1
0
mirror of https://bitbucket.org/librepilot/librepilot.git synced 2024-12-13 20:48:42 +01:00
LibrePilot/flight/targets/boards/spracingf3/bootloader/main.c

277 lines
8.6 KiB
C
Raw Normal View History

2017-05-22 15:08:04 +02:00
/**
******************************************************************************
* @addtogroup SPRacingF3 serial BootLoader
* @brief These files contain the code to the SPRacingF3 serial Bootloader.
*
* @{
* @file main.c
* @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
* @brief This is the file with the main function of the OpenPilot BootLoader
* @see The GNU Public License (GPL) Version 3
*
*****************************************************************************/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <pios.h>
#include <stdbool.h>
#include <stdint.h>
#include <pios_board_info.h>
#include <op_dfu.h>
#include <pios_iap.h>
#include <fifo_buffer.h>
#include <pios_com.h>
#include <ssp.h>
#include <pios_delay.h>
#include <pios_board_init.h>
#include <pios_board_io.h>
extern void FLASH_Download();
int32_t platform_senddata(const uint8_t *msg, uint16_t msg_len);
/* Private typedef -----------------------------------------------------------*/
typedef void (*pFunction)(void);
/* Private define ------------------------------------------------------------*/
#define MAX_PACKET_DATA_LEN 255
#define MAX_PACKET_BUF_SIZE (1 + 1 + MAX_PACKET_DATA_LEN + 2)
#define UART_BUFFER_SIZE 256
#define BL_WAIT_TIME 6 * 1000 * 1000
#define DFU_BUFFER_SIZE 63
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
pFunction Jump_To_Application;
static uint32_t JumpAddress;
/// LEDs PWM
uint32_t period1 = 5000; // 5 mS
uint32_t sweep_steps1 = 100; // * 5 mS -> 500 mS
uint32_t period2 = 5000; // 5 mS
uint32_t sweep_steps2 = 100; // * 5 mS -> 500 mS
static uint8_t process_buffer[DFU_BUFFER_SIZE];
static uint8_t rx_buffer[UART_BUFFER_SIZE];
static uint8_t txBuf[MAX_PACKET_BUF_SIZE];
static uint8_t rxBuf[MAX_PACKET_BUF_SIZE];
/* Extern variables ----------------------------------------------------------*/
DFUStates DeviceState = DFUidle;
int16_t status = 0;
bool JumpToApp = false;
bool ssp_dfu = false; // signal that ssp data has been received
bool User_DFU_request = true;
/* Private function prototypes -----------------------------------------------*/
static void led_pwm_step(uint16_t pwm_period, uint16_t pwm_sweep_steps, uint32_t stopwatch, bool default_state);
static uint32_t LedPWM(uint16_t pwm_period, uint16_t pwm_sweep_steps, uint32_t count);
static void processRX();
static void jump_to_app();
static void SSP_CallBack(uint8_t *buf, uint16_t len);
static int16_t SSP_SerialRead(void);
static void SSP_SerialWrite(uint8_t);
static const PortConfig_t ssp_portConfig = {
.rxBuf = rxBuf,
.rxBufSize = MAX_PACKET_DATA_LEN,
.txBuf = txBuf,
.txBufSize = MAX_PACKET_DATA_LEN,
.max_retry = 1,
.timeoutLen = 5000,
.pfCallBack = SSP_CallBack,
.pfSerialRead = SSP_SerialRead,
.pfSerialWrite = SSP_SerialWrite,
.pfGetTime = PIOS_DELAY_GetuS,
};
static Port_t ssp_port;
static t_fifo_buffer ssp_buffer;
int main()
{
PIOS_SYS_Init();
PIOS_Board_Init();
PIOS_IAP_Init();
if (PIOS_IAP_CheckRequest() == false) {
PIOS_DELAY_WaitmS(500);
User_DFU_request = false;
DeviceState = BLidle;
PIOS_IAP_ClearRequest();
}
// Initialize the SSP layer between serial port and DFU
fifoBuf_init(&ssp_buffer, rx_buffer, UART_BUFFER_SIZE);
ssp_Init(&ssp_port, &ssp_portConfig);
uint32_t stopwatch = 0;
const uint32_t start_time = PIOS_DELAY_GetuS();
while (true) {
/* Update the stopwatch */
stopwatch = PIOS_DELAY_GetuSSince(start_time);
