variance[2] = 50;
|
||
|
|
||
|
ahrs_algorithm = INSSETTINGS_ALGORITHM_NONE;
|
||
|
}
|
||
|
|
||
|
void send_attitude(void)
|
||
|
{
|
||
|
AttitudeActualData attitude;
|
||
|
AttitudeActualGet(&attitude);
|
||
|
attitude.q1 = attitude_data.quaternion.q1;
|
||
|
attitude.q2 = attitude_data.quaternion.q2;
|
||
|
attitude.q3 = attitude_data.quaternion.q3;
|
||
|
attitude.q4 = attitude_data.quaternion.q4;
|
||
|
float rpy[3];
|
||
|
Quaternion2RPY(&attitude_data.quaternion.q1, rpy);
|
||
|
attitude.Roll = rpy[0];
|
||
|
attitude.Pitch = rpy[1];
|
||
|
attitude.Yaw = rpy[2];
|
||
|
AttitudeActualSet(&attitude);
|
||
|
}
|
||
|
|
||
|
void send_velocity(void)
|
||
|
{
|
||
|
VelocityActualData velocityActual;
|
||
|
VelocityActualGet(&velocityActual);
|
||
|
|
||
|
// convert into cm
|
||
|
velocityActual.North = Nav.Vel[0] * 100;
|
||
|
velocityActual.East = Nav.Vel[1] * 100;
|
||
|
velocityActual.Down = Nav.Vel[2] * 100;
|
||
|
|
||
|
VelocityActualSet(&velocityActual);
|
||
|
}
|
||
|
|
||
|
int callback_count = 0;
|
||
|
void settings_callback(AhrsObjHandle obj)
|
||
|
{
|
||
|
callback_count ++;
|
||
|
InsSettingsData settings;
|
||
|
InsSettingsGet(&settings);
|
||
|
|
||
|
init_algorithm = ahrs_algorithm != settings.Algorithm;
|
||
|
ahrs_algorithm = settings.Algorithm;
|
||
|
bias_corrected_raw = settings.BiasCorrectedRaw == INSSETTINGS_BIASCORRECTEDRAW_TRUE;
|
||
|
|
||
|
accel_data.calibration.scale[0] = settings.accel_scale[INSSETTINGS_ACCEL_SCALE_X];
|
||
|
accel_data.calibration.scale[1] = settings.accel_scale[INSSETTINGS_ACCEL_SCALE_Y];
|
||
|
accel_data.calibration.scale[2] = settings.accel_scale[INSSETTINGS_ACCEL_SCALE_Z];
|
||
|
accel_data.calibration.bias[0] = settings.accel_bias[INSSETTINGS_ACCEL_BIAS_X];
|
||
|
accel_data.calibration.bias[1] = settings.accel_bias[INSSETTINGS_ACCEL_BIAS_Y];
|
||
|
accel_data.calibration.bias[2] = settings.accel_bias[INSSETTINGS_ACCEL_BIAS_Z];
|
||
|
accel_data.calibration.variance[0] = settings.accel_var[INSSETTINGS_ACCEL_VAR_X];
|
||
|
accel_data.calibration.variance[1] = settings.accel_var[INSSETTINGS_ACCEL_VAR_Y];
|
||
|
accel_data.calibration.variance[2] = settings.accel_var[INSSETTINGS_ACCEL_VAR_Z];
|
||
|
|
||
|
gyro_data.calibration.scale[0] = settings.gyro_scale[INSSETTINGS_GYRO_SCALE_X];
|
||
|
gyro_data.calibration.scale[1] = settings.gyro_scale[INSSETTINGS_GYRO_SCALE_Y];
|
||
|
gyro_data.calibration.scale[2] = settings.gyro_scale[INSSETTINGS_GYRO_SCALE_Z];
|
||
|
gyro_data.calibration.bias[0] = settings.gyro_bias[INSSETTINGS_GYRO_BIAS_X];
|
||
|
gyro_data.calibration.bias[1] = settings.gyro_bias[INSSETTINGS_GYRO_BIAS_Y];