processRX();
switch (DeviceState) {
case Last_operation_Success:
case uploadingStarting:
case DFUidle:
period1 = 5000;
sweep_steps1 = 100;
// PIOS_LED_Off(PIOS_LED_HEARTBEAT);
period2 = 0;
break;
case uploading:
period1 = 5000;
sweep_steps1 = 100;
period2 = 2500;
sweep_steps2 = 50;
break;
case downloading:
period1 = 2500;
sweep_steps1 = 50;
// PIOS_LED_Off(PIOS_LED_HEARTBEAT);
period2 = 0;
break;
case BLidle:
period1 = 0;
sweep_steps1 = 100;
PIOS_LED_On(PIOS_LED_HEARTBEAT);
period2 = 0;
break;
default: // error
period1 = 5000;
sweep_steps1 = 100;
period2 = 5000;
sweep_steps2 = 100;
}
led_pwm_step(period1, sweep_steps1, stopwatch, false);
led_pwm_step(period2, sweep_steps2, stopwatch, true);
JumpToApp |= (stopwatch > BL_WAIT_TIME) && ((DeviceState == BLidle) || (DeviceState == DFUidle));
DataDownload(start);
if (JumpToApp == true && !ssp_dfu) {
jump_to_app();
}
}
}
void led_pwm_step(uint16_t pwm_period, uint16_t pwm_sweep_steps, uint32_t stopwatch, bool default_state)
{
if (pwm_period != 0) {
if (LedPWM(pwm_period, pwm_sweep_steps, stopwatch)) {
PIOS_LED_On(PIOS_LED_HEARTBEAT);
} else {
PIOS_LED_Off(PIOS_LED_HEARTBEAT);
}
} else {
if (default_state) {
PIOS_LED_On(PIOS_LED_HEARTBEAT);
} else {
PIOS_LED_Off(PIOS_LED_HEARTBEAT);
}
}
}
void jump_to_app()
{
const struct pios_board_info *bdinfo = &pios_board_info_blob;
uint32_t fwIrqStackBase = (*(__IO uint32_t *)bdinfo->fw_base) & 0xFFFE0000;
// Check for the two possible irqstack locations (sram or core coupled sram)
if (fwIrqStackBase == 0x20000000 || fwIrqStackBase == 0x10000000) {
FLASH_Lock();
RCC_APB2PeriphResetCmd(0xffffffff, ENABLE);
RCC_APB1PeriphResetCmd(0xffffffff, ENABLE);
RCC_APB2PeriphResetCmd(0xffffffff, DISABLE);
RCC_APB1PeriphResetCmd(0xffffffff, DISABLE);
JumpAddress = *(__IO uint32_t *)(bdinfo->fw_base + 4);
Jump_To_Application = (pFunction)JumpAddress;
/* Initialize user application's Stack Pointer */
__set_MSP(*(__IO uint32_t *)bdinfo->fw_base);
Jump_To_Application();
} else {
DeviceState = failed_jump;
return;
}
}
uint32_t LedPWM(uint16_t pwm_period, uint16_t pwm_sweep_steps, uint32_t count)
{
const uint32_t curr_step = (count / pwm_period) % pwm_sweep_steps; /* 0 - pwm_sweep_steps */
uint32_t pwm_duty = pwm_period * curr_step / pwm_sweep_steps; /* fraction of pwm_period */
const uint32_t curr_sweep = (count / (pwm_period * pwm_sweep_steps)); /* ticks once per full sweep */
if (curr_sweep & 1) {
pwm_duty = pwm_period - pwm_duty; /* reverse direction in odd sweeps */
}
return ((count % pwm_period) > pwm_duty) ? 1 : 0;
}
uint32_t process_count = 0;
void processRX()
{
do {
ssp_ReceiveProcess(&ssp_port);
status = ssp_SendProcess(&ssp_port);
} while ((status != SSP_TX_IDLE) && (status != SSP_TX_ACKED));
if (fifoBuf_getUsed(&ssp_buffer) >= DFU_BUFFER_SIZE) {
for (int32_t x = 0; x < DFU_BUFFER_SIZE; ++x) {
process_buffer[x] = fifoBuf_getByte(&ssp_buffer);
}
process_count++;
processComand(process_buffer);
}
}
uint32_t callback_cnt = 0;
uint32_t read_cnt = 0;
uint32_t write_cnt = 0;
uint32_t rx_check_cnt = 0;
void SSP_CallBack(uint8_t *buf, uint16_t len)
{
ssp_dfu = true;
callback_cnt++;
fifoBuf_putData(&ssp_buffer, buf, len);
}
int16_t SSP_SerialRead(void)
{
uint8_t byte;
rx_check_cnt++;
if (PIOS_COM_ReceiveBuffer(PIOS_COM_TELEM_USB, &byte, 1, 0) == 1) {
read_cnt++;
return byte;
} else {
return -1;
}
}
int32_t platform_senddata(const uint8_t *msg, uint16_t msg_len)
{
return ssp_SendData(&ssp_port, msg, msg_len);
}
void SSP_SerialWrite(uint8_t value)
{
write_cnt++;
PIOS_COM_SendChar(PIOS_COM_TELEM_USB, value);
}