|
||
|
gyro_data.calibration.bias[2] = settings.gyro_bias[INSSETTINGS_GYRO_BIAS_Z];
|
||
|
gyro_data.calibration.variance[0] = settings.gyro_var[INSSETTINGS_GYRO_VAR_X];
|
||
|
gyro_data.calibration.variance[1] = settings.gyro_var[INSSETTINGS_GYRO_VAR_Y];
|
||
|
gyro_data.calibration.variance[2] = settings.gyro_var[INSSETTINGS_GYRO_VAR_Z];
|
||
|
|
||
|
mag_data.calibration.scale[0] = settings.mag_scale[INSSETTINGS_MAG_SCALE_X];
|
||
|
mag_data.calibration.scale[1] = settings.mag_scale[INSSETTINGS_MAG_SCALE_Y];
|
||
|
mag_data.calibration.scale[2] = settings.mag_scale[INSSETTINGS_MAG_SCALE_Z];
|
||
|
mag_data.calibration.bias[0] = settings.mag_bias[INSSETTINGS_MAG_BIAS_X];
|
||
|
mag_data.calibration.bias[1] = settings.mag_bias[INSSETTINGS_MAG_BIAS_Y];
|
||
|
mag_data.calibration.bias[2] = settings.mag_bias[INSSETTINGS_MAG_BIAS_Z];
|
||
|
mag_data.calibration.variance[0] = settings.mag_var[INSSETTINGS_MAG_VAR_X];
|
||
|
mag_data.calibration.variance[1] = settings.mag_var[INSSETTINGS_MAG_VAR_Y];
|
||
|
mag_data.calibration.variance[2] = settings.mag_var[INSSETTINGS_MAG_VAR_Z];
|
||
|
}
|
||
|
|
||
|
void homelocation_callback(AhrsObjHandle obj)
|
||
|
{
|
||
|
HomeLocationData data;
|
||
|
HomeLocationGet(&data);
|
||
|
|
||
|
mag_len = sqrt(pow(data.Be[0],2) + pow(data.Be[1],2) + pow(data.Be[2],2));
|
||
|
float Be[3] = {data.Be[0] / mag_len, data.Be[1] / mag_len, data.Be[2] / mag_len};
|
||
|
|
||
|
INSSetMagNorth(Be);
|
||
|
|
||
|
init_algorithm = true;
|
||
|
}
|
||
|
|
||
|
void firmwareiapobj_callback(AhrsObjHandle obj)
|
||
|
{
|
||
|
#if 0
|
||
|
const struct pios_board_info * bdinfo = &pios_board_info_blob;
|
||
|
|
||
|
FirmwareIAPObjData firmwareIAPObj;
|
||
|
FirmwareIAPObjGet(&firmwareIAPObj);
|
||
|
if(firmwareIAPObj.ArmReset==0)
|
||
|
reset_count=0;
|
||
|
if(firmwareIAPObj.ArmReset==1)
|
||
|
{
|
||
|
|
||
|
if((firmwareIAPObj.BoardType==bdinfo->board_type) || (firmwareIAPObj.BoardType==0xFF))
|
||
|
{
|
||
|
|
||
|
++reset_count;
|
||
|
if(reset_count>2)
|
||
|
{
|
||
|
PIOS_IAP_SetRequest1();
|
||
|
PIOS_IAP_SetRequest2();
|
||
|
PIOS_SYS_Reset();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else if(firmwareIAPObj.BoardType==bdinfo->board_type && firmwareIAPObj.crc!=PIOS_BL_HELPER_CRC_Memory_Calc())
|
||
|
{
|
||
|
PIOS_BL_HELPER_FLASH_Read_Description(firmwareIAPObj.Description,bdinfo->desc_size);
|
||
|
firmwareIAPObj.crc=PIOS_BL_HELPER_CRC_Memory_Calc();
|
||
|
firmwareIAPObj.BoardRevision=bdinfo->board_rev;
|
||
|
FirmwareIAPObjSet(&firmwareIAPObj);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* @}
|
||
|
*/
|
||
|
